
1.3 Theory of Condensed Matter

Theoretical investigations in the Theory of Condensed Matter were performed in the
framework of the following projects:

• Strongly correlated systems.

• Dynamical systems: chaos, intergability and self-organization.

• Disordered structures: glasses, topological defects, nanostractures and Josephson
junction.

• Mesoscopic and coherent phenomena in quantum systems.

Major results of the investigations within these projects are presented below, while
several topics are discussed in the attached brief reports.

Main results in the problem of strongly correlated systems were obtained in investigation
of electronic spectrum and mechanisms of superconductivity in copper-oxide materials
and in studies of magnetic properties of materials with complicated phase diagrams like
transition metal oxides.

A microscopic theory of high-temperature superconductivity mediated by antiferro-
magnetic exchange and spin fluctuations was developed within the realistic p-d Hubbard
model. It explains a strong variation of superconducting temperature with lattice con-
stants in mercury superconductors recently discovered at the FLNP, JINR. New meth-
ods for calculation of thermoelectrical properties and the optical conductivity of real
strongly correlated materials were developed. The dynamical mean-field theory was used
to take into account strong electron interactions and thereby bring the self-energy into
first-principal calculations. The results of computations for the optical conductivity for
doped LaTiO3 and thermopower for pyrites were found in good quantitative agreement
with experiments. Relationships between structural and superconducting properties in
the layered mercury cuprates were established within the proposed model of charge trans-
fer between inequivalent layers. A system of highly correlated electrons strongly coupled
with optical phonons was investigated in the framework of the Hubbard-Holstein model.
A new mechanism of polaron pairing and superconductivity was proposed mediated by
exchanging phonon clouds.

A phenomenological theory based on the group-theoretical analysis was developed to
describe the orientational phase transition in K2Ba(NO2)4 ferroelastic, the orbital phase
transition in Pr1−xCaxMnO3 manganite, and a system of hydrogen bonds in the high–
pressure phases of CsHSO4 crystals which were studied by neutron scattering experiments
at FLNP, JINR. Magnetic models of quasi one-dimensional spin systems were derived
microscopically and applied to explain magnetic properties of a series of new transition
metal oxides. A new mechanism of unconventional superexchange was proposed and
studied to describe the ground state magnetic structure of a new complex manganese
oxide. To describe an intriguing doping dependence of the exchange energies in the
bilayer manganites La2−2xSr1+2xMn2O7 observed in neutron scattering experiments, a
theory was developed which enabled one to explain the experimental data by taking into
account the doping dependence of the orbital level splitting.

Main results in the problem of Dynamical systems: chaos, intergability and self-
organization were obtained for two-dimensional equilibrium and one-dimensional nonequi-
librium and quantum models of statistical mechanics. For the free-fermion models on
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torus, exact asymptotic expansions of the free energy, the internal energy and the specific
heat in the vicinity of the critical point were found. It is shown that there is a direct
relation between the terms of the expansion and the Kronecker double series. The latter
can be expressed in terms of the elliptic theta-functions in all orders of the asymptotic
expansion.

The asymmetric stochastic process describing the avalanche dynamics on a ring was
proposed. A general kinetic equation which incorporates the exclusion and avalanche
processes was considered. The Bethe ansatz method was used for calculation of the
generating function for the total distance covered by all particles. It gives the average
velocity of particles which exhibits a phase transition from an intermittent to a continuous
flow. We calculated also higher cumulants and the large deviation function for the particle
flow. The latter has a universal form obtained earlier for the asymmetric exclusion process
and conjectured to be common for all models of the Kardar-Parisi-Zhang universality class.

The universal formulation of spin exchange models related to Calogero-Moser models
implies the existence of integrable hierarchies which have not been explored. We showed
the general structures and features of the spin exchange model hierarchies by taking as
examples the well-known Heisenberg spin chain with the nearest neighbour interactions.
The energy spectra of the second member of the hierarchy belonging to the models based
on the Ar root systems (r = 3, 4, 5) were explicitly and exactly evaluated. They show
many interesting features and in particular, much higher degree of degeneracy than the
original Heisenberg model, as expected from the integrability.

The investigations performed within the project: Mesoscopic and coherent phenomena
in quantum systems were mostly concentrated on the following topics: atomic interactions
in superfluid 4He and in atomic traps, squeesed light teleportation, quasiparticle spectra
in quantum wells, electron-phonon interaction in polar and covalent materials, mesoscopic
fluctuations and transient coherence in nonequilibrium systems, toroid polarizations and
nonlinear phenomena.

In studies of the superfluid 4He the shift of the critical Bose-Einstein condensation
temperature in an atomic trap by the gravitational field was estimated. This result
concerns the recent NASA project of new precise physical experiments in the outer space.
Low-density expansions were derived for the chemical potential, ground-state energy, pair
distribution function, kinetic and interaction energies of the Bose gas in two-dimensions.
It was shown that the ground-state energy was mostly kinetic in the low-density limit.
The new form of the 2D Gross-Pitaevskii equation was proposed within our scheme.
Resonant excitation of nonlinear coherent modes in trapped Bose-Einstein condensates
was advanced. The dynamical theory of this phenomenon was developed.

The ultimate limits of continuous-variable single-mode quantum teleportation due to
absorption was studied, with special emphasis on (quasi-)monochromatic optical fields
propagating through fibers. It was shown that even if an infinitely squeezed two-mode
squeezed vacuum were used, the amount of information that would be transferred quantum
mechanically over a finite distance is limited and effectively approaches zero on a length
scale that is much shorter than the (classical) absorption length.

In studies of the stability of a large bipolaron embedded in a polaron gas it was shown
that an isolated nonstable bipolaron can be stabilized in the presence of a polaron gas
exhibiting Fermi statistics. This study was performed for both for (3D) materials and thin
(2D) films using the Hartree-Fock approximation. An approximate model to describe a
multilayered heterostructure was generalized to the case of a asymmetrical quantum well.
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The polaron energy and its effective mass were calculated for different quantum wells.
The method of stability indices was suggested describing the stability of stochastic

systems. It is shown that quasi-isolated systems are stochastically unstable. The prob-
abilistic approach to pattern selection was developed. This theory has to do with evo-
lution equations of nonlinear nonequilibrium systems, when there appear a multiplicity
of solutions corresponding to different spatiotemporal patterns. A probability measure
characterizing these patterns was constructed and the principle of pattern selection was
suggested. The theory was developed for describing turbulent photon filamenation in res-
onant media. The results of calculations were in very good agreement with experiments
on lasers with high Fresnel numbers. Coherent phenomena in photonic bandgap mate-
rials, with localized light, were described. The effect of collective liberation of localized
light was predicted.

Two approaches were developed to describe systems with a finite (countered) number
of objects. In the first one a compound object is introduced directly via generation
numbers of its components. Its behaviour is described with nonlinear equations of Lotka-
Volterra-type with the skew-symmetric matrix of coefficients. All the solutions of the
equations were obtained and the structure of their critical points was investigated. In the
second approach probability equations (Smolukhovskyi type one), describing the processes
coagulation as well as fragmentation, were proposed and solved.

Main results in the problem of disordered structures were obtained in investigation of
electronic structure of graphitic nanoparticles, in studies of the low-temperature thermal
characteristics of topologically disordered materials, and in studies of some novel effects
in Josephson junctions.

Within a gauge field-theory model, the local and total density of states (DOS) near
the pentagonal defects (disclinations) were calculated for three geometries: sphere, cone,
and hyperboloid. It was found that the low-energy total DOS has a cusp which drops to
zero at the Fermi energy for disclinations with the Frank index ν < 1/2. The appearance
of an enhanced charge density near the Fermi level for nanocones with 60◦ opening angle
(180◦ disclination at the apex) was predicted.

The problem of phonon scattering by long-range strain fields caused by wedge discli-
nation dipoles and circular wedge disclination loops was studied. A combination of two
scattering processes, the phonon scattering due to biaxial disclination dipoles and the
Rayleigh-type scattering were shown to be of importance for amorphous dielectrics. The
results are in good agreement with experimentally observed thermal conductivity in a-
SiO2, a-GeO2, a-Se, and polystyrene. The frequency-dependent loss and specific heat
due to twist disclinations were investigated by treating the disclination as an oscillating
heterogeneous string. It was found that (1) the contribution to the specific heat depends
linearly on the temperature, and (2) the decrement has a resonance-type character and is
proportional to the fourth power of the disclination length.

Several novel phenomena in a twisted superconductor (containing a small annular
SIS-type contact) under the influence of thermal gradient and applied magnetic field
were predicted, including a torsional analog of Josephson piezomagnetism and magne-
tomechanical effect. A giant enhancement (reaching 500%) of electronic contribution to
the thermal conductivity of a granular superconductor in applied electric field was pre-
dicted within a model of inductive Josephson junction arrays.

N.M. Plakida
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ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION
SUPERCONDUCTING PAIRING IN CUPRATES

N.M. Plakidaa, L. Antona,b, S. Adama,c, Gh. Adama,c

aJoint Institute for Nuclear Research, Russia
bInstitute of Atomic Physics INFLPR, Bucharest, Romania

cInstitute of Physics and Nuclear Engineering, Bucharest-Mǎgurele, Romania

A unique property of cuprates is that they belong to a charge-transfer insulators with
a small splitting energy between 3d copper and 2p oxygen levels and a large Coulomb
correlations in 3d copper states [1]. This results in a huge antiferromagnetic (AFM)
superexchange interaction of the order of J ' 1500 K which brings the long-range AFM
order in the undoped regime and causes strong AFM dynamical spin fluctuations in the
superconducting state. It suggests that the AFM interaction can be responsible for the
d-wave superconducting pairing in cuprates with high Tc, as was shown in studies of the
one-band t-J model (see, e.g. [2]-[6]).

To prove the AFM pairing mechanism we consider the original p-d model for CuO2

layer [1, 7]. In this report, we briefly present the results of these investigation, while
details of the calculations can be found in the original papers [8, 9].

We consider an effective two-band Hubbard model with the lower Hubbard subband
occupied by one-hole Cu d-like states and the upper Hubbard subband occupied by two-
hole p-d singlet states [7]:

H = E1

∑
i,σ

Xσσ
i +E2

∑
i

X22
i +

∑

i6=j,σ

{t11
ij Xσ0

i X0σ
j +t22

ij X2σ
i Xσ2

j +2σt12
ij (X2σ̄

i X0σ
j +H.c.)}, (1)

where Xnm
i = |in〉〈im| are the Hubbard [7] operators for the four states n,m =

|0〉, |σ〉, |2〉 = | ↑↓〉, σ = ±1/2 = (↑, ↓) , σ̄ = −σ. Here E1 = εd − µ and E2 = 2E1 + ∆
where µ is the chemical potential and ∆ = εp − εd is the p-d charge transfer energy. The

effective hopping integrals tαβ
ij ' 0.1t ¿ ∆ ' 2t where t is the p-d hybridization param-

eter (see [7]). The Hubbard model (1) corresponds to the strong correlation limit since
the bandwidth W ' 8|tαβ

ij | ' t < ∆.
To discuss the superconducting pairing within the model Hamiltonian (1), we introduce

the four-component Nambu operators X̂iσ and X̂†
iσ = (X2σ

i X σ̄0
i X σ̄2

i X0σ
i ) and define the

4 × 4 matrix Green function (GF) G̃ijσ(t − t′) = 〈〈X̂iσ(t) | X̂†
jσ(t′)〉〉 . By applying the

projection technique to the equation of motion method for the GF we derive the Dyson
equation in the (q, ω)-representation [8, 9]:

(
G̃σ(q, ω)

)−1

=
(
G̃0

σ(q, ω)
)−1

− Σ̃σ(q, ω), G̃0
σ(q, ω) =

(
ωτ̃0 − Ẽσ(q)

)−1

χ̃, (2)

where τ̃0 is the 4× 4 unity matrix and χ̃ = 〈{X̂iσ, X̂
†
iσ}〉 . The zero-order GF within the

generalized mean field approximation (MFA) is defined by the frequency matrix which
in the site representation reads Ẽijσ = Ãijσχ̃

−1, Ãijσ = 〈{[X̂iσ, H], X̂†
jσ}〉 . The self-

energy operator in the Dyson equation (2) in the projection technique method is defined

by the many-particle irreducible operators: Ẑ
(ir)
σ = [X̂iσ, H] − ∑

l ẼilσX̂lσ in the form

Σ̃σ(q, ω) = χ̃−1〈〈Ẑ(ir)
σ | Ẑ(ir)†

σ 〉〉(prop)
q,ω χ̃−1 where 〈{Ẑ(ir)

σ , X̂†
jσ}〉 = 0.

In the MFA the electronic spectrum and superconducting pairing are described by
the zero-order GF in Eq. (2). By applying the commutation relations for the Hubbard
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operators the frequency matrix Ẽijσ can be easily derived. The normal component defines
quasiparticle spectra of the model in the normal state which were studied in detail in [7].
The anomalous component defines the gap functions for the singlet and one-hole subbands,
respectively, (i 6= j): ∆22

ijσ = −2σt12
ij 〈X02

i Nj〉, ∆11
ijσ = −2σt12

ij 〈(2 − Nj)X
02
i 〉 , where the

number operator Ni =
∑

σ Xσσ
i + 2X22

i . Using the definitions of the Fermi annihilation
operators: ciσ = X0σ

i + 2σX σ̄2
i we can write the anomalous average as 〈X02

i Nj〉 ==

〈X0↓
i X↓2

i Nj〉 = 〈ci↓ci↑Nj〉 . Therefore, the anomalous correlation functions describe the
pairing at one lattice site but in different subbands.

In our approach we perform a direct calculation of the correlation function 〈X02
i Nj〉

without any decoupling by considering the corresponding commutator GF Lij(t − t′) =
〈〈X02

i (t) | Nj(t
′)〉〉 . After writing the equation of motion for GF Lij(ω) and apply-

ing the spectral theorem we obtain the following representation for the desired corre-
lation function at sites i 6= j for the singlet subband in the case of hole doping [9]:
〈X02

i Nj〉 = −(1/∆)
∑

m6=i,σ 2σt12
im〈Xσ2

i X σ̄2
m Nj〉 ' −(4t12

ij /∆)2σ 〈Xσ2
i X σ̄2

j 〉 , where the ap-
proximate value is obtained in the two-site approximation, m = j, usually applied to the
t-J model. This finally allows us to write the expression of the gap function in MFA in
the case of hole doping as follows: ∆22

ijσ = −2σ t12
ij 〈X02

i Nj〉 = Jij〈Xσ2
i X σ̄2

j 〉 . This result
recovers the exchange interaction contribution to the pairing, with an exchange energy
parameter Jij = 4 (t12

ij )2/∆. We may therefore conclude that the anomalous contributions
to the zero-order GF, Eq. (2), originate in conventional anomalous pairs of quasi-particles
and their pairing in MFA is mediated by the exchange interaction which was studied in
the t-J model (see, e.g., [2, 4]).

The self-energy matrix was calculated in the self-consistent Born approximation
(SCBA) (or the noncrossing approximation). In SCBA, the propagation of the Fermi-like

and Bose-like excitations in the many-particle GF in 〈〈Ẑ(ir)
σ | Ẑ(ir)†

σ 〉〉(prop)
q,ω are assumed to

be independent, which results in the decoupling of the corresponding operators in the time-
dependent correlation function 〈B1′(t)X1(t)B2′(t

′)X2(t
′)〉 ' 〈X1(t)X2(t

′)〉〈B1′(t)B2′(t
′)〉

for lattice sites (1 6= 1′, 2 6= 2′). Using the spectral representation for these correlation
functions we get a closed system of equations for the GF (2) and the self-energy of the
Eliashberg type with the pairing interaction mediated by spin-fluctuations [9]. The latter
is defined by the spin susceptibility χ′′s(q, ω) = −(1/π)Im〈〈Sq | S−q〉〉ω+iδ which comes
from the correlation function 〈B1′(t)B2′(t

′)〉 .
By considering the weak coupling approximation for calculation of the self-energy and

taking into account the contribution from the exchange interaction in MFA, we arrive at
the following equation for the singlet gap:

∆22(q) =
1

N

∑

k

[J(k− q)− λ(k,q− k)]
∆22(k)

2E2(k)
tanh

E2(k)

2T
, (3)

where λ(k,q− k) = |t(k)|2χs(q− k, ω = 0) > 0 and t(k) ' t (1/2)(cos kx + cos ky). The
gap equation (3) for model spin-fluctuation susceptibility χs(q) was numerically solved
in [9], which gives the doping dependence of the superconducting transition temperature
Tc(δ) and the gap function ∆22(k) having d-wave pairing symmetry. The obtained results
qualitatively agree with experiments in cuprates.

Further analytical studies was showed that for the exchange interaction, mediated
by the interband hopping with large energy transfer ∆ À W , the retardation effects
are negligible. It results in coupling of all electrons in the conduction band W and Tc
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proportional to the electronic energy [5]

Tc '
√

µ(W − µ)exp(−1/λ), λ ' J N(δ), (4)

where N(δ) is the density of electronic states for doping δ. The maximum Tc is achieved
for the chemical potential µ = EF ' W/2 and even for a weak coupling, λ ' 0.3; it can
be quite large of the order of 200 K.

The AFM pairing mechanism is further proved by considering the Tc dependence on the
lattice constant [5]. While in conventional electron-phonon superconductors Tc decreases
with pressure, in cuprates Tc increases. From Eq. (4) we get an estimation: d ln Tc/d ln a =
(d ln Tc/d ln J) (d ln J/d ln a) ' −50 (for λ ' 0.3 and d ln J/d ln a ' −14) which is quite
close to the experiments. Concerning the oxygen isotope effect in cuprates on substitution
of 18O oxygen for 16O we can estimate it also from Eq. (4). By using the experimentally
observed isotope shift for the Néel temperature in La2CuO4, αN = −d ln TN/d ln M ' 0.05
with TN ∝ J we get αc = −(d ln Tc/d ln M) = −(d ln Tc/d ln J) (d ln TN/d ln M) '
(αN/λ) ' 0.16 for λ ' 0.3 which is close to experiments.

To conclude, the present investigation proves the existence of a singlet dx2−y2-wave
superconducting pairing for holes or electrons in the two-band Hubbard model mediated
by the antiferromagnetic exchange interaction and spin-fluctuation scattering induced by
the kinematic interaction characteristic of the Hubbard model. These mechanisms of
superconducting pairing, generic for cuprates, are absent in the fermionic models.
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OPTICAL PROPERTIES OF STRONGLY CORRELATED SYSTEMS.
DYNAMICAL MEAN FIELD THEORY

V.S. Oudovenko1,2, G. Pálsson2, G. Kotliar2 and S. Savrasov2

1 BLTPh, JINR, Dubna, Russia
2 Serin Physics Laboratory, Rutgers University, USA

Optical spectral functions such as conductivity or reflectivity are very important char-
acteristics of solids which give us a direct probe of their electronic structure. In the past,
very powerful numerical techniques based on density functional theory (DFT) and local
density approximation (LDA) were developed, which allowed access to the one-electron
spectrum in real materials via association of LDA energy bands with the real excitation
energies. This approach works well for weakly correlated systems, where, for example,
optical properties can be directly computed [1] via the knowledge of the band structure
and the dipole matrix elements of the material.

Unfortunately, the treatment of materials with strong electronic correlations is not pos-
sible within this framework. Strong on-site Coulomb repulsion modifies the one-electron
spectrum via appearance of satellites, Hubbard bands, strongly renormalized Kondo-like
states, etc., which are no longer obtainable using static mean-field theories such as the
Hartree-Fock theory or DFT. The wave functions in strongly correlated systems are not
representable by single-Slater determinants and dynamical self-energy effects become im-
portant, thus requiring a new theoretical treatment based on the dynamical mean field
theory [2] (DMFT). Recent advances in merging the DMFT with realistic LDA based
electronic structure calculations has already led to solving such long standing problems
as, e.g., temperature dependent magnetism of Fe and Ni, volume collapse in Ce, Mott
transition in V2O3 and huge volume expansion of Pu.

We developed an approach to calculate the optical properties of strongly correlated
systems based on combined LDA and DMFT framework. Realistic DMFT computations
of optical properties would allow the test of DMFT predictions using more bulky sensitive
probes. The DMFT based approach to the electronic structure problem considers both the
charge density and the local Green function (GF) as parameters of a spectral density func-
tional [3]. To find its extremum, a set of Dyson equations is solved self–consistently. The
set also includes the local self-energy. The self-energy is found by solving the Anderson
impurity model with a matrix of Coulomb interaction and a Weiss field function using the
available many-body technique [2] such as Quantum Monte Carlo (QMC) method which
is used in present calculations. Solutions of the Dyson equation are used in calculation
of the optical conductivity which is expressed via the equilibrium state current-current
correlation function.

The method was implemented for calculating optical conductivity of the paramag-
netic doped insulator La1−xSrxTiO3. Local density approximation cannot reproduce the
insulating behavior of this system when x = 0, indicating the importance of correlations.
Upon doping the system becomes a correlated metal. The optical conductivity σxx(ω) ob-
tained on the low frequency interval is shown in Fig. 1 at several doping levels x = 0.1, 0.2,
and 0.3. The x = 0 case, which corresponds to undoped LaTiO3 compound, is an insula-
tor with a small gap equal to 0.2-0.5 eV. The gap between the lower Hubbard band and
La 5d bands is the charge transfer gap. Optical transitions from the lower Hubbard band
to La 5d give the main contribution to the optical conductivity in pure LaTiO3, which is
nicely reproduced in our calculations.
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Upon doping, carriers are introduced into the conduction band, and the system shows
metallic behavior.The optical conductivity at very low frequencies and for x > 0 exhibits
a Drude peak whose strength increases with doping. As it is seen from Fig. 1, the optical
conductivity has nonzero intensity all the way down to 1.1 eV. The contribution to this
intensity is due to transitions from i) the coherent part of the spectrum near the Fermi
level to the upper Hubbard and Lanthanum bands, ii) the transitions from the lower
Hubbard band to the upper Hubbard band and Lanthanum bands and iii) transitions
from the lower Hubbard band to the coherent part of the spectra.

This trend correctly reproduces the optical absorption experiments [4] performed for
La1−xSrxTiO3. To compare our theoretical data with these measurements, Fig. 1 shows
by symbols the measured optical conductivity at the doping level x = 0.1. Overall good
agreement can be found from this comparison for both the frequency behavior of the
theoretical and experimental curves and their relative intensities. We must emphasize that
the corresponding calculations based on the local density approximation would completely
fail to reproduce the doping behavior.The correct trend upon doping captured by the
present calculation as well as proper frequency behavior can be considered as significant
improvements brought by the realistic DMFT studies.

More insight into our calculations can be gained by comparing the effective number
of carriers participating in the optical transitions.The main contribution in LDA case
to the Neff comes from the Drude part of the conductivity (90%) and only 10% is due
to interband transitions. Hence, the main effect brought by DMFT suppresses those
90 % of the Drude contribution to get insulating behavior instead. Experimental doping
dependence of the effective number of carriers was extracted from Ref. [5]. In the inset
of Fig. 1 we plot the number of electrons as a function of hole concentration from both
the theory and experimental measurements. Again, at zero doping the system is an
insulator which gives very small Neff for x = 0. The fact that our calculations predict
the effective number behavior correctly indicates that the dynamical mean field method
properly describes the system as a function of doping larger than 0.1.

Further we discuss our optical conductivity spectrum at higher frequency interval up
to 16 eV. Figure 1 (right panel) shows the optical conductivity function σxx(ω) at doping
x = 0.1 where we compare our results to the local density approximation result and with
the measured data [4].

Even at low doping one can notice the difference between the LDA and DMFT results
in the low-energy part of the conductivity (where the most differences are expected). A
sharp increase in the optical conductivity at ω ∼ 4 eV is seen. This is attributed to
the transitions from the oxygen p-band into unoccupied d states of Ti. The main peak
of optical transitions is located between 5 and 10 eV, and major contribution to the
peak comes from Oxygen to Lanthanum bands. It is predicted by both our (solid line)
and LDA (dashed line) calculations. It is well compared with the measured spectrum
(symbols). Since our self-energy corrections modify only the states near the Fermi level,
we do not expect our spectrum to be essentially different from that given by the LDA in
this frequency range which can also be concluded from Fig. 1. Overall, the agreement at
high frequencies is quite good, which demonstrates reliability of the present theoretical
study.

Summarizing, we have shown how the optical conductivity of realistic strongly cor-
related system can be computed using the recently developed DMFT-based electronic
structure method. As application of the method, we have studied the optical conductiv-
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Figure 1: Low-frequency behavior of the optical conductivity for La1−xSrxTiO3 (left
panel) at x = 0.1, 0.2, 0.3 calculated using the LDA+DMFT method. Experimental result
is shown by symbols for the x = 0.1 case. In the inset we plot the effective number of
carriers as a function of doping. Squares show theoretical result of the LDA+DMFT
calculations. Circles are experimental data. Calculated optical conductivity spectrum
for La1−xSrxTiO3, x = 0.1, in a large frequency interval (right panel) using theDMFT
method (full line) as compared with the experimental data (symbols) and the results of
the corresponding LDA calculations (dashed line).

ity of La1−xSrxTiO3 and found the correct dependence of this function as a function of
both frequency and doping. Our results, reproducing well experimental data, significantly
advance the studies based on static mean field approximations such as the LDA.
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DOUBLE KRONECKER SERIES AND EXACT ASYMPTOTIC
EXPANSION FOR THE ISING MODEL ON TORUS
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Singularities of thermodynamic functions at the critical point arise only in the thermo-
dynamic limit when the size L of a system tends to infinity. In this limit the correlation
length ξbulk determines the degree of exponential decrease in correlation functions. In
addition to these two fundamental scales L and ξbulk there also exists a microscopic inter-
action scale. Thus, thermodynamic quantities may depend on the scale-free ratios ξbulk/L
and a/L. The finite-size scaling hypothesis [1] implies that near the critical point (where
a ¿ ξbulk ∼ L) the behaviour of any thermodynamic quantity can be described by a
universal function of only one variable t = ξbulk/L. Corrections to the finite-size scaling
function can be treated as asymptotic series in powers of another variable a/L.

Two-dimensional exactly solvable models, in particular, the Ising model [2], have al-
ways been a certain testing ground used to verify general approaches to studying critical
phenomena such as the finite-size scaling hypothesis and possible nonuniversal corrections
to the scaling function. Asymptotic expansion of free energy of the Ising model on torus
of the area S and with the relation of the sides τ near the critical point can be represented
as a series

FT=Tc(τ, S) = f∞ S + f0(τ) +
∞∑

k=1

fk(τ) S−k.

For the Ising model the coefficients of this expansion can be expressed through the elliptic
theta functions

f∞ = − ln 2

2
− 2γ

π

f0(τ) = − ln
θ2 + θ3 + θ4

2η

f1(τ) = −π3ρ2

180

7
8
(θ9

2 + θ9
3 + θ9

4) + θ2θ3θ4 [θ3
2θ

3
4 − θ3

3θ
3
2 − θ3

3θ
3
4]

θ2 + θ3 + θ4

...

Here the free energy per site f∞ was calculated in [3] and the first term of the asymptotic
expansion f0(τ) was found in [4]. We derive recurrence formulae which though cumber-
some allow one to write out explicit expressions for any term of the asymptotic expansion
fk(τ), k ≥ 1 in terms of the elliptic theta functions [5].

Our approach is based on the use of the double Kronecker series [6]

Kα,β
p (τ) ∼

∑
m,n∈Z

(m,n)6=(0,0)

e−2πi(nα+mβ)

(n + τ m)p
.

These series turned out to be directly associated with higher correction terms of the
asymptotic expansion of the free energy for the model of free fermions on torus with
twisted boundary conditions when the fermion wave function acquires a phase shift α
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when going round one of the torus periods and β round the other. In this case one can
show that

ln Zα,β(τ) =
(− ln 2

4
− γ

π

)
S + ln

∣∣∣ θα,β(τ)

η(τ)

∣∣∣ +
∞∑

k=1

D̂2k+2 Kα,β
2k+2(τ) S−k,

where D̂2k+2 are the differential operators with respect to the variable τ [5].
Using this result one can calculate the asymptotic expansions for all free models of

statistical mechanics (the Ising model, the dimer model, and the Gauss model). Indeed,
the partition functions of these models are expressed in terms of that of free fermions on
torus with the twisted boundary conditions as follows:

ZIsing(τ) = 2MN/2−1
{

Z 1
2
, 1
2
(τ) + Z0, 1

2
(τ) + Z 1

2
,0(τ) + Z0,0(τ)

}

ZDimer(τ) =
1

2

{
Z2

1
2
, 1
2
(τ) + Z2

0, 1
2
(τ) + Z2

1
2
,0
(τ)− Z2

0,0(τ)
}

ZGauss(τ) = 2MN/2
[

Z0,0(τ)
]−1

Exact asymptotic expansions for other thermodynamic functions: internal energy and
heat capacity, were found in an analogous way.
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A NEW LINE OF INVESTIGATION
OF NONLINEAR EVOLUTION EQUATIONS

SOLVABLE BY THE INVERSE SCATTERING METHOD

V.K. Mel’nikov

A new approach to the problem of finding nonlinear evolution equations solvable by
the inverse sacttering method is proposed by the author. All existing approaches are
based on the Lax representation [1] and its modifications [2, 3, 4], or on the study of a
group of symmetries of the nonlinear equations under consideration [5], whereas in the
proposed approach the evolution equations for the scattering data underlie it. This means
that, first, a nonlinear evolution equation (or a system of these equations) and a linear
differential operator to be used for investigation of the given equation (or the system) are
taken. Then, we consider the evolution of the scattering data for this operator under the
assumption that its coefficients vary with time in accordance with the nonlinear equation
(or a system of these equations) taken. It turned out that under different assumptions on
the structure of the evolution equations for the scattering data we can answer the question
if there is a nonlinear evolution system generating this evolution of the scattering data
and if yes, then how to find it (or describe it effectively).

At the present time, this issue obtained an effective and rather a simple solution for
the Schrödinger and Dirac operators [6, 7]. It is shown that if the evolution equations for
the scattering data are assumed to be differential (ordinary or with partial derivatives),
the nonlinear evolution equations generating this evolution have the operator representa-
tion of which the Lax representation is a particular case [1]. Moreover, the structure of
this operator relation is completely determined by the group of symmetries of the opera-
tor used. This group of symmetries determines transformations relating the solutions to
these equations in the non-Lax case with those to the equations having the Lax repre-
sentation. The procedure of solving this task is mostly new and its application in further
investigations in this field seems promising.

The obtained results were reported at the seminars at the Bogoliubov Laboratory,
JINR and the Currant Institute, New York, as well as at the International Conferences
in Dubna, Prague, and Cambridge (Great Britain).
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ANALYTICALLY SOLVED KINETIC MODELS

V.M. Dubovik, A.G. Galperin1, V.S. Richvitsky2

1Veksler–Baldin Laboratory of High Energy, JINR
2Laboratory of Information Technology, JINR

Many problem of physics, chemistry, biology and social science could be considered
as a kinetic one which is nonlinear as a rule. Often that problem could be formulated
in terms of population numbers or probability versus population numbers. We construct
analytically solved problems in both the cases. These two variants are not necessarily
alternative. A choice among them is defined, to a considerable extent, by a possibility
to reveal, within the problem, a certain conserved dynamic quantity which assumes a
nontrivial differential form. Being integrated that equation returns the above value as a
function conserved on solutions [1, 2, 3].

A nontrivial r.h.s. of a nonlinear differential equation which is written in the normal
form can get some additional symmetry as regards the original conservation law, some
extra conservation laws. These extra symmetries could be comprehended as own dynamic
properties which determine a complex system or transitions between its states, e.g., a
balance rule which is related with position of representative point in co-space of coefficients
(constants of interaction, etc.). Besides, a possibility arises to control an increase in of
complexity of a system and a number of integrals. We constructed an example of this
kind of system in terms of the population number approach.

A complex compound object of 3 species, whose population numbers converse dynam-
ically as a result of interactions between them under a condition of conservation of their
total sum, is described as nonlinear ODE’s in the normal form with r.h.s. quadratic over
population number of species and skew symmetric matrix of coefficients. We named it
the 3D Lotka–Volterra System

ẋ = x(az − by) , ẏ = y(bx− cz) , ż = z(cy − ax) (1)

Skew symmetry of the coefficient matrix of this system is a way to express some
”coherent” balanced behaviour. The maximum of coherence corresponds to equality to
unity modula of those ratios value. To this equation we investigated projective properties
of functional space and the space of parameters as regards the families of integral curves
in the functional space.

The same form of equations arises from different considerations (see [4, 5] ). Finding
out a bipartite finite oriented graph and the proper formal chemical reaction with periodic
solutions owing to the linear balance condition leads to a reaction scheme involving three
irreversible auto-catalytic reactions. In accordance with an accepted viewpoint, that
irreversible scheme does not correspond directly to any real chemical phenomena, however,
the conclusion was made that direct auto-catalytic steps provide a necessary condition for
irregular oscillatory behavior in three–component closed and bimolecular schemes [3, 5].

Despite a common point of view on different LV tasks, we consider the problem at
positive and negative values of variables, which gives a possibility to consider the case of
equality to zero of a total sum of population numbers

∑3
i=1 xi = 0. Moreover, a structure

of all critical points and vector fields is examined. The method is more adequate at large
population numbers.

161



A description of the problem in terms of probability function depending continuously
on time is a more pertinent one, while population numbers are small and have been
considered as integer ones. Probability functions depend upon these values as parameters.
Say, processes of aggregation, fragmentation, or traffic at a little number of particles, and
at not a little dimension of a system considered (i.e. low density) are the very cases.

Let a total probability be conserved to find a discussed system in some state. Then a
conjecture about constancy of transition rates of processes allows to write down models,
which are differential – difference linear as regards the above probability functions ones.
It permits one to solve models exactly in terms of W (s, t) – probability to find the system
in a state with a given population number s at instant t. Aggregation and fragmentation
are a couple of mutually inverse processes. So, it is important to describe this pair as a
single whole by a unified equation analytically solved even in a probabilistic sense. This
is done by us.

The clustering processes resemble to a certain degree the critical gas nucleation pro-
cesses [6]. It is begotten in the mathematical description being general for kinetics of such
processes. Clusters grow by coalescence of smaller clusters. Their kinetics of growth is
like that of coagulation with conserved number of objects. The basic equation reads as

dW (s,t)
dt

= γ1[sW (s + 1, t)− (s− 1)W (s, t)]
−γ2[(G− s)W (s, t)− (G− s + 1)W (s− 1, t)],

(2)

with the initial conditions

W (G, 0) = 1; W (s, 0) = 0, if s 6= G, (3)

where γ1 and γ2 are constant rates.
The r.h.s. of Eq. (2) consists of gain terms due to coagulation of clusters from an

(s+1)-cluster state and dissociation of those clusters belonging to an (s−1)-cluster state
and loss terms due to simultaneous coalescence and dissociation of clusters belonging to
an s-cluster state. Solutions are given as

W (s, t) = ∂s

∂zs

γ (
z γ2 + γ1 e(−t γ) z − γ1 e(−t γ) + γ1

γ
)G

(z γ2 + γ1 e(−t γ) z − γ1 e(−t γ) + γ1)
|z = 0, γ = γ1 + γ2.

(4)

Our results extend the possibilities of applications of the well-known Smoluchovsky and
Lotka-Volterra approaches under stipulated conditions,
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DILUTE BOSE GAS IN TWO DIMENSIONS:
DENSITY EXPANSIONS AND THE GROSS-PITAEVSKII EQUATION

A. Yu. Cherny and A. A. Shanenko

The leading term of the energy expansion in na2 (here n = N/S is the density in
two dimensions) for a gas of hard discs was first obtained by Schick [1] who made use
of the first-order Beliaev approximation [2] developed for the 3D Bose gas. To obtain
the next-to-leading terms, the second-order Beliaev approximation is needed, which is a
rather difficult problem in the 2D case due to the logarithmic singularity of the 2D Green
function at small momenta. At the same time, our method [3, 4] successfully reproduces
in the 3D case the famous next-to-leading term for the chemical potential, which ensures
that our results are valid also in two dimensions.

Our approach is based on the analysis [3] of the eigenvalues and eigenfunctions of the
two-body density matrix, which allows for obtaining all thermodynamic characteristics
of the system. The maximum eigenvalue N0(N0 − 1) ∼ N2

0 corresponds to the state of
two particles in the condensate; its eigenfunction ϕ(r)/S (here ϕ(r) = 〈ψ̂(r)ψ̂(0)〉/n0,
n0 is the condensate density) can be interpreted as a pair wave function in medium of
the condensate-condensate type. The other macroscopic eigenvalues 2N0nq correspond
to the two-body states with one particle in the condensate and another one beyond
the condensate; its eigenfunctions ϕq/2(r) exp[iq · (r1 + r2)/2]/S are of the condensate-
supracondensate type where }q is the total momentum of the pair of bosons. For a
dilute gas, only small momenta are of importance, and we can replace the condensate-
supracondensate wave functions by their limiting value [3]

√
2ϕ(r) = limp→0 ϕp(r). Thus,

contrary to the standard approaches, we use the low-momentum approximation that keeps
the coordinate dependence in the eigenfunctions of the two-body matrix. It is a crucial
point that leads to accurate treatment of the short-range particle correlations. In this way,
one can write down the simple low-momentum ansatz for the pair distribution function
and chemical potential

g(r) = ϕ2(r)[1 + 2(n− n0)/n + · · ·],
µ = nU(0)[1 + (n− n0)/n + · · ·]. (1)

Here we introduce the “in-medium” scattering amplitude U(k) =
∫

d2r ϕ(r)V (r)e−ik·r,
which obeys the equation of the Lippmann-Schwinger type [4]

U(k) = V (k)− 1

2

∫
d2q

(2π)2

V (|k− q|)U(q)√
T 2

q + 2nTqU(q)
,

where Tq = }2q2/(2m) and V (q) are the kinetic term and the Fourier transform of the
pairwise interaction potential V (r), respectively. It is not difficult to linearize the latter
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equation in the dilute limit n → 0 and thus obtain in a self-consistent manner the short-
range behaviour of ϕ(r) (at r . 1/

√
n) and the in-medium scattering amplitude U(0)

ϕ(r) ' 2uϕ(0)(r), U(0) =

∫
d2r ϕ(r)V (r) ' (4π}2/m)u. (2)

Here ϕ(0)(r) is the solution of the two-body Schrödinger equation in the centre-of-mass sys-
tem with asymptotics ϕ(0)(r) → ln(r/a) at r →∞ [by definition, a is the two-dimensional
scattering length for arbitrary short-range potential V (r)], and the parameter u is given
by the relation (γ ' 0.5772 is the Euler constant)

1/u + ln u = − ln(na2π)− 2γ. (3)

Equation (3) has no solution for u when δ > 1 and has two positive ones when na2 <
0.0369 . . . . The solution with a greater value of u should be ignored because of its
unphysical behaviour [u ∼ 1/(na2) at n → 0]. Equations (1), (2), (3), and thermodynamic
relation µ = ∂(εn)/∂n yield the following results:

g(r) = [ϕ(0)(r)]24u2[1 + 2u + · · ·], (4)

ε =
2π}2n

m
[u + u2/2 + + · · ·], (5)

εint =
n

2

∫
d2rV (r)g(r) =

2π}2nα

m
[u2 + 2u3 + · · ·], (6)

εkin =
〈∑

i

p2
i

〉
/(2mN) =

2π}2n

m
[u + (1/2− α)u2 + · · ·] (7)

for the pair distribution function (4) at r . 1/
√

n, the total (5), interaction (6) and
kinetic (7) energies at zero temperatures. In Eqs. (6) and (7) we put by definition

α =
m

π}2

∫
d2r [ϕ(0)(r)]2V (r). It is seen from Eq. (5), (6) and (7) that in the leading

order, proportional to nu, the total energy is purely kinetic. Thus, whatever a particular
shape of the potential V (r), at sufficiently small densities the energy becomes mostly
kinetic. The energy expansion (5) leads to the 2D Gross-Pitaevskii equation

i}
∂φ

∂t
= −}

2∇2φ

2m
+ Vext(r)φ +

4π}2u

m
|φ|2φ

with the unusual nonlinear term. Here φ = φ(r, t) = 〈ψ̂(r, t)〉 is the order parameter with
the normalization N =

∫
d2r |φ|2, and u is given by Eq. (3) with n = |φ|2.

The above results are described in details in the paper [5].
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UNIVERSAL BEHAVIOR OF REMANENT MAGNETIZATION
IN LOW-TC AND HIGH-TC JOSEPHSON JUNCTION ARRAYS

S.A. Sergeenkov

Despite the fact that Josephson Junction Arrays (JJAs) have been actively studied
for decades, they continue to contribute to the variety of intriguing and peculiar phe-
nomena [1]. To give just a few recent examples, it is sufficient to mention Josephson
analogs of thermoelectric [2, 3], magnetoelectric [4] and deformation induced effects (in-
cluding piezomagnetism [5, 6] and thermomagnetic effects in a twisted weak-link-bearing
superconductor [7]). On the other hand [8], 3D disordered JJAs fabricated from either
conventional (LTS) or high-Tc (HTS) superconductors may, upon excitation by a magnetic
field, exhibit a temperature-dependent magnetic remanence, MR(T ). In this report we
briefly discuss the latest results [9] on a comparative study of three different samples with a
rather spectacular remanent behavior and suggest a possible interpretation of the observed
temperature dependence of the remanent magnetization (RM) of both LTS and HTS
tridimensional disordered JJAs. Our analysis shows that all the experimental data can
be rather well fitted using the explicit temperature expressions for the activation energy
and the inductance-dominated contribution to the magnetization of the array within the
so-called phase-slip model. All three samples, prepared from Nb, Y Ba2Cu3O7−δ (YBCO)
and La1.85Sr0.15CuO4−δ (LSCO) exhibit the predicted remanence and other characteristic
features of Josephson arrays. The remanence was obtained measuring the sample magne-
tization after application and removal of a train of sinusoidal pulses. Since the observed
RM in our samples appears only below the so-called phase-locking temperature TJ (which
marks the establishment of phase coherence between the adjacent grains in the array and
always lies below a single grain superconducting temperature TC), it is quite reasonable
to assume that the origin of RM is related to thermal fluctuations of the phases of the su-
perconducting order parameters across an array. In the present approach we consider the
sample as a single plaquette with four Josephson junctions (JJs), each of which is treated
via an effective single junction approximation. Within this approximation, the phase-slip
scenario yields then ∆MR(T ) ≡ M(T ) − MR for the observed remanent magnetization
where M(T ) = 2πM0(T )γ(T )e−γ(T ). Here, M0(T ) is an inductance-induced contribu-
tion to the magnetization of the array (see below), γ(T ) = U(T )/kBT is the normalized
barrier height for thermal phase slippage, and MR = M(TJ) is a residual temperature-
independent contribution. Figure 1 shows the temperature dependence of the normalized
remanent magnetization mr(T ) = ∆MR(T )/∆MR(Tp), where Tp is the peak tempera-
ture. The data are found to be well fitted with the following explicit expression for the
array magnetization M(t) = A(1 − t4)5/2 exp[−α(1 − t4)] where t = T/TC . The best fits
through all the data points (shown in Fig.1 by solid, dotted and dashed lines for YBCO-,
Nb- and LSCO-based JJAs, respectively) using the known critical parameters (i) Y BCO:
TC = 90K, TJ = 82K, TP = 0.88TJ ; (ii) LSCO: TC = 36.5K, TJ = 19.87K, TP = 0.7TJ ;
and (iii) Nb: TC = 9.1K , TJ = 8.2K, TP = 0.92TJ yield αY BCO = 7, αLSCO = 2 and
αNb = 9 for the estimates of the model parameters. To understand the observed behavior
of the remanent magnetization, we need to specify the temperature dependencies of the
activation energy U(T ) and the inductance-dominated contribution M0(T ) to the mag-
netization of the array. Assuming that U(T ) = Φ0IC(T )/2π and M0(T ) = LIC(T )/µ0S,
where IC(T ) is an average value of the critical current, L is an average inductance of the
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Josephson network, S is an effective projected area of the contact, Φ0 is the flux quantum,
and µ0 is the vacuum permeability, we arrive at the following relationships between the
fitting and the model parameters: A = LIC(0)α/(µ0λL(0)l) and α = Φ0IC(0)/2πkBTC

with λL(0) being the London penetration depth and l the thickness of a SIS-type contact.
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Figure 1: Temperature dependence of the normalized remanent magnetization mr(t),
showing the experimental data for three different samples and the corresponding fittings.
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RESONANT BOSE CONDENSATE: ANALOG OF RESONANT ATOM

V.I. Yukalov and E.P. Yukalova

Dilute atomic gases, trapped and cooled down to temperatures when almost all atoms
are in the Bose-condensed state, are described by the Gross-Pitaevskii equation (see re-
view [1]). The mathematical structure of the latter is that of the nonlinear Schrödinger
equation which, due to the presence of the trapping potential, possesses a discrete spec-
trum. The equilibrium Bose-Einstein condensate corresponds to the ground state associ-
ated with the lowest energy level of the spectrum. If not the ground but an excited state
would be macroscopically populated, this would correspond to a nonground-state Bose
condensate. The possibility of creating such a nonequilibrium condensate was advanced
in Ref. [2, 3]. This can be done by applying an alternating field with a frequency tuned
to the transition frequency between the ground state and a chosen excited state. The
latter states are called the nonlinear coherent modes and they are described by the sta-
tionary solutions to the Gross-Pitaevskii equation. The properties of these modes have
been considered theoretically in several publications [4]–[9] and a nonlinear dipole mode
was observed experimentally. A known example of such a mode is a vortex that can be
formed by means of a rotating laser spoon.

Nonlinear coherent modes are the collective states of trapped Bose atoms, correspond-
ing to different energy levels. These modes can be created starting from the ground state
condensate that can be excited by means of a resonant alternating field. A thorough
theory for the resonant excitation of the coherent modes is presented. The necessary and
sufficient conditions for the feasibility of this process are found. Temporal behaviour of
fractional populations and of relative phases exhibits dynamic critical phenomena on a
critical line of the parametric manifold. The origin of these critical phenomena is elu-
cidated by analyzing the structure of the phase space. An atomic cloud, containing the
coherent modes, possesses several interesting features, such as interference patterns, in-
terference current, spin squeezing, and massive entanglement. The developed theory sug-
gests a generalization of resonant effects in optics to nonlinear systems of Bose-condensed
atoms.

We stress the analogy of the resonant Bose condensate with a resonant atom. And we
show that, because of its coherent collective nature, the resonant Bose condensate pos-
sesses a number of properties distinguishing it from a single resonant atom. We describe
several interesting novel effects that can be observed in a nonequilibrium Bose condensate.
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12. A.V. Chizhov, E. Schmidt, L. Knöll, and D.-G. Welsch, “Propagation of entan-
gled light pulses through dispersing and absorbing channels”, J. Opt. B: Quantum
Semiclass. Opt. 3, 77 (2001).
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38. W. Kleinig, J. W. P. Schmelzer, G. Röpke, “Fragmentation in Dissipative Collisions:
A Computer Model Study”, Physica D 164, 110 (2002).

39. E.A. Kochetov, “Geometric derivation of nonlinear sigma model for the 1D antiffer-
omagnet”, Yad. Fiz. 64, 2284–2287 (2001). /in Russian/

40. S.E. Krasavin, V.A. Osipov, “The effect of long-range strain fields on transport prop-
erties of disclinated materials”, J.Phys.: Condens. Matter 13, 1023–1040 (2001).

41. S.E. Krasavin, V.A. Osipov, “Peculiarties in the low-temperature phonon scattering
in materials with wedge disclination loops”, Phys. Solid State: 44, N6, 1102–1105
(2002).

42. S.E. Krasavin, V.A. Osipov, “Thermal transport in materials with disclination
dipoles and disclination loops”, J.Phys.: Condens. Matter, 14, 12923–12928
(2002).

43. A.L. Kuzemsky, “Quantum Protectorate and Microscopic Models of Magnetism ”,
Intern. J. Modern Phys. B 16, 803–823 (2002).

170



44. A.L. Kuzemsky, “Irreducible Green Functions Method and Many-Particle Interact-
ing Systems on a Lattice”, Rivista del Nuovo Cimento 25, 1-91 (2002).

45. A.L. Kuzemsky and I.G. Kuzemskaya, “Structural Sensitivity of Superconducting
Properties of Layered Systems”, Physica C 383, 140-158 (2002).

46. S. Di Matteo, N.B. Perkins and C.R. Natoli, “Spin-1 effective Hamiltonian with
three degenerate orbitals: An application to the case of V2O3”, Phys. Rev. B 65,
054413 (2002).

47. S. Di Matteo, N.B. Perkins and C.R. Natoli, “Ground state electronic properties of
V2O3”, Journal of Physics: Cond. Matter 14, L37 (2002).

48. F. Mancini, N.B. Perkins, N.M. Plakida, “Spin-wave dispersion softening in the
ferromagnetic Kondo lattice model for manganites”, Phys. Lett. A 284, 286 (2001).

49. V.K. Mel’nikov, “On equations solvable by the inverse scattering method for the
Dirac operator”, Comm. in Nonlinear Sci. 8, 9 (2003).

50. V.K. Mel’nikov, “Structure of equations solvable by the inverse scattering transform
for the Shrödinger operator”, Theor. Math. Phys. 134, 94–106 (2003).
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