
1.4 Theory of Condensed Matter

Theoretical investigations in the Theory of Condensed Matter were performed in the frame-
work of the following projects:

• Strongly correlated systems.
• Dynamical systems: chaos, integrability, and self-organization.
• Disordered structures: glasses, topological defects, nanostructures, and Josephson junc-

tion.
• Mesoscopic and coherent phenomena in quantum systems.

Major results of the investigations within these projects are presented below, while several
topics are discussed in the attached brief reports.

Main results in the field ofStrongly correlated systems were obtained in studies of electronic
spectrum, superconductivity, and magnetic properties of materials with strong electron corre-
lations like transition metal oxides. A number of important new results were obtained among
which are the following.

A new method based on the dynamical mean-field theory for calculation of optical and
transport properties of Ce, CrO2, LaTiO3 materials was proposed and implemented. It was
found thatα → γ transition and optical data in Ce can be described by the Kondo collapse
model better than a Mott transition picture. The full temperature dependence of Ce optical
spectra was predicted.

An effective anisotropict-J model for the ”pseudo-ladder” compound CaCu2O3 was pro-
posed based on recent experimental studies and band structure calculations. Superconducting
pairing mediated by the exchange interaction in the model was investigated. It was shown that
anisotropy in the electronic spectrum strongly suppresses superconductingTc.

The interaction of strongly correlated electrons with acoustic phonons was investigated in
the framework of the Hubbard-Holstein model. It was suggested that the polaron exchange by
phonon clouds could lead to the polaron pairing and high-Tc superconductivity.

A valence bond crystal was considered within an effective spin-orbital Hamiltonian for an
orbitally-degenerate spin-1/2 system on pyrochlore lattices. It was shown that the orbital de-
grees of freedom can modulate the spin exchange, removing the infinite spin-degeneracy of
the ground state. The theory provides an explanation for the helical spin-singlet pattern in the
B-spinel MgTi2O4. It was proposed to use the resonant X-ray spectroscopy for experimental
observation of the orbital ordering.

A superexchange theory was developed for a spin-1/2 antiferromagnet Sr2GaMno5+x to
explain a competition between ’vertical’ and ’diagonal’ interplane magnetic bonds. A natural
explanation was obtained for an observed in neutron scattering experiments transition between
two magnetic structures generated by a chemical substitution in Sr2GaMn(O,F)6 compound.

The state of itinerant charge carriers in complex magnetic materials such as the magnetic
and diluted magnetic semiconductors was investigated. Within the framework of a spin-fermion
(s− d exchange) model, a detailed theory of quasiparticle excitations was developed using a
reformulation of the Green function method.

Main results in the problem ofDynamical systems: chaos, integrability and self-organization
were obtained for one-dimensional exactly solvable stochastic processes.

The normalization identity for the totally asymmetric exclusion process on an infinite lattice
and on a ring is derived. The sum of conditional probabilities over all possible final positions
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of particles at timet given arbitrary initial positions at timet = 0 is calculated. A method of
derivation of the normalization identity can be used for evaluation of correlation functions of
the exclusion process.

The Bethe ansatz solution for discrete time zero range and the asymmetric exclusion pro-
cesses with fully parallel dynamics is presented. The model depends on two parameters:p,
the probability of single particle hopping, andq, the deformation parameter, which in the gen-
eral case obeys|q|< 1 and is responsible for the long range interaction between particles. The
particular caseq = 0 corresponds to the popular Nagel-Schreckenberg traffic model.

The largest eigenvalue of the equation for the generating function of the distance travelled
by particles is evaluated. Forq = 0 the result is obtained for an arbitrary size of the lattice and
the number of particles. In the general case,|q|< 1, the model in the scaling limit is considered
and the universal form specific for the Karadar-Parizi Zhang universality class is obtained. The
phase transition occurring in the limitp→ 1 whenq < 0 is described.

The discrete-time evolution of a finite number of particles obeying the totally asymmetric
exclusion process (TASEP) with backward-ordered update on an infinite chain was considered.
The first result in this direction is a determinant expression for the conditional probability of
finding the particles at given initial and ending positions, provided they start and finish simulta-
neously. The expression has the same form as the one obtained by Schütz [J. Stat. Phys.88, 427
(1997)] for the continuous-time process. Next, it was proved that under some sufficient con-
ditions the determinant expression can be generalized to the case when the particles start and
finish at their own times. The latter result is used to solve a non-stationary zero-range process
(ZRP) on a finite chain with open boundaries.

The investigations performed within the projectMesoscopic and Coherent Phenomena in
Quantum Systems were mostly concentrated on the following topics: atomic interactions in su-
perfluid4He and in atomic traps, squeezed light teleportation, quasiparticle spectra in quantum
wells, electron-phonon interaction in polar and covalent materials, mesoscopic fluctuations and
transient coherence in nonequilibrium systems, toroid polarizations and nonlinear phenomena.

The comprehensive description of coherent spin relaxation is given. The theory of nu-
clear spin superradiance is developed and the experimental observations of this phenomenon
are considered. The intriguing problem of how coherence develops from initially incoherent
quantum fluctuations is analysed. All main types of coherent radiation by nuclear spins are dis-
cussed, which are: free nuclear induction, collective induction, maser generation, pure superra-
diance, triggered superradiance, pulsing superradiance, punctuated superradiance, and induced
emission. The influence of electron-nuclear hyperfine interactions and the role of magnetic
anisotropy are studied. Conditions for realizing spin superradiance by magnetic molecules are
investigated.

Main results in the problem ofDisordered structures were obtained in investigation of
electronic structure of graphite nanoparticles, tunnel splitting of classically degenerate ground
states, in studies of the low-temperature thermal characteristics of topologically disordered ma-
terials, and in studies of some novel effects in Josephson junctions.

Within a gauge field-theory model, the local and total density of states (DOS) near the
pentagonal defects (disclinations) were calculated (both analytically and numerically) for three
geometries: sphere, cone, and hyperboloid. It was found that the low-energy total DOS had a
cusp which drops to zero at the Fermi energy for disclinations with the Frank indexν < 1/2.
The appearance of an enhanced charge density near the Fermi level for nanocones with 60◦
opening angle (180◦ disclination at the apex) was predicted. The effect of pentagonal defects on
the electronic structure at the tip of the carbon nanohorns was investigated within the continuum
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gauge field-theory model. It was found that the existence of a localized electron state at the
Fermi level (a true zero-mode state) results in the enhanced charge density near the tip.

An instanton approximation to the continuous-time spin coherent-state path integral was
used to obtain the tunnel splitting of classically degenerate ground states. The method was
applied for description of the molecular magnet Fe8 in a transverse field.

It was shown that the transformation properties of the mean-field slave boson/fermion or-
der parameter under an action of the global SU(2) group imposed certain restrictions on their
applications to describe the phase diagram of the t-J model.

The thermal conductivity and internal friction of plastically deformed metals (aluminium,
niobium, tantalum and LiF) were investigated within the string model for dipoles of edge dislo-
cation. It was found that the presence of dipoles led to a remarkable increase in the resonance
frequency. This gives a possibility to obtain a good agreement with experiments.

Within a 2D model of Josephson junction arrays (created by 2D network of twin boundary
dislocations with strain fields acting as an insulating barrier between hole-rich domains in un-
derdoped crystals), a few novel effects expected to occur in intrinsically granular material are
predicted including: (i) Josephson chemomagnetism (chemically induced magnetic moment in
a zero applied magnetic field) and its influence on a low-field magnetization (chemically in-
duced paramagnetic Meissner effect), and (ii) magnetoconcentration effect (creation of oxygen
vacancies in applied magnetic field) and its influence on a high-field magnetization (chemically
induced analog of ”fishtail” anomaly).

By improving resolution of home-made mutual-inductance measurement technique, a pro-
nounced step-like structure (with the number of stepsn= 4 for all AC fields) was observed in the
temperature dependence of AC susceptibility in artificially prepared two-dimensional Josephson
Junction Arrays (2D-JJA) of unshuntedNb−AlOx−Nb junctions withβL(4.2K) = 30. Using a
single-plaquette approximation of the overdamped 2D-JJA model, we were able to successfully
fit our data assuming that steps are related to the geometric properties of the plaquette. The num-
ber of stepsn corresponds to the number of flux quanta that can be screened by the maximum
critical current of the junctions. The steps are predicted to manifest themselves in arrays with
the inductance related parameterβL(T) matching a ”quantization” conditionβL(0) = 2π(n+1).

The magnetic field dependence of complex AC susceptibilityχ = χ ′ + iχ ′′ of artificially
prepared highly ordered (periodic) two-dimensional Josephson junction arrays of unshunted
Nb−AlOx−Nb junctions was studied experimentally. The observed anomalous behavior can
be explained by assuming inhomogeneous critical current distribution within a single junction
and using single-plaquette approximation of the overdamped 2D-JJA model.

N.M. Plakida, V.B. Priezzhev
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VALENCE-BOND CRYSTAL IN A PYROCHLORE
ANTIFERROMAGNET WITH ORBITAL DEGENERACY

N.B. Perkins, S. Di Matteo1,2 and G. Jackeli3

1 LNF, INFN, Frascati, Italy,2 Universit̀a di Roma III, Roma, Italy,3 EPFL, Lausanne,
Switzerland

Our work is motivated by the very recent synthesis and interesting experimental data on
B-spinel MgTi2O4 [1, 2]. The physical behavior of this system, in which both orbital and spin
degrees of freedom are active, is expected to be different from that with only spin degrees of
freedom, as the occurrence of an orbital ordering (OO) can modulate the spin exchange and lift
the geometrical degeneracy of the underlying lattice. The recent experiments on MgTi2O4 have
shown that this compound undergoes a metal-to-insulator transition on cooling below 260 K
with an associated cubic-to-tetragonal lowering of symmetry.[1] At the transition the magnetic
susceptibility continuously decreases and saturates, in the insulating phase, to a value which
is anomalously small for spin1/2 local moments: for this reason the insulating phase was
interpreted as a spin-singlet phase. Subsequent synchrotron and neutron powder diffraction
experiments revealed that the low-temperature crystal structure is made of alternating short and
long Ti-Ti bonds forming a helix about the tetragonalc-axis [2] and can be regarded as a valence
bond crystal (VBC) since the long-range order of spin-singlets extends throughout the whole
pyrochlore lattice.

The aim of the present work is to discuss the microscopic mechanism behind the realization
of this unusual and intriguing VBC structure on the pyrochlore lattice. We argue that the key role
in this mechanism is played by orbital degeneracy. We consider the system in its cubic structure
and look for possible instabilities towards symmetry reductions. The effective Hamiltonian can
be written as [4]:

Heff =−J1 ∑
〈i j 〉

[
~Si ·~Sj +3/4

]
Oi j +J2 ∑

〈i j 〉

[
~Si ·~Sj −1/4

]
Oi j +J3 ∑

〈i j 〉

[
~Si ·~Sj −1/4

]
Õi j (1)

where the sum is restricted to the NN sites on the pyrochlore lattice. As only the leading
part of the hopping term, due to the largestddσ element, is taken into account, the orbital
contributions to the effective Hamiltonian are Ising-like and can be expressed through projectors
Pi,αβ on the orbital state|αβ 〉 asOi j = Pi,αβ (1−Pj,αβ )+Pj,αβ (1−Pi,αβ ) andÕi j = Pi,αβ Pj,αβ .
The first and second terms inHeff (1) describe the ferromagnetic (FM)J1 = t2/(U2− JH) and
the antiferromagnetic (AFM)J2 = t2/(U2 + JH) interactions, respectively, and are active only
when the two sites involved are occupied by different orbitals. The last term is AFM, with
J3 = 4

3t2
[
2/(U2 +JH)+1/(U2 +4JH)

]
, and is nonzero only when the two sites have the same

orbital occupancy.
The estimates for parameters that play a role are taken from Ref.[3] and they are: the NN

hopping termt ≡ tσ ' 0.32eV, the Coulomb on-site repulsion among different orbitalsU2' 4.1
eV, and the Hund exchangeJH ' 0.64 eV . In what follows, it will be useful to introduce a
ratio η = JH/U2 ' 0.15¿ 1, and expand the exchange energies inη aroundη = 0. We get
J1 ' J(1+ η), J2 ' J(1−η) andJ3 ' 4J(1−2η), whereJ = t2/U2 ' 25 meV represents the
overall energy scale.

The main aspect of the spin-orbital model (1) is that due toddσ -character of the hopping
terms only some orbital configurations contribute to the energy. We can thus classify tetrahedral
bonds in four types:(i) b0 – both ions at sitesi and j of the genericαβ -plane haveαβ orbital
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Figure 1: The ground state coverings of the unit cubic cell through dimers. Locations of singlets
are represented by thick links. Different numbers correspond to inequivalent tetrahedra. (a) The
helical dimerization pattern (indicated by arrows) is formed by alternating shortb0 and long
b3 bonds, Dimer phaseB3. (b) One of the possible coverings of the cubic unit cell byB1B2

tetrahedra.

occupancy. It is characterized by a Hamiltonian with strong AFM exchange:Hb0 = −J(1−
2η)(1− 4~Si ·~Sj); (ii) b1 – the two sites of bondi j in αβ -plane are occupied by oneαγ and
one αβ orbitals, γ 6= β . This bond has a weak FM exchange∼ ηJ and the corresponding
Hamiltonian is:Hb1 =−J(1+ η/2+2η~Si ·~Sj); (iii) b2 – the two sites of bondi j in αβ -plane
occupied by oneαγ and oneβγ orbitals. In this case there is no energy contribution:Hb2 = 0;
(iv) b3 – both sites of bondi j in αβ -plane are occupied by twoαγ (βγ) orbitals:Hb3 = 0.

It is possible to show that only three energetically inequivalent tetrahedrons can be sin-
gled out of the fourbn bonds introduced above, which can be characterized by the number of
b0-bonds: A-type tetrahedra, with twob0 bonds,B-type tetrahedra with oneb0 bond andC
tetrahedra with nob0-bonds.

(I) Heisenberg chains: If all sites of pyrochlore lattice are occupied by the same orbital,
then the effective Hamiltonian (1) can be mapped into a set of one-dimensional decoupled AFM
Heisenberg chains that lie within the plane of the chosen orbital. The ground-state energy per
site can be evaluated exactly by using the results for an Heisenberg chain which giveEA =
−2.77(1−2η)J. (II) Dimer phase B: This state is made of onlyB-type tetrahedra with one
strongb0-bond and two intermediateb1-bonds. There are three energetically equivalentBi

tetrahedra and all possible coverings of pyrochlore lattice byBi tetrahedra have the same energy
(two possible coverings are shown in Fig. 1). In the limitη → 0, the spin-only Hamiltonian
can be solved exactly, as it can be decomposed into a sum of spin-uncoupledb0 bonds. The
energy minimum is reached when the Heisenberg term of theb0-bond is the lowest, i.e., for a
pure quantum spin-singlet (~Si ·~Sj =−3/4). As η ¿ 1, the dimer state is stable against the weak
FM interdimer interaction. In this case, an energy per site is given by:EB = Eb0/2+ Eb1 =
−(3− 7

2η)J. HereEb0(1) is the energy of the bondb0(1). (III) FM order : In this case, all
tetrahedra are ofC-type with four interactingb1 bonds and twob3 (or oneb2 and oneb3)
noninteracting bonds. Thus, all nonzero spin-exchanges are ferromagnetic, and the ground state
has an energy per site given byEC = 2Eb1 =−2(1+η)J. (IV) Frustrated AFM : We consider
for completeness the case where each orbital is occupied by a linear superposition with equal
weight of the three orbitals:1√

3
(|xy〉+ |xz〉+ |yz〉). The energy in this phase is higher than that

of the other phases, as it does not exploit at all the potential energy-gain contained in the orbital
ordering.

For η = 0 the lowest ground-state energy is that of spin-singlet degenerate manifold. It is
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characterized by a static pattern of spin-singlets throughout the whole pyrochlore lattice and,
thus, is different from RVB state. Each dimer covering is frozen in an exact eigenstate of the
Hamiltonian (1) forη = 0. For finiteη the different dimer patterns are not connected by the
Hamiltonian, thus, a tunneling between different dimer states can not take place.

In this spin-singlet manifold the original spin degeneracy is removed. However there is
still a remaining orbital degeneracy to be lifted. This degeneracy can be removed by magne-
toelastic coupling. In a spin-Peierls system the magnetic energy gain due to the spin-singlet
pairs outweights the increase in elastic energy due to the dimerization of the regular array. We
have shown with qualitative [4] and quantitative [5] arguments that this mechanism selects the
triplet-T normal mode of the tetrahedron group, leading to a distortion with one short and one
long bonds located at the opposite edges and four undistorted bonds. Indeed, a reduction of
the bond length increases the magnetic energy gain and, therefore, favors the shortening of the
bond with the strongest superexchange, i.e.,b0, where the singlet is located. This mechanism
determines also the position of the twob1-bonds in the tetrahedron: in order to maximize the su-
perexchange energy gain, the intermediate-strengthb1-bonds are not allowed to lie on the long
bond opposite to the singletb0. The elongation of the weak bonds ofb3 type is energetically
more favorable. It is easy to check [4, 5] that it corresponds to the covering when all tetrahedra
are ofB3 kind, with aT-type tetragonal distortion. In this state all dimers are condensed in the
ordered helical pattern shown in Fig. 1a and form a VBC. This dimerization pattern exactly
reproduces the one observed in the insulating phase of MgTi2O4 [2].

[1] M. Isobe and Y. Ueda, J. Phys. Soc. Jpn.71, 1848 (2002).
[2] M. Schmidtet al., Phys. Rev. Lett.92, 056402 (2004).
[3] J. Matsuno, A. Fujimori, and L.F. Mattheiss, Phys. Rev. B60, 1607 (1999); T. Mizokawa

and A. Fujimori, Phys. Rev. B54, 5368 (1996).
[4] S. Di Matteo, G. Jackeli, C. Lacroix, and N.B. Perkins, Phys. Rev. Lett.93, 077208 (2004).
[5] S. Di Matteo, G. Jackeli, and N.B. Perkins, submitted to Phys. Rev. B.

PHYSICS OF COMPLEX MAGNETIC MATERIALS:
QUASIPARTICLE MANY-BODY DYNAMICS

A.L. Kuzemsky

The existence and properties of localized and itinerant magnetism in metals, oxides, and
alloys, and their interplay is an interesting but not yet fully understood problem of quantum
theory of magnetism[1, 2]. The behavior and the true nature of the electronic and spin states,
and their quasiparticle dynamics are of central importance to the understanding of physics of
correlated systems such as magnetism and Mott-Hubbard metal-insulator transition in metals
and oxides, magnetism and heavy fermions in rare-earths compounds, and anomalous trans-
port properties in perovskite manganites. This class of systems is characterized by complex,
many-branch spectra of elementary excitations. Moreover, the correlation effects ( compe-
tition and interplay of Coulomb correlation, direct or indirect exchange, sp-d hybridization,
electron-phonon interaction, disorder, etc.) are essential[3, 4]. These materials are systems
of great interest both intrinsically and as a possible source of understanding the magnetism of
matter generally [5, 6]. There has been considerable interest in identifying the microscopic
origin of quasiparticle states [3, 4, 6] in these systems and a few model approaches have been
proposed. Many magnetic and electronic properties of rare-earth metals and compounds, and
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magnetic semiconductors [7] and related complex magnetic materials may reasonably be in-
terpreted in terms of combined spin-fermion models which include interacting spin and charge
subsystems [8, 9, 10]. This approach permits one to describe significant and interesting physics,
e.g., bound states and magnetic polarons [9], anomalous transport properties, etc.
The problem of adequate physical description within various types of spin-fermion model has
intensively been studied during the last decades, especially in the context of magnetic and trans-
port properties of rare-earth and transition metals and their compounds and magnetic semicon-
ductors.
Substances which we refer to as magnetic semiconductors, occupy an intermediate position be-
tween magnetic metals and magnetic dielectrics. Magnetic semiconductors are characterized
by the existence of two well defined subsystems, the system of magnetic moments which are
localized at lattice sites, and a band of itinerant or conduction carriers (conduction electrons
or holes). Typical examples are the Eu-chalcogenides, where the local moments arise from 4f
electrons of the Eu ion, and the spinell chalcogenides containingCr3+ as a magnetic ion [7].
There is experimental evidence of a substantial mutual influence of spin and charge subsystems
in these compounds. This is possible due to thesp−d( f ) exchange interaction of the localized
spins and itinerant charge carriers. More recent efforts have been directed to the study of the
properties of diluted magnetic semiconductors (DMS)[10]. Further attempts have been made to
study and exploit carriers which are exchange-coupled to the localized spins. The effect of car-
riers on the magnetic ordering temperature is found to be very strong in DMS . Diluted magnetic
semiconductors are mixed crystals in which magnetic ions (usuallyMn++) are incorporated in
a substitutional position of the host ( typically a II-VI or III-V ) crystal lattice. The diluted mag-
netic semiconductors offer a unique possibility for a gradual change of the magnitude and sign
of exchange interaction by means of technological control of carrier concentration and band pa-
rameters. This field is very active and there are many aspects to the problem. A lot of materials
were synthesized and tested. The new material design approach to fabrication of new functional
diluted magnetic semiconductors resulted in producing a variety of compounds . The presence
of the spin degree of freedom in DMS may lead to a new semiconductor spin electronics which
will combine the advantages of the semiconducting devices with the new features due to the
possibilities of controlling the magnetic state. However, the coexistence of ferromagnetism and
semiconducting properties in these compounds require a suitable theoretical model which would
describe well both the magnetic cooperative behavior and the semiconducting properties as well
as a rich field of interplay between them. The majority of theoretical papers on DMS studied
their properties mainly within the mean field approximation and continuous media terms. In
a picture like this the disorder effects, which play an essential role, can be taken into account
roughly only. Moreover, there are different opinions on the intrinsic origin and the nature of
disorder in DMS. Thus, many experimental and theoretical investigations call for a better un-
derstanding of the relevant physics and the nature of solutions ( especially magnetic ) within
the lattice spin-fermion model[8, 9, 10]. For treating the problems we used a nonperturbative
many-body approach, the formalism of the method of Irreducible Green Functions (IGF) [4].
This IGF method allows one to describe quasiparticle spectra with damping for many-particle
systems on a lattice with complex spectra and a strong correlation in a very general and natu-
ral way. This scheme differs from the traditional method of decoupling of an infinite chain of
equations [1] and permits a construction of the relevant dynamic solutions in a self-consistent
way at the level of the Dyson equation without decoupling the chain of equations of motion for
the GFs.
In paper [9] the concepts of bound and scattering states were analysed and developed to eluci-

158



date the nature of itinerant charge carrier states in magnetic semiconductors and similar complex
magnetic materials. By contrasting the scattering and bound states of carriers within thes−d
exchange model, the nature of bound states at finite temperatures was clarified. The free mag-
netic polaron at certain conditions is realized as a bound state of the carrier (electron or hole)
with the spin wave. Quite generally, a self-consistent theory of a magnetic polaron was formu-
lated within the IGF method which was used to describe the quasiparticle many-body dynamics
at finite temperatures. Within the above approach we elaborated a self-consistent picture of
dynamic behavior of two interacting subsystems, the localized spins and the itinerant charge
carriers. In particular, it was shown that the relevant generalized mean fields emerges naturally
within our formalism. At the same time, the correct separation of elastic scattering corrections
permitted one to consider the damping effects (inelastic scattering corrections) self-consistently.
The damping of magnetic polaron state, which is quite different from the damping of the scat-
tering states, finds a natural interpretation within the present self-consistent scheme.
In paper [10], we applied the IGF formalism to consider quasiparticle spectra for the lattice
spin-fermion model consisting of two interacting subsystems. It was the purpose of that paper
to explore more fully the notion of Generalized Mean Fields (GMF) [4] which may arise in the
system of interacting localized spins ( including effects of disorder ) and lattice fermions to jus-
tify and understand the nature of the relevant mean fields. Background and applications of the
generalized spin-fermion ( sp-d ) exchange model to magnetic and diluted magnetic semicon-
ductors were discussed in some detail. The capabilities of the model to describe quasiparticle
spectra were investigated. The key problem of most of the work was the formation of spin
excitation spectra under various conditions on the parameters of the model. In paper [10], we
concentrated on the description of the magnetic excitation spectra and treated the disorder ef-
fects in the simplest VCA (virtual crystal approximation) to emphasize the need for a suitable
definition of the relevant generalized mean fields and for internal self-consistency in the de-
scription of the spin quasiparticle many-body dynamics.
Thus, we were able to calculate the quasiparticle spectra and GMF of the magnetic semicon-
ductors consisting of two interacting charge and spin subsystem within the lattice spin-fermion
model to analyze the role and influence of the Coulomb correlation, exchange, and effects of
disorder in a unified and coherent fashion.

[1] S. V. Tyablikov,Methods in the Quantum Theory of Magnetism, Plenum Press ( New York,
1967).
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SELF-ORGANIZED CRITICALITY IN AN IMMUNE SYSTEM

V.B. Priezzhev

It has been a routine practice since the seminal work by Eigen [1] to use kinetic equations
on complex graphs for description of the dynamics of competing macromolecular organisms
[2, 3, 4]. The quasispecies model introduced by Eigen and Schuster [5] describes the mutation
within a given genome space visualized as a graph with sites representing different types of
organisms and bonds connecting neighboring sites which are mutants with closest biological
affinity. Usually, the rates of replication for each site are assumed to be constant in time, so the
system evolves to the relatively stable quasispecies on a static fitness landscape.

Recently, some extensions to dynamic fitness landscape have been made [6, 7]. The height
of the fitness peak can change in time without changing its space location [6] or, vice versa, can
move in the sequence space [7]. The dynamic fitness assumes an interaction of the evolving
system with an adaptive environment. The closest example is the evolution of viruses in the
presence of a changing immune system [8, 9, 10].

Effects of the interaction between an evolving system and a changing environment were
considered in [11], where the evolving system was taken as a simple random walk on a lattice
and the changing environment as a system of arrows pointing the direction of continuation of
the walk at each site. After each visit, the walk changes the direction of an arrow in the visited
site to the next position. It was demonstrated in [11] that the motion of a diffusive particle
converges asymptotically to the Eulerian cycle which passes each bond of the graph in both
directions exactly once. On the other hand, the configuration of arrows, initially random, tends
to a set of strongly correlated configurations corresponding to spanning trees on the given graph.

The correlation functions of the spanning trees are well known [12] and decay with the
distance by a power law. Moreover, the number of spanning trees exactly equals the number
of recurrent configurations in the Abelian sandpile model [13] which is the basic model of
self-organized criticality [14].

A direct attempt to map a viral evolution model with dynamic fitness on the model of Eu-
lerian walks fails as the state of immune system is characterized by site variables rather than
bond variables. Activity of the immune system at a given site depends on the site distribution
of a virus population: it increases with time if the site is in the vicinity of a local maximum of
the virus probability distribution and decreases if the local maximum goes to another region of
the graph. Thus, we need a site version of the model proposed in [11].

The second peculiarity of the model is the discrete time approximation. We assume that
at each discrete moment of time, the population of viruses has a single peaked probability
distribution located at one of the sites of a graph. The evolution of the distribution is reduced
in this approximation to jumps between neighboring sites of the graph. In the context of the
qusispecies evolution model this implies that a fitness peak moves in the sequence space by
jumps and the time interval between jumps is sufficient for the virus population to reach a local
stationary state.

In the absence of immune system, the trajectory of the peak of virus distribution is just a
simple random walk on the graph provided that all sites of the graph outside of the peak of
fitness are equivalent. The presence of the immune system changes this picture drastically. The
activity of the immune system is a function of the coordinates of sites and the time passed from
the last visit of the given site by the peak of the virus distribution.

We assume that activity at the given site grows rapidly when the peak of the virus distribution
comes into this site and relaxes slowly when the peak leaves this site. As a result, the immune
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system ”remembers” all visits and its activity at each site is a monotonically decreasing function
of time from the last visit of this site. These assumptions are sufficient to formulate the model.

Given a graphG, whose vertices represent possible states of virus population, we associate
the peak of virus distribution at a given moment of discrete time with the position of the random
walk at the given site. The activity of the immune system at the initial moment of time is
described by a set of random numbers uniformly distributed on an interval. Starting a motion,
the random walk located at a site chooses among its nearest neighbors the site where activity
of the immune system is minimal. During the initial period, the motion of the random walk
is mostly random. The next period is characterized by appearance of more sites visited before
among the nearest neighbors of each site. Using the rule of monotonic decrease of activity, the
walker chooses the site visited at the earliest moment of time. During this period, the motion
of the walker becomes more deterministic as the concentration of visited sites grows. At the
last stage of evolution, when all sites of the graph are already visited at least once, the walk
becomes purely deterministic.

We show that the motion of the walker at the last stage converges asymptotically to a cycle
which passes all sites of the graph and has a property of the long-range correlations. Considering
a specific graph (the Manhattan lattice), we prove that the limiting cycle is a Hamiltonian walk
[15], that is the closed path which passes all sites of the graph exactly once. The elements of the
Hamiltonian walk are strongly correlated objects. The correlations in the trajectory of the walk
mean simultaneously the correlations in the environment, namely, the correlation of activity of
the immune system at two sites separated by the Euclidean distancer decays as a power law
of r.
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DIFFEOMORPHISMS INDUCED BY PRIME SERIES

Lubomir Alexandrov

The pair of one-to-one arithmetic functions

p(n) : N→ P, p−1(q) : P→ N,

can be extended to a pair of diffeomorphisms over the real semi-axis(0,∞).
Denotation:N andP are natural and prime series, respectively;p(n) and pn denotenth prime;
p̂n = pn+1− pn−1 is the number of composite numbers in the interval(pn, pn+1) .

Definition 1 The functionsf (x) ∈C(1)(0,∞), g(x) ∈C(1)(1,∞) are called prime number dif-
feomorphic if the following conditions hold:

f (n) = pn, n∈ N (1)

f

(
n+

1
2

)
=

1
2

(pn + pn+1) , n∈ N (2)

f (g(x)) = x ∀x∈ (1,∞), (3)

g( f (x)) = x ∀x∈ (2,∞), (4)

π(x) := ∑
p≤x, p∈P

1 = bg(x)c. (5)

The diffeomorphismsf (x) andg(x) are called the prime curve and the prime counting curve,
respectively.

The functionπR(x) of Riemann–Von Mangoldt ([1], p. 34, (2), (3)) which can be expressed in
terms of the zeros of the Riemann zeta function is the closest, among all known function, to the
prime counting curve. However, the functionπR(x) is not invertible and cannot be used for the
correspondence to the appropriate prime curve. It turns out that one can take the opposite way:
construct an invertible interpolation of the prime series and then obtain from it a continuous
differentiable counting curve. This way leads to prime number diffeomorphisms based on a
quadric spline.
Let the functions be given

a−n (x) = −2p̂n−1(x−n)2 +(x−n)+ pn, x > 0, n = 2,3, . . . ,

a+
n (x) = 2p̂n

(
x−n− 1

2

)2

+(2p̂n +1)
(

x−n− 1
2

)
+

pn + pn+1

2
.

Their derivatives are

da−n (x)
dx

= 4p̂n−1(n−x)+1,
da+

n (x)
dx

= 4p̂n(x−n)+1.

For anyn = 2,3, . . . the functions above are sewed together

a−n (n) = a+
n (n) = pn, (6)

da−n (x)
dx

∣∣∣∣
x=n

=
da+

n (x)
dx

∣∣∣∣
x=n

= 1, (7)

a−n+1

(
n+

1
2

)
= a+

n

(
n+

1
2

)
=

1
2
(pn + pn+1), (8)

da−n+1(x)
dx

∣∣∣∣∣
x=n+ 1

2

=
da+

n (x)
dx

∣∣∣∣
x=n+ 1

2

= 2p̂n +1. (9)
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Equations (6), (7), (8) and (9) define the following continuously differentiable quadric spline:

p(x) =





x+1, 0 < x≤ 3
2,

a−n (x), n− 1
2 ≤ x≤ n, n = 2,3, . . . ,

a+
n (x), n≤ x≤ n+ 1

2, n = 2,3, . . . .

(10)

with the first derivative

dp(x)
dx

=





1, 0 < x≤ 3
2,

4p̂n−1(n−x)+1, n− 1
2 ≤ x≤ n, n = 2,3, . . . ,

4p̂n(x−n)+1, n≤ x≤ n+ 1
2, n = 2,3, . . . .

. (11)

Inverting the functiona−n (x) in the intervaln− 1
2 ≤ x≤ n anda+

n (x) in the intervaln≤ x≤ n+ 1
2

gives the following inverse functions and their derivatives:

b−n (x) = n+
1− (8p̂n−1(pn−x)+1)

1
2

4p̂n−1
,

b+
n (x) = n+

(8p̂n(x− pn)+1)
1
2 −1

4p̂n
,

db−n (x)
dx

= (8p̂n−1(pn−x)+1)−
1
2 ,

db+
n (x)
dx

= (8p̂n(x− pn)+1)−
1
2 .

The functionsb−n (x), b+
n (x) and their derivatives are sewed together in a similar way like

Eqs. (6), (7), (8) and (9)

b−n (pn) = b+
n (pn) = n, (12)

db−n (x)
dx

∣∣∣∣
x=pn

=
db+

n (x)
dx

∣∣∣∣
x=pn

= 1, (13)

b−n+1

(
pn + pn+1

2

)
= b+

n

(
pn + pn+1

2

)
= n+

1
2
, (14)

db−n+1(x)
dx

∣∣∣∣∣
x=

pn+pn+1
2

=
db+

n (x)
dx

∣∣∣∣
x=

pn+pn+1
2

=
1

2p̂n +1
. (15)

Finally Eqs. (12), (13), (14) and (15) define the continuously differentiable inverse spline

p−1(x) =





x−1, 1 < x≤ 5
2,

n+ 1−(8p̂n−1(pn−x)+1)
1
2

4p̂n−1
, pn−1+pn

2 ≤ x≤ pn, n = 2,3, . . . ,

n+ (8p̂n(x−pn)+1)
1
2−1

4p̂n
, pn≤ x≤ pn+pn+1

2 , n = 2,3, . . . ,

(16)

with the first derivative

dp−1(x)
dx

=





1, 1 < x≤ 5
2,

(8p̂n−1(pn−x)+1)−
1
2 , pn−1+pn

2 ≤ x≤ pn, n = 2,3, . . . ,

(8p̂n(x− pn)+1)−
1
2 , pn≤ x≤ pn+pn+1

2 , n = 2,3, . . . .

(17)
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Lemma 1 The derivatives ofp(x) and p−1(x) satisfy the inequalities

1≤ dp(x)
dx < ∞, x > 0, (18)

0 < dp−1(x)
dx ≤ 1, x > 1. (19)

The following assertions are valid [2]:

Theorem 1

(i) The pair(p(x), p−1(x)) is prime number diffeomorphic.

(ii) The specific behavior of the prime and counting curves are traced by the invariants:

1 =
dp(x)

dx

∣∣∣∣
x=n

=
dp−1(x)

dx

∣∣∣∣
x=pn

, n = 2,3, . . . , (20)

−1 = sign

(
d2p(x)

dx2

∣∣∣∣
x=n−0

)
sign

(
d2p(x)

dx2

∣∣∣∣
x=n+0

)
, n = 3,4, . . . , (21)

−1 = sign

(
d2p−1(x)

dx2

∣∣∣∣
x=pn−0

)
sign

(
d2p−1(x)

dx2

∣∣∣∣
x=pn+0

)
, n = 3,4, . . . . (22)

Now one can compare the existent forms of the prime counting function in terms of splines as
follows:
the Legandre-Gauss functionπ(x) is a discontinuously broken-line spline-interpolation;
the Riemann–von Mangoldt functionπR(x) is a continuously broken-line spline-interpolation;
the counting curvep−1(x) is a continuously differentiable curvilinear-spline double-interpolation.
In [2] are shown both numerical and analytical applications of the functionp−1(x).

[1] H.M. Edwards,Riemann’s Zeta Function, Dover Publication, Mineola, New York (2001).
[2] L. Alexndrov and L. Georgiev,Prime Number Diffeomorphisms, Diophantine Equations

and the Riemann Hypothesis, JINR Preprint E5–2004-181, Dubna 2004;math-ph/0411071
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THE EXTRA PHASE CORRECTION
TO THE SEMICLASSICAL SPIN PROPAGATOR

E.A. Kochetov

As is known a correct representation of the semiclassical spin propagator beyond the leading
exponential order includes the extra phase correction usually referred to as the Solari-Kochetov
(SK) phase [1]. The relevance of the SK phase has been justified in the application of the spin
coherent-state path integral to the calculation of the tunnel splitting of the classically degener-
ate ground state for a family of models that includes a realistic approximation to the molecular
magnetFe8 [2]. It was also shown that this phase contributed to the Bohr-Sommerfeld quan-
tization rule for a spin system [3]. Besides, it was noticed in [4] that the modification of the
Gutzwiller trace formula for systems with a coupling of the translational and spin degrees of
freedom should also contain this extra phase in the combined limith̄→ 0, S→ ∞, h̄S=const.

The SK phase arises in the semiclassical expansion of the spin propagator in the next-to-
leading order in1/S. Within the spin path-integral representation, the classical spin trajectory
for which the action is stationary is responsible for the leading exponential factor. The pref-
actor results in the next-to-leading order from integrating out the Gaussian fluctuations around
the classical path. Regulating the fluctuation determinant in a manner consistent with the dis-
crete form of the spin path integral results in the SK correction to the naive expression for the
prefactor.

As is known, regulating a functional determinant in a path-integral action amounts to fixing
an operator ordering ambiguity in the hamiltonian formalism. Therefore, a freedom in choos-
ing a regularization scheme in a path integral shows up in the hamiltonian formulation as an
ordering ambiguity when classical variables are replaced by their quantum counterparts. This
”duality” implies that the origin of the SK phase can be related to a specific choice of the spin
operator ordering. Indeed, it was shown in [5] that the extra SK correction appeared as a differ-
ence between the principal and the Weyl symbol of a quantum spin hamiltonian.

From the geometrical viewpoint, the SK phase is known to naturally split into two parts of
different geometrical origin: the kinetic term and the dynamical one, the Laplacian of the spin
energy on the unit sphere. The purely topological (metric independent) part of the SK phase
appears as a correction to the classical Wess-Zumino or kinetic term in the spin path-integral
action. Geometrically, this part of the SK phase appears in the trace calculations as the area
enclosed by a closed spin path on the unit sphere. Physically, it justifies the so-called Weyl
shift, S→ S+ 1/2, of the quasiclassical expansion parameter and explains the experimentally
observed oscillations in the spin tunnel energy splitting as a function of an external magnetic
field [2].

1. M. Stone, K.-S. Park, and A. Garg,J. Math. Phys.41, 8025 (2000).
2. A. Garg, E. Kochetov, K.-S. Park, and M. Stone,J. Math. Phys.44, 48 (2003).
3. A. Garg and M. Stone,Phys. Rev. Lett.92, 010401 (2004).
4. M. Pletyukhov and O. Zaitsev,J. Phys. A36, 5181 (2003).
5. M. Pletyukhov,J. Math. Phys.45, 1859 (2004).
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MANIFESTATION OF NOVEL GEOMETRIC EFFECTS
IN ORDERED 2D JOSEPHSON JUNCTION ARRAYS

S.A. Sergeenkov

Many unusual and still not completely understood magnetic properties of Josephson Junc-
tion Arrays (JJAs) continue to attract attention of both theoreticians and experimentalists alike
(for a recent review on the subject, see, e.g. [1, 2] and further references therein). In particu-
lar, among the numerous spectacular phenomena recently discussed and observed in JJAs we
would like to mention the dynamic temperature reentrance of AC susceptibility (closely related
to paramagnetic Meissner effect) and avalanche-like magnetic field behavior of magnetization.

In this report we present experimental evidence for manifestation of novel geometric effects
in magnetic response of high-quality ordered 2D-JJA [3]. By increasing the resolution of our
home-made mutual-inductance measurements technique [4], we were able to observe for the
first time a fine, step-like structure (with the number of stepsn = 4 for all AC fields used in
our experiments) in the temperature behavior of AC susceptibility in artificially prepared 2D-
JJA of unshuntedNb−AlOx−Nb junctions. Using a single-plaquette approximation of the
overdamped 2D-JJA model, we show that the number of stepsn corresponds to the number of
flux quanta that can be screened by the maximum critical current of the junctions and as a result
steps will manifest themselves in arrays with the inductance related parameterβL(T) matching
a ”quantization” conditionβL(0) = 2π(n+1).

The unshunted 2D-JJAs used in our study [3] are formed by loops of niobium islands linked
throughNb−AlOx−Nb Josephson junctions and consist of100×150 tunnel junctions. The
unit cell has square geometry with lattice spacinga = 46µm and a single junction area of
5×5µm2. Since the inductance of each loop isL = µ0a= 64pH and the critical current of each
junction is IC(4.2K) = 150µA, we haveβL(4.2K) = 30. Recall thatβL(T) = 2πLIC(T)/Φ0

whereΦ0 is the magnetic flux quantum. The observed temperature dependence of the real part
of AC susceptibility for different AC fields is shown in Fig.1. A pronounced step-like structure
is clearly seen at higher temperatures. Given the well-defined periodic structure of our arrays, it
is reasonable to assume that this phenomenon could be understood by analyzing the dynamics
of just a single plaquette containing four identical junctions. If we apply an AC external field
Hac(t) = haccosωt normally to the 2D-JJA, then the total magnetic fluxΦ(t) in the loop is
given byΦ(t) = Φext(t)+LI(t) whereΦext(t) = SHac(t) with S' a2 being the projected area
and I(t) = IC(T)sinφ(t) the circulating current in the loop. Hereφ(t) is the gauge-invariant
superconducting phase difference across theith junction. In the case of four junctions, the

flux quantization condition readsφ = π
2

(
n+ Φ

Φ0

)
wheren = 0,1,2... Notice that the current

circulating in the loop passes through its maximum value wheneverφ(t) reaches the value of
π
2(2n+ 1). As a result, the maximum number of fluxons threading a single plaquette over the
period2π/ω becomes equal to< Φ(t) >= (n+1)Φ0. In turn, the latter equation is equivalent
to the following geometric ”quantization” conditionβL(0) = 2π(n+1). Recall that in our array
βL(0) = 31.6, which is a perfect match for the above ”quantization” condition predictingn = 4
for the number of steps in a single plaquette. The solid lines in Fig.1 present fits of the observed
temperature dependence of the normalized susceptibilityχ ′(T,hac)/χ0 for different magnetic
fieldshac, according to the above-described theoretical model usingβL(0) = 10π. As is seen,
our simplified model based on a single-plaquette approximation demonstrates excellent agree-
ment with the observations.
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Figure 1: Experimental results for temperature dependence of the real part of AC susceptibility
χ ′(T,hac) for different AC field amplitudeshac = 41.0, 59.6, 67.0, 78.2 and96.7mOeand the
fits (solid lines), according to our theoretical model withβL(0) = 10π.

[1] S. Sergeenkov, inNew Developments in Superconductivity Research, Ed. R.W. Stevens,
Nova Science, New York, 2003, pp. 18–45.

[2] S. Sergeenkov, JETP Letters77, 94 (2003).
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759 (2004).

PHYSICS OF COLD TRAPPED ATOMS

V.I. Yukalov

A survey has been given of the present state of the art in studying Bose-Einstein condensa-
tion of dilute atomic gases. The bulk of attention is focused on the principal theoretical prob-
lems, though the related experiments are also mentioned. Both uniform and nonuniform trapped

167



gases are considered. Existing theoretical contradictions are critically analysed. A correct un-
derstanding of the principal theoretical problems is necessary for gaining a more penetrating
insight into experiments with trapped atoms and for their proper interpretation.

A mixture of the multicomponent Bose-Einstein condensate is considered, where each com-
ponent moves with its own velocity. As a result of the relative motion, the mixture stratifies
when the relative velocity reaches a critical value. Stability conditions for a binary moving
mixture are derived and the critical velocity is found.

The possibility of generating multiple coherent modes in trapped Bose gases is advanced.
This requires the usage of several driving fields whose frequencies are tuned close to the cor-
responding transition frequencies. A general criterion is derived explaining when the driving
fields, even being in perfect resonance, cannot generate the topological coherent modes. This
criterion is termed the theorem of shape conservation. Bose-Einstein condensates with gen-
erated coherent modes display a number of interesting effects, such as: interference fringes,
interference current, mode locking, dynamic transition, critical phenomena, chaotic motion,
harmonic generation, parametric conversion, atomic squeezing, and entanglement production.
Approximate solutions, based on the averaging techniques, are found to be in good agreement
with direct numerical calculations for the Gross-Pitaevskii equation.

Trapped Bose atoms cooled down to temperatures below the Bose-Einstein condensation
temperature are considered. Stationary solutions to the Gross-Pitaevskii equation (GPE) de-
fine the topological coherent modes, representing nonground-state Bose-Einstein condensates.
These modes can be generated by means of alternating fields whose frequencies are in reso-
nance with the transition frequencies between two collective energy levels corresponding to
two different topological modes. The theory of resonant generation of these modes is general-
ized in several aspects: Multiple-mode formation is described; a shape-conservation criterion
is derived, imposing restrictions on the admissible spatial dependence of resonant fields; evo-
lution equations for the case of three coherent modes are investigated; the complete stability
analysis is accomplished; the effects of harmonic generation and parametric conversion for the
topological coherent modes are predicted. All considerations are realized by both employing
approximate analytical methods and numerically solving the GPE. Numerical solutions confirm
all conclusions following from analytical methods.

Fluctuations of the number of particles for the dilute interacting gas with Bose-Einstein
condensate are considered. It is shown that in the Bogolubov theory these fluctuations are
normal. The fluctuations of condensed as well as noncondensed particles are also normal in
both canonical and grand canonical ensembles.

[1] V.I. Yukalov, Laser Phys. Lett.1, 435–461 (2004); ibid.2, 156–161 (2005).
[2] V.I. Yukalov and E.P. Yukalova, Laser Phys. Lett.1, 50–53 (2004).
[3] V.I. Yukalov, K.P. Marzlin, and E.P. Yukalova, Laser Phys.14; Phys. Rev. A69, 023620–

16 (2004). 565–570 (2004);

COHERENT EFFECTS IN COLLECTIVE RADIATION

V.I. Yukalov

A review of coherent phenomena has been published. The main part of this review is de-
voted to the comprehensive description of coherent radiation by nuclear spins. The theory of
nuclear spin superradiance is developed and the experimental observations of this phenomenon
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are considered. The intriguing problem of how coherence develops from initially incoherent
quantum fluctuations is analysed. All main types of coherent radiation by nuclear spins are dis-
cussed, which are: free nuclear induction, collective induction, maser generation, pure superra-
diance, triggered superradiance, pulsing superradiance, punctuated superradiance, and induced
emission. The influence of electron-nuclear hyperfine interactions and the role of magnetic
anisotropy are studied. Conditions for realizing spin superradiance by magnetic molecules are
investigated. The possibility of nuclear matter lasing accompanied by pion or dibaryon radiation
is briefly touched.

The relation is studied between the entanglement production and collective radiation by an
ensemble of atoms. Entanglement production is quantified by means of a general measure in-
troduced earlier by the author. Primary emphasis is placed on the entanglement generated by
pseudospin density matrices. The problem of collective atomic radiation can be described by the
pseudospin evolution equations. These equations define the evolutional entanglement generated
by the related density matrices. Under conditions of superradiant emission, the entanglement
production exhibits sharp peaks at the delay time, where the intensity of radiation is maximal.
The possibility of regulating the occurrence of such peaks by punctuated superradiance is dis-
cussed, which suggests the feasibility ofpunctuated entanglement production.

Atomic squeezing is studied for the case of large systems of radiating atoms when collective
effects are well developed. All temporal stages are analyzed starting with the quantum stage of
spontaneous emission, passing through the coherent stage of superradiant emission, and going
to the relaxation stage ending with stationary solutions. A method of governing the temporal
behaviour of the squeezing factor is suggested. The influence of a squeezed effective vacuum
on the characteristics of collective emission is also investigated.

A spin system is considered with a Hamiltonian typical of molecular magnets, having
dipole-dipole interactions and a single-site magnetic anisotropy. In addition, spin interactions
through the common radiation field are included. A fully quantum-mechanical derivation of
the collective radiation rate is presented. An effective narrowing of the dipole-dipole attenua-
tion due to high spin polarization is taken into account. The influence of the radiation rate on
spin dynamics is carefully analysed. It is shown that this influence is completely negligible.
No noticeable collective effects such as superradiance can appear in molecular magnets being
caused by electromagnetic spin radiation. Spin superradiance can arise in molecular magnets
only when these are coupled to a resonant electric circuit, as was suggested earlier by one of the
authors in Laser Phys.12, 1089 (2002).

A comparative analysis is given of spin superradiance and atomic superradiance. Their
similarities and distinctions are emphasized. It is shown that despite a close analogy these
phenomena are fundamentally different. In atomic systems, superradiance is a self-organized
process, in which both the initial cause, being spontaneous emission, as well as the collectiviz-
ing mechanism of their interactions through the common radiation field are of the same physical
nature. Contrary to this, in actual spin systems with dipole interactions, the latter are the major
reason for spin motion. Electromagnetic spin interactions through radiation are negligible and
can never produce collective effects. The possibility of realizing superradiance in molecular
magnets by coupling them to a resonant circuit is discussed.

[1] V.I. Yukalov and E.P. Yukalova, Phys. Part. Nucl.35, 348–382 (2004); Phys. Rev. A70,
053828–11 (2004); Laser Phys. Lett.2, 302–308 (2005).

[2] V.I. Yukalov, Laser Phys.14, 1403–1414 (2004); Laser Phys. Lett.2, 356–361 (2005).
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