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Chapter 1

Mean lepton polarization

1.1 Lepton polarization vector
The lepton polarization vector P = (P1,P2,P3) is defined through the polarization density matrix

d2σν→ℓ

dEℓd cos θ
=

1

2
(1 + σP)

d2σν→ℓ

dEℓd cos θ
(1.1)

whose matrix elements are given by contracting the leptonic tensor Lλλ′

αβ with the spin-averaged hadronic tensor Wαβ ,

d2σλλ′

ν→ℓ

dEℓd cos θ
=

G2
FPℓκ

2

4πMEν
Lλλ′

αβ Wαβ . (1.2)

Here d2σν→ℓ/dEℓd cos θ is the differential cross section for unpolarized lepton production in νN collisions. Both
d2σν→ℓ/dEℓd cos θ and d2σν→ℓ/dEℓd cos θ are defined for each subprocess – QES, RES, DIS, or for the sum over
all three subprocesses (QES+RES+DIS) – subject to circumstances. According to Eq. (1.1), the perpendicular (P1),
transverse (P2), and longitudinal (P3) components of the polarization vector are given by

P1 ≡ PP = ρ
+− + ρ−+

=
d2σ+−

ν→ℓ + d2σ−+
ν→ℓ

d2σν→ℓ
,

P2 ≡ PT = i
(
ρ
+− − ρ−+

)
= i

d2σ+−
ν→ℓ − d2σ−+

ν→ℓ

d2σν→ℓ
,

P3 ≡ PL = ρ
++

− ρ−− =
d2σ++

ν→ℓ − d2σ−−
ν→ℓ

d2σν→ℓ
,

where ρ
λλ′ are defined by

ρ =

(
ρ
++

ρ
+−

ρ−+
ρ−−

)
=

1

2
(1 + σP) ,

and
d2σν→ℓ = d2σ++

ν→ℓ + d2σ−−
ν→ℓ.

Clearly d2σ++
ν→ℓ/dEℓd cos θ (d2σ−−

ν→ℓ/dEℓd cos θ) is the cross section for production of right (left) handed lepton.
Since the components Pi (as well as the cross section for unpolarized lepton production) must be real, we have

Im d2σ++
ν→ℓ = Im d2σ−−

ν→ℓ = 0,

Re d2σ+−
ν→ℓ = Re d2σ−+

ν→ℓ,

Im d2σ+−
ν→ℓ = −Im d2σ−+

ν→ℓ.

Taking account for these equations and the condition

0 ≤ P2 = P2
1 + P2

2 + P2
3 ≤ 1

yields the following inequalities:

0 ≤ d2σ++
ν→ℓd

2σ−−
ν→ℓ −

∣∣d2σ+−
ν→ℓ

∣∣2 ≤ 1

4

(
d2σ++

ν→ℓ + d2σ−−
ν→ℓ

)2
,

providing a useful numerical test.

9
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NOTE I: Once more: PL and PP are the components of P parallel to pℓ and perpendicular to pℓ in the production plane, while
PT is perpendicular to the production plane. Why this is so? Let us show that ρ is actually the polarization density matrix. First, we
remind ourselves that 1

2
σi are the operators of the lepton spin projections and therefore, taking into account that

Tr (ρ) = 1 and [σi, σj ]+ = 2δij ,

we have
Tr

(
ρ
σi

2

)
=

Pi

2
.

that is Pi are indeed the components of the lepton polarization vector defined relative to the lepton momentum. Note also that the
density matrix ρ is relativistic covariant, since the ratios d2σλλ′

ν→ℓ/d
2σν→ℓ are the ratios of tensor convolutions. Moreover,

⟨P2⟩ = (σP)2 = P2
1 + P2

2 + P2
3 ≡ P2

is a relativistic scalar.

NOTE II: Let us denote P = Pξ, where ξ =
(
ξ
1
, ξ

2
, ξ

3

)
is a unit (pseudo)vector. In order to understand its transformation

properties we introduce the axial 4-vector s = (s
0
, s) whose spatial component, s, coincides with the vector ξ in the lepton rest frame

(LRF). Below, we will mark that frame by symbol ⋆; then, by definition, s⋆ = ξ⋆. Since the scalar product of the polar 4-vector p and
the axial 4-vector s must vanish,

sp = s
0
Eℓ − spℓ = 0 or s

0
=

spℓ

Eℓ
.

Therefore
s
⋆

0
= 0 and s2 = (s⋆)

2
= − (ξ⋆)

2
= −1.

Let us now represent the 3-vector s in the form
s = ξ + α (ξpℓ)pℓ,

where α is an unknown function. According to the above relations it satisfies the equation

m2
ℓP

2
ℓ α

2 + 2m2
ℓα− 1 = 0

which has two solutions,

α± =
±1

mℓ (Eℓ ±mℓ)
.

Only one of these solutions (α
+

) provides the condition s⋆ = ξ⋆. Indeed,

α− (ξpℓ)pℓ = − (ξnℓ) (Eℓ/mℓ + 1)nℓ

(where nℓ = pℓ/|pℓ|) does not vanish as Pℓ ≡ |pℓ| → 0 while

α
+
(ξpℓ)pℓ = (ξnℓ) (Eℓ/mℓ − 1)nℓ → 0

as Pℓ → 0. Finally we arrive at the well-known formula for the components of the spin 4-vector:

s = ξ +
(ξpℓ)pℓ

mℓ (Eℓ +mℓ)
, s

0
=

(ξpℓ)

mℓ
.

An obvious while very important feature of the vector ξ is in its invariance relative to Lorentz boosts. Indeed, the boost from LRF to
lab. frame gives

s
3
=
Eℓ

mℓ
ξ
⋆

3
, s

1,2
= ξ

⋆

1,2
.

On the other hand,

s
3
= ξ

3
+

ξ
3
P 2
ℓ

mℓ (Eℓ +mℓ)
=
Eℓ

mℓ
ξ
3
, s

1,2
= ξ

1,2
.

Therefore
ξ = ξ⋆.

This does not mean at all that ξ is invariant relative to any Lorentz transformation. Let us consider, for example, a spatial rotation given
by a 3× 3 matrix T. Under such a transformation,

s 7→ s′ = Ts = Tξ +
(ξpℓ)Tpℓ

mℓ (Eℓ +mℓ)
.

On the other hand,

s′ = ξ′ +
(ξ′p′

ℓ)p
′
ℓ

mℓ (E′
ℓ +mℓ)

.

Since
E′

ℓ = Eℓ, p′
ℓ = Tpℓ, and ξp′

ℓ = ξTpℓ = TT ξpℓ,

we have
ξ 7→ ξ′ = Tξ.

Therefore ξ and pℓ are transformed similar way and thus ξpℓ is invariant. It is also clear that vector ξ will be (in general) transformed
by a superposition of a spatial rotation and Lorentz boost.



1.2. LEPTON GENERATION FUNCTIONS 11

1.2 Lepton generation functions
Let us now introduce two generation functions

G±
ℓ (Eℓ, ϑℓ, φℓ, h) =

1

λν (Eℓ)

∫
dEνd cosϑνdφνW

±
ν→ℓ (Eν , Eℓ, θ)Φν (Eν , ϑν , φν , h) (1.3)

which enter into the full transport equations and describe production of fully polarized leptons with helicity ±1. Here
Φν (Eν , ϑν , φν , h) is the neutrino differential energy spectrum along the direction defined by the nadir angle ϑν and
azimuthal angle φν on the oblique depth h (a function of ϑν); λν is the neutrino interaction length; and the functions
W±

ν→ℓ (Eν , Eℓ, θ) are defined by

W+
ν→ℓ (Eν , Eℓ, θ) ≡

d3N+
ν→ℓ (Eν , Eℓ, θ)

dEℓd cosϑℓdφℓ
=

1

2πσtot
νN (Eℓ)

[
d2σ++

ν→ℓ (Eν , Eℓ, θ)

dEℓd cos θ

]
, (1.4a)

W−
ν→ℓ (Eν , Eℓ, θ) ≡

d3N−
ν→ℓ (Eν , Eℓ, θ)

dEℓd cosϑℓdφℓ
=

1

2πσtot
νN (Eℓ)

[
d2σ−−

ν→ℓ (Eν , Eℓ, θ)

dEℓd cos θ

]
. (1.4b)

NOTE III: Let x be a n dimensional vector and T be a linear and unimodular transformation: x′ = Tx, detT = 1. Then∏
i

dx′i =
∂ (x′1, . . . , x

′
n)

∂ (x1, . . . , xn)

∏
i

dxi.

Since
∂ (x′1, . . . , x

′
n)

∂ (x1, . . . , xn)
= det

∥∥∥∥ ∂x′i∂xj

∥∥∥∥ = det ∥Tij∥ = 1,

the differential form
∏
dxi is invariant by the T transformation:∏

i

dx′i =
∏
i

dxi.

This is in particular true for any 3D rotation and hence d cosϑℓdφℓ = d cos θdψ, where ψ is the azimuthal angle of the lepton
momentum in the frame whose z axis is directed along the neutrino momentum. Eqs. (1.4) therefore holds true considering that the
elements of the polarization density matrix are independent of the angle ψ.

The sum
Gℓ (Eℓ, ϑℓ, φℓ, h) = G+

ℓ (Eℓ, ϑℓ, φℓ, h) +G−
ℓ (Eℓ, ϑℓ, φℓ, h) (1.5)

then defines the generation function for unpolarized leptons and (as we shall show later on) the ratio

⟨nℓP⟩ ≡ ⟨P3⟩ =
G+

ℓ (Eℓ, ϑℓ, φℓ, h)−G−
ℓ (Eℓ, ϑℓ, φℓ, h)

G+
ℓ (Eℓ, ϑℓ, φℓ, h) +G−

ℓ (Eℓ, ϑℓ, φℓ, h)
(1.6)

defines the mean longitudinal lepton polarization.

1.3 New angular variables
The integration in the right side of Eq. (1.3) is over the kinematically allowed range. Clearly in terms of the angles ϑν

and φν it is quite intricate. But we can essentially simplify the integration by an appropriate change of variables. Let us
consider this change carefully in order to avoid misunderstanding.

The momenta of neutrino νℓ and lepton ℓ in lab. frame (K) are written as

pν = |pν |

sinϑν cosφν

sinϑν sinφν

cosϑν

 , pℓ = |pℓ|

sinϑℓ cosφℓ

sinϑℓ sinφℓ

cosϑℓ

 ,

where ϑν and ϑℓ are the nadir angles, and φν and φℓ are the azimuthal angles (Fig. 1.1). The scattering angle θ (the angle
between the vectors pν and pℓ) is given by

cos θ = sinϑν sinϑℓ cos (φν − φℓ) + cosϑν cosϑℓ.

Let us define the frame K ′ whose polar axis z′ is directed along the lepton momentum, pℓ, the x′ axis lies in the plane
formed by the vector pℓ and z axis, and the y′ axis is orthogonal to that plane as is schematically shown in Fig. 1.1. The
corresponding unit vectors are

e′x =

cosϑℓ cosφℓ

cosϑℓ sinφℓ

− sinϑℓ

 , e′y =

− sinφℓ

cosφℓ

0

 , e′z =

sinϑℓ cosφℓ

sinϑℓ sinφℓ

cosϑℓ

 .
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ϕ
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ϕ

Figure 1.1: Definition of angular variables.

The explicit form of the vectors e′x and e′z follows directly from their definition while e′y is obtained from the relation
e′y = e′z ×e′x. As is seen, vector e′y lies in the (x, y) plane and thus the transformation from K to K ′ may be described as
the anticlockwise rotation with angle φℓ about the z axis and subsequent rotation of the z axis about the new y axis with
angle θ.

The transformation matrix from the frame K ′ to frame K therefore is

T =
(
e′x, e

′
y, e

′
z

)
=

cosϑℓ cosφℓ − sinφℓ sinϑℓ cosφℓ

cosϑℓ sinφℓ cosφℓ sinϑℓ sinφℓ

− sinϑℓ 0 cosϑℓ


and the inverse transformation (from K to K ′) is

T−1 = TT =

cosϑℓ cosφℓ cosϑℓ sinφℓ − sinϑℓ

− sinφℓ cosφℓ 0
sinϑℓ cosφℓ sinϑℓ sinφℓ cosϑℓ

 .

Since detT = 1, we have
d cosϑνdφν = d cos θdφ. (1.7)

NOTE IV: This is quite clear from NOTE III (Sect. 1.2, p. 11). However it seems instructive to verify Eq. (1.7) by direct calculation.
From Eqs. (1.8) it follows that∂ cosϑν

∂θ

∂φν

∂θ
∂ cosϑν

∂φ

∂φν

∂φ

 =

− cosϑℓ sin θ − sinϑℓ cos θ cosφ
sinϑℓ

sinφ
− cosϑℓ

tan θ tanφ
sinϑℓ sin θ sinφ cosϑℓ


Therefore,

∂ (cosϑν , φν)

∂ (cos θ, φ)
= 1 and d cosϑνdφν = d cos θdφ.
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The neutrino and lepton momenta in the K ′ frame are written as

p′
ν = |pν |

sin θ cosφ
sin θ sinφ

cos θ

 , p′
ℓ = |pℓ|

0
0
1

 .

From equation pν = Tp′
ν we can find the angles ϑν and φν as functions of θ and φ:

cosϑν = cosϑℓ cos θ − sinϑℓ sin θ cosφ, (1.8a)
sinϑν cosφν = (sinϑℓ cos θ + cosϑℓ sin θ cosφ) cosφℓ − sin θ sinφ sinφℓ, (1.8b)
sinϑν sinφν = (sinϑℓ cos θ + cosϑℓ sin θ cosφ) sinφℓ + sin θ sinφ cosφℓ. (1.8c)

Eqs. (1.8b) and (1.8c) can be rewritten to a more compact form through the substitution

φν = φℓ + α. (1.9)

The parameter α = α(ϑℓ; θ, φ) does not depend of the angle φℓ and is defined by the following equations:

sinϑν cosα = sinϑℓ cos θ + cosϑℓ sin θ cosφ, (1.10a)
sinϑν sinα = sin θ sinφ. (1.10b)

Now, by applying the above definitions, we can rewrite Eq. (1.3) as

G±
ℓ (Eℓ, ϑℓ, φℓ, h) =

1

λν (Eℓ)

∫
dEν

∫
d cos θW±

ν→ℓ (Eν , Eℓ, θ)

∫ 2π

0

dφΦν (Eν , ϑν , φν , h) . (1.11)

Here, the integration bounds are defined only through kinematic variables Eν and cos θ, and only the neutrino flux in the
integrand of Eq. (1.11) remains dependent of the angle φℓ (through the angle φν).

The next simplifying step is in averaging the generation functions over the lepton azimuthal angle. So let us define

G
±
ℓ (Eℓ, ϑℓ, h) =

1

2π

∫ 2π

0

dφℓ G
±
ℓ (Eℓ, ϑℓ, φℓ, h) . (1.12)

Consider the integral∫ 2π

0

dφℓ

∫ 2π

0

dφΦν (Eν , ϑν , φν , h) =

∫ 2π

0

dφ

∫ 2π

0

dφℓ Φν (Eν , ϑν , φν , h) .

According to Eq. (1.9), dφℓ = dφν and, considering that Φν (Eν , ϑν , φν , h) is a periodic function of φν , the above
integral becomes

2π

∫ 2π

0

dφΦν (Eν , ϑν , h) ,

where Φν (Eν , ϑν , h) is the neutrino differential energy spectrum averaged over the azimuth angle.
Finally,

G
±
ℓ (Eℓ, ϑℓ, h) =

1

λν (Eℓ)

∫
dEν

∫
d cos θW±

ν→ℓ (Eν , Eℓ, θ)

∫ 2π

0

dφΦν (Eν , ϑν , h) (1.13)

and the ratio

⟨nℓP⟩
φℓ

≡ ⟨P3⟩φℓ
=

G
+

ℓ (Eℓ, ϑℓ, h)−G
−
ℓ (Eℓ, ϑℓ, h)

G
+

ℓ (Eℓ, ϑℓ, h) +G
−
ℓ (Eℓ, ϑℓ, h)

(1.14)

defines the mean longitudinal lepton polarization averaged over the azimuthal angle. Just this quantity is necessary for
our aims.

NOTE V: The FORTRAN code CORTout returns just the azimuth-averaged atmospheric neutrino fluxes, Φν (Eν , ϑν , 0), near the
earth’s surface. In order to calculate the function Φν (Eν , ϑν , φν , 0), the full code CORT has to be used. Since it is rather problematic
task to interpolate within a 3D array, the using of the full code would be extremely time-consuming.

Unfortunately, it’s not over yet. There are several nuances which are not very simple. But, with the above formulas
we can immediately calculate the mean quantity polarization for the contained τ events. In this case, all angular variables
and the depth h are explicitly defined.



Chapter 2

Atmospheric neutrino induced muons (CLA)

2.1 General comments
In this section, we consider the fluxes of unpolarized muons generated by atmospheric neutrinos in earth. We deal with
the fluxes averaged over the azimuth angle and, for simplicity, omit the overline from hereon.

A few more notes.

1. We neglect the muon range straggling that is we use the 1D Continuous Loss Approximation (CLA).

2. We also neglect the multiple Coulomb scattering of muons.

3. The muon stopping power βµ (Eµ) = −dEµ/dh is the sum over all essential subprocesses:

• ionization and excitation of atoms (including production of knock-on electrons) [405],

• direct e+e− and µ+µ− pair production [409–412],

• bremsstrahlung [415–417],

• photonuclear interactions [420, 421].

Note that the stopping power is, generally speaking, different for µ+ and µ− (due to different diffractive corrections)
and also is dependent of muon polarization. In absence of any information about the latter effect, we are obliged
to neglect it. This is a very plaguy flaw of our study. The former effect has been investigated by Kelner and
Fedotov [418, 419] for muon bremsstrahlung and will be taken into account here, of course.

4. We do not take into account the muon finite lifetime. This is permissible for ultrarelativistic energies and/or for
dense enough media like the earth. Indeed, the average decay range of a muon of energy Eµ is given by

τµPµ

mµ
ρ ≃ 6.23× 105 g/cm2

(
ρ

1 g/cm3

)(
Pµ

1GeV/c

)
,

where mµ, τµ and Pµ are the muon mass, lifetime and momentum, respectively. It is clear that the decay range is
much larger1 than the muon interaction range

Rµ(Eµ) =

∫ Eµ

mµ

dE′
µ

βµ(E′
µ)

in a dense medium; hence the muon decay effect is completely negligible in all instances of our interest.

2.2 A simple model
Let us first examine the simplest scenario as a good starting-point which is also useful for a normalization of more
advanced results. Namely we will deal here with unmixed muon neutrino propagation through matter without absorption
and regeneration. Therefore the muon generation function is independent of h and equal to

Gµ (Eµ, ϑµ) =
1

λνµ
(Eµ)

∫
dEν

[
dNµ (Eν , Eµ)

dEµ

]
Φνµ

(Eν , ϑµ, 0) ,

where
dNµ (Eν , Eµ)

dEµ
=

1

σtot
νµN

(Eµ)

[
dσνµN (Eν , Eµ)

dEµ

]
.

1Typically of about 3 orders of magnitude (see, for example, Refs. [3, 404]).

14
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Note that Φνµ (Eν , ϑµ, 0) is the muon neutrino energy spectrum at production and, according to the 1D approximation,
ϑνµ = ϑµ. We assume also that the matter background is chemically homogeneous and hence the muon stopping power
is also depth independent. Since the neutrino energy spectrum from any source (including cosmic ray interactions in the
atmosphere) has a cutoff at high enough energy, we have

lim
Eµ→∞

Gµ (Eµ, ϑµ) = 0. (2.1)

Within all these assumptions, the 1D transport equation and the boundary condition are

∂Φµ(Eµ, ϑµ, h)

∂h
=

∂

∂Eµ
[βµ (Eµ)Φµ (Eµ, ϑµ, h)] +Gµ (Eµ, ϑµ) , (2.2)

Φµ(Eµ, ϑµ, 0) = 0. (2.3)

From Eq. (2.1) it immediately follows that

lim
Eµ→∞

Φµ (Eµ, ϑµ, h) = 0. (2.4)

2.2.1 Equilibrium spectrum
At large enough depths, h, the differential muon spectrum does not depend of h that is ∂Φµ/∂h → 0 as h → ∞. Let us
call this asymptotic equilibrium spectrum,

Φ eq
µ (Eµ, ϑµ) = lim

h→∞
Φµ (Eµ, ϑµ, h) .

By integrating the transport equation for the differential equilibrium spectrum

∂

∂Eµ

[
βµ(Eµ)Φ

eq
µ (Eµ, ϑµ)

]
+Gµ (Eµ, ϑµ) = 0

over the muon energy and taking into account Eq. (2.4) we find

Φ eq
µ (Eµ, ϑµ) =

1

βµ (Eµ)

∫ ∞

Eµ

Gµ (Eµ, ϑµ) dE
′
µ. (2.5)

Then the integral equilibrium muon spectrum is given by

Φ eq
µ (≥ Eµ, ϑµ) =

∫ ∞

Eµ

Φ eq
µ

(
E′

µ, ϑµ

)
dE′

µ =

∫ ∞

Eµ

Gµ

(
E′

µ, ϑµ

)
Rµ

(
E′

µ, Eµ

)
dE′

µ, (2.6)

where the function Rµ is defined by

Rµ(E1, E2) =

∫ E1

E2

dE′

βµ(E′)
= Rµ(E1)−Rµ(E2)

and

Rµ(E) =

∫ E

mµ

dE′

βµ(E′)
=

∫ Ekin

0

dE′
kin

βµ (E′
kin +mµ)

.

is the mean range of a muon with initial energy E. Therefore Rµ(E1, E2) may be treated as the mean range of a muon
with initial energy E1 and final energy E2 (it is assumed of course that E1 ≥ E2).

NOTE VI: For rough estimations, one can assume that Gµ (Eµ, ϑµ) ∝ E−γ
µ with γ > 1. Then

Φ eq
µ (Eµ, ϑµ) =

EµGµ (Eµ, ϑµ)

(γ − 1)βµ (Eµ)
.

At high energies one can neglect the muon ionization energy loss and approximate the stopping power by the linear function, βµ (Eµ) =
bEµ (see Note VII, p. 16). Then the formulas (2.5) and (2.6) for the differential and integral spectra become extremely simple:

Φ eq
µ (Eµ, ϑµ) =

Gµ (Eµ, ϑµ)

(γ − 1)b
and Φ eq

µ (≥ Eµ, ϑµ) =
EµGµ (Eµ, ϑµ)

(γ − 1)2b
=
EµΦ

eq
µ (Eµ, ϑµ)

(γ − 1)
.



16 CHAPTER 2. ATMOSPHERIC NEUTRINO INDUCED MUONS (CLA)

2.2.2 Exact solution to Eq. (2.2)

Let us define the function Eµ (Eµ, h) as (the only) root of equation

Rµ (Eµ, Eµ) = h. (2.7)

This function has the obvious physical meaning: it is the energy which a muon must have at the boundary of the medium
in order to reach depth h having energy Eµ. Differentiating Eq. (2.7) over Eµ and h then gives:

∂Eµ (Eµ, h)

∂Eµ
=

βµ (Eµ (Eµ, h))

βµ (Eµ)
,

∂Eµ (Eµ, h)

∂h
= βµ (Eµ (Eµ, h)) . (2.8)

Therefore Eµ (Eµ, h) is the solution to the following differential equation

∂Eµ (Eµ, h)

∂h
= βµ (Eµ)

∂Eµ (Eµ, h)

∂Eµ
(2.9)

with the boundary condition Eµ (Eµ, 0) = Eµ.

NOTE VII: For completeness, we enumerate here some useful properties of the functions Eµ(E, h) and Rµ (E1, E2).

1. One can prove that for h′ ≤ h and E′ ≥ E the following identities take place:

Eµ

(
Eµ(E, h

′), h− h′) = Eµ

(
E′, h−Rµ(E

′, E)
)
= Eµ(E, h),∫ h

0

f
(
Eµ(E, h− h′), h′) dh′ =

∫ Eµ(E,h)

E

f
(
E′, h−Rµ(E

′, E)
) dE′

βµ(E′)
.

The later one is valid for arbitrary integrable function f(E, h).

2. For small depths, h, the following expansion of Eµ(E, h) in series in powers of h may be of some utility:

Eµ(E, h) = E +

∞∑
k=1

βk
µ(E)

hk

k!
,

βk
µ(E) = βµ(E)

dβk−1
µ (E)

dE
for k > 0 and β0

µ(E) = E.

3. (A toy model.) Let us consider a simple but useful model in which the stopping power is a linear function of energy, βµ =
a + bE. Such a formula roughly represents the real energy dependence of the muon stopping power for energies above some
hundreds of MeV (where a represents ionization and bE – radiative and photonuclear muon energy loss; actually both a and b
are functions of energy). In this model, it is easy to find the exact formulas:

Rµ (E1, E2) =
1

b
ln

(
a+ bE1

a+ bE2

)
, Eµ(E, h) = Eebh +

a

b

(
ebh − 1

)
.

Thus, for small depths (h≪ 1/b) Eµ is a linear function of h while for large depths (h≫ 1/b) it is an exponentially increasing
function:

Eµ(E, h) ≈
{
E + (a+ bE)h, if bh≪ 1,

(E + a/b) ebh, if bh≫ 1.

Taking into account Eqs. (2.8) and (2.9) one can prove that the exact solution to the transport equation (2.2) is given
by

Φµ (Eµ, ϑµ, h) =

∫ h

0

βµ (Eµ(Eµ, h− h′))

βµ (Eµ)
Gµ (Eµ (Eµ, h− h′) , ϑµ) dh

′. (2.10)

By change to the new variable of integration E′
µ = Eµ (Eµ, h− h′) and taking into account that

dE′
µ = −∂Eµ (Eµ, h− h′)

∂h
dh′ = −βµ (Eµ (Eµ, h− h′)) dh′ = −βµ

(
E′

µ

)
dh′,

solution (2.10) can be rewritten as

Φµ (Eµ, ϑµ, h) =
1

βµ (Eµ)

∫ Eµ(Eµ,h)

Eµ

Gµ

(
E′

µ, ϑµ

)
dE′

µ (2.11a)

= Φ eq
µ (Eµ, ϑµ)−

∫ ∞

Eµ(Eµ,h)

Gµ

(
E′

µ, ϑµ

)
dE′

µ (2.11b)
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Since Eµ (Eµ, h) is a monotonically increasing function of both arguments (and, as a consequence, Eµ (Eµ, h) → ∞ as
h → ∞ or Eµ → ∞), Φµ (Eµ, ϑµ, h) ≈ Φ eq

µ (Eµ, ϑµ) at large depths.2

For the integral energy spectrum

Φµ (≥ Eµ, ϑµ, h) =

∫ ∞

Eµ

Φµ

(
E′

µ, ϑµ, h
)
dE′

µ

(a measurable quantity in the present day underground experiments) we have

Φµ (≥ Eµ, ϑµ, h) =

∫ ∞

Eµ

dE′
µ

βµ

(
E′

µ

) ∫ Eµ(E′
µ,h)

E′
µ

Gµ

(
E′′

µ, ϑµ

)
dE′′

µ

=

∫ ∞

Eµ

dE′
µ

βµ

(
E′

µ

) ∫ ∞

Eµ

θ
(
E′′

µ − E′
µ

)
θ
(
Eµ
(
E′

µ, h
)
− E′′

µ

)
×Gµ

(
E′′

µ, ϑµ

)
dE′′

µ

=

∫ ∞

Eµ

Gµ

(
E′

µ, ϑµ

)
dE′

µ

∫ E′
µ

Eµ

θ
(
Eµ
(
E′′

µ, h
)
− E′

µ

) dE′′
µ

βµ

(
E′′

µ

)
=

∫ ∞

Eµ

Gµ

(
E′

µ, ϑµ

)
dE′

µ

∫ Eµ(E′
µ,h)

Eµ(Eµ,h)

θ
(
E′′

µ − E′
µ

) dE′′
µ

βµ

(
E′′

µ

)
=

∫ Eµ(Eµ,h)

Eµ

Gµ

(
E′

µ, ϑµ

)
dE′

µ

∫ E′
µ

Eµ

dE′′
µ

βµ

(
E′′

µ

) + ∫ ∞

Eµ(Eµ,h)

Gµ

(
E′

µ, ϑµ

)
dE′

µ

∫ Eµ(E′
µ,h)

E′
µ

dE′′
µ

βµ

(
E′′

µ

)
=

∫ Eµ(Eµ,h)

Eµ

Gµ

(
E′

µ, ϑµ

)
Rµ

(
E′

µ, Eµ

)
dE′

µ + h

∫ ∞

Eµ(Eµ,h)

Gµ

(
E′

µ, ϑµ

)
dE′

µ.

The following useful identity ∫ Eµ(E′
µ,h)

Eµ(Eµ,h)

dE′′
µ

βµ

(
E′′

µ

) =

∫ E′
µ

Eµ

dE′′
µ

βµ

(
E′′

µ

)
had been applied several times in the above chain of transformations. Finally we arrive at the following formula for the
integral spectrum:

Φµ (≥ Eµ, ϑµ, h) = Φ eq
µ (≥ Eµ, ϑµ)−

∫ ∞

Eµ(Eµ,h)

Gµ

(
E′

µ, ϑµ

) [
Rµ

(
E′

µ, Eµ

)
− h
]
dE′

µ. (2.12)

The nonequilibrium correction on the right of Eq. (2.12) is negative (that is the exact integral spectrum is always less than
the equilibrium one) since

Rµ

(
E′

µ, Eµ

)
− h = Rµ

(
E′

µ, Eµ (Eµ, h)
)
≥ 0, for E′

µ ≥ Eµ (Eµ, h) .

It is obvious that Φµ (≥ Eµ, ϑµ, h) → Φ eq
µ (≥ Eµ, ϑµ) as h → ∞. In fact, for low energy thresholds, the correction is

numerically small everywhere except for a narrow band of circumhorizontal directions (ϑµ ≃ π/2).

2.3 Account for neutrino mixing, absorption and regeneration
Here we consider for the moment the simplest case of neutrino mixing, νµ ↔ ντ , supported by the Super-Kamiokande,
MACRO and SOUDAN 2 atmospheric neutrino data. Neutrino oscillations of this type can be treated as vacuum. The
experimental bounds on ∆m2

23 suggest3 that neutrino oscillations and interactions inside the earth are well separated in
the following sense: below a few TeV neutrino interactions are negligible while above this energy the neutrino oscillations
are negligible. Moreover, above 1− 10TeV one can neglect the difference between the νµ and ντ total CC cross sections.
As a result we can neglect the quantum interference between neutrino mixing and absorption [485] and write the survival
and transition probabilities as product of the vacuum probabilities,

Pνµ→νµ
(Eν , ϑν , h) or Pνµ→ντ

(Eν , ϑν , h) = 1− Pνµ→νµ
(Eν , ϑν , h) ,

2Considering the toy model, Gµ ∝ E−γ
µ , γ > 1, βµ = a + bEµ (see NOTE VI, p. 16), one can show that the relative nonequilibrium correction

to the differential energy spectrum exponentially decays with increasing depth:∣∣Φµ − Φ
eq
µ

∣∣
Φ

eq
µ

=

[
Eµ

Eµ (Eµ, h)

]γ−1
h→∞−→

e−b(γ−1)h

[1 + a/ (bEµ)]
γ−1

.

For the real (rather steep) spectrum of atmospheric neutrinos, the nonequilibrium correction is actually small for all directions, except for almost
horizontal ones.

3In the 99.73% C.L. the bounds are 1.4 × 10−3eV2 < ∆m2
23 < 5.1 × 10−3eV2 with the best-fit value of 2.6 × 10−3eV2 [490]. In the same

C.L., the best-fit (effective) mixing angle is maximal (θ23 = π/4) with the lower bound given by sin2 2θ23 > 0.86 [490]. The fraction sin2 θs of
atmospheric muon neutrinos that transform into sterile states (νµ → cos θsντ + sin θsνs) is limited by sin2 θs < 0.19 (90% C.L.) [487].
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and the factor exp [−h/Λν (Eν , h)], where Λν (Eν , h) = λν (Eν) / [1− Zν (Eν , h)] is the effective absorption length
and the function Zν (Eν , h) takes into account the neutrino regeneration due to neutral current interactions [486]. We can
therefore write the muon and τ neutrino fluxes in the earth as

Φνµ (Eν , ϑν , h) = Pνµ→νµ (Eν , ϑν , h) exp

[
− h

Λν (Eν , h)

]
Φνµ (Eν , ϑν , 0) ,

Φντ
(Eν , ϑν , h) = Pνµ→ντ

(Eν , ϑν , h) exp

[
− h

Λν (Eν , h)

]
Φνµ

(Eν , ϑν , 0) .

2.3.1 Fluxes of fully polarized τ leptons
Let Φ±

τ (Eτ , ϑτ , h) be the fluxes of fully polarized with helicity ±1 τ leptons of the same charge generated in ντN
interactions in the earth. Then the sum Φ+

τ + Φ−
τ represents the unpolarized flux and the ratio (Φ+

τ − Φ−
τ ) / (Φ

+
τ + Φ−

τ )
is the mean longitudinal polarization of the τ lepton beam. At all energies of our interest, the τ lepton decay length
Ld
τ (Eτ ) = ττPτ/mτ (where ττ , mτ and Pτ are the lifetime, mass and momentum of τ lepton) is small in comparison

with its interaction length (in contrast to the case of muon). Therefore the interactions of τ with matter are completely
negligible and the transport equation for Φ±

τ (Eτ , ϑτ , h) is very simple:

∂Φ±
τ (Eτ , ϑτ , h)

∂h
= − Φ±

τ (Eτ , ϑτ , h)

Ld
τ (Eτ ) ρ (R (h, ϑτ ))

+G±
τ (Eτ , ϑτ , h) . (2.13)

Here ρ(R) is the radial density distribution in the earth and G±
τ (Eτ , ϑτ , h) is the generation function, those explicit form

will be discussed in detail below.
The formal solution to Eq. (2.13) can be found straightforwardly:

Φ±
τ (Eτ , ϑτ , h) =

∫ h

0

exp

[
−
∫ h

h′

dh′′

Ld
τ (Eτ ) ρ (R (h′′, ϑτ ))

]
G±

τ (Eτ , ϑτ , h
′) dh′. (2.14)

NOTE VIII: Within the 1D approximation (ϑτ = ϑν ), the oblique depth h = h (L, ϑν) is defined by equation dh = ρ(R)dL, where

R = R (L, ϑν) =
√
L2 − 2R⊕L cosϑν +R2

⊕

is the distance of the neutrino interaction point from the center of the earth, L is the distance between the interaction point and the
neutrino ingress point and R⊕ is the earth radius. Thus

h =

∫ L

0

ρ
(
R
(
L′, ϑν

))
dL′.

The radiusR is uniquely determined from this equation as a function of h and ϑτ (see “UHECR Lectures”, Sect. 3.1.2 for more details).

According to the definition for the oblique depth h,∫ h

h′

dh′′

ρ (R (h′′, ϑτ ))
= L− L′,

where L and L′ are the corresponding spatial distances. Since Ld
τ (Eτ ) is extremely small, the integral on right of

Eq. (2.14) is saturated at L = L′. Therefore, with very good accuracy we can write

Φ±
τ (Eτ , ϑτ , h) = ρ (R (h, ϑτ ))G

±
τ (Eτ , ϑτ , h)

∫ L

0

exp

[
L′ − L

Ld
τ (Eτ )

]
dL′

and finally,
Φ±
τ (Eτ , ϑτ , h) = ρ (R (h, ϑτ ))L

d
τ (Eτ )G

±
τ (Eτ , ϑτ , h) . (2.15)

According to Eq. (2.15), the mean longitudinal polarization is

G+
τ (Eτ , ϑτ , h)−G−

τ (Eτ , ϑτ , h)

G+
τ (Eτ , ϑτ , h) +G−

τ (Eτ , ϑτ , h)
. (2.16)

The generation functions G±
τ appearing in the above formulas are defined by (see Sect. 1.2)

G±
τ (Eτ , ϑτ , h) =

1

λντ
(Eτ )

∫
dEνd cosϑνdφν

[
d2N±

ντ→τ (Eν , Eτ , θ)

dEτd cos θ

]
Φντ

(Eν , ϑν , h) , (2.17)
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where
d2N+

ντ→τ (Eν , Eτ , θ)

dEτd cos θ
=

1

2πσtot
ντN

(Eτ )

[
d2σ++

ντ→τ (Eν , Eτ , θ)

dEτd cos θ

]
and

d2N−
ντ→τ (Eν , Eτ , θ)

dEτd cos θ
=

1

2πσtot
ντN

(Eτ )

[
d2σ−−

ντ→τ (Eν , Eτ , θ)

dEτd cos θ

]
are the normalized double differential cross section for production of fully polarized τ leptons.

NOTE IX: Strictly speaking, the angles ϑτ and ϑν in Eq. (2.17) must be replaced with the corresponding nadir angles ϑ̃τ and ϑ̃ν

defined in the neutrino interaction point (point C in Fig. 2.1). It is easy to see however that this amendment can be neglected. Indeed,

α

R R

L

ϑν

ϑν

ϑν

Detector

Production
   point

∼

ν

A

B

C’

Χϑν

∼

Figure 2.1: Definition of some geometric variables.

sinϑν

sin ϑ̃ν

=
R

R⊕
,

where
R =

√
L2 − 2R⊕L cosϑν +R2

⊕ =
√
X2 − 2R⊕X cosϑν +R2

⊕

and
X = 2R⊕ cosϑν − L

is the distance between the neutrino interaction point and egress point. Since the muons originated from τ lepton decay can only reach
the earth surface from the distances X ≲ 15 km ≪ R⊕, the effective values of R can be approximated by

R ≈ R⊕

(
1− X

R⊕
cosϑν

)
and thus the difference

ϑ̃ν − ϑν ≈ X

R⊕
sinϑν ≲ 2.4× 10−3 sinϑν ≲ 0.14◦

is really negligible. The same arguments are valid for the angle ϑτ .
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By applying the results of Sect. 1.3 we can transform Eq. (2.17) to

G±
τ (Eτ , ϑτ , h) =

1

λντ
(Eτ )

∫
dEνd cos θ

[
d2N±

ντ→τ (Eν , Eτ , θ)

dEτd cos θ

] ∫ 2π

0

dφ Φντ
(Eν , ϑν , h) . (2.18)

Unfortunately this formula is still too complicated for numerical calculations. Let us rewrite it in the collinear approxi-
mation. Within this approximation, we have to put ϑν = ϑτ in the integrand on right of Eq. (2.18). Then∫ 2π

0

dφ Φντ
(Eν , ϑν , h) ≈ 2πΦντ

(Eν , ϑτ , h)

and

G±
τ (Eτ , ϑτ , h) ≈

1

λντ
(Eτ )

∫
dEν

[
dN±

ντ→τ (Eν , Eτ )

dEτ

]
Φντ

(Eν , ϑτ , h) . (2.19)

NOTE X: The applicability of the collinear approximation is in fact doubtful since the polarization is a strong function of θ and the
angular dependence of the low-energy ντ flux may also be rather strong due to the oscillating factor Pνµ→ντ (Eν , ϑν , h) and geomag-
netic effects. At low energies, the mean scattering angle, ⟨θ⟩, is large providing additional aggravating factor. Moreover, in case of
quasielastic contribution, there is the rigid constraint between the scattering angle and energies; hence the collinear approximation is
artificial for this contribution. At high energies, when both oscillations and geomagnetic effects are small, the “intrinsic” angular asym-
metry is still essential. On the other hand, at high energies, the mean scattering angle becomes small and thus the 1D approach becomes
more satisfactory. But (ALAS!) high-energy contribution is by itself small just because the transition probability, Pνµ→ντ (Eν , ϑν , h),
vanishes... Nonetheless, within the problem under consideration, the 1D approximation seems to be satisfactory everywhere, since the
corresponding effect by itself is rather small. This is a “poor man” argument. Therefore, in order to estimate the error introduced by the
1D approximation, it is necessary to compare numerically the outputs of Eqs. (2.19) and Eq. (2.18) just in the earth surface (X = 0).

2.3.2 Fluxes of unpolarized muons
Now we can write the 1D transport equation for muons generated in νµN CC interactions and in decay of the neutrino
induced τ leptons:

∂Φµ(Eµ, ϑµ, h)

∂h
=

∂

∂Eµ
[βµ (Eµ)Φµ (Eµ, ϑµ, h)] +Gµ (Eµ, ϑµ, h) , (2.20)

Φµ(Eµ, ϑµ, 0) = 0. (2.21)

Here
Gµ (Eµ, ϑµ, h) = Gµµ (Eµ, ϑµ, h) +G+

τµ (Eµ, ϑµ, h) +G−
τµ (Eµ, ϑµ, h) ,

Gµµ (Eµ, ϑµ, h) =
1

λνµ
(Eµ)

∫
dEν

[
dNνµ→µ (Eν , Eµ)

dEµ

]
Φνµ

(Eν , ϑµ, h) , (2.22)

G±
τµ (Eµ, ϑµ, h) = Bτµ

∫
dEτ

[f0 (Eτ , Eµ)± f1 (Eτ , Eµ)]Φ
±
τ (Eτ , ϑµ, h)

Lτ (Eτ ) ρ (r (h, ϑτ ))
, (2.23a)

f0,1 (Eτ , Eµ) are the τµ3 decay spectral functions (their explicit form will be written later on) and Bτµ = Γ (τµ3) /Γ
tot
τ

is the fraction of the τµ3 decay mode. According to PDG [3], Bτµ = (17.36 ± 0.05)% and the fraction of the radiative
decay mode τ− → µ−νµντγ with hard γ4 is (0.36± 0.04)%. We do not include the radiative mode separately.5

Substituting Eq. (2.15) into Eq. (2.23a) then gives

G±
τµ (Eµ, ϑµ, h) = Bτµ

∫
dEτ [f0 (Eτ , Eµ)± f1 (Eτ , Eµ)]G

±
τ (Eτ , ϑµ, h) . (2.23b)

The exact solution to Eq. (2.20) can be found similar to one for Eq. (2.2). It is

Φµ (Eµ, ϑµ, h) =

∫ h

0

βµ (Eµ(E, h− h′))

βµ (Eµ)
Gµ (Eµ (E, h− h′) , ϑµ, h

′) dh′ (2.24a)

=
1

βµ (Eµ)

∫ Eµ(Eµ,h)

Eµ

Gµ

(
E′

µ, ϑµ, h−Rµ

(
E′

µ, Eµ

))
dE′

µ. (2.24b)

However the integral energy spectrum

Φµ (≥ Eµ, ϑµ, h) =

∫ ∞

Eµ

Φµ

(
E′

µ, ϑµ, h
)
dE′

µ

cannot be transformed to a simple formula similar to Eq. (2.12) owing to the h dependence of the generation function
conditioned by the oscillation and (to a lesser extend) by the absorption factors.

4For example, in the recent CLEO experiment [422], the requirements imposed on detected γ’s correspond to a τ -rest-frame energy cutoff E∗
γ >

10MeV.
5In fact, it is not quite clear from Ref. [3] whether the radiative mode is included into the main one (as it is for the µe3 decay). Probably it is not. So

there is an uncertainty (of about 0.4%) in Bτµ as well as in the spectral functions, f0,1, that is however completely negligible in our study.



Chapter 3

Kinematics of νN scattering

3.1 Quasielastic scattering
Let us write here a summary of useful kinematic formulas for the reaction ν + N → ℓ + N ′ taking into account the
difference between the masses of initial and final nucleons (Mi and Mf , respectively). We use the following notation for
the kinematic variables in the lab. frame:

k ≡ pν = (Eν ,pν) , k′ ≡ pℓ = (Eℓ,pℓ) , p ≡ pi = (Ei,pi) , p′ ≡ pf = (Ef ,pf ) .

The particle energies in the center-of-mass frame (CMF) are

E∗
ν =

s−M2
i

2
√
s

, E∗
ℓ =

s+m2 −M2
f

2
√
s

,

E∗
i =

s+M2
i

2
√
s

, E∗
f =

s−m2 +M2
f

2
√
s

,

where
s = (k + p)2 = (k′ + p′)

2
= Mi (2Eν +Mi) .

The energy–momentum conservation provides the equation1

EνPℓ cos θ = Eℓ (Eν +Mi)−
√
sE∗

ℓ (3.1)

where θ is the scattering angle (pνpℓ = EνPℓ cos θ). It is useful to define the following dimensionless parameter:

ζ =

√
sP ∗

ℓ

mEν
=

2Mi
√
sP ∗

ℓ

m (s−M2
i )

=
Mi

√(
s+m2 −M2

f

)2
− 4m2s

m (s−M2
i )

.

The solutions to Eq. (3.1) can be written in terms of the lepton momentum (Pℓ ≡ |pℓ| = P±
ℓ (θ)) or energy (Eℓ = E±

ℓ (θ)):

P±
ℓ (θ) =

Eν

[√
sE∗

ℓ cos θ ±m (Eν +Mi)
√

ζ2 − sin2 θ
]

s+ E2
ν sin

2 θ
(3.2a)

=
E∗

ν

(
MiE

∗
ℓ cos θ ±mE∗

i

√
ζ2 − sin2 θ

)
M2

i + (E∗
ν)

2
sin2 θ

, (3.2b)

E±
ℓ (θ) =

√
sE∗

ℓ (Eν +Mi)±mE2
ν cos θ

√
ζ2 − sin2 θ

s+ E2
ν sin

2 θ
(3.2c)

=
MiE

∗
ℓE

∗
i ±m (E∗

ν)
2
cos θ

√
ζ2 − sin2 θ

M2
i + (E∗

ν)
2
sin2 θ

, (3.2d)

where θ is the scattering angle (pνpℓ = EνPℓ cos θ) and

ζ =

√
sP ∗

ℓ

mEν
=

2Mi
√
sP ∗

ℓ

m (s−M2
i )

=
Mi

√(
s+m2 −M2

f

)2
− 4m2s

m (s−M2
i )

.

According to Eq. (3.2a),
P+
ℓ (θ)P−

ℓ (θ) = m2E2
ν

(
1− ζ2

)
. (3.3)

Therefore for ζ ≤ 1 there are two solutions, P+
ℓ (θ) and P−

ℓ (θ), while for ζ > 1 there is only one solution, P+
ℓ (θ).

1In fact it can be found from the equation (k − k′)2 = (p− p′)2.
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NOTE XI:
Let us prove the above statement.

• ζ < 1: It is obvious that P+
ℓ (0) > 0. Thus, according to Eq. (3.3), P−

ℓ (0) > 0. Since

P+
ℓ (θ) = P−

ℓ (θ) =
m2Eν

√
1− ζ2√

sE∗
ℓ

if and only if sin θ = ζ,

both P+
ℓ (θ) and P−

ℓ (θ) are positive for 0 ≤ θ < arcsin ζ. It is also clear that cos θ > 0 (otherwise P±
ℓ (θ) would be negative

at sin θ = ζ). Therefore, there are two physical solutions, P+
ℓ (θ) > 0 and P−

ℓ (θ) > 0, for

0 ≤ θ < min (arcsin ζ, π/2) ≡ θℓ(Eν)

and there is no physical solution for θ ≥ θℓ(Eν).

• ζ > 1: The signs of the formal solutions P+
ℓ (θ) and P−

ℓ (θ) are opposite. Since, according to Eq. (3.2a), P+
ℓ (θ) ≥ P−

ℓ (θ), we
have P+

ℓ (θ) ≥ 0 and thus P−
ℓ (θ) ≤ 0. So for any θ there is the only physical solution, P+

ℓ (θ).

• ζ = 1: In this special case

P ∗
ℓ =

mEν√
s
, E∗

ℓ =
m (Eν +Mi)√

s
,

and therefore

P−
ℓ (θ) = 0, P+

ℓ (θ) =
2m (Eν +Mi)Eν cos θ

s+ E2
ν sin

2 θ
,

E−
ℓ (θ) = m, E+

ℓ (θ) = m+
2mE2

ν cos
2 θ

s+ E2
ν sin

2 θ
.

The case is only possible for 0 ≤ θ ≤ π/2 since P−
ℓ (θ) < 0 as θ > π/2. The two solutions are different everywhere except for

the angle θ = π/2.

One more useful identity can be found from Eq. (3.3):

P+
ℓ

∂P−
ℓ

∂θ
+ P−

ℓ

∂P+
ℓ

∂θ
= 0.

It is clear therefore that P+
ℓ (θ) (P−

ℓ (θ) is a monotonically decreasing (increasing) function of θ within the two-branch region ζ < 1,
θ > θℓ(Eν). From this it follows that the scattering angle θ is a single-valued function of Pℓ the for any ζ. Of course this trivial fact
immediately follows from Eq. (3.1).

Taking into account the conditions ζ ≥ sin θ and sin θ ≥ 0 we have

Pℓ = P+
ℓ (θ), Eℓ = E+

ℓ (θ), 0 ≤ θ ≤ π, if ζ > 1,

Pℓ = P±
ℓ (θ), Eℓ = E±

ℓ (θ), 0 ≤ θ < arcsin ζ, if ζ ≤ 1.

The asymptotic value of arcsin ζ at Eν → ∞ is given by

arcsin ζ → arcsin

(
Mi

m

)
if Mi ≤ m.

The condition ζ = 1 defines the neutrino energy at which the second solution, P−
ℓ , disappears. It can be rewritten in

terms of the neutrino energy as (
Eν − ϵ−ν

) (
Eν − ϵ+ν

)
= 0 (3.4)

with

ϵ±ν =
M2

f − (Mi ∓m)
2

2 (Mi ∓m)
and ϵ+ν − ϵ−ν = m

(
1 +

M2
f

M2
i −m2

)
.

In general, Eq. (3.4) may have 0, 1 or 2 solutions. The latter possibility is in fact excluded since ϵ−ν is either negative or,
as in the case of e+ production, positive but is below the reaction threshold,

Eth
ν =

(Mf +m)
2 −M2

i

2Mi
. (3.5)

The nontrivial solutions, ϵ+ν , together with the thresholds and the differences ϵ+ν − Eth
ν are shown in Table 3.1. The same

quantities evaluated for the isoscalar nucleon target by putting Mi ≈ Mf ≈ (Mi +Mf ) /2 are shown in Table 3.2.
Comparing the tables, one can conclude that the isoscalar target approximation is appropriate for µ± and τ± produc-

tion slightly above the reaction thresholds and becomes appropriate also for e± production at Eν > (40− 50) MeV.
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Table 3.1: Eth
ν , ϵ+ν and ϵ+ν − Eth

ν for 6 QE reactions.

Reaction Eth
ν (MeV) ϵ+ν (MeV) ϵ+ν − Eth

ν

νe + n → e− + p 0 – –
νe + p → e+ + n 1.8060638 1.8060648 0.94537 eV
νµ + n → µ− + p 110.16137 110.89578 734.41 keV
νµ + p → µ+ + n 113.04730 113.82083 773.53 keV
ντ + n → τ− + p 3453.6527 – –
ντ + p → τ+ + n 3463.4511 – –

Table 3.2: The same quantities as in Table 3.1 but for the isoscalar target.

ℓ Eth
ν (MeV) ϵ+ν (MeV) ϵ+ν − Eth

ν

e 0.51114 0.51114 0.0757 eV
µ 111.603 112.357 753.8 keV
τ 3458.55 – –

The exact kinematics suggests that the condition ζ = 1 is never satisfied for electron production (the reaction with no
threshold, ζ > 1) and for τ± production (ζ < 1) while for production of e+ and µ± the values of ϵ+ν are slightly above
the reaction thresholds. However the two-branch energy gap

ϵ+ν − Eth
ν =

m (Mf −Mi +m)
2

2Mi (Mi −m)

for e+ and µ± production is extremely narrow since both me,µ and Mn −Mp are small in comparison with the nucleon
mass.

One can prove that the parameter ζ is a decreasing function of s for electron production and an increasing function
for all the rest reactions (Fig. 3.1). In the last case,

0 ≤ ζ <
Mi

m
.

Since mτ > Mp,n, we conclude that for τ lepton production there are two branches of solutions at any neutrino energy
above the reaction threshold. The maximum scattering angle for τ production is2

θmax
τ =

{
arcsin(Mn/mτ ) ≈ 31.9203◦ for τ−

arcsin(Mp/mτ ) ≈ 31.8712◦ for τ+.

At a fixed neutrino energy, the lepton energy and momentum satisfy the conditions

Emin
ℓ ≤ Eℓ ≤ Emax

ℓ and Pmin
ℓ ≤ Pℓ ≤ Pmax

ℓ , (3.6)

where

Emin
ℓ =

E∗
ℓ (Eν +Mi)− P ∗

ℓ Eν√
s

, Emax
ℓ =

E∗
ℓ (Eν +Mi) + P ∗

ℓ Eν√
s

,

Pmin
ℓ =

|E∗
ℓEν − P ∗

ℓ (Eν +Mi)|√
s

, Pmax
ℓ =

E∗
ℓEν + P ∗

ℓ (Eν +Mi)√
s

.

(3.7)

Proof: Let’s write down the Lorentz transformation for the lepton energy from CMF to LF:

Eℓ = Γ (E∗
ℓ − vp∗

ℓ ) .

Since CMF moves relative to LF with the velocity v equal in magnitude to that of the initial nucleon, and directed along
the neutrino velocity, we have

Eℓ =
E∗

i

Mi

(
E∗

ℓ − P ∗
i

E∗
i

P ∗
ℓ cos θ∗ℓ

)
=

1

Mi
(E∗

i E
∗
ℓ − P ∗

i P
∗
ℓ cos θ∗ℓ ) ,

where θ∗ℓ is the lepton scattering angle in CIF. Since this angle is arbitrary we obtain

E
max /min
ℓ =

1

Mi
(E∗

i E
∗
ℓ ± P ∗

i P
∗
ℓ )

2For the isoscalar nucleon target with the mass of (Mp +Mn) /2, it is about 31.896◦.
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(note that P ∗
i = E∗

ν ). It is not difficult to check that these formulas match Eq. (3.6).
Similar way we find:

E
max /min
f =

1

Mi

(
E∗

i E
∗
f ± P ∗

i P
∗
f

)
.

Considering that P ∗
ℓ = P ∗

f , it is easy to veryfy that

Emax
ℓ + Emin

f = Emin
ℓ + Emax

f = Eν +Mi.

The corresponding boundaries for the Bjorken variable y = (pq)/(pk) = 1− Eℓ/Eν and Q2 = −q2 are

ymin = 1− 1√
s

[
E∗

ℓ

(
1 +

Mi

Eν

)
+ P ∗

ℓ

]
,

ymax = 1− 1√
s

[
E∗

ℓ

(
1 +

Mi

Eν

)
− P ∗

ℓ

]
,

and

Q2
± = 2E∗

ν (E
∗
ℓ ± P ∗

ℓ )−m2 =

(
s−M2

i

)
(E∗

ℓ ± P ∗
ℓ )√

s
−m2 = m2

[
s−M2

i

(E∗
ℓ ∓ P ∗

ℓ )
√
s
− 1

]
,

Therefore
ymax − ymin =

2P ∗
ℓ√
s
,

Q2
+ −Q2

− = 4E∗
νP

∗
ℓ =

(
s−M2

i

)
P ∗
ℓ√

s
= 2MiEν

(
ymax − ymin

)
.

NOTE XII:
For better understanding the behavior of the parameter ζ let us investigate the derivative

dζ

ds
=

1

2ζ

(
dζ2

ds

)
=

M2
i Ξ

m2 (s−M2
i )

3 ζ
,

Ξ =
(
m2 +M2

f −M2
i

)
s+

(
M2

f −m2) (m2 −M2
f +M2

i

)
.

Since s ≥ max
[
M2

i , (Mf +m)2
]
, we have

• Mf < Mi −m:

Ξ < −
(
M2

i −M2
f

)2
+m2 (2M2

f −m2) < −Mf (Mi −Mf )
2 (2Mi +Mf )−m4;

• Mf > Mi −m:
Ξ > 2m (Mf +m)

[
Mf (Mf +m)−M2

i

]
> 2mMi (Mf +m) (Mf −Mi) ;

• Mf =Mi −m:
Ξ = −2M2

i (Mi −Mf )
2 .

Therefore dζ/ds < 0 for the e− production and dζ/ds > 0 for the rest QE reactions. Since ζ vanishes on the thresholds of these 5
reactions, dζ/ds→ ∞ as Eν → E th

ν . This behavior is clearly seen in Fig. 3.1.

NOTE XIII:
Let us consider the kinematics of the thresholdless reaction νe + n→ e− + p with more details. Since

dE∗
e

d
√
s
=
E∗

p√
s
> 0 and

dE∗
ν

d
√
s
=
E∗

n√
s
> 0,

we have

E∗
e ≥

m2
n −m2

p +m2
e

2mn
≃ 1.292578811 MeV, P ∗

e ≳ 1.187282648 MeV/c and E∗
ν ≥ 0.

dQ±

d
√
s
=

2 (E∗
e ± P ∗

e )
(
E∗

nP
∗
e ± E∗

pE
∗
ν

)
√
sP ∗

e

.

According to the last equation, dQ2
+/d

√
s > 0 that is Q2

+ is a monotonically increasing function of neutrino energy. Let us prove that
the same is also true for Q2

−. Indeed, after some manipulations we can find that

dQ2
−

d
√
s
=

(E∗
e − P ∗

e )A+A−

8s
√
sP ∗

e

(
E∗

nP ∗
e + E∗

pE∗
ν

) ,
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Figure 3.1: Parameter ζ as a function of neutrino energy for production of e±, µ± and τ±. The differences between the
curves for production of muons and τ leptons of different charges are undistinguished in this scale. Asymptotic values of
the function ζ are shown near the curves.

where
A± = (mn±mp) s+mn

(
m2

p −m2
e±mpmn

)
.

Taking into account that s ≥ m2
n we have

A± ≥ mn

[
(mn ±mp)

2 −m2
e

]
and therefore dQ2

−/d
√
s > 0.

Finally,
d
(
Q2

+ −Q2
−
)

d
√
s

=
4
[
E∗

eE
∗
pE

∗
ν + (P ∗

e )
2E∗

n

]
√
sP ∗

e

> 0.

Several important facts follow from the above consideration:

• at Eν = 0
Q2

− = Q2
+ = −m2

e ≃ −0.2611199 MeV2

and, at very low energies, the Q2 interval linearly squeezes when energy decreases:

Q2
+ −Q2

− ∼ 2

√(
m2

n −m2
p +m2

e

)2 − 4m2
em2

n

(
Eν

mn

)
≃ 4.7491306× 10−6

(
Eν

1 MeV

)
MeV2;

• Q2
− is negative at all energies while Q2

+ changes its sign at

s = m2
n

(
1 +

m2
e

m2
n −m2

p

)
or Eν =

mnm
2
e

2
(
m2

n −m2
p

) ≃ 50.5091 keV;

• the asymptotic behavior of the lower bound at high energies is given by

Q2
− ∼ −

m2
e

(
m2

n −m2
p

)
s

≃ −6.341723× 10−4 MeV2

s
.

To obtain the latter formula we took into accopnt that

P ∗
e =

√
s

2

[
1−

m2
p +m2

e

s
−

2m2
em

2
p

s2
+O

(
1

s3

)]
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and

E∗
e − P ∗

e =
m2

e√
s

[
1 +

m2
p

s
+O

(
1

s2

)]
.

Some of the mentioned features of the νe + n→ e− + p reaction are illustrated in Fig. 6.1 (see Sect. 6.3.3).

NOTE XIV:
It is useful to investigate the behavior of Q2

− for all QE reactions. Exactly the same way as in previous Note we can derive

dQ2
−

d
√
s
=

(E∗
ℓ − P ∗

ℓ )A+A−

8s
√
sP ∗

ℓ

(
E∗

i P
∗
ℓ + E∗

fE
∗
ν

) with A± = (Mi±Mf ) s+Mi

[
Mf (Mf±Mi)−m2] .

For the threshold value s = sth = (Mf +m)2 we have

A± = Ath
± = ±Mf (m+Mf ±Mi)

2 and Ath
−A

th
+ = −Mf

[
(m+Mf )

2 −M2
i

]2
.

By using these relations one can prove that

• Q2
− < 0 for e− production,

• Q2
− > 0 for e+, µ+ and τ+ production,

• Q2
− changes its sign for µ− and τ− production at

s = mn

(
1 +

m2

m2
n −m2

p

)
or Eν =

m2mn

2
(
m2

n −m2
p

) .
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Figure 3.2: Absolute value of the lower kinematic boundary Q2
− vs (anti)neutrino energy for the six ∆Y = 0 QE reactions.

The energies at which the Q2
− changes its sign are also shown.

These features are illustrated in Fig. 3.2. Unfortunately it is seen no observational consequences of these nontrivial facts.



3.1. QUASIELASTIC SCATTERING 27

NOTE XV:
Let us derive the transformation from the double differential to single differential cross section. For simplicity we first consider

only the main one-solution branch. Then

dσ

dQ2
= 2π

∫ 1

−1

d cos θ

∣∣∣∣dQ2

dEℓ

∣∣∣∣−1
d2σ

dEℓd cos θ
. (3.8)

From the definition
Q2 = −q2 = −(pν − pℓ)

2 = −m2 + 2 (EℓEν − PℓPν cos θ) (3.9)

(where, as above, m = mℓ) we obtain
dQ2

dEℓ
= 2Eℓ

(
1− Eν

Pℓ
cos θ

)
.

Formal solution of Eq. (3.9) relative to variable Eℓ is

E±
ℓ = E±

ℓ (Q2, θ) =
Q2 +m2

2Eν sin
2 θ

1± cos θ

√
1−

(
2mEν sin θ

Q2 +m2

)2
 . (3.10)

First of all we note that only one solution E−
ℓ is free from the singularity at θ = 0 [similarly one can investigate the case θ = π. Let’s

omit...]. It is easy to find that

E−
ℓ (Q2, 0) =

m2Eν

Q2 +m2
+
Q2 +m2

4Eν
. (3.11)

Since ∂E−
ℓ (Q2, θ)/∂θ

∣∣
θ=0

= 0 and ∂2E−
ℓ (Q2, θ)/∂θ2

∣∣
θ=0

> 0, Eq. (3.11) provides the minimum of E−
ℓ (Q2, θ). The positivity of

the discriminant introduces the obvious θ-function into the integral (3.8). Similar way we obtain

P±
ℓ = P±

ℓ (Q2, θ) =
Q2 +m2

2Eν sin
2 θ

cos θ ±
√

1−
(
2mEν sin θ

Q2 +m2

)2
 . (3.12)

Only the solution P−
ℓ is appropriate because only in this case

(
E−

ℓ

)2 − (
P−
ℓ

)2
= m2. Clearly

P−
ℓ (Q2, 0) =

m2Eν

Q2 +m2
− Q2 +m2

4Eν
. (3.13)

Of course this is the minimum of P−
ℓ (Q2, θ). One more θ-function is θ(P−

ℓ ).
All this is realized in the current code for the SM RFG model implementation but in fact we could forget about the above formulas

since the transformation (3.8) can be performed in very trivial way:

dσ

dQ2
= 2π

∫ Emax
ℓ

Emin
ℓ

dEℓ

∣∣∣∣ dQ2

d cos θ

∣∣∣∣−1
d2σ(Eν , Eℓ, θ)

dEℓd cos θ
=

π

Eν

∫ Emax
ℓ

Emin
ℓ

dEℓ

Pℓ

d2σ(Eν , Eℓ, θ)

dEℓd cos θ
(3.14)

= 2π

∫ Pmax
ℓ

Pmin
ℓ

dPℓ

∣∣∣∣ dQ2

d cos θ

∣∣∣∣−1
d2σ(Eν , Pℓ, θ)

dPℓd cos θ
=

π

Eν

∫ Pmax
ℓ

Pmin
ℓ

dPℓ

Pℓ

d2σ(Eν , Pℓ, θ)

dPℓd cos θ
, (3.15)

where the boundaries Emin
ℓ , Emax

ℓ , etc. are given by Eq. (3.7) and it was taken into account that

dQ2

d cos θ
= −2PℓEν , cos θ =

Eℓ

Pℓ
− Q2 +m2

2PℓEν
.



28 CHAPTER 3. KINEMATICS OF νN SCATTERING

3.1.1 Kinematics of the SM RFG model
Let’s find the threshold neutrino energy for the case when the initial nucleon moves with momentum pi = p. Since

s = (pν + pi)
2 = M2

i + 2 (EνEp − pνp) = M2
i + 2Eν (Ep − p cos θ) , (3.16)

(where Ep = Ei =
√
p2 +M2

i , p = |p|, and θ is the angle between the neutrino and initial nucleon momenta), we have

Eth
ν =

(Mf +m)
2 −M2

i

2 (Ep − p cos θ)
. (3.17)

For pedagogical purposes, let’s derive this formula using the Lorentz transformation. Let Ẽth
ν denote the neutrino energy

threshold in the rest frame of the nucleon, (see Eq. (3.5)),

Ẽth
ν =

(Mf +m)
2 −M2

i

2Mi
.

Boost from the lab. frame gives

Ẽth
ν =

Ep

Mi

(
Eth

ν − p

Ep
pth
ν

)
=

1

Mi
Eth

ν (Ep − p cos θ)

whence we get Eq. (3.17). Obviously, Eq. (3.17) turns into Eq. (3.5) when p = 0. The effect is illustrated in Fig. 3.3 for
the reactions νµn → µ−p and ντn → τ−p.

µ τ

Figure 3.3: Neutrino energy thresholds for the rections νµn → µ−p and ντn → τ−p vs. neutron momentum p and cos θ.
The gray planes show the thresholds for p=0.

Well, how do you account for the binding energy of the nucleon in the nucleus? Naive substitution

Ep 7−→ E′
p = Ep − Eb

in Eq. (3.16) yields

(Ep − Eb)
2 − p2 + 2 [Eν (Ep − Eb)− pk] = (Mf +m)

2

and therefore

Eth
ν =

(Mf +m)
2
+ p2 − (Ep − Eb)

2

2 (Ep − Eb − p cos θ)
. (3.18)

Unfortunately this formaula violates Lorentz invariantce and Lorentz boost is inapplicable. Let’s try to “relativize” the
SM RFG model by introducing the effective mass of the bound nucleon, M ′

i = Mi − ϵ, as follows:√
p2 + (Mi − ϵ)2 = Ep − Eb.

The formal solution to this equation

ϵ = Mi −
√
M2

i − 2EpEb + E2
b
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CPb

Figure 3.4: Neutrino energy thresholds for the rection νµnb → µ−p on bound neutron vs. neutron momentum p and cos θ
for lead and carbon. The green planes show the corresponding thresholds for p=0. The gray planes show the same, but
for a free neutron.

can be expanded in inverse powers of Mi:

ϵ = Eb

[
1 +

p2

2M2
i

+
Ebp2

2M3
i

−
p2
(
p2 − 4E2

b

)
8M4

i

+O

(
1

M5

)]
. (3.19)

The maximum possible corrections ∝ M−n are as follows:

n = 2 : 4.1%, n = 3 : 0.2%, n = 4 : 0.08%.

So, only the first correction is essential. But it violates relativistic covariance. Given that the momentum distribution is
uniform, we can approximately replace p 7−→ pF /2. Then

ϵ ≈ Eb

(
1 +

p2F
8M2

i

)
. (3.20)

with an accuracy of about 2%. But for that price, it gives us a relativistically covariant theory. Since, moreover, the values
of Eb used in our calculation have nothing to do with the real binding energies and are themselves obtained within a 5%
accuracy (if not worser), we can accept the inaccuracy of the formula (3.20). Finally, the dispersion law in the covariant
SM RFG model can be written as

Ep =
√

p2 + (Mi − ϵ)2 (3.21)

with the parameter ϵ given by (3.20). Figure 3.4 shows examples for νµ CCQE scattering on neutrons bound in lead and
carbon.

This exercise also sheds some light on the effective mass M∗ in the SuSAM∗ model. Namely, a part of this effective
mass is responsible for the binding energy. In fact, we (and even more so the authors of the model) have known this for a
long time. How neatly does this all work? Figure (3.5) shows the differences, ∆, between the threshold neutrino energies
given by Eq. (3.18) (noncovariant) and approximate (but covariant) formula

Eth
ν =

(Mf +m)
2 − (Mi − ϵ)2

2
(√

(Mi − ϵ)2 + p2 − p cos θ
) . (3.22)

As is seen, the difference is practically negligible. Calculations show that for nuclei lighter than the lead nucleus, the
difference is even smaller. Do we need to rewrite the program and recalculate everything? God forbid!!! It is enough to
realize that it is not difficult in principle to make the theory covariant, but we know that this will not change anything. So,
in all subsequent calculations we will use Eq. (3.18).
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e µ

τ

Figure 3.5: Difference between the threshold neutrino energies, calculated with the exact (noncovariant) and approximate
(covariant) formulas for the reactions νµnb → ℓ−p (ℓ = e, µ, τ ) on neutron bound in lead. The bottom right panel
shows all three ∆s. Although at first glance the effect for the reaction with ντ seems noticeable, it is not at all so;
due to the huge reaction threshold, the relative difference is negligible: −0.0025 ≲ ∆/Eth

ν ≲ 0.0005 for lead and
−0.0008 ≲ ∆/Eth

ν ≲ 0.0002 for carbon.
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3.1.2 Kinematics of CC0π scattering on nuclei
Let’s start with interesting facts about the energy thresholds.

Weizsäcker mass formula

Below, for numerical illustrations we’ll use the well-known Weizsäcker formula for the binding energy:

B(Z,A) = Aϵ(Z,A) = aV A− aSA
2/3 − aCZ

2A−1/3 − aA(A− 2Z)2A−1 + aPA
−3/4, (3.23)

where3

aV = 15.76, aS = 17.81, aC = 0.711, aA = 23.7, aP = 34×


+1 Z,N even (A even),
0 A odd,

−1 Z,N odd (A even).

Also, we’ll use the empirical formula for the valley of stability (VS). From the Weizsäcker formula (3.23) it can be derived
that in the VS

N

Z
≈ a+ bA2/3, a = 1, b =

ac
2aA

= 0.015, (3.24)

but empirically it is better to use a = 0.98. Figure 3.6 shows comparison of Eq. (3.23) against the data. Calculations are
done using Eq. (3.24). It can be seen that the Weizsäcker approximation is quite suitable for not too precise estimates. For
our purposes it is quite sufficient. From Eq. (3.24) it can be derived
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Figure 3.6: Test of the Weizsäcker formula for valley of stability; Eqs. (3.23) and (3.24) were formally applied to all A.

A

Z
=

bX

6
+ b2Z2

[
4

X

(
b3Z2

6
+ a+ 1

)
+

b

3

]
+ a+ 1,

X = Z2/3
[
8b6Z4 + 72(a+ 1)b3Z2 + 108(a+ 1)2 + 12

√
3(a+ 1)3(4b3Z2 + 27a+ 27)

]1/3
.

(3.25)

These cumbersome formulas are useful for drawing some figures in Maple.

3All values are given in MeV. The numerical values of the coefficients ai may differ from author to author, but for our purposes this is not important.
In real calculations we use the experimental values for Eb and the masses of the nuclei.
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The thresholds

Here we consider the neutrino and antineutrino energy thresholds for the 0p0h, 1p1h, and 2p2h reactions:4

0p0h :

{
1 − νℓ + (Z,A) → ℓ− + (Z + 1, A),

2 − νℓ + (Z,A) → ℓ+ + (Z − 1, A),

1p1h :

{
3 − νℓ + (Z,A) → ℓ− + (Z,A− 1) + p,

4 − νℓ + (Z,A) → ℓ+ + (Z − 1, A− 1) + n,

2p2h :


5 − νℓ + (Z,A) → ℓ− + (Z − 1, A− 2) + p+ p,

6 − νℓ + (Z,A) → ℓ− + (Z,A− 2) + p+ n,

7 − νℓ + (Z,A) → ℓ+ + (Z − 1, A− 2) + n+ n,

8 − νℓ + (Z,A) → ℓ+ + (Z − 2, A− 2) + n+ p,

(3.26)

The reactions are numbered from 1 to 8 for easy for easy reference. The corresponding thresholds are

Eth
ν =



[M(Z + 1, A)−Aϵ(Z + 1, A) +mℓ]
2

2M ′(Z,A)
− M ′(Z,A)

2
0p0h

[M(Z + 1, A)− (A− 1)ϵ(Z,A− 1) +mℓ]
2

2M ′(Z,A)
− M ′(Z,A)

2
1p1h

[M(Z + 1, A)− (A− 2)ϵ(Z − 1, A− 2) +mℓ]
2

2M ′(Z,A)
− M ′(Z,A)

2
2p2h (pp)

[M(Z + 1, A)− (A− 2)ϵ(Z,A− 2) +mℓ]
2

2M ′(Z,A)
− M ′(Z,A)

2
2p2h (pn)

Eth
ν =



[M(Z − 1, A)−Aϵ(Z − 1, A) +mℓ]
2

2M ′(Z,A)
− M ′(Z,A)

2
0p0h

[M(Z − 1, A)− (A− 1)ϵ(Z − 1, A− 1) +mℓ]
2

2M ′(Z,A)
− M ′(Z,A)

2
1p1h

[M(Z − 1, A)− (A− 2)ϵ(Z − 1, A− 2) +mℓ]
2

2M ′(Z,A)
− M ′(Z,A)

2
2p2h (nn)

[M(Z − 1, A)− (A− 2)ϵ(Z − 2, A− 2) +mℓ]
2

2M ′(Z,A)
− M ′(Z,A)

2
2p2h (np)

where
M(Z,A) = ZMp + (A− Z)Mn and M ′(Z,A) = M(Z,A)−Aϵ(Z,A).

It can be proved analytically that the threshold of τ lepton production in (anti)neutrino-nucleus collisions is always lower
than in (anti)neutrino-nucleon collisions. But the proof is very cumbersome and it is much easier to show it numerically.

All of these thresholds are shown (as functions of Z) in the left panels of Figs. 3.7–3.14 for electron, muon, and tau
neutrinos and antineutrinos (from top to bottom). The binding energies are calculated according to Eq. (3.23) in which A
is fixed by the VS relation (3.25) (filled circles) or the isoscalar condition A = 2Z (open circles); the latter are shown just
for comparison.5 The right panels show the ratios of Eth

ν and Eth
ν to the corresponding energy threshold on bare nucleons.

The only exception is the case of νe scattering for which the reaction νen → ep is thresholdless.
Figure 3.15 shows a comparison of the thresholds for the reactions under consideration. In the figure, the binding

energies are calculated according to Eq. (3.23) in which A is fixed by the VS relation (3.25). The numbering correspond
to the sequence of the reactions in list (3.26).

Conclusions are quite obvious. A possible application of the effect is as follows: assume we have a ντ or ντ beam
with energies below the τ production threshold for the bare nucleon, but higher than that for a given nuclear target. Then
the observation of τ in the detector will indicate a production mechanism (diffractive, coherent) beyond the impulse
approximation. That seems potentially interesting. So it makes sense to develop an appropriate theory.

Let’s look at some more helpful illustrations. Figure 3.16 shows a comparison of the τ lepton kinetic energy and
momentum ranges in the reaction ντ + (Z,A) → τ− + (Z + 1, A) (the reaction that has the lowest threshold) for
three nuclei (Z = 7, 10, and 20). Again, the binding energies are calculated according to Eq. (3.23) in which A is
fixed by the VS relation (3.25). Later we use more realistic inputs. Figure 3.17 shows the same but for the reaction
νℓ + (Z,A) → ℓ+ + (Z − 1, A).

4So far, we are not considering reactions

νℓ + (Z,A) → ℓ− + (Z,A− 2) +D and νℓ + (Z,A) → ℓ+ + (Z − 2, A− 2) +D.

5It is clear that most isoscalar nuclei (especially at large Z) are either unstable or do not exist at all.
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Figure 3.7: Neutrino energy thresholds for the reactions νℓ + (Z,A) → ℓ− + (Z + 1, A) (left panels) and ratios of
these thresholds to the thresholds for the corresponding reactions on bare neutron (right panels). The binding energies are
calculated according to Eq. (3.23) in which A is fixed by the VS relation (3.25).
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Figure 3.8: Antineutrino energy thresholds for the reactions νℓ + (Z,A) → ℓ+ + (Z − 1, A) (left panels) and ratios of
these thresholds to the thresholds for the corresponding reactions on bare proton (right panels). The binding energies are
calculated according to Eq. (3.23) in which A is fixed by the VS relation (3.25).
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Figure 3.9: The same as in Fig. 3.7 but for the reactions νℓ + (Z,A) → ℓ− + (Z,A− 1) + p.
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Figure 3.10: The same as in Fig. 3.8 but for the reactions νℓ + (Z,A) → ℓ+ + (Z − 1, A− 1) + n.
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Figure 3.11: The same as in Fig. 3.7 but for the reactions νℓ + (Z,A) → ℓ− + (Z − 1, A− 2) + p+ p.
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Figure 3.12: The same as in Fig. 3.7 but for the reactions νℓ + (Z,A) → ℓ− + (Z,A− 2) + p+ n.
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Figure 3.13: The same as in Fig. 3.8 but for the reactions νℓ + (Z,A) → ℓ+ + (Z − 1, A− 2) + n+ n.
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Figure 3.14: The same as in Fig. 3.8 but for the reactions νℓ + (Z,A) → ℓ+ + (Z − 2, A− 2) + n+ p.
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Figure 3.15: A comparison of the thresholds for the reactions under consideration. The binding energies are calculated
according to Eq. (3.23) in which A is fixed by the VS relation (3.25) (as filled circles in Figs. 3.7–3.14). The numbering
corresponds to the sequence of reactions in the (3.26) list, and the color corresponds to the color of the curves.
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Figure 3.16: Comparison of the τ lepton kinetic energy and momentum ranges in the reaction ντ + (Z,A) → τ− + (Z +
1, A) for nuclei with Z = 7, 10, and 20. The binding energies are calculated according to Eq. (3.23) in which A is fixed
by the VS relation (3.25). Vertical lines show the neutrino energy thresholds for reaction ντ +n → τ− + p. Gray areas to
the right of these lines show the τ lepton kinetic energy and momentum ranges for this reaction. Horizontal dashed lines
show the minimum possible kinetic energy and momentum of the τ lepton in the reaction ντ + n → τ− + p.
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Figure 3.17: Comparison of the τ lepton kinetic energy and momentum ranges in the 0p0h reaction νℓ + (Z,A) →
ℓ+ + (Z − 1, A) for nuclei with Z = 7, 10, and 20. The binding energies are calculated according to Eq. (3.23) in which
A is fixed by the VS relation (3.25). Vertical lines show the neutrino energy thresholds for reaction ντ + p → τ+ + n.
Gray areas to the right of these lines show the τ lepton kinetic energy and momentum ranges for this reaction. Horizontal
dashed lines show the minimum possible kinetic energy and momentum of the τ lepton in the reaction ντ + p → τ+ +n.
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Horizontal dashed lines in Figs. 3.16 and 3.17 show the minimum possible kinetic energy (Tτ ) and momentum (Pτ )
of the τ lepton in the corresponding reactions on bare nucleon. These are given by the following relations:

T ass
τ =

(mτ −mn)
2

2mn
≈ 373.23 MeV, P ass

τ =
m2

τ −m2
n

2mn
≈ 605.35 MeV/c, for ντ + n → τ− + p;

T ass
τ =

(mτ −mp)
2

2mp
≈ 374.90 MeV, P ass

τ =
m2

τ −m2
p

2mp
≈ 606.83 MeV/c for ντ + p → τ+ + n.

In fact, these are the asymptotic values of functions Tmin
τ = Emin

τ −mτ and Pmin
τ given by Eqs. (3.6) at Eν → ∞. We

see that in reactions at nuclei the τ lepton energies/momenta can be smaller (up to zero). Unfortunately, this does not
provide an experimentally valuable additional signature, since the decay products of τ involve (invisible) neutrinos. But
this could be used as an additional criterion in the case of a sharply decaying above 3.5 GeV (anti)neutrino spectrum.

Figure 3.18: Minimum and maximum τ lepton kinetic energies vs. neutrino energy and Z for the 0p0h reactions ντ +
(Z,A) → τ− + (Z + 1, A) (left panel) and νℓ + (Z,A) → ℓ+ + (Z − 1, A) (right panel). It is in particular seen that the
maximum energy almost independent of Z.

Now let’s consider the realistic calculations that use experimental data on the binding energies of the nuclides in
question.

Reaction on Specific Nuclei

Here we consider reactions at a few selected nuclei, particularly Carbon and Oxigen, for which the measured binding
energies are poorly described by the Weizsäcker formula (see Fig. 3.6). These nuclei are also important as components of
many modern neutrino detectors.

Reactions on Bromine are interesting in at least two aspects. First, Bromine is relatively heavy and therefore the
corresponding reactions have lower ντ and ντ energy thresholds than those for C and O. Second, Bromine is a component
of Freon, a popular scintillator used in past (and perhaps future) neutrino detectors.

The input data are shown in Figs. 3.19, 3.20, and 3.21.
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Figure 3.19: Stable Carbon isotopes listed in order of binding energy per nucleon. Also listed are the nuclides that can be
the final state nuclei in the reactions in question.

Figure 3.20: Stable Oxigen isotopes listed in order of binding energy per nucleon. Also listed are the nuclides that can be
the final state nuclei in the reactions in question.

Figure 3.21: Stable Bromine isotopes listed in order of binding energy per nucleon. Also listed are the nuclides that can
be the final state nuclei in the reactions in question.



46 CHAPTER 3. KINEMATICS OF νN SCATTERING

Figure 3.22: The τ lepton kinetic energy and momentum ranges in the 0p0h reactions ντ + 12
6C → τ− + 12

7N (top panels)
and ντ + 12

6C → τ+ + 12
5B (bottom panels). The dotted curves represent the corresponding ranges for the reactions

ντ + 13
6C → τ− + 13

7N (top) and ντ + 13
6C → τ+ + 13

5B (bottom). Other notations are the same as in Fig. 3.16.
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Figure 3.23: The τ lepton kinetic energy and momentum ranges in the 0p0h reactions ντ + 16
8O → τ− + 16

9F (top panels)
and ντ + 16

8O → τ+ + 16
7N (bottom panels). The dotted curves represent the corresponding ranges for the reactions

ντ +
17
8O → τ− + 17

9F and ντ +
18
8O → τ− + 18

9F (top) and ντ +
17
8O → τ+ + 17

7N and ντ +
18
8O → τ+ + 18

7N (bottom).
Other notations are the same as in Fig. 3.16.
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Figure 3.24: The τ lepton kinetic energy and momentum ranges in the 0p0h reactions ντ +79
35Br → τ−+79

36Kr (top panels)
and ντ + 79

35Br → τ+ + 79
34Se (bottom panels). The dotted curves represent the corresponding ranges for the reactions

ντ + 81
35Br → τ− + 81

36Kr (top) and ντ + 81
35Br → τ+ + 81

34Se (bottom). Other notations are the same as in Fig. 3.16.
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3.2 Single pion production
Let us consider now the kinematics of the CC induced single pion production by neutrino or antineutrino,

νℓ +Ni → ℓ− +Nf + π or νℓ +Ni → ℓ+ +Nf + π, (3.27)

taking into account the mass of outgoing lepton m as well as the masse difference for the initial and final nucleons. The
reaction threshold is given by sth = (Mf +m+mπ)

2. Therefore the neutrino energy threshold is

Eth
ν =

sth −M2
i

2Mi
=

(Mf +m+mπ)
2 −M2

i

2Mi
.

The neutrino and lepton energies in the center-of-mass frame (CMF) of the neutrino-nucleon initial state are, respectively,

E∗
ν =

s−M2
i

2
√
s

and E∗
ℓ ≡ E∗

ℓ (W ) =
s+m2 −W 2

2
√
s

; (3.28)

the target nucleon and the final hadronic state (resonance) energies are, respectively,

E∗
i =

s+M2
i

2
√
s

and E∗
f ≡ E∗

f (W ) =
s−m2 +W 2

2
√
s

, (3.29)

where
W 2 = (p+ q)2 = M2

i −Q2 + 2Mi (Eν − Eℓ) (3.30)

is the invariant mass square of the final hadronic state (Nf + π). Clearly

W 2
− ≤ W 2 ≤ W 2

+, where W− = Mf +mπ and W+ =
√
s−m;

and the upper limit is obtained from the condition E∗
ℓ ≥ m.

The bounds for the variable

Q2 ≡ −q2 = 2 (kk′)−m2 = 2Eν (Eℓ − Pℓ cos θ)−m2 (3.31)

can be found in terms of variable W by rewriting Eq. (3.31) in the CMF,

Q2 = 2E∗
ν (E

∗
ℓ − P ∗

ℓ cos θ∗)−m2,

and putting cos θ∗ = ±1. In this way, we have

Q2
− ≤ Q2 ≤ Q2

+, where Q2
± = 2E∗

ν (E
∗
ℓ ± P ∗

ℓ )−m2. (3.32)

In complete analogy to the QE case, by combining Eqs. (3.46), (3.30) and (3.31), we can derive the equation

EνPℓ cos θ = Eℓ (Eν +Mi)−
√
sE∗

ℓ (W ). (3.33)

The formal solution to Eq. (3.33) is given by

P±
ℓ (θ,W ) =

Eν

[√
sE∗

ℓ cos θ ±m (Eν +Mi)
√
ζ2 − sin2 θ

]
s+ E2

ν sin
2 θ

(3.34a)

=
E∗

ν

(
MiE

∗
ℓ cos θ ±mE∗

i

√
ζ2 − sin2 θ

)
M2

i + (E∗
ν)

2
sin2 θ

, (3.34b)

E±
ℓ (θ,W ) =

√
sE∗

ℓ (Eν +Mi)±mE2
ν cos θ

√
ζ2 − sin2 θ

s+ E2
ν sin

2 θ
(3.34c)

=
MiE

∗
ℓE

∗
i ±m (E∗

ν)
2
cos θ

√
ζ2 − sin2 θ

M2
i + (E∗

ν)
2
sin2 θ

, (3.34d)

where θ is the scattering angle (pνpℓ = EνPℓ cos θ) and

ζ ≡ ζ(W ) =
2Mi

√
sP ∗

ℓ

m (s−M2
i )

=
Mi

√
(s+m2 −W 2)

2 − 4m2s

m (s−M2
i )

.

Since, according to Eq. (3.34a),
P+
ℓ (θ,W )P−

ℓ (θ,W ) = m2E2
ν

[
1− ζ2(W )

]
. (3.35)
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Therefore, for given θ and W , there are two solutions, P+
ℓ and P−

ℓ , when ζ(W ) ≤ 1 and the only solution, P+
ℓ , when

ζ(W ) > 1. Finally, taking into account the conditions ζ(W ) ≥ sin θ and sin θ ≥ 0 we conclude that

Pℓ = P+
ℓ (θ,W ), Eℓ = E+

ℓ (θ,W ), 0 ≤ θ ≤ π, if ζ(W ) > 1,

Pℓ = P±
ℓ (θ,W ), Eℓ = E±

ℓ (θ,W ), 0 ≤ θ < arcsin ζ(W ), if ζ(W ) ≤ 1.

The asymptotic value of the limiting angle at s ≫ W 2 is given by

arcsin ζ(W ) → arcsin

(
Mi

m

)
if Mi ≤ m.

The condition ζ = 1 defines the neutrino energy at which the second solution, P−
ℓ , disappears. It can be rewritten in

terms of the neutrino energy as [
Eν − ϵ−ν (W )

] [
Eν − ϵ+ν (W )

]
= 0 (3.36)

with

ϵ±ν (W ) =
W 2 − (Mi ∓m)

2

2 (Mi ∓m)
and ϵ+ν − ϵ−ν = m

(
1 +

W 2

M2
i −m2

)
.

In terms of variable s Eq. (3.36) reads: [
s− s−(W )

] [
s− s+(W )

]
= 0, (3.37)

where

s±(W ) = Mi

[
2 ϵ±ν (W ) +Mi

]
=

Mi

[
W 2 −m (m∓Mi)

]
Mi ∓m

.

NOTE XVI:

• At high neutrino energies, namely at s≫W 2 +m2, one can write:

Q2
− = m2

(
2E∗

ν

E∗
ℓ + P ∗

ℓ

− 1

)
≃ m2

(
W 2 −M2

i

s−W 2

)
.

• The following identities may be of utility to simplify the numerical calculations:(
Q2

− +m2) (Q2
+ +m2) = 4m2 (E∗

ν )
2
, Q2

+ −Q2
− = 4E∗

νP
∗
ℓ .

• Q2
+ = Q2

− = m (2E∗
ν −m) in the point W =W+, while Q2

+ > Q2
− for W < W+.

NOTE XVII: Eq. (3.33) can be rewritten in the form of equation of ellipse in the plane of Pℓ sin θ versus Pℓ cos θ:

(Pℓ sin θ)
2 + ϱ2 (Pℓ cos θ − P c

ℓ )2 = (P ∗
ℓ )

2
,

where

ϱ =

√
s

Eν +Mi
and P c

ℓ =
EνE

∗
ℓ√
s
.

The eccentricity and the focal parameter of the ellipse are, respectively,√
1− ϱ2 =

Eν

Eν +Mi
and

P ∗
ℓ√

1− ϱ2
=
P ∗
ℓ

√
s

Eν
.

NOTE XVIII:
Let us now consider the derivative (cf. NOTE XI)

dζ

ds
=

1

2ζ

(
dζ2

ds

)
=

M2
i Ξ

m2 (s−M2
i )

3 ζ
,

where
Ξ =

(
W 2 −M2

i +m2) s− (
W 2 −M2

i −m2) (W 2 −m2) .
Since s ≥ (W +m)2 and W ≥Mf +mπ one can prove that Ξ > 2m (W +m)

[
W (W +m)−M2

i

]
> 0. Hence dζ/ds > 0 that

is ζ is a monotonically increasing function of s for any W . It’s also clear that ζ is a monotonically decreasing function of W for any s.
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Figure 3.25: Kinematically allowed regions for the process νµ + p → µ− + p+ π+ in terms of variables
(
Q2,W

)
(left)

and (Pµ cos θ, Pµ sin θ) (right) for two values of neutrino energy, Eν . The shaded areas correspond to the W cutoff of
2 GeV.
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Figure 3.26: The same as in Fig. 3.25 but for the process ντ + p → τ− + p+ π+.
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With the actual values of the masses of particles involved into the reactions under consideration, we can conclude that
the condition ζ = 1 is never satisfied for τ± production (ζ(W ) < 1 for any W , “two-branch case”) while for production
of e± and µ± the values of ϵ+ν (W ) may be above the reaction thresholds and thus there are both single- and two-branch
kinematics. The corresponding energy gap, ϵ+ν (W )− Eth

ν grows with W and moreover, the gap between the ϵ+ν (W ) and
the “quasithreshold”,6

ϵth
ν (W ) =

(W +m)
2 −M2

i

2Mi
,

also expands with increasing W since

ϵ+ν (W )− ϵth
ν (W ) =

m (W −Mi +m)
2

2Mi (Mi −m)

is a monotonically increasing function of W for Mi > m. These statements are illustrated by numerical examples given
in Table 3.3.

T
O

B
E

C
O
N
T
I
N
U
E
D

Table 3.3: Eth
ν , ϵ+ν (W ) and ϵ+ν (W )−Eth

ν (W ) for 12th reactions of single pion production, evaluated with W = Mf +mπ

and with W = 1.6 GeV (shown in parentheses). The reactions νℓ+n → ℓ++n+π− and νℓ+ p → ℓ−+ p+π+ are not
included since their kinematics is identical to that of νℓ + n → ℓ− + n+ π+ and νℓ + p → ℓ+ + p+ π−, respectively.

Reaction Eth
ν (MeV) ϵ+ν (MeV) ϵ+ν − Eth

ν

νe + n → e− + p+ π0 143.777478 143.782693 5.21483 keV
νe + n → e− + n+ π+ 150.523633 150.529316 5.68240 keV

(893.546256) (126.504 keV)
νe + p → e+ + n+ π0 146.750864 146.756297 5.43276 keV
νe + p → e+ + p+ π− 150.538028 150.543726 5.69808 keV

(896.072828) (127.350 keV)
νµ + n → µ− + p+ π0 241.425537 273.688632 3.86248 MeV
νµ + n → µ− + n+ π+ 242.769170 281.285937 4.05482 MeV

(1117.98991) (39.5724 MeV)
νµ + p → µ+ + n+ π0 242.057837 277.076219 3.95799 MeV
νµ + p → µ+ + p+ π− 242.812601 281.341947 4.06671 MeV

(1121.02086) (39.8226 MeV)
ντ + n → τ− + p+ π0 3853.41862 – –
ντ + n → τ− + n+ π+ 3871.29542 – –
ντ + p → τ+ + n+ π0 3863.95416 – –
ντ + p → τ+ + p+ π− 3873.98986 – –

6That is the two-branch region.
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3.2.1 Kinematics of CC1π scattering on nuclei
The thresholds

Consider the neutrino and antineutrino energy thresholds for the “trully” coherent reactions

νℓ + (Z,A) → ℓ− + (Z,A) + π+ and νℓ + (Z,A) → ℓ+ + (Z,A) + π−. (3.38)

These reactions (of course, not with τ neutrinos) have long been studied intensively experimentally, and there is some
theory. But we are not so much interested in the pion in the final state, as in the τ lepton. It is clear that it is impossible to
study this topic in the current experiments. Our task is to propose possible new experiments and estimate the subleading
(coherent CC1pi) contributions to HK, DUNE, PINGU, ORCA.



54 CHAPTER 3. KINEMATICS OF νN SCATTERING

Figure 3.27: Neutrino energy thresholds for the reaction νℓ+(Z,A) → ℓ−+(Z,A)+π+ (left panels) and ratios of these
thresholds to the thresholds for the CC1π reactions on bare neutron (right panels). The binding energies are calculated
according to Eq. (3.23) in which A is fixed by the VS relation (3.25). For comparison, the thresholds for the reactions on
12
6C, 168O, and 79

35Br, calculated using the measured values of B, are also shown.
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Figure 3.28: Antineutrino energy thresholds for the reaction νℓ + (Z,A) → ℓ+ + (Z,A) + π− (left panels) and ratios of
these thresholds to the thresholds for the CC1π reactions on bare proton (right panels). The binding energies are calculated
according to Eq. (3.23) in which A is fixed by the VS relation (3.25). For comparison, the thresholds for the reactions on
12
6C, 168O, and 79

35Br, calculated using the measured values of B, are also shown.
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Figure 3.29: Minimum and maximum lepton kinetic energies vs. (anti)neutrino energy and W for the reactions νℓ+12
6C →

ℓ− + 12
6C + π+ (left panels) and νℓ +

12
6C → ℓ+ + 12

6C + π− (right panels), where ℓ = e, µ, τ (from top to bottom). The
binding energies are calculated according to Eq. (3.23) in which A is fixed by the VS relation (3.25). The corresponding
boundaries for CC1π reactions on bare nucleons are also shown (gray surfaces). In all cases, the surfaces are depicted
in the boundaries W− ≤ W < W+. Vertical planes show the (anti)neutrino energy thresholds in the reactions on bare
nucleons.



3.2. SINGLE PION PRODUCTION 57

Figure 3.30: Minimum and maximum lepton kinetic energies vs. (anti)neutrino energy and W for the reactions νℓ+12
6C →

ℓ− + 12
6C + π+ (left panels) and νℓ +

12
6C → ℓ+ + 12

6C + π− (right panels), where ℓ = e, µ, τ (from top to bottom).
The corresponding boundaries for CC1π reactions on bare nucleons are also shown (gray surfaces). In all cases, the
surfaces are depicted in the boundaries W− ≤ W < W+. Vertical planes show the (anti)neutrino energy thresholds in
the reactions on bare nucleons. It is seen that the difference with Fig. 3.29 is almost imperceptible.
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The total cross section can be obtained by integrating within the kinematical bounds:

σ (Eν) =

min(
√
s−m,Wcut)∫

Mf+mπ

dW

Q2
+(s,W

2)∫
Q2

−(s,W 2)

dQ2 d2σ

dWdQ2
. (3.39)

If the differential cross section
d4σ

dWdQ2d cos θ̂πdφ̂π

is known, where θ̂π and φ̂π are the angles of the final-state pion in the isobaric (πN center-of-mass) frame, then the total
cross section can be obtained as

σ (Eν) =

min(
√
s−m,Wcut)∫

Mf+mπ

dW

Q2
+(s,W

2)∫
Q2

−(s,W 2)

dQ2

1∫
−1

d cos θ̂π

2π∫
0

dφ̂π
d4σ

dWdQ2d cos θ̂πdφ̂π

. (3.40)

Sometimes the following four measurables are needed:

dσ

dW
,

dσ

dφ̂π
,

dσ

d cos θ̂π
, and

dσ

dQ2
.

The first three of these can be found quite easily:

dσ

dW
(Eν ,W ) =

Q2
+(s,W

2)∫
Q2

−(s,W 2)

dQ2

1∫
−1

d cos θ̂π

2π∫
0

dφ̂π
d4σ

dWdQ2d cos θ̂πdφ̂π

, (3.41)

(
Mf +mπ ≤ W ≤ min(

√
s−m,Wcut)

)
dσ

d cos θ̂π

(
Eν , cos θ̂π

)
=

min(
√
s−m,Wcut)∫

Mf+mπ

dW

Q2
+(s,W

2)∫
Q2

−(s,W 2)

dQ2

2π∫
0

dφ̂π
d4σ

dWdQ2d cos θ̂πdφ̂π

, (3.42)

dσ

dφ̂π
(Eν , φ̂π) =

min(
√
s−m,Wcut)∫

Mf+mπ

dW

Q2
+(s,W

2)∫
Q2

−(s,W 2)

dQ2

1∫
−1

d cos θ̂π
d4σ

dWdQ2d cos θ̂πdφ̂π

. (3.43)

To find dσ/dQ2 we introduce an auxiliary quantity W0(Q
2) which is the root of Eq. (3.32)

if Q2 ≥ 2E∗
νm−m2 : Q2

+(W0) = Q2, if Q2 ≤ 2E∗
νm−m2 : Q2

−(W0) = Q2. (3.44)

It turns out that W 2
0 (Q

2) = s+m2 −
√
s(B +m2/B), where B = (Q2 +m2)/2E∗

ν , so

dσ

dQ2

(
Eν , Q

2
)
=

min(W0(Q
2),Wcut)∫

Mf+mπ

dW

1∫
−1

d cos θ̂π

2π∫
0

dφ̂π
d4σ

dWdQ2d cos θ̂πdφ̂π

, (3.45)

[
Q2

−
(
s,W 2 = (Mf +mπ)

2
)
≤ Q2 ≤ Q2

+

(
s,W 2 = (Mf +mπ)

2
)]

.

NOTE XIX:

• At high neutrino energies, namely at s≫W 2 +m2, one can write:

Q2
− = m2

(
2E∗

ν

E∗
ℓ + P ∗

ℓ

− 1

)
≃ m2

(
W 2 −M2

i

s−W 2

)
.

• The following identities may be of utility to simplify the numerical calculations:(
Q2

− +m2) (Q2
+ +m2) = 4m2 (E∗

ν )
2
, Q2

+ −Q2
− = 4E∗

νP
∗
ℓ .

• Q2
+ = Q2

− = m (2E∗
ν −m) in the point W =W+, while Q2

+ > Q2
− for W < W+.
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NOTE XX: Eq. (3.33) can be rewritten in the form of equation of ellipse in the plane of Pℓ sin θ versus Pℓ cos θ:

(Pℓ sin θ)
2 + ϱ2 (Pℓ cos θ − P c

ℓ )2 = (P ∗
ℓ )

2
,

where

ϱ =

√
s

Eν +Mi
and P c

ℓ =
EνE

∗
ℓ√
s
.

The eccentricity and the focal parameter of the ellipse are, respectively,

√
1− ϱ2 =

Eν

Eν +Mi
and

P ∗
ℓ√

1− ϱ2
=
P ∗
ℓ

√
s

Eν
.

3.3 Deep inelastic scattering (DIS)
The following set of invariant variables is conventionally in use for description of the neutrino-nucleon DIS:7

s = (k + p)2 = (k′ + pX)
2
= 2MEν +M2,

Q2 = −q2 = − (k − k′)
2
= 2MxyEν ,

W 2 = p2X = (p+ q)2 = 2M(1− x)yEν +M2,

ν =
(pq)

M
= yEν = Eν − Eℓ, x =

Q2

2(pq)
=

Q2

2MyEν
, y =

(pq)

(pk)
= 1− Eℓ

Eν
.

The center-of-mass neutrino and lepton energies are

E∗
ν =

s−M2

2
√
s

and E∗
ℓ =

s+m2 −W 2

2
√
s

. (3.46)

Clearly the reaction threshold energy is given by

Eth
ν =

sth −M2

2M
=

(m+Wcut)
2 −M2

2M
,

where Wcut is the conventional W cutoff.8 The physical boundaries for the W are

Wcut ≤ W ≤
√
s−m,

where the upper limit is obtained from the condition E∗
ℓ ≥ m.

3.3.1 Properties of vector N and kinematic boundaries

The 4-vector N is defined by
Nα = ϵαβγδp

βkγqδ = ϵαβγδ(p+ k)βpγqδ.

Let us consider this vector in the center-of-mass frame. Since p∗ + k∗ = 0 we have

N∗ = (0,N∗) , where N∗ =
√
s
(
k∗ × k′∗) , |N∗| =

√
sE∗

νP
∗
ℓ sin θ∗.

Therefore

N2 = −s (E∗
νP

∗
ℓ sin θ∗)

2
= −

(
s−M2

)2
16

[(
s−W 2 +m2

)2 − 4m2s
]
sin2 θ∗. (3.47a)

On the other hand
N2 = p2(qk)2 − 2(kp)(pq)(qk) + q2(kp)2. (3.47b)

7Of course, we assume here Mi = Mf = M ≡ (mp +mn)/2.
8We will use normally Wcut = M + 2mπ assuming that the range M ≤ W < M + 2mπ is saturated by the QE scattering and single pion

neutrinoproduction.
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NOTE XXI: To derive Eq. (3.47b) we have used the identity

gαα′
ϵαβγδ ϵα′β′γ′δ′ = −

∣∣∣∣∣∣
gαβ′ gαγ′ gαδ′

gββ′ gβγ′ gβδ′

gγβ′ gγγ′ gγδ′

∣∣∣∣∣∣ .
which follows from

ϵαβγδ ϵα′β′γ′δ′ = −

∣∣∣∣∣∣∣∣
gαα′ gαβ′ gαγ′ gαδ′

gβα′ gββ′ gβγ′ gβδ′

gγα′ gγβ′ gγγ′ gγδ′

gδα′ gδβ′ gδγ′ gδδ′

∣∣∣∣∣∣∣∣ .

By substituting

(qk) = −1

2

(
Q2 +m2

)
, (kp) =

1

2

(
s−M2

)
, (qp) =

1

2

(
Q2 +W 2 −M2

)
,

we find
N2 =

s

4

(
Q2 −Q2

−
) (

Q2 −Q2
+

)
with Q2

± = Q2
±(s,W ) = 2E∗

ν (E
∗
ℓ ± P ∗

ℓ )−m2.

The following identities are of some utility:

Q2
− +Q2

+ = 2
(
2E∗

νE
∗
ℓ −m2

)
, Q2

−Q
2
+ = m2

[
4E∗

ν (E
∗
ν − E∗

ℓ ) +m2
]
.

Taking into account that 0 ≤ sin θ∗ ≤ 1, we arrive at the following inequalities:(
Q2 −Q2

−
) (

Q2 −Q2
+

)
≤ 0,

(
2Q2 −Q2

− −Q2
+

)2 ≥ 0.

The latter one provides no restriction while the first inequality yields

Q2
− ≤ Q2 ≤ Q2

+. (3.48)

The same also follows from the trivial consideration discussed in Sect. 3.2.

NOTE XXII: The inequalities (3.48) can be rewritten in terms of variables y and Eν . Since(
Q2 +m2)2 + 4yE2

ν

(
Q2 +m2)− 4Q2E2

ν ≤ 0, (3.49)

we have

Q2
− (y,Eν) ≤ Q2 ≤ Q2

+ (y,Eν) , Q2
± (y,Eν) = 2E2

ν

[
1− y − m2

2E2
ν

±

√
(1− y)2 − m2

E2
ν

]
.

It is clear that Q2
− (y,Eν) ≥ 0 for y ≥ −E2

ν/(2m
2) that is for any y.

T
O

B
E

C
O
N
T
I
N
U
E
D

Let us rewrite inequality (3.49) in terms of variables y and x:(
1 +

Mx

2Eν

)
y2 −

[
1− m2

2E2
ν

(
1 +

Eν

Mx

)]
y +

m4

8MxE3
ν

≤ 0.

3.3.2 Nachtmann and Feynman variables
The Nachtmann variable [186] is defined by

xN =
Q2

2M2x

(√
1 +

4M2x2

Q2
− 1

)
=

2x

1 +
√
1 + 4M2x2/Q2

. (3.50)

where x is the standard Bjorken scaling variable. Clearly xN ≈ x when Q2 ≫ 4M2x2 but in general case xN < x. How
to use the Nachtmann variable? The recipe is

dσ

dxdy
= K

5∑
i=1

Ai (x, y, Eν)Fi

(
xN , Q2

)
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However, the Nachtmann variable is not the fraction of the nucleon momentum carried by the struck parton in the Breit
frame. Let us call the latter Feynman variable, xF . Under assumption that the struck and final partons are on shell the
Feynman variable is defined by9 [187, 189]

xF

xN
=

Q2
fi

Q2
, (3.51)

where

2Q2
fi = Q2 +m2

f −m2
i +

√
Q4 + 2

(
m2

f +m2
i + 2k2T

)
Q2 +

(
m2

f −m2
i

)2
,

mi and mf are the masses of the struck and final partons, and kT is the transverse momentum of the struck parton in the
Breit frame. For NC scattering mf = mi. Thus

xF =
xN

2

1 +√1 +
4(m2

i + k2T )

Q2


and neglecting k2T /Q

2 or taking some “effective” value for k2T , xF may be used the same way as xN . Well, but how
to use the Feynman variable for CC scattering? In general this is not a trivial question, because xF is now different for
different quark transitions and well above the t quark production threshold all transitions (with electric charge change of
±1) become possible.

Let us write the 1/Q2 expansion

Q2
fi

Q2
= 1 +

m2
f + k2T
Q2

−
2
(
m2

i + k2T
) (

m2
f + k2T

)
Q4

+ . . . .

We can slightly simplify our life by neglecting the O
(
k2T /Q

2
)

and O
(
m4

i,f/Q
4
)

. It would be nice to write

dσ

dxdy
= K

5∑
i=1

Ai (x, y, Eν)Fi

(
x′
F , Q

2
)
,

where

x′
F = xN

(
1 +

m2
f

Q2

)
≈ xF .

But which f must be used in every PDF q
(
x′
F , Q

2
)
? Another problem is in bad behavior of x′

F for small Q2. Indeed, x′
F

behaves like
(
m2

f/M
2
)
x−1 as Q2 → 0. Therefore it can be large.

3.3.3 Derivation of Eq. (3.51)

Here we will follow the approach of Ref. [192]. We mark the physical values in the Breit frame (BF) with tilde over the
symbol. Thus q̃ =

(
q̃0, 0, 0, q̃3

)
, p̃N =

(
p̃0, 0, 0, p̃3

)
and p̃3 → −∞. Let ki and kf are the 4-momenta of initial (struck)

and final partons. By definition,
k̃3i = xF p̃

3 (3.52)

and thus
k̃0i =

√
(xF p̃3)

2
+ k2T +m2

i , (3.53)

where k2T = k̃T =
(
k̃1i

)2
+
(
k̃2i

)2
(that is kT is the part of k̃i transverse to p̃N and q̃). From the conservation law

q̃ + k̃i = k̃f

we have
2q̃k̃i = 2

(
q̃0k̃0i − q̃3k̃3i

)
= Q2 +m2

f −m2
i . (3.54)

Velocity of the BF in the lab. frame is vBF = −p̃N/p̃0. Therefore

|vBF| = − p̃3

p̃0
,

√
1− |vBF|2 =

p̃0

M
,

and Lorentz transformation of q can be written as

q̃0 =
1

M

(
q0p̃0 + q3p̃3

)
,

q̃3 =
1

M

(
q3p̃0 + q0p̃3

)
.

9For a recent discussion of the problem in case of lepton-proton inelastic scattering see Ref. [192].
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Substituting these equations into Eq. (3.54), taking into account Eqs. (3.52) and (3.53) and finding the limit as p̃3 → −∞
we arrive at the following exact equation for xF :

(
q0 + q3

)
MxF +

(
m2

i + k2T
) (

q0 − q3
)

MxF
= Q2 +m2

f −m2
i . (3.55)

Its solution yields Eq. (3.51).
Useful formulas:

q3 = ν

√
1 +

2Mx

ν
= ν

√
1 +

4M2x2

Q2
.

Here we assume that q0 = ν ≥ 0. This is true if M ′ ≥ M In fact we must assume that mp = mn to have x varying between 0
and 1. This approximation seems natural if we neglect the transverse momentum kT (which may be much larger then the n − p mass
difference) and light quark masses.

3.3.4 Threshold Conditions
We define the differential cross sections for the inclusive CC DIS reaction

νN → lX (3.56)

by
dσDIS

νN→lX

dy
=

∫ 1

x−
dx θ

(
W 2 −M2

h

) d2σνN→lX

dxdy
, (3.57)

where

W 2 = p2X = (q + p)2 = Q2

(
1

x
− 1

)
−M2

and Mh is the total mass of the hadron system h.
Let us find out the points of intersection between the curves

(1− x)Q2 =
(
M2

h −M2
)
x (3.58)

and (
Q2 +m2

)2
+

2Q2Eν

Mx

(
Q2 +m2

)
− 4Q2E2

ν = 0. (3.59)

The solution is

x = x±
h (Eν) =

ah (Eν)±
√
bh (Eν)

2ch (Eν)
, (3.60)

where

ah (Eν) = 1−
(
M2

h −M2 −m2
) [(

M2
h −M2

)
Eν +m2M

]
2M (M2

h −M2)E2
ν

,

bh (Eν) =

[
1− (Mh −m)

2 −M2

2MEν

][
1− (Mh +m)

2 −M2

2MEν

]
,

ch (Eν) = 1 +

(
M2

h −M2 −m2
)2

4 (M2
h −M2)E2

ν

.

Clearly bh (Eν) ≥ 0 (and thus the solution does exist) at

Eν ≥ Eh
ν =

(Mh +m)
2 −M2

2M
,

where Eh
ν is exactly the threshold neutrino energy for the reaction (3.56).

Clearly, for the quasielastic threshold (Mh = M ) the solution degenerates to x±
h = 1 providing no additional cutoff

for the physical region
y− ≤ y ≤ y+, x− ≤ x ≤ 1.

For very high neutrino energies we have

x−
h ≈ m2

2MEν
≈ x−, x+

h ≈ 1− M2
h −M2

2MEν
.

We assume from here that Mh > M .
Let us now define the differential and total cross sections for the inclusive reaction (3.56) by

dσDIS
νN→lhX

dy
=

∫ x+
h

x−
dx θ

(
y − ymin

h

)
θ
(
y+ − y

) d2σνN→l+anything

dxdy
, (3.61)
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y−
(
x−
h , Eν

)
≤ y ≤ y+

(
x+
h , Eν

)
, Eν ≥ Eh

ν ,

and

σDIS
νN→lhX =

∫
dy

∫ x+
h

x−
dx θ

(
y − ymin

h

)
θ
(
y+ − y

) d2σνN→l+anything

dxdy

=

∫ 1

0

dy′
∫ x+

h

x−
dx
(
y+ − ymin

h

) d2σνN→l+anything

dxdy
, (3.62)

where

ymin
h = ymin

h (x,Eν) = max
[
y− (x,Eν) ,

M2
h −M2

2M(1− x)Eν

]
,

y±
(
x±
h , Eν

)
=

M2
h −M2

2M
(
1− x±

h

)
Eν

,

and the new variable y′ in Eq. (3.62) is defined by

y =
(
y+ − ymin

h

)
y′ + ymin

h .

For the moment we’ll assume that the minimal hadron system h of the DIS is N + 2π. Therefore Mh = M + 2mπ ,

ymin
h = max

[
y−,

2mπ (M +mπ)

M(1− x)Eν

]
,

and the total CC cross section is
σtot
νN = σQES

νN + σRes
νN + σDIS

νN→ℓ+N+2π+X .

Needless to say that σDIS
νN→ℓhX = 0 as Eν ≤ Eh

ν and that the corresponding results for the NC inclusive reaction

ν (ν)N → ν (ν) + h+X (3.63)

can be obtained by putting m = 0 in the above equations.



Chapter 4

Nucleon form factors (obsolete!)

In this Chapter, we consider explicit formulae for the nucleon form factors used in our numerical calculations.

4.1 QE CC form factors

In terms of Sachs electric GE and magnetic GM form factors Dirac electromagnetic isovector FCC
V , Pauli electromagnetic

isovector FCC
M , axial FCC

A and pseudoscalar FCC
P charged current form factors are [6]

FCC
V =

(
1 +

Q2

4M2

)−1(
GE +

Q2

4M2
GM

)
,

FCC
M =

(
1 +

Q2

4M2

)−1

(GM −GE) ,

FCC
A =

(
1 +

Q2

m2
A

)−2

FCC
A (0),

FCC
P =

2M2

m2
π +Q2

FCC
A ,

FCC
A (0) = −1.267. The Sachs form factors, GE and GM , have more intuitive physical interpretations than F1 and F2.

Form factors GE and GM can be interpreted as Fourier transforms of spatial distributions of charge and magnetization
of the nucleon in the Breit frame. In this case of elastic electron-nucleon scattering the Breit frame is the center-of-mass
frame of the electron-nucleon system. In this system the incoming electron and the recoil proton had a momentum of
q/2, the initial nucleon and scattered electron had a momentum −q/2. Thus q2 = −q2, no energy transfer in this frame.
For each q2 value, there is a Breit frame in which the form factors are represented as GE,M

(
q2
)
= GE,M

(
q2
)
, where

GE,M

(
q2
)

is determined in the laboratory frame. At the limit of pointlike nucleon at Q2 = 0, form factors are normalized
as

Gp
M (0) = µp, Gn

M (0) = µn, Gp
E(0) = 1, Gn

E(0) = 0.

4.1.1 Dipole model (DM)

In this model nucleon electric and magnetic form factors is given by the standard dipole parameterization

GE =

(
1 +

Q2

m2
V

)−2

, GM = (µp − µn)

(
1 +

Q2

m2
V

)−2

.

4.1.2 Extended Gari–Krüempelmann model (GKex)

The so-called “GKex” model is given by the following set of formulas:

GM,E = Gp
M,E −Gn

M,E , Gp,n
M = F p,n

1 + F p,n
2 , Gp,n

E = F p,n
1 − Q2

4m2
N

F p,n
2 ,

F p,n
i =

1

2

(
F is
i ± F iv

i

)
, i = 1, 2.

The GKex model has the following form for the isotopic and isovector electromagnetic form factors:

64
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F is
1 =

[
gω
fω

(
m2

ω

m2
ω +Q2

)
+

gω′

fω′

(
m2

ω′

m2
ω′ +Q2

)]
Fω
V +

gϕ
fϕ

(
m2

ϕ

m2
ϕ +Q2

)
Fϕ
V +

(
1− gω

fω
− gω′

fω′

)
FD
V ,

F is
2 =

[
κω

gω
fω

(
m2

ω

m2
ω +Q2

)
+ κω′

gω′

fω′

(
m2

ω′

m2
ω′ +Q2

)]
Fω
M + κϕ

gϕ
fϕ

(
m2

ϕ

m2
ϕ +Q2

)
Fϕ
M

+

(
κs − κω

gω
fω

− κω′
gω′

fω′
− κϕ

gϕ
fϕ

)
FD
M ,

F iv
1 =

[
C

2

(
AV +BV

(
1 +Q2/Q2

V 1

)−2

1 +Q2/Q2
V 2

)
+

gρ′

fρ′

(
m2

ρ′

m2
ρ′ +Q2

)]
F ρ
V +

(
1− CV

2
− gρ′

fρ′

)
FD
V ,

F iv
2 =

[
C

2

(
AM +BM

(
1 +Q2/Q2

M1

)−2

1 +Q2/Q2
M2

)
+ κρ′

gρ′

fρ′

(
m2

ρ′

m2
ρ′ +Q2

)]
F ρ
M +

(
κv −

CM

2
− κρ′

gρ′

fρ′

)
FD
M ,

where the pole terms are those of the ρ, ρ′, ω, ω′, ϕ mesons, and the final term of each equation is determined by the
asymptotic properties of PQCD. The Fα

i (α = ρ, ω, ϕ) are the meson-nucleon form factors, while the FD
i are effectively

quark-nucleon form factors.

Fα,D
V (Q2) =

Λ2
1,D

Λ2
1,D + Q̃2

Λ2
2

Λ2
2 + Q̃2

,

Fα,D
M (Q2) =

Λ2
1,D

Λ2
1,D + Q̃2

(
Λ2
2

Λ2
2 + Q̃2

)2

,

where Λ1,D is Λ1 for Fα
i , ΛD for FD

i ,

Fϕ
V

(
Q2
)
= Fα

V

(
Q2
)( Q2

Λ2
1 +Q2

)1.5

,

Fϕ
M

(
Q2
)
= Fα

M

(
Q2
)(Λ2

1

µ2
ϕ

Q2 + µ2
ϕ

Λ2
1 +Q2

)1.5

,

Q̃2 = Q2
ln
[(
Λ2
D +Q2

)
/Λ2

QCD

]
ln
(
Λ2
D/Λ2

QCD

) .

Table 4.1: Parameters of the GKex models AV = 1.0317, AM = 5.7824, BV = 0.0875, BM = 0.3907, Q2
V 1 =

0.3176GeV2, Q2
M1 = 0.1422GeV2, Q2

V 2 = 0.5496GeV2, Q2
M2 = 0.5362GeV2, CV = 1.1192, CM = 6.1731,

κv = µp − µn.

Parameter GKex(02L) GKex(02S)

gρ′/fρ′ 0.0608 0.0401
gω′/fω′ 0.2346 0.2552
gω/fω 0.6896 0.6739
gϕ/fϕ -0.1852 -0.1676
κs -0.1200 -0.1200
κρ′ 5.3038 6.8190
κω′ 18.2284 1.4916
κω -2.8585 0.8762
κϕ 13.0037 7.0172
µϕ 0.6848 0.8544
Λ1 0.9441 0.9407
Λ2 2.8268 2.7891
ΛD 1.2350 1.2111

ΛQCD 0.1500 0.1500
C 1.0000 1.0000
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4.1.3 “Patched” Budd-Bodek-Arrington 2003 fits for Gp
E , Gp

M and Gn
M .

The BBA fits for the proton electric, magnetic and neutron magnetic form factors are the inverse polynomial expres-
sions [42]:

Gp,n
M,E

(
Q2
)
= Gp,n

M,E(0)

(
1 +

6∑
n=1

a2nQ
2n

)−1

.

The numerical values of the polynomials coefficients a2, . . . , a12 are listed in Table 4.2.

Table 4.2: Coefficients for the BBA fits of the electromagnetic form factors.

a2 a4 a6 a8 a10 a12

BBA (CS+PTD)
Gp

E 3.253 1.4220 0.08582 0.331800 -0.0937100 0.01076
Gp

M 3.104 1.4280 0.11120 -0.006981 0.0003705 -0.70630×10−5

BBA (CS)
Gp

E 3.226 1.5080 -0.37730 0.610900 -0.1853000 0.01596
Gp

M 3.188 1.3540 0.15110 -0.011350 0.0005330 -0.90050×10−5

BBA
Gn

M 3.043 0.8548 0.68060 -0.128700 0.0089120 0.0

As one can see from Fig. 4.2 the BBA fit for Gp
M has unphysical behavior for Q2 ≳ 20 GeV2. To avoid possible

troubles with the high Q2 tail, we use the following “patch” for both BBA fits:

Gp
M = µpGD

(
0.304Q2 − 2.5

)−0.222
. (4.1)

In Fig. 4.1 we compare the GKex(02S) and “patched” BBA fits.

4.1.4 Neutron electric form factor Gn
E

BBA do not suggest a new fitting formula for the neutron electric form factor and use the (scaled) parametrization sug-
gested by Galster et al. [304] and used now by many authosrs:

Gn
E

(
Q2
)
= −µn

aτ

1 + bτ
GD

(
Q2
)
, GD

(
Q2
)
=

(
1 +

Q2

m2
V

)−1

, (4.2)

where1 τ = Q2/(4m2
n). Frequently used values for the parameters a and b are given in Table. 4.3. In fact the parameter

Table 4.3: Parameters involved in Eq. (4.2) used by different authors.

a b Ref. a b Ref.
1.0 5.6 [304] 0.942 4.65 [342]

1.25 18.3 [317] 0.942 4.61 [42]
1.0 3.4 [284] 0.895 3.69 [258]

a, the slope at Q2 = 0, is strongly constrained2 by atomic measurements of the neutron charge radius ⟨r2n⟩ (see Refs. [351,
352] and references therein) since

⟨r2n⟩ = −6
dGn

E

dQ2

∣∣∣∣
Q2=0

=
3aµn

2m2
n

. (4.3)

In our “Cookbook”, we have to take into account the data collected in Ref. [352].

4.1.5 Comparison of the GKex and BBA models for the electromagnetic nucleon form factors
with experimental data

NOTE XXIII:
Let us list the most important institutions, experimental collaborations and groups which deal with measurements of the nucleon

electromagnetic form factors.

1Yes, the mass in this definition is the neutron mass and not M (see, e.g., Ref. [350]).
2Constrained but, of course, not fixed as it is stated in Ref. [258].
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Figure 4.1: Comparison of the “patched” BBA and GKex(02S) fits for the magnetic form factor of the proton GM
p .

• CEA (Cambridge Electron Accelerator), Harvard University, Cambridge, Massachusetts

• JLab (Thomas Jefferson National Accelerator Facility), Newport News, Virginia

– Hall A Collaborations: E95-001, E99-007, E02-013, E01-001

– Hall C Collaborations: E93-026, E93-038, E94-110

– GEp(III) Collaboration: E00-114 HAPPEX-He, E01-001

• DESY (Deutsches Elektronen Synchrotron), Hamburg

• ELSA (ELectron Stretcher and Accelerator), Bonn

• NIKHEFF (National Institute for Nuclear and High Energy Physics), Amsterdam

• SLAC (Stanford Linear Accelerator Center), Stanford

• SLEA (Saclay Linear Electron Accelerator, Saclay

• Linear Accelerator of the Faculty of Sciences of the University of Paris

• CES (Cornell Electron Synchrotron, Cornell University, Ithaca)

• Mainz ELA (Electron Linear Accelerator)

• MAMI (Mainz Microtron): A1 Collaboration.

NOTE XXIV:
Let write some quotations from Refs [239] and [325], important to understanding of the nucleon electromagnetic form factors

measurements.
Rosenbluth or longitudinal-transverse technique. In the Rosenbluth method separation of form factors is achieved by measuring

the cross section at a fixed Q2 value by varying the incident electron beam energy and the electron scattering angle. The measured
differential cross section is plotted as a function of scattered electron angle and one can extract information on Gp

E
2 and Gp

M
2 from the

slope and the intercept of the plotted curve. The Gp
E term dominates the cross section in the low Q2 region. The Gp

M term dominates
at large Q2 values. Thus the extraction of Gp

M at low Q2 and Gp
E at large Q2 values becomes difficult using the Rosenbluth technique.
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This method was applied in early experiments to obtaining nucleon form factors in elastic electron-proton scattering. In Fig. 4.2 are
shown the GKex and BBA fits for the ratio Gp

M/ (µpGD).
Because of the lack of free neutron targets the neutron electromagnetic form factors are known with much less precision than the

proton electric and magnetic form factors. They have been deduced in the past from elastic or quasielastic electron-deuteron scattering.
This procedure involves considerable model dependence. Another complication arises from the fact that the net charge of the neutron
is zero. As such the neutron electric form factorGn

E is much smaller than its magnetic form factorGn
M . Therefore, the magnetic part of

the contribution dominates the cross section, which makes it very difficult to extract Gn
E from unpolarized cross section measurements

using deuterium targets. In Fig. 4.3 are shown the GKex and BBA fits for the ratio Gn
M/ (µnGD) 3.

The original data of experiments used the Rosenbluth technique T. Janssens et al. [268], J. Litt et al. [270], C. Berger et al. [297],
W. Bartel et al. [305], R. C. Walker et al. [279], A. F. Sill et al. [277] and L. Andivahis et al. [281] were revaluated in Ref. [338] through
a new Rosenbluth analysis of the cross section measurements. The Rosenbluth data are more sensitive to systematic uncertainties and it
has been suggested that the different Rosenbluth extractions are inconsistent and thus unreliable. It was demonstrated that the individual
Rosenbluth measurements yield consistent results when analyzed independently, so that the normalization uncertainties between differ-
ent measurements do not impact the result. The reanalysis has determined that the results cannot be made to agree with the polarization
results by excluding a small set of measurements or by making reasonable modifications to the relative normalization of the various
experiments. The global Rosenbluth analysis may disagree with the polarization transfer results for a variety of reasons: inclusion of
bad data points or data sets in the fit, or improper constraints on the relative normalization of data sets. For each data set included in
the fit, an overall normalization or scale uncertainty was determined, separate from the point-to-point systematic uncertainties. This
normalization uncertainty is given in, or was estimated from, the original publication of the data. The same normalization uncertainty
was applied but remove it from the total uncertainties to obtain the point-to-point uncertainties.

The experiment L. Andivahis et al. included data taken with more than one detector. There will therefore be different normalization
factor for the data taken in the different detectors. We split the experiment into two data sets, and fit the normalization factor for each
one independently. This will allow the normalization factor to be determined from both these direct measurements and the comparison
to the full data set. Because we do not apply the normalization factor determined from the original analysis, we add a 2% normalization
uncertainty (in quadrature) to the 1.77% uncertainty quoted in the original analysis.

The cross section for the unpolarized elastic electron-deuteron scattering in the one-photon-exchange approximation is described
by the Rosenbluth formula. This expression contains the structure functions A

(
Q2

)
and B

(
Q2

)
, which can be separated by the

Rosenbluth technique. The deuteron is a spin-1 nucleus and the characterization of its charge and magnetization distribution requires
three form factors: the charge monopole FC

(
Q2

)
, the magnetic dipole FM

(
Q2

)
and the quadrupole FQ

(
Q2

)
form factor. The

A
(
Q2

)
and B

(
Q2

)
can be expressed in terms of this form factors. It is not possible to separate all three form factors of the deuteron

from the unpolarized elastic electron-deuteron cross section measurement alone. The deuteron tensor moment can be expressed in
terms of the deuteron form factors. Therefore, by combining the structure functions A

(
Q2

)
, B

(
Q2

)
from the unpolarized cross

section measurement, and the deuteron tensor moment measurement, one can separate all three deuteron form factors.
In Fig. 4.5 are shown the GKex, BBA and Warren et al. fits for the electric form factor of the neutron with experimental data.

The structure function A
(
Q2

)
provides one of the few methods to infer the neutron electric form factor, especially in the low Q2

region (less than 1.0 (GeV/c)2 where theoretical descriptions of A
(
Q2

)
including relativity, meson-exchange currents (MEC), etc.

are under better control compared to higher Q2 region. The most systematic information on Gn
E at low Q2, prior to any polarization

experiment, is from the A
(
Q2

)
structure function determined from the elastic electron-deuteron scattering experiment by Platchkov

et al [317]. However, the extraction procedure is quite complicated. First, the subtraction of F 2
M

(
Q2

)
from A

(
Q2

)
using data on

B
(
Q2

)
is performed to obtain the corrected A

(
Q2

)
which contains contributions from FC

(
Q2

)
, and FQ

(
Q2

)
only. Second, the

relativistic and MEC corrections are applied to the corrected A
(
Q2

)
to obtain the corresponding A

(
Q2

)
in the impulse picture. Next,

the deuteron structure is removed to obtain the nucleon isoscalar charge form factor. Finally, the proton electric form factor is subtracted
from the nucleon isoscalar charge form factor and Gn

E is obtained. The extracted Gn
E values are extremely sensitive to the deuteron

structure (using the Paris, Nijmegen, Argonne V14, Reid-Soft Core nucleon potentials). The large spread represents the uncertainty
due to the deuteron structure, and the absolute scale of Gn

E contains a systematic uncertainty of about 50% from such an extraction.
Schiavilla and Sick [339] extracted Gn

E from an analysis of the deuteron quadrupole form factor FQ

(
Q2

)
data. State-of-the-art

deuteron calculations based on a variety of different model interactions and currents show that the FQ

(
Q2

)
form factor is relatively

insensitive to the uncertain two-body operators of shorter range because the long-range one-pion exchange operator dominates the
two-body contribution to FQ

(
Q2

)
.

Quasielastic electron-deuteron scattering, in which the kinematics of the electron scattering from the nucleon inside the deuteron
is selected, is the other process involving the deuteron which has been used extensively in probing the electromagnetic structure of
the neutron. It includes both inclusive measurements, in which only scattered electrons are detected at the quasielastic kinematics,
and coincidence measurements where both the scattered electron and the knockout neutron are measured. The measured quasielastic
ed cross-section per nucleon, converted to the reduced cross section is written through RT and RL, the transverse and longitudinal
nuclear response functions, respectively. In the plane wave impulse approximation (PWIA) the quasielastic RT response function
is proportional to Gn

M
2 + Gp

M
2, and the RL response function is proportional to Gn

E
2 + Gp

E
2. Thus, the extraction of the neutron

electromagnetic form factor requires the separation of the response functions using the Rosenbluth technique followed by the subtraction
of the proton contribution in PWIA. Most data on Gn

M had been deduced from quasi-elastic ed scattering. For inclusive measurements
the procedure requires the separation of the longitudinal and transverse cross sections and the subsequent subtraction of a large proton
contribution. Thus, it suffers from large theoretical uncertainties due in part to the deuteron model employed and in part to corrections
for final-state interactions (FSI), MEC effects, and relativistic corrections.

Recoil transfer polarization method. In polarized elastic electron-proton scattering, p(e, e′p), the longitudinal PL and transverse
PT components of the recoil final proton polarization are sensitive to different combinations of the electric and magnetic elastic
form factors. In Fig. 4.4 are shown the GKex and BBA fits for the ratio Gp

E/ (µpG
p
M ) 4. The ratio of the form factors Gp

E/G
p
M ,

can be directly related to the components of the recoil polarization. Because the ratio is proportional to the ratio of polarization
components, the measurement does not require an accurate knowledge of the beam polarization or analyzing power of the recoil

3We omit for this figure the obsoleted data by D. H. Coward et al., SLAC 1968 [269]; R. G. Arnold et al., SLAC 1986 [see the second reference [273]]
4The data S. Dieterich et al., MAMI 2000 [288] are omitted through the data T. Pospischil et al., MAMI 2001 [291] are overlapped one.
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polarimeter. Calculations of radiative corrections indicate that the effects on the recoil polarizations are small and at least partially
cancel in the ratio of the two-polarization component. The polarization transfer technique allows much better measurements at highQ2

values, there is a significant discrepancy even in the region where both techniques have comparable uncertainties. The main systematic
uncertainties come from inelastic background processes and determination of the spin precession. RTPM is less sensitive to systematic
uncertainties than the Rosenbluth extractions, the discrepancy appears at relatively low Q2 values, where both techniques give equally
precise results. Because almost all of the polarization transfer data come from the same experimental setup, it is in principle possible
that an unaccounted for systematic error could cause a false Q2 dependence in the ratio. There are no known problems or inconsistencies
in these measurements and this technique. At this time, there is no explanation for the different results obtained by the two techniques.
If we do not understand this discrepancy, then it is difficult to know how to correctly combine the polarization transfer measurements
with the cross section measurements in order to extract the individual form factors.

4.2 Resume for publication (fully obsolete)
In this section we compare phenomenological fits for nucleon form factors with experimental data. The GK model ex-
tended by Lomon [341] include the major vector meson pole contributions and synthesize meson-dynamics and asymptotic
QCD predictions. We investigate so-called “GKex(02L)” and “GKex(02S)” sets of the model parameters. The BBA fits
for proton electric, magnetic and neutron magnetic form factors are inverse polynomial expressions [42]. So-called “CS”
and “CS+PTD” sets are the fits using the cross section data only and using both cross section data and the polarization
transfer data, respectively. Fit for neutron electric form factor is given by Galster [304].

In previous experiments for evaluation of nucleon form factors is used the Rosenbluth technique. In this method for
evaluating the proton form factors it is possible to extract the information on electric and magnetic form factors separately
by analyzing of the differential cross sections at a fixed Q2 value at a different electron energy and scattering angle. In
the cross section the Gp

E term dominates in the low Q2 region and the Gp
M term dominates at large Q2 values. Thus the

extraction of Gp
M at low Q2 and Gp

E at large Q2 values becomes difficult using the Rosenbluth technique. For evaluation
of neutron form factors the technique requires the measuring the cross section for the unpolarized elastic electron-nucleus
scattering described by the Rosenbluth formula. In previous analyses the thin scattering effects (the radiative corrections,
Schwinger term and the additional corrections for vacuum polarization contributions from muon and quark loops) are
not included. The recent experiments use the Recoil transfer polarization method. In polarized elastic electron-proton
scattering the longitudinal and transverse components of the recoil final proton polarization are sensitive to different
combinations of the electric and magnetic elastic form factors [239].

In Fig. 4.2 the GKex and BBA fits for the ratio Gp
M/ (µpGD) are shown. The BBA fit for Gp

M has unpredictable
behavior at the range Q2 > 20 GeV2. We use the “patch” for both BBA fits:

Gp
M

µpGD
=
(
0.304Q2 − 2.5

)−0.222
, GD

(
Q2
)
=

(
1 +

Q2

m2
V

)−1

.

The most discrepant data are derived for the ratio Gn
M/ (µnGD) with uncertainty 30%. Experimental data and the

GKex and BBA fits are shown in Fig. 4.3.
The ratio of the electric and magnetic form factors of the proton can be directly related to the components of the recoil

polarization. In Fig. 4.4 the GKex and BBA fits for the ratio Gp
E/ (µpG

p
M ) are shown. In the range of low Q2 values the

ratio of form factors is constant and depends on normalization. The range of high Q2 values does not contribute to the
total cross sections of e± and µ± production in neutrino-nucleon interactions. The range of Q2 values above 1 GeV2 is
important for τ± production because even at threshold of reaction Q2 values are high. As it shown from the Figure the
main mismatch between two techniques is just in this range.

In Fig. 4.5 GKex(02S) fit and Galster’s fits with two sets of parameters for the Gn
E (BBA and Warren et al. [258]) with

experimental data are shown. We omit the negative stale data of the neutron electric form factor. The positive values of
data are discrepant and uncertainty achieves 10%.
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Figure 4.2: Comparison of the GKex and BBA fits for ratio Gp
M/ (µpGD) with experimental data. F. Borkowski et

al. [282], P. E. Bosted et al. [274], P. E. Bosted et al. [275], M. E. Christy et al. [260]. The data T. Janssens et al. [268],
J. Litt et al. [270], C. Berger et al. [297], W. Bartel et al. [305], R. C. Walker et al. [279], A. F. Sill et al. [277] and
L. Andivahis et al. [281] are taken from Ref. [338]. The data R. C. Walker et al. [280] are taken from the figure. The
dashed curve for the BBA (CS+PTD), dotted curve for the BBA (CS), dash-dotted curve for the GKex(02L) and solid
curve for the GKex(02S) parametrizations.
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Figure 4.3: Comparison of the GKex BBA and fits for ratio Gn
M/ (µnGD) with experimental data. W. Bartel et al. [305],

P. Markowitz et al. [278], A. Lung et al. [276], H. Gao et al. [308], H. Anklin et al. [311], J. Jourdan [312], E. E. W. Bruins
et al. [298], H. Anklin et al. [313], W. Xu et al. [244], G. Kubon et al. [316], W. Xu et al. [251]. The data E. B. Hughes
et al. [267] are taken from Ref. [305]. The data P. Stein et al. [318] ate taken from Ref. [305] The data R. G. Arnold et
al. [273] are taken from the figure. The data K. M. Hanson et al. [266] are taken from the figure from review [239].
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W. Bartel et al. [305], B. D. Milbrath et al. [309], M. K. Jones et al. [242], T. Pospischil et al. [291], O. Gayou et al. [247],
[248], M. E. Christy et al. [260]. The data T. Janssens et al. [268], J. Litt et al. [270], C. Berger et al. [297], L. Andivahis
et al. [281], R. C. Walker et al. [280], are taken from [325]. The data K. M. Hanson et al. [266], F. Borkowski et al. [282],
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tal data. S. Galster et al. [304], D. I. Glazier et al. [296], M. Meyerhoff et al. [283], T. Eden et al. [307], E. E. W. Bruins
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Chapter 5

Nucleon structure functions

5.1 Heavy quark production thresholds
Since q + p = pX we have

p2X = q2 +M2 + 2(qp) = 2M(1− x)yEν +M2.

Let us consider the frame (we mark it with the symbol ⋆) in which the momentum of the system X is zero, p⋆
X = 0. In

this frame p⋆X = (
∑

i E
⋆
i , 0), where E⋆

i is the total energy of particle i ∈ X . Clearly
∑

i E
⋆
i has the minimum value when

all particles i have zero momenta (p⋆
i = 0). Therefore

2M(1− x)yEν ≥ M2
X −M2, (5.1)

where
MX =

∑
i

mi

and mi is the mass of particle i. The inequality (5.1) can be rewritten in terms of variables x and Q2:

x ≤
(
1 +

M2
X −M2

Q2

)−1

. (5.2)

Condition (5.1) or (5.2) together with the reaction threshold condition

2MEν ≥ (m+MX)
2 −M2 (5.3)

and the condition x ≤ x− defines the kinematic boundaries for production of any system of secondary particles X . Thus
by considering the system X of hadronic (anti)quark states with the minimum value of MX , one can find the kinematic
boundary for corresponding sea (anti)quark contribution into the target nucleon structure functions. The relevant “minimal
reactions” for c quark and antiquark are shown in the table. We neglect the thresholds for light (anti)quark production.
The top hadrons are not discovered yet and the mass of t quark is measured with significant experimental uncertainty
(> 5M ). Thus we adopt M2

X −M2 = m2
t for all relevant “minimal reactions” with top hadrons in the final state.

All the “minimal reactions” are collected in Table 5.1.

Table 5.1: Minimal reactions for charm neutrinoproduction.

Target Exclusive reaction Target Exclusive reaction
quark quark

d νl + p → l− +Σ++
c d νl + p → l+ + p+D−

s νl + p → l− + p+D+
s s νl + p → l+ + p+D−

s

d νl + n → l− + Λ+
c d νl + n → l+ + n+D−

s νl + n → l− + n+D+
s s νl + n → l+ + n+D−

s

5.2 Charm production components of F2,3 in the BY model
Here we discuss our present-day understanding of the Bodek–Yang prescription [42, 43, 216, 217] (see also Ref. [215,
Section 4.4.5]).
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For the moment, let us limit ourselves with the two-generation case. The “naive” parton model formulas for the
structure functions F2 and F3 [222] are collected in Table 5.2, where W 2

c is the charm production threshold (see Sect. 5.1)
The same may be written in a more compact form as is shown in Table 5.3. The arguments of the parton distribution
functions (PDF) in both tables are x and Q2.

Table 5.2: The “naive” parton model formulas for F2,3.

W 2 < W 2
c W 2 > W 2

c

F2(x,Q
2)

νp 2x[d cos2 θC + s sin2 θC + u+ c] 2x[d+ s+ u+ c]

νp 2x[u cos2 θC + c sin2 θC + d+ s] 2x[u+ c+ d+ s]

νn 2x[u cos2 θC + s sin2 θC + d+ c] 2x[u+ s+ d+ c]
νn 2x[d cos2 θC + c sin2 θC + u+ s] 2x[d+ c+ u+ s]

xF3(x,Q
2)

νp 2x[d cos2 θC + s sin2 θC − u− c] 2x[d+ s− u− c]

νp 2x[u cos2 θC + c sin2 θC − d− s] 2x[u+ c− d− s]

νn 2x[u cos2 θC + s sin2 θC − d− c] 2x[u+ s− d− c]
νn 2x[d cos2 θC + c sin2 θC − u− s] 2x[d+ c− u− s]

Table 5.3: Compact form of F2,3.

F2(x,Q
2)

νp 2x
[
d+ s+ u+ c− θ

(
W 2

c −W 2
) (

d sin2 θC + s cos2 θC
)]

νp 2x
[
u+ c+ d+ s− θ

(
W 2

c −W 2
) (

u sin2 θC + c cos2 θC
)]

νn 2x
[
u+ s+ d+ c− θ

(
W 2

c −W 2
) (

u sin2 θC + s cos2 θC
)]

νn 2x
[
d+ c+ u+ s− θ

(
W 2

c −W 2
) (

d sin2 θC + c cos2 θC
)]

xF3(x,Q
2)

νp 2x
[
d+ s− u− c− θ

(
W 2

c −W 2
) (

d sin2 θC + s cos2 θC
)]

νp 2x
[
u+ c− d− s− θ

(
W 2

c −W 2
) (

u sin2 θC + c cos2 θC
)]

νn 2x
[
u+ s− d− c− θ

(
W 2

c −W 2
) (

u sin2 θC + s cos2 θC
)]

νn 2x
[
d+ c− u− s− θ

(
W 2

c −W 2
) (

d sin2 θC + c cos2 θC
)]

In order to describe the charm production parts of the structure functions, F cp
i , we note that the following charm

production vertex are only possible:
W+d → c, W−d → c,

W+s → c, W−s → c.

The corresponding contributions to the cross sections are proportional to sin2 θC for d, d and to cos2 θC for s, s. Therefore
the functions F cp

2,3 may be written as

F cp
2 (x,Q2) = θ

(
W 2 −W 2

c

)
F2(ξc, Q

2), (5.4a)

xF cp
3 (x,Q2) = θ

(
W 2 −W 2

c

)
ξcF3(ξc, Q

2), (5.4b)

where the functions Fi(x,Q
2) are defined in Table 5.4 and

Table 5.4: Functions F2,3.

F2(x,Q
2) xF3(x,Q

2)

νp 2x
(
d sin2 θC + s cos2 θC

)
+2x

(
d sin2 θC + s cos2 θC

)
νp 2x

(
d sin2 θC + s cos2 θC

)
−2x

(
d sin2 θC + s cos2 θC

)
νn 2xs cos2 θC +2xs cos2 θC
νn 2xs cos2 θC −2xs cos2 θC

ξc =
2x
[
1 + (M2

1 +m2
c)/Q

2
]

1 +
√
1 + 4M2x2/Q2 + 2xM2

2 /Q
2
=

xN

[
1 + (M2

1 +m2
c)/Q

2
]

1 + xNM2
2 /Q

2
(5.5)
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is the Bodek-Yang scaling variable [42, 43, 216, 217].1

Consequently the non charm production parts of the structure functions, F ncp
i , are

F ncp
2 (x,Q2) = F2(ξ0, Q

2)− θ
(
W 2 −W 2

c

)
F2(ξ0, Q

2), (5.6a)

xF ncp
3 (x,Q2) = ξ0F2(ξ0, Q

2)− θ
(
W 2 −W 2

c

)
ξ0F2(ξ0, Q

2), (5.6b)

where ξ0 is obtained from ξc by putting mc = 0. Finally the Bodek-Yang structure functions are

FBY
2 (x,Q2) = F ncp

2 (x,Q2) + F cp
2 (x,Q2)

= F2(ξ0, Q
2)− θ

(
W 2 −W 2

c

) [
F2(ξc, Q

2)−F2(ξ0, Q
2)
]
.

xFBY
3 (x,Q2) = xF ncp

3 (x,Q2) + xF cp
3 (x,Q2)

= ξ0F3(ξ0, Q
2)− θ

(
W 2 −W 2

c

) [
ξcF3(ξc, Q

2)− ξ0F3(ξ0, Q
2)
]
.

5.3 Detailed properties of variables ξc and ξ0.
It is easy to prove that

∂xN

∂x
=

xN

x

(
1 +

4M2x2

Q2

)−1

> 0,
∂ξc
∂xN

=
ξc
xN

(
1 +

M2
2xN

Q2

)−1

> 0

and thus ∂ξc/∂x > 0 that is the Bodek–Yang variable ξc is an increasing function of x for any Q2. In general ξc can
exceed 1. Indeed, the solution to equation ξc = 1 written in terms of the Bjorken x is given by

x =

(
1 +

m2
c −∆2

Q2

)[(
1 +

m2
c −∆2

Q2

)2

− M2

Q2

]−1

≡ xc, (5.7)

where ∆2 = M2
2 −M2

1 = 0.196GeV2. Since m2
c −∆2 > M2,

0 < xc < 1 for 0 < Q2 < ∞.

Finally, 0 ≤ ξc ≤ 1 for 0 ≤ x ≤ xc at any Q2.
The properties of variable ξ0 are not so simple. The solution to equation ξ0 = 1 is

x =

(
1− ∆2

Q2

)[(
1− ∆2

Q2

)2

− M2

Q2

]−1

≡ x0. (5.8)

This function is singular and the two singular points are given by

Q2 = ∆2 +
1

2
M2 ±M

√
∆2 +

1

4
M2.

The only point at which x0 = 1 is

Q2 =
∆4

∆2 +M2
≡ Q2

1.

It is located between the singular points as well as the point Q2 = ∆2 at which x0 = 0 (see Table 5.5 and Fig. 5.1).
Clearly ∆2 −Q2

1 = M2∆2/(∆2 +M2) > 0.

Table 5.5: Singular points of x0(Q
2) and Q2

1 (in GeV2).

Q2 proton target neutron target isoscalar target
left singular point 0.0309455 0.0308835 0.03091448

Q2
1 0.0356908 0.0356105 0.00356506

right singular point 1.2414088 1.2438995 1.24265378

Finally, considering that ξ0 is a monotonically increasing function of x, we have proved that 0 ≤ ξ0 ≤ 1 for 0 ≤
x ≤ x0 if Q2

1 < Q2 < ∆2 and for any x if Q2 ≤ Q2
1 or Q2 ≥ ∆2. We must assume therefore that the corresponding θ

functions are include into the definitions of the functions Fi(ξ0, Q
2).

1Let us ignore for the moment the (partially) obsolete recipe for the slow rescaling described in Ref. [216] and based on the GRV94 LO PDFs.
The numerical values of the parameters in Eq. (5.5) obtained in Ref. [217] with the GRV98 PDFs are M2

1 = 0.222GeV2, M2
2 = 0.418GeV2. In

more recent papers [42] and [43] these are a bit changed to M2
1 = 0.223GeV2, M2

2 = 0.419GeV2 while the difference ∆2 = M2
2 − M2

1 =
0.196GeV2 remains the same. The c quark mass, mc, is taken to be 1.5 GeV. Note that the notations we use here are different from those of the original
papers [42, 43, 216, 217].
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target.



Chapter 6

Polarization density matrix

6.1 General formulas
We consider the lepton production in neutrino and antineutrino scattering from the nonpolarized nucleon target. The
general form of the polarization density matrix for the reaction

(−)
ν (k) +N(p) → ℓ(k′) +X(p′)

is given by
dσ =

∥∥dσ
λλ′

∥∥ ≡ ρdσ.

Here k, p, k′, p′ are the 4-momenta of initial (anti)neutrino, target nucleon N (= p or n), final lepton ℓ (= e, µ or τ ) and
final hadronic system X , respectively. In the general case, the elements of that matrix are1

dσλλ′ =
(2π)4MλM∗

λ′δ (pf − pi)

4
√
(papb)

2 −m2
am

2
b

n∏
j=1

dpj

(2π)32p0j
.

In our particular case,

dσλλ′ =
(2π)4MλM∗

λ′δ (k + p− k′ − p′)

4 (kp)

dk′

(2π)32k′0

dp′

(2π)32p′0
.

Matrix elements are

Mλ =
GFκ√

2
×

{
j α
λ (k, k′) Jα (p, p′) for neutrino,

j
α
λ (k, k′) Jα (p, p′) for antineutrino.

(6.1)

Here

κ =
M2

W

M2
W − q2

,

Jα (p, p′) is the hadronic weak current and

jαλ (k, k′) = u (k′, λ) γα

(
1− γ5

2

)
u(k) (6.2a)

and

j
α
λ (k, k′) = v(k)γα

(
1− γ5

2

)
v (k′, λ) (6.2b)

are the leptonic weak currents. Therefore the elements of the polarization density matrix can be written as

d3σ
λλ′ =

G2
FMκ2

16π2(kp)
Lαβ
λλ′Wαβ

dk′

2k′0
,

where

Wαβ =
1

4

∫
Jα (p, p′) J∗

β (p, p′) δ (k + k′ − p− p′)
dp′

2p′0
, (6.3)

is the hadronic tensor and

Lαβ
λλ′ (k, k

′) =

{
jαλ (k, k′) j∗βλ′ (k, k′) for neutrino,

j
α
λ (k, k′) j

∗β
λ′ (k, k′) for antineutrino

(6.4)

is the leptonic tensor.

1According to notation of Okun [1].
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In the laboratory frame dk′/k′0 = PℓdEℓd cos θdϕ (from here, Eℓ = k′0, Pℓ = |k′|). After integrating by dϕ we get
the general formula for the inclusive cross section,

d2σλλ′

dEℓd cos θ
=

G2
F

4π

Pℓ

MEν
κ2Lαβ

λλ′Wαβ . (6.5)

The leptonic tensor summed over the final lepton helicities is given by

Lαβ (k, k′) =
∑
λλ′

Lαβ
λλ′ (k, k

′) =
1

4
Tr
[(

k̂′ +m
)
γα (1∓ γ5) k̂γ

β (1∓ γ5)
]

= 2Tr
[
kαk′β + k′αkβ − gαβ (kk′)± ϵαβγδk

γk′δ
]
,

where the upper (lower) signs are for neutrino (antineutrino). Here we used the following formulas for the density matrices
averaged over the polarization

u(k)u(k) = k̂,
∑
λλ′

u (k′, λ)u (k′, λ′) = k̂′ +m.

Finally, the polarization density matrix is given by∥∥∥∥ d2σλλ′

dEℓd cos θ

∥∥∥∥ =

∥∥∥∥G2
F

4π

Pℓ

MEν
κ2Lαβ

λλ′Wαβ

∥∥∥∥ , κ =
M2

W

M2
W − q2

.

The nucleon structure functions, Wi, are defined through the generally accepted representation of the hadronic tensor

Wαβ =− gαβW1 +
pαpβ
M2

W2 − i
ϵαβγδp

γqδ

2M2
W3

+
qαqβ
M2

W4 +
pαqβ + qαpβ

2M2
W5 + i

pαqβ − qαpβ
2M2

W6,

and their explicit form is defined by the particular subprocess (QE, RES or DIS). Here M is the target nucleon mass.2

The elements of the polarization density matrix are

d2σ++

dEℓd cos θ
=K

(
Eℓ ∓ Pℓ

2M

){
(1± cos θ)

(
W1 ±

Eν ∓ Pℓ

2M
W3

)
+
1∓ cos θ

2

[
W2 +

Eℓ ± Pℓ

M

(
Eℓ ± Pℓ

M
W4 −W5

)]}
,

d2σ−−

dEℓd cos θ
=K

(
Eℓ ± Pℓ

2M

){
(1∓ cos θ)

(
W1 ±

Eν ± Pℓ

2M
W3

)
+
1± cos θ

2

[
W2 +

Eℓ ∓ Pℓ

M

(
Eℓ ∓ Pℓ

M
W4 −W5

)]}
,

d2σ+−

dEℓd cos θ
=K

(
m sin θ

4M

)[
∓
(
2W1 −W2 −

m2

M2
W4 +

Eℓ

M
W5

)
−Eν

M
W3 + i

Pℓ

M
W6

]
,

d2σ−+

dEℓd cos θ
=K

(
m sin θ

4M

)[
∓
(
2W1 −W2 −

m2

M2
W4 +

Eℓ

M
W5

)
−Eν

M
W3 − i

Pℓ

M
W6

]
,

where the upper (lower) signs are for neutrino (antineutrino) and

K =
G2

FPℓκ
2

π
=

G2
FPℓ

π

(
1− q2

M2
W

)−2

.

Therefore the cross section for unpolarized lepton production is

d2σ

dEℓd cos θ
=

d2σ++

dEℓd cos θ
+

d2σ−−

dEℓd cos θ
≡ KR, (6.6)

where the Lorentz invariant dimensionless function R is given by

R =

(
Eℓ − Pℓ cos θ

M

)(
W1 +

m2

2M2
W4

)
+

(
Eℓ + Pℓ cos θ

2M

)
W2

±
[(

Eν + Eℓ

M

)(
Eℓ − Pℓ cos θ

2M

)
− m2

2M2

]
W3 −

m2

2M2
W5.

2This definition remains the same through the whole text even if we use some other notation for the nucleon mass like MN or Mi.
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In terms of the Bjorken scaling variables

x =
−q2

2(pq)
and y =

(pq)

(pk′)

it can be rewritten as

R =

(
xy +

m2

2MEν

)
W1 +

Eν

M

{(
1− y − M

2Eν
xy − m2

4E2
ν

)
W2

±y

[
x
(
1− y

2

)
− m2

4MEν

]
W3 +

m2

2MEν

[(
xy +

m2

2MEν

)
W4 −W5

]}
.

The components of the polarization vector P are

PP = ∓ m sin θ

2MR

(
2W1 −W2 ±

Eν

M
W3 −

m2

M2
W4 +

Eℓ

M
W5

)
,

PT = − mPℓ sin θ

2M2R
W6,

PL = ∓ 1± m2

M2R

{[(
2M

Eℓ + Pℓ

)
W1 ±

(
Eν − Pℓ

Eℓ + Pℓ

)
W3

]
cos2

θ

2

+

[(
M

Eℓ + Pℓ

)
W2 +

(
Eℓ + Pℓ

M

)
W4 −W5

]
sin2

θ

2

}
.

NOTE XXV: Another form of presentation for the longitudinal polarization

PL = ∓ 1

R

{(
Pℓ − Eℓ cos θ

M

)(
W1 −

m2

2M2
W4

)
+

(
Pℓ + Eℓ cos θ

2M

)
W2

±
[
(Eν + Eℓ) (Pℓ − Eℓ cos θ) +m2 cos θ

2M2

]
W3 −

m2 cos θ

2M2
W5

}
.

is less transparent by is a little bit more convenient for numerical evaluations.

6.2 Covariant method
It can be shown (see, for example Ref. [2]) that

u (p1, s1)u (p2, s2) = N12 P+ (p1, s1)P+ (p2, s2) , (6.7a)
v (p1, s1) v (p2, s2) = N12 P− (p1, s1)P− (p2, s2) , (6.7b)

where
P± (pi, si) =

1

2
(p̂i ±mi) (1 + γ5ŝi)

and N12 is a complex normalization constant which is expressed in terms of known quantities and of two intrinsically
indeterminate phases, φ+ and φ−:

N12 =
(1 + λ1λ2) e

iφ+ + (1− λ1λ2) e
iφ−

2
√
υ12

, (6.8a)

υ12 = [m1m2 + (p1p2)] [1− (s1s2)] + (p1s2) (p2s1) . (6.8b)

These formulas have to be modified if one of the particles is a neutrino or antineutrino. As is easy to prove, the neutrino
and antineutrino spin 4-vectors satisfy the equation

mνsν = ∓k.

Accordingly, taking the limit as mν goes to zero, we obtain

υ12 → (kk′)±m(ks) = (1∓ λ cos θ)Eν (Eℓ ± λPℓ) ≡ υλ, (6.9a)

N12 → (1 + λ) eiφ+ + (1− λ) eiφ−

2
√
υλ

≡ Nλ, (6.9b)
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and (taking into account that k̂2 = k2 = m2
ν)

P± (k, sν) →
1

2
(1− γ5) k̂. (6.10)

The upper (lower) sign in Eq. (6.9a) is for ν (ν), λ is the lepton helicity and we have used the indeterminacy of the phases
to simplify the numerator in Eq. (6.9b). Taking these formulas into account we can calculate the weak charged currents
in neutrino and antineutrino cases:

j
α

λ
= u (k′, s) γα

(
1− γ5

2

)
u(k)

=
Nλ

4
Tr
[
k̂
(
k̂′ +m

)
(1 + γ5ŝ) γ

α (1− γ5)
]

= Nλ

[
mkα − sα(kk′) + k′α(ks)− iϵαβγδsβkγk

′
δ

]
, (6.11a)

j
α

λ
= v(k)γα

(
1− γ5

2

)
v (k′, s)

=
λNλ

4
Tr
[(

k̂′ −m
)
(1 + γ5ŝ) k̂γ

α(1− γ5)
]

= λNλ

[
−mkα − sα(kk′) + k′α(ks) + iϵαβγδsβkγk

′
δ

]
. (6.11b)

As is seen from these equations,
j
α
λ = −λ

(
jα−λ

)∗
,

(
N+N

∗
+ N+N

∗
−

N−N
∗
+ N−N

∗
−

)
=

1

Eνm2

 Eℓ ∓ Pℓ

1∓ cos θ

meiφ

sin θ
me−iφ

sin θ

Eℓ ± Pℓ

1± cos θ

 , φ = φ+ − φ−.

The leptonic tensor is given by

Lαβ
λλ′ =


j α
λ

(
j β
λ′

)∗
for neutrino,

j
α
λ

(
j
β
λ′

)∗
for antineutrino.

We use the generally accepted representation of the hadronic tensor (see, e.g., ref. [6])

Wαβ = − gαβ W1 +
pα pβ
M2

W2 −
i ϵαβρσ p

ρ qσ

2M2
W3

+
qα qβ
M2

W4 +
pα qβ + qα pβ

2M2
W5 + i

pα qβ − qα pβ
2M2

W6 (6.12)

which includes 6 nucleon structure functions, Wn, whose explicit form is defined by the particular subprocess (QE, RES or
DIS). Here p and M are the target nucleon 4-momentum and mass, respectively, q = k−k′ is the W boson 4-momentum.
By applying the above results we obtain

ρλλ′ ∝ Lαβ
λλ′Wαβ = E2

νm
2NλN

∗
λ′

6∑
n=1

An
λλ′Wn,

A1
λλ′ = 2

(
η
λλ′ ∓ η−λλ′

)
sin2 θ,

A2
λλ′ = 4

(
η±λ

η±λ′ sin
4 θ

2
+ η∓λ

η∓λ′ cos
4 θ

2

)
± η−λλ′ sin

2 θ,

A3
λλ′ = ± sin2 θ

(
η±λ

η±λ′

Eν − Pℓ

M
+ η∓λ

η∓λ′

Eν + Pℓ

M
∓ η−λλ′

Eν

M

)
,

A4
λλ′ = 4

[
η±λ

η±λ′

(Eν + Pℓ)
2

M2
sin4

θ

2
+ η∓λ

η∓λ′

(Eν − Pℓ)
2

M2
cos4

θ

2

]
± η−λλ′

m2

M2
sin2 θ,

A5
λλ′ = − 4

[
η±λ

η±λ′

Eν + Pℓ

M
sin4

θ

2
+ η∓λ

η∓λ′

Eν − Pℓ

M
cos4

θ

2

]
∓ η−λλ′

Eℓ

M
sin2 θ,

A6
λλ′ = i

(
λ− λ′

2

)
Pℓ

M
sin2 θ,
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where ηλ = (1 + λ)/2. Taking into account that Trρ = 1, we can find the explicit formulas for the elements of the
polarization density matrix in terms of variables Eν , Pℓ and θ:

ρ++ (Eν , Pℓ, θ) = ρ−− (Eν ,−Pℓ, π − θ) =
Eℓ ∓ Pℓ

2MR
Z,

ρ+− (Eν , Pℓ, θ) = ρ∗−+ (Eν , Pℓ, θ) =
m sin θ

4MR
(X − iY) eiφ.

Here we have introduced the following notation:

X = ∓
(
2W1 −W2 −

m2

M2
W4 +

Eℓ

M
W5

)
− Eν

M
W3,

Y = − Pℓ

M
W6,

Z = (1± cos θ)

(
W1 ±

Eν ∓ Pℓ

2M
W3

)
+

1∓ cos θ

2

[
W2 +

Eℓ ± Pℓ

M

(
Eℓ ± Pℓ

M
W4 −W5

)]
,

R =

(
Eℓ − Pℓ cos θ

M

)(
W1 +

m2

2M2
W4

)
+

(
Eℓ + Pℓ cos θ

2M

)
W2

±
[(

Eν + Eℓ

M

)(
Eℓ − Pℓ cos θ

2M

)
− m2

2M2

]
W3 −

m2

2M2
W5,

and φ = φ+ − φ−. Finally the projections of the lepton polarization vector are given by(
PP

PT

)
=

m sin θ

2MR

(
cosφ sinφ
− sinφ cosφ

)(
X
Y

)
, (6.13a)

PL = ∓1± m2

M2R

{[(
2M

Eℓ + Pℓ

)
W1 ±

(
Eν − Pℓ

Eℓ + Pℓ

)
W3

]
cos2

θ

2

+

[(
M

Eℓ + Pℓ

)
W2 +

(
Eℓ + Pℓ

M

)
W4 −W5

]
sin2

θ

2

}
. (6.13b)

By putting φ = 0 3 the formulas for PP and PL exactly coincide with those of ref. [223] (obtained within a noncovariant
approach under assumption W6 = 0).

Several simple conclusions immediately follow from Eqs. (6.13). First, the perpendicular and transverse projections
are unobservable quantities in contrast with the longitudinal projection of P and the degree of polarization |P |. Second,
supposing that W6 = 0 (as is probably the case) one can force the polarization vector to lie in the production plane. Third,
a massless lepton is fully polarized, P = (0, 0,∓1). In particular, at the energies of our interest, electron is always fully
polarized while in general, this is not the case for muon and τ lepton.

6.3 Quasielastic scattering

6.3.1 The case Mf = Mi = M .
In this case the hadronic weak currents are

Jα (p, p′) = u (p′) Γαu(p), Jα (p, p′) = u (p′) Γαu(p), (6.14)

where

Γα = γα (FV + FM ) +
2qαFS − nαFM

2M
+

(
γαFA +

qαFP + nαFT

M

)
γ5, (6.15a)

Γα = γα (F ∗
V + F ∗

M ) +
2qαF

∗
S − nαF

∗
M

2M
+

(
γαF

∗
A − qαF

∗
P + nαF

∗
T

M

)
γ5, (6.15b)

and n = p′ + p = 2p+ q.

NOTE XXVI: The standard definition of the vertex function for QE νN scattering is given through 6 form factors which in general
are assumed to be complex:

Γα = ΓV
α + ΓA

α = γαFV + iσαβ
qβ
2M

FM +
qα
M
FS +

(
γαFA +

nα

M
FT +

qα
M
FP

)
γ5,
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Table 6.1: Relationships between different QE form factor designations used by different authors.

This work [6] [222, 223] Name
FV F 1

V FV
1 Dirac

FM ξF 2
V ξFV

2 Pauli
FA FA FA Axial
FP Fp Fp Pseudoscalar
FS F 3

V FV
3 Scalar

FT F 3
A FA

3 Tensor

Fk = ReFk + i ImFk (k = V,M, S,A, T, P ).

Some authors use a bit different notation (see Table 6.1, where ξ = µp − µn and µp,n are the anomalous magnetic moments of p and
n).

The following trivial identities are of utility for our calculations:

|Fk|2 = FkF
∗
k = (ReFk)

2 + (ImFk)
2 ,

|Fk + Fl|2 = |Fk|2 + F ∗
kFl + FkF

∗
l + |Fl|2

= |Fk|2 + 2 (ReFk ReFl + ImFk ImFl) + |Fl|2 ,
Re (F ∗

kFl) = Re (FkF
∗
l ) = ReFk ReFl + ImFk ImFl,

Im (F ∗
kFl) = −Im (FkF

∗
l ) = ReFk ImFl − ImFk ReFl.

Every structure function Wi is of the form

Wi =

∣∣∣∣∣
6∑

k=1

αk
i Fk

∣∣∣∣∣
2

=

6∑
k,l=1

αk
i

(
αl
i

)∗
FkF

∗
l ,

with some (in general complex) coefficients αk
i . If some two coefficients, say αk

i and αl
i, are real, the corresponding contribution to

Wi can be represented as
αk
i

(
αk
i − αl

i

)(
αk
i |Fk|2 − αl

i |Fl|2
)
+ αk

i α
l
i |Fk + Fl|2

or, equivalently,
αk
i

(
αk
i + αl

i

)(
αk
i |Fk|2 + αl

i |Fl|2
)
− αk

i α
l
i |Fk − Fl|2 .

If the coefficients αk
i and αl

i are imaginary, the same formulas may be applied after the substitution

αk,l
i 7→ Im

(
αk,l
i

)
.

These rules can be used to simplify the final formulas for Wi.

3We adopt this convention from here on. Therefore, according to Eq. (6.13a), PP ∝ X and PT ∝ Y .
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NOTE XXVII:
Since

σαβ =
i

2
(γαγβ − γβγα) = −σ†

βα,

we have

u
(
p′
)
iσαβ

qβ
2M

u(p) =
1

4M
u
(
p′
) [

(2gαβ − γβγα) p
′
β − γαγβpβ −pβγβγα + (2gβα − γαγβ) pβ

]
u(p)

= u
(
p′
) (
γα − nα

2M

)
u(p).

According to the Dirac equation
γβpβu(p) =Mu(p), u

(
p′
)
γβp

′
β =Mu

(
p′
)
.

By definition
Jβ = γ0 J

†
β γ0.

The following well known formulas for γ matrices useful are also useful:

γ†
5 = γ5, γ†

β = −γβ , γ0γβ = −γβγ0, γ0γ5 = γ5γ0, γ0 (γα)
† γ0 = −γ0γαγ0 = γα,

γ0 (γαγ5)
† γ0 = −γ0γ†

5 γ
†
αγ0 = γ0γ5γαγ0 = −γ0γ5γ0γα = −γ0γ0γ5γα = γαγ5.

NOTE XXVIII: After integrating over ϕ

dσCC =
G2

F

(2π)2
M

(k p)
LαβWαβ

dk′

Eℓ
=
G2

F

2π

Pℓ

Eν
LαβWαβdEℓd cos θ,

dσCC =
G2

F

(2π)2
M

(k p)
Lαβ cos

2 θC
2M

[∫
δ
(
p′ − p− q

) dp′

EN′
Wαβ

]
dk′

Eℓ
,

Wαβ =
F 2
V

2
[nα nβ − qα qβ − 2gαβ(pq)] +

F 2
A

2

[
nα nβ − qα qβ − 2gαβ

(
(pq) + 2M2)]

+
F 2
M

2

(
gαβq

2 − qα qβ − nα nβ
q2

4M2

)
+ F 2

P qα qβ
(pq)

M2

+ FV FM

(
gαβq

2 − qα qβ
)
− 2FAFP qα qβ + 2FA (FV + FM ) iϵαβγδ pγ p

′
δ, n = p+ p′.∫

δ
(
p′ − p− q

) dp′

EN′
=

1

M
δ

(
ν +

q2

2M

)
,

dq2dν =

∣∣∣∣∣ ∂
(
q2, ν

)
∂ (cos θ, Eℓ)

∣∣∣∣∣ dEℓd cos θ = 2EνPℓdEℓd cos θ,
dk′

Eℓ
=

π

Eν
dq2dν.

So

d2σCC =
G2

F cos2 θC

(2π)2
M

(kp)

1

2M2

π

Eν
LαβWαβ δ

(
ν +

q2

2M

)
dq2dν,

and integration over ν then gives

dσCC

d |q2| =
G2

F cos2 θC
2π

LαβWαβ

4M2E2
ν

=
G2

F cos2 θC
2π

[
A1F

2
V +A2F

2
A +A3F

2
M +A4F

2
P +A5FV FM −A6FAFP ∓ 2A7FA (FV + FM )] ,

A1 = 1−
(
1− y

2
+

M

2Eν

)(
y +

m2

2MEν

)
,

A2 = 1−
(
1− y

2
− M

2Eν

)(
y +

m2

2MEν

)
,

A3 =
y

2

[
y

2
+ (1− y)

Eν

M

]
− m2

4MEν

[
y
(
1− y

4

) Eν

M
+

m2

4MEν

(
1− yEν

2M

)]
,

A4 =
m2y

4M2

(
y +

m2

2MEν

)
,

A5 =

(
y +

m2

2MEν

)(
y − m2

4MEν

)
,

A6 =
m2

2MEν

(
y +

m2

2MEν

)
,

A7 = y

(
1− y

2
− m2

4MEν

)
.
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NOTE XXIX:
Let us test of cross section normalization factors. Since

q2 = m2 − 2Eν (Eℓ − Pℓ cos θ) = −2MxyEν = −2Mx (Eν − Eℓ) ,

we have

∂q2

∂Eℓ
= −2Eν

(
1− Eℓ

Pℓ
cos θ

)
,

∂q2

∂ cos θ
= 2EνPℓ,

∂x

∂ cos θ
= − EνPℓ

M (Eν − Eℓ)
,

∂x

∂Eℓ
=

M + Eν

(
1− Eℓ

Pℓ
cos θ

)
M (Eν − Eℓ)

,

and thus
d2σ

dEℓd cos θ
=

∣∣∣∣∣ ∂
(
q2, x

)
∂ (Eℓ, cos θ)

∣∣∣∣∣ d2σ

dq2dx
= 2

Pℓ

y

d2σ

dq2dx
,

NOTE XXX:
The total QE cross section can be calculated as

σ (Eν) =

∫ 1

cos θmax

d cos θ

∫ Emax
ℓ

Emin
ℓ

d2σ (Eν , Eℓ, θ)

dEℓd cos θ
dEℓ =

∫ 1

cos θmax

dσ (Eν , θ)

d cos θ
d cos θ.

Here

dσ (Eν , θ)

d cos θ
=


dσ+ (Eν , θ)

d cos θ
+
dσ− (Eν , θ)

d cos θ
, if ζ ≤ 1,

dσ+ (Eν , θ)

d cos θ
, if ζ > 1,

dσ± (Eν , θ)

d cos θ
= a±(θ)R̃

(
Eν , E

±
ℓ (θ), θ

)
,

and we took into account that the double differential QE cross section is equal to

KR (Eν , Eℓ, θ) = KR̃ (Eν , Eℓ, θ) δ(1− x)

with
δ(1− x) = a+(θ)δ

(
Eℓ − E+

ℓ (θ)
)
+ a−(θ)δ

(
Eℓ − E−

ℓ (θ)
)

and
1

a±(θ)
=

∣∣∣∣ ∂x∂Eℓ

∣∣∣∣
Eℓ=E±

ℓ
(θ)

.

Since

x =
−q2

2(pq)
=

2Eν (Eℓ − Pℓ cos θ)−m2

2M (Eν − Eℓ)
,

we have

a±(θ) =

∣∣∣∣ 2M (Eν − Eℓ)Pℓ

MPℓ + Eν (Pℓ − Eℓ cos θ)

∣∣∣∣
Eℓ=E±

ℓ
(θ)

=
2M

[
Eν − E±

ℓ (θ)
]
P±
ℓ (θ)

mEν

√
ζ2 − sin2 θ

.

From the general formula (6.3) we have

Wαβ =
cos2 θC

4

∫
Tr
{
Jα (p̂+M) Jβ

(
p̂′ +M

)}
δ (p′ − p− q)

dp′

2EN ′

=
cos2 θC

4

M

ν
δ (1− x)Tr

{
Jα (p̂+M) Jβ

(
p̂′ +M

)}
.

Taking into account the property of δ function, δ (ax) = δ (x) /|a|, we have∫
δ (p′ − p− q)

dpN ′

2EN ′
=

∫
δ (p′ − p− q) δ

(
p′

2 −M2
)
dp′ = δ

(
2 (p q) + q2

)
=

δ(1− x)

2Mν
.

So the structure functions are

W (QE)
n

(
x,Q2

)
= cos2 θCw

−1ωn

(
Q2
)
δ(1− x), n = 1, . . . , 6. (6.16)
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where the functions ωn are the bilinear combinations of the electroweak form factors:

ω1 = |FA|2 + x′
(
|FA|2 + |FV + FM |2

)
,

ω2 = |FV |2 + |FA|2 + x′
(
|FM |2 + 4 |FT |2

)
,

ω3 = − 2Re [F ∗
A (FV + FM )] ,

ω4 = Re
[
F ∗
V

(
FS − 1

2
FM

)
− F ∗

A (FT + FP )

]
+ x′

(
1

2
|FM − FS |2 + |FT + FP |2

)
− 1

4
(1 + x′) |FM |2 +

(
1 +

1

2
x′
)
|FS |2 ,

ω5 = 2Re [F ∗
S (FV − x′FM )− F ∗

T (FA − 2x′FP )] + ω2,

ω6 = 2 Im [F ∗
S (FV − x′FM ) + F ∗

T (FA − 2x′FP )] ,

and we have introduced the following dimensionless variables:

w =
(pq)

M2
, x′ =

−q2

4M2
.

In order to compare these formulas with the result by Llewellyn Smith [6], we consider his transformation4

ω′
1,2,3,6 ≡ ω1,2,3,6, ω′

4 ≡ 4ω4 + ω2 − 2ω5, ω′
5 ≡ ω5 − ω2.

The resulting functions

ω′
4 = − |FV + FM |2 − |FA + 2FP |2 + 4 (1 + x′)

(
|FP |2 + |FS |2

)
,

ω′
5 = 2Re [F ∗

S (FV − 2x′FM )− F ∗
T (FA − 2x′FP )]

exactly match ones from Llewellyn Smith. Therefore the only difference between our result and the Llewellyn Smith’s
one is in the function ω6. Clearly it disappears in the absence of the second-class currents.

By using these formulas one can transform the QE differential cross section to the standard “ABC” form

dσ

d |q2|
=

G2
FM

2 cos2C
8πE2

ν

[
A

m2 − q2

M2
+B

s− u

M2
+ C

(s− u)2

M4

]
,

where
s = (k + p)

2
, u = (k′ − p)

2
, s− u = 4MEν + q2 −m2,

A = (1 + x′)
(
|FA|2 − 4x′ |FT |2

)
− (1− x′)

(
|FV |2 − x′ |FM |2

)
+ 4x′Re (F ∗

V FM )

− m2

4M2

[
|FV + FM |2 + |FA + 2FP |2 − 4 (1 + x′)

(
|FS |2 + |FP |2

)]
,

B = ∓ 4x′Re [F ∗
A (FV + FM )]− m2

M2
Re [F ∗

S (FV − x′FM )− F ∗
T (FA − 2x′FP )] ,

C =
1

4

(
|FV |2 + x′ |FM |2 + |FA|2

)
+ x′ |FT |2 .

This fits Eq. (3.22) of Ref. [6] except for the sign of the term ∝ m2/M2 in the coefficient B. This difference disappears
in the absence of the second-class currents (FS = FT = 0). The above formulas essentially disagree with the recent
result of Paschos and Yu [222]. Namely the function A derived from Eq. (2.35) of Ref. [222] (obtained under standard
assumption that form factors are real and FS = FT = 0) has the extra term

m2

M2

[(
m2 + q2

M2

)
FV FM +

(
m2 − q2

2M2

)
FAFP

]
which is difficult to explain by a misprint.

4The inverse transformation is: ω4 =
1

4

(
ω′
4 + ω′

2 + 2ω′
5

)
and ω5 = ω′

5 + ω′
2.
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Assuming all the form factors to be real we have ω6 = 0 and thus PT = 0.

ω1 = F 2
A + x′

[
F 2
A + (FV + FM )

2
]
,

ω2 = F 2
A + F 2

V + x′ (F 2
M + 4F 2

T

)
,

ω3 = − 2FA (FV + FM ) ,

ω4 = − 1

4
[2FV + (1− x′)FM ]FM − (FA − x′FP )FP

+ [FV − x′FM + (1 + x′)FS ]FS − [FA − x′ (2FP + FT )]FT ,

ω5 = F 2
A + F 2

V + x′F 2
M + 2 (FV − x′FM )FS − 2 [FA − 2x′ (FP + FT )]FT .

If we drop the form factors FS and FT assuming time reversal invariance and isospin symmetry (no 2nd class currents)
then

ω2 = ω5 = F 2
A + F 2

V + x′F 2
M .

In our numerical analysis, we will investigate two models for the nucleon electromagnetic form factors, the standard
dipole model and the extended model by Gari and Krüempelmann [331] updated by Lomon [341].

6.3.2 Generalization: Mf ̸= Mi.

In this section, we consider the quasielastic νN and νN scattering with production of a polarized lepton and unpolarized
baryon taking care for the final lepton mass and second class current (SCC) contributions. As a particular case, this of
course includes the “standard” ∆Y = 0 reactions νℓn → ℓ−p and νℓp → ℓ+n of our special interest. Let us recall here
that very complete investigations of the polarization effects in the QE reactions have been performed in pioneer works of
Adler [39] and Pais [5]. However a detailed comparison shows several disagreements between the formulas derived in
Refs. [39] and [5] which makes it difficult to apply these results to our study. We therefore rederived the QE structure
functions starting from the most general form of the weak transition current

Jα = ⟨B; p′|Ĵα|N ; p⟩ = uB (p′) Γα uN (p) (6.17)

with the vertex function

Γα = γαFV + iσαβ
qβ

2M
FM +

qα
M

FS +

(
γαFA +

pα + p′α
M

FT +
qα
M

FP

)
γ5 (6.18)

defined through the 6, in general complex, form factors Fi = Fi

(
q2
)
, i = V,M,A, P, T, S. Here p and p′ are the 4-

momenta of the target nucleon N (with the mass MN ) and final baryon B (with the mass MB), q = k′ − k = p − p′, k
and k′ are the 4-momenta of (anti)neutrino and lepton, and M = (MN +MB) /2. The hadronic tensor may be written as

Wαβ = CB

∑
spin

JαJ
∗
β δ
(
W 2 −M2

B

)
, (6.19)

where CB is the constant factor defined by the specific reaction,5 W 2 = p′2 = (p+ q)
2, and the sum is over the nucleon

and baryon spins.
From Eqs. (6.17), (6.18), and (6.19) we find the QE structure functions involved into the generic equation for the

hadronic tensor (6.12):

Wi = 4CBMNMBωi

(
q2
)
δ
(
W 2 −M2

B

)
, (6.20)

where the functions ω1,...,6 are given by

ωi

(
q2
)
= ω0

i

(
q2
)
+ r ω1

i

(
q2
)
+ r2ω2

i

(
q2
)
; (6.21)

the coefficient functions ωk
i

(
q2
)

are the following bilinear combinations of the electroweak form factors:

5In fact this factor may be absorbed into the definition of the form factors. For the ∆Y = 0 reactions and with the standard definition of the form
factors (see, e.g., Ref. [6]), CB = cos2 θC/4 where θC is the Cabibbo mixing angle.
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ω0
1 = (1 + x′) |FA|2 + x′ |FV + FM |2 ,

ω1
1 = 0,

ω2
1 = |FV + FM |2 ,

ω0
2 = |FA|2 + |FV |2 + x′ |FM |2 + 4x′ |FT |2 ,

ω1
2 = 4Re (F ∗

AFT ) ,

ω2
2 = 4 |FT |2 ,

ω0
3 = − 2Re [F ∗

A (FV + FM )] ,

ω1
3 = ω2

3 = 0,

ω0
4 = (1 + x′)

∣∣ 1
2FM − FS

∣∣2 + x′ |FP + FT |2

− Re
[
(F ∗

V + F ∗
M )
(
1
2FM − FS

)
+ F ∗

A (FP + FT )
]
,

ω1
4 = Re

[
(F ∗

V + F ∗
M )
(
1
2FM − FS

)
+ F ∗

A (FP + FT )
]
,

ω2
4 = |FP + FT |2 ,

ω0
5 = ω0

2 + 2Re [F ∗
S (FV − x′FM )− F ∗

T (FA − 2x′FP )] ,

ω1
5 = ω1

2 + Re [F ∗
M (FV + FM ) + 2F ∗

AFP ] ,

ω2
5 = ω2

2 + 4Re (F ∗
PFT ) ,

ω0
6 = 2 Im [F ∗

S (FV − x′FM ) + F ∗
T (FA − 2x′FP )] ,

ω1
6 = − Im (F ∗

MFV + 2F ∗
AFP ) ,

ω2
6 = 4 Im (F ∗

PFT ) ;

and

r =
MB −MN

MB +MN
=

MB −MN

2M
, x′ =

−q2

4M2
.

Let us note that the traditional parametrization of the hadronic current (6.18) is not symmetric relative to transfor-
mation FM ↔ γ5FT . The more symmetric choice, i

2σαβq
βF ′

T instead of (p+ p′)α FT , would result in the following
redefinition of the axial and tensor form factors:

FA 7→ FA + rF ′
T and FT 7→ −2F ′

T .

It is easy to see that after this redefinition, the functions ωk
i remain quadratic polynomials of r.

NOTE XXXI:
In absence of the second class currents the above formulas are a bit more compact but less insightful since some obvious symmetries

of the general formulas become covert:

ω0
1 =

(
1 + x′

)
F 2
A + x′ (FV + FM )2 , ω1

1 = 0, ω2
1 = (FV + FM )2 ,

ω0
2 = F 2

A + F 2
V + x′F 2

M , ω1
2 = ω2

2 = 0,

ω0
3 = − 2FA (FV + FM ) , ω1

3 = ω2
3 = 0,

ω0
4 = − 1

2
FM

[
FV +

(
1− x′

)
FM

]
− FP

(
FA − x′FP

)
,

ω1
4 = 1

2
FM (FV + FM ) + FAFP , ω2

4 = F 2
P ,

ω0
5 = F 2

A + F 2
V + x′F 2

M , ω1
5 = FM (FV + FM ) + 2FAFP , ω2

5 = 0,

ω0
6 = ω1

6 = ω2
6 = 0.

NOTE XXXII:
Some LS puzzles. Let us start with the expression iγ5σαβq

βFT /M in Eq. (3.13) of Ref. [6]. Considering that σαβ = (i/2) (γαγβ − γβγα)
and q = p2 − p1 (and not p1 − p2 as is written in [6]) we have

iγ5σαβq
βFT /M = −γ5

[
(M2 −M1) γα + (p2 + p1)α

]
FT /M.

By comparing this expression against the two contributions in Eq. (3.13) of Ref. [6][
−γ5γα (M2 −M1) + iγ5σαβq

β
]
FT /M

one can conclude that there are at least two misprints in that equation:
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1. in the sign of the term proportional to (p2 + p1) in the first part of Eq. (3.13) (or in the sign of the term proportional to σαβ in
its second part) and

2. in the sign of the term proportional to γ5γα in the second part of Eq. (3.13).

Conclusion: we must start with the first definition of the vertex (the first part of Eq. (3.13)) and neglect its second form. The only
significance of this second form of the vertex function is in demonstration that FT is actually the tensor contribution considering that
the corresponding γ5γα term only leads to a redefinition of the axial form factor.

NOTE XXXIII:
Our (Llewellyn Smith’s to be exact) parametrization of the vertex Γα is not the best one since (a) it is not symmetric relative to

axial and tensor contributions and (b) our formula for the cross section becomes very cumbersome. The most concise and elegant
approximate formula is given in Ref. [16]. It is based upon the following parametrization of the vertex:

Γα = γαgV + iσαβ
qβ
2M

gM +
qα
2M

gS +
(
γαgA + iσαβ

qβ
2M

gT +
qα
2M

gP
)
γ5. (6.22)

Therefore
gV = FV , gM = FM , gA = FA + 2rFT , gT = −2FT , gP = 2FP , gS = 2FS .

or
FV = gV , FM = gM , FA = gA + rgT , FT = −1

2
gT , FP =

1

2
gP , FS =

1

2
gS .

Neglecting the O
(
m2

)
contributions, the cross section written in terms of the form factors gi is given by [16, Eq. (4.3)]

dσ

d |q2| =
G2

FC
2
∣∣q2∣∣

πE2
ν

[
w1 −

1

2

(
4EνEℓ

q2
+ 1

)
w2 ±

(
Eν + Eℓ

MN

)
w3

]
,

where

w1 =
M2

M2
N

[(
x′ + r

)
|gV + gM |2 +

(
x′ + 1

)
|gA + rgT |2

]
,

w2 = |gV |2 + |gA|2 + r
(
|gM |2 + |gT |2

)
,

w3 = Re [(g∗V + g∗M ) (gA + rgT )] .

It would be worthy to compare numerically our “ABC” cross section against with short form. However the factor MN in this formula
seems very suspicious.

One could also rewrite our main result (formulas for ωi) through the form factors gi. In new terms, some of ωk
i become slightly

more symmetric and simple but other become bit more complicated instead. So I am not sure this is really a good idea.

Differential cross section.

NOTE XXXIV:
The simplest way to calculate the dσ/Q2 is to start with the general formula for d2σ/dQ2dW 2,

d2σ

dQ2dW 2
=

G2
Fκ

2R
4πMNEν

, (6.23)

which is obtained from Eq. (6.6) by taking into account that

dQ2dW 2 =
∂
(
Q2,W 2

)
∂ (Eℓ, cos θ)

dEℓd cos θ = 4MiEνPℓ dEℓd cos θ.

Similarly, the double differential cross section for a polarized (with helicity λ) lepton production can be written as

d2σλ

dQ2dW 2
=
G2

Fκ
2Lαβ

λλWαβ

16πM2
NE

2
ν

= ρλλ
d2σ

dQ2dW 2
. (6.24)

By using the above formulas, one can rewrite the general equation for the differential cross section in terms of the
form factors:

dσ

dQ2
=

2G2
FCBM

2κ2

πE2
ν

[
A
(
q2
)
+

(
s− u

4M2

)
B
(
q2
)
+

(
s− u

4M2

)2

C
(
q2
)]

. (6.25)
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Here s = (k + p)
2, u = (k′ − p)

2,

A
(
q2
)
=
(
x′ + κ2

)
a0
(
q2
)
− 4ra1

(
q2
)
− r2a2

(
q2
)
− 4r3a3

(
q2
)
− 4r4a4

(
q2
)
,

B
(
q2
)
= 4b0

(
q2
)
− 2rb1

(
q2
)
− 8r2b2

(
q2
)
,

C
(
q2
)
= c0

(
q2
)
+ rc1

(
q2
)
+ r2c2

(
q2
)
,

a0 = (1 + x′)
(
|FA|2 − 4x′ |FT |2

)
− (1− x′)

(
|FV |2 − x′ |FM |2

)
+ 4x′Re (F ∗

V FM )

− κ2
[
|FV + FM |2 + |FA|2 + 4Re (F ∗

AFP )− 4x′ |FP |2 − 4 (1 + x′) |FS |2
]
,

a1 = (1 + x′)x′Re (F ∗
TFA) + κ2Re [∓F ∗

A (FV + FM ) + x′F ∗
T (FA + 2FP ) + (1 + x′)F ∗

SFV ]

+ κ4Re [F ∗
S (FV + FM )] ,

a2 = (1− x′)
(
|FV |2 − x′ |FM |2

)
− 4x′Re (F ∗

V FM ) + (1 + x′)
(
|FA|2 + 8x′ |FT |2

)
− κ2

[
|FV + FM |2 − (1 + x′)

(
|FM |2 − 4 |FP |2

)
− |FA + 2FP |2 −4 (1 + 2x′) |FT |2

]
− 4κ4 |FP |2 ,

a3 = (1 + x′)Re (F ∗
TFA) + κ2Re [F ∗

T (FA + 2FP )] ,

a4 = (1 + x′) |FT |2 + κ2 |FT |2 ,
b0 = ∓ x′Re [F ∗

A (FV + FM )] + κ2Re [F ∗
T (FA − 2x′FP )− F ∗

S (FV − x′FM )] ,

b1 = κ2
[
|FM |2 + Re (F ∗

V FM + 2F ∗
AFP )

]
,

b2 = κ2Re (F ∗
TFP ) ,

c0 = |FV |2 + x′ |FM |2 + |FA|2 + 4x′ |FT |2 ,
c1 = 4Re (F ∗

TFA) ,

c2 = 4 |FT |2 ,

and κ = m/(2M). As usually, the upper signs in coefficients a1 and b0 are to be taken for ν-induced reactions, the lower
signs for ν-induced reactions. In the MN = MB limit, these formulas fit those from Ref. [6] except for the sign of the
term ∝ κ2 in the coefficient b0. This difference disappears in the absence of SCC (FS = FT = 0 and the rest form factors
are real). In the latter case, the coefficients ai, bi, and ci become

a0 =
(
1 + x′

)
F 2
A −

(
FV − x′FM

)2
+ x′ (FV + FM )2

− κ2 [(FV + FM )2 + (FA + 2FP )
2 − 4

(
1 + x′

)
F 2
P

]
,

a1 = ∓ κ2FA (FV + FM ) ,

a2 =
(
1 + x′

)
F 2
A +

(
FV − x′FM

)2 − x′ (FV + FM )2

− κ2 [(FV + FM )2 − (FA + 2FP )
2 −

(
1 + x′

) (
F 2
M − 4F 2

P

)]
− 4κ4F 2

P ,

a3 = a4 = 0,

b0 = ∓ x′FA (FV + FM ) ,

b1 = κ2 (F 2
M + FV FM + 2FAFP

)
,

b2 = 0,

c0 = F 2
V + x′F 2

M + F 2
A,

c1 = c2 = 0.

This result exactly coincides with that of Strumia and Vissani [41] deduced recently for the inverse β decay.

Another form for the coefficients seems to be more compact and transparent (indices “1” and “2” here denote the FCC
and SCC contribution, respectively): 6

A = A1 + 4A2, B = B1 + 4B2, C = C1 + 4C2,

6I think just this form (maybe with some modifications) has to be used in the PRD paper.
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where indices “1” and “2” mark the FCC and SCC contribution, respectively, and

A1 = 2
[(
x′ + r2

) (
2x′ + κ2

)
− κ4

]
Re (F ∗

V FM )

∓ 4rκ2Re [F ∗
A (FV + FM )]− 4κ2

(
x′ + r2 + κ2

)
Re (F ∗

AFP )

+
[(
x′ + κ2

) (
x′ − 1 + r2 − κ2

)
+ r2

]
|FV |2

+
[(
x′ + κ2

) (
x′ + 1− r2 − κ2

)
+ r2

]
|FA|2

−
[
x′ (x′ + r2

) (
x′ − 1 + κ2

)
+ κ4

]
|FM |2

+ 4κ2
(
x′ + κ2

) (
x′ + r2

) ∣∣F 2
P

∣∣ ,
B1 = ∓ 4x′Re [F ∗

A (FV + FM )]− 2rκ2
[
|FM |2 + Re (F ∗

V FM + 2F ∗
AFP )

]
,

C1 = |FV |2 + |FA|2 + x′ |FM |2 ;
A2 = − r

(
x′ + r2

) [(
x′ + 1 + κ2

)
Re (F ∗

TFA) + 2κ2Re (F ∗
TFP )

]
− rκ2

[(
x′ + 1 + κ2

)
Re (F ∗

SFV ) + κ2Re (F ∗
SFM )

]
−
(
x′ + r2

) [(
x′ + κ2

) (
x′ + 1 + r2

)
+ r2

]
|FT |2

+ κ2 (x′ + 1)
(
x′ + κ2

)
|FS |2 ,

B2 = κ2Re
{
F ∗
T

[
FA − 2

(
x′ + r2

)
FP

]
− F ∗

S (FV − x′FM )
}
,

C2 = rRe (F ∗
TFA) +

(
x′ + r2

)
|FT |2 .

6.3.3 Inverse β decay at low energies.
This case needs for a special study since it is very important for many applications, – from reactor neutrino physics to
astrophysics and cosmology.

ATTENTION! Sorry for inconvenience but in this section (and only here) I’ll use the following definition

r =
mn −mp

mn +mp
=

mn −mp

2M
= −r.

The LaTeX definitions are: \rat for r, \rn for r, \rl for κ.

So we consider the cross section for electron production at very low neutrino energies, say Eν ≲ 1 MeV. Therefore
Eν/M ≲ r and r (Eν/M) ≲ r2 ∼ κ2. The numerical values of the constants involved are:

r ≃ 6.8873378× 10−4, r2 ≃ 4.7435422× 10−7, κ2 ≃ 7.4049818× 10−8.

Next, variable x′ varies in a wide range, as is shown in Fig. (6.1), and x′ → −κ2 as Eν → 0. Hence this variable also
cannot be neglected. After rewriting the kinematic factor

s− u = 2mn (Eν + Ee)−m2
e = m2

n −m2
p +m2

e + 4mnEν + q2

in terms of the dimensionless variables and constants we have

s− u

4M2
= r+ (1 + r)

Eν

M
− κ2 − x′. (6.26)

It is clear that all terms are essential here.
Let us forget about SCC for the moment. Then all the rest contributions into the cross section which are of the order

of r, r2 or κ2 (see the end of previous subsection) play the role and cannot be neglected.
Therefore, the drastic change of the behavior of σ as a function of energy at Eν ≪ 1 MeV is a result of cancellation

of big (order of 1 and of r) contributions due to “fine tuning” of the fundamental parameters involved in the exact formula
for dσ/dQ2. To demonstrate this, we perform several steps.

Variables z and z∗.

To simplify calculations, let use variable E∗
ν (the center-of-mass neutrino energy) instead of Eν . The two variables are

related to each other by

E∗
ν =

Eν√
1 +

2Eν

mn

and Eν = E∗
ν

√1 +

(
E∗

ν

mn

)2

+

(
E∗

ν

mn

) . (6.27)
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Figure 6.1: The kinematic boundaries x′
∓ = Q2

∓/(4M
2) for variable x′ in reaction νn → e−p at low energies. For

comparison, the values of r2 and κ2 are also shown by dashed lines. Note that x′
− < 0 at all energies (and

∣∣x′
−
∣∣ <

m2
e/
(
m2

n −m2
p

)
) while x′

+ changes its sign at Eν = mnm
2
e/2

(
m2

n −m2
p

)
≃ 5.0509097× 10−5 GeV.

For simplification of formulas (especially in the calculations with FORTRAN and FORM), one can define the dimension-
less variables

z =
Eν

mn
=

Eν

(1 + r)M
and z∗ =

E∗
ν

mn
=

E∗
ν

(1 + r)M
, (6.28)

and rewrite Eqs. (6.27) as

z∗ =
z√

1 + 2z
=


z

[
1− z +

3z2

2
− 5z3

2
+O

(
z4
)]

at z ≪ 1,√
z

2

[
1− 1

4z
+

3

32z2
− 5

128z3
+O

(
1

z4

)]
at z ≫ 1,

(6.29a)

and

z = z∗

(√
1 + z2∗ + z∗

)
=


z∗

[
1 + z∗ +

z2∗
2

− z4∗
8

+O
(
z6∗
)]

at z∗ ≪ 1,

2z2∗

[
1 +

1

4z2∗
− 1

16z4∗
+O

(
1

z6∗

)]
at z∗ ≫ 1.

(6.29b)

However, the energies Eν and E∗
ν seem to be more descriptive and sometimes I’ll use these together with (or instead of)

the z and z∗.
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The following formulas will be of utility for calculations at the low-energy range:

√
s =mn

[√
1 + z2∗ + z∗

]
= mn

[
1 + z∗ +

z2∗
2

− z4∗
8

+O
(
z6∗
)]

,

E∗
e

M
=

2
(
r+ κ2

)
1 + r

√
1 + z2∗ +

(
1 + r2 − 2κ2

1 + r

)
z∗

= ϵ∗

[
1 +

(
1 + r2 − 2κ2

)
2 (r+ κ2)

z∗ +
z2∗
2

− z4∗
8

+O
(
z6∗
)]

,

P ∗
e

M
=

√(
E∗

e

M

)2

− 4κ2

= π∗

{
1−

(
1 + r2 − 2κ2

) (
r+ κ2

)
2 (1− κ2) (r2 − κ2)

z∗ −

[
1−

κ2
(
1− r2

)2
4 (1− κ2)

2
(r2 − κ2)

2

]
z2∗
2

+O
(
z3∗
)}

,

where

ϵ∗ =
2
(
r+ κ2

)
1 + r

≃ 1.3766675× 10−3

and

π∗ =
2
√
(1− κ2) (r2 − κ2)

1 + r
≃ 1.2645213× 10−3

are, respectively, the minimum energy and momentum of the electron in units of M .

Basic integrals.

Let us denote ∫ x′
+

x′
−

(−x′)
n
dx′ =

(
x′
+ − x′

−
)
In,

where

x′
± =

Q2
±

4M2
=

E∗
ν (E

∗
e ± P ∗

e )

2M2
− κ2 = (1 + r)

(
E∗

e ± P ∗
e

2M

)
z∗ − κ2.

Clearly

(n+ 1)In = xn
− + xn−1

− x+ + · · ·+ x−x
n−1
+ + xn

+.

All integrals necessary for calculation of the cross section can be derived from the 4 basic integrals I0, . . . , I3:

∫ x′
+

x′
−

(−x′)
n (

x′ + κ2
)
dx′ =

(
x′
+ − x′

−
) (

κ2In − In+1

)
,

∫ x′
+

x′
−

(−x′)
n
(
s− u

4M2

)
dx′ =

(
x′
+ − x′

−
)
(vIn + In+1) ,∫ x′

+

x′
−

(−x′)
n
(
s− u

4M2

)2

dx′ =
(
x′
+ − x′

−
) (

v2In + 2vIn+1 + In+2

)
,

where n = 0 or 1 and

v =
s− u

4M2
+ x′ = r+ (1 + r)

(
Eν

M

)
− κ2.
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By using the identities

x′
+ − x′

− =
P ∗
e E

∗
ν

M2
= (1 + r)

(
P ∗
e

M

)
z∗,

x′
+ + x′

− =
E∗

eE
∗
ν

M2
− 2κ2 = −2κ2 + (1 + r)

(
E∗

e

M

)
z∗,

x′
+
2 + x′

−
2 = 2κ4 − 2κ2E

∗
eE

∗
ν

M2
+

(E∗
eE

∗
ν)

2

M4
,

= 2κ4 − 2κ2(1 + r)

(
E∗

e

M

)
z∗ + (1 + r)2

[(
E∗

e

M

)2

− 2κ2

]
z2∗,

x′
+x

′
− = κ4 − κ2E

∗
ν (E

∗
e − E∗

ν)

M2
= κ4 − κ2(1 + r)

(
E∗

e

M

)
z∗ + κ2(1 + r)2z2∗,

x′
+
2 + x′

+x− + x′
−
2 = 3κ4 − κ2E

∗
ν (3E

∗
e + E∗

ν)

M2
+

(E∗
eE

∗
ν)

2

M4

= 3κ4 − 3κ2(1 + r)

(
E∗

e

M

)
z∗ + (1 + r)2

[(
E∗

e

M

)2

− κ2

]
z2∗,

and Eq. (6.26) we have

I0 = 1,

I1 = κ2 − E∗
eE

∗
ν

2M2
,

I2 = κ4 − κ2

[
E∗

eE
∗
ν

M2
+

(E∗
ν)

2

3M2

]
+

(E∗
eE

∗
ν)

2

3M4
,

I3 = κ6 − κ4

[
3E∗

eE
∗
ν

2M2
+

(E∗
ν)

2

M2

]
+ κ2

[
(E∗

eE
∗
ν)

2

M4
+

E∗
e (E

∗
ν)

3

2M4

]
− (E∗

eE
∗
ν)

3

4M6
.

Constant form factor approximation.
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Let us now neglect the Q2 dependence of the form factors. This is the standard assumption at low energies and usually it
is also assumed that

Fi = Fi(0). (6.30)

The latter approximation is appropriate since Q2 ∼ −m2
e (see fig. (6.1)) and thus the corresponding corrections are of

the order of κ2. We however do not use Eq. (6.30) but simply assume that Fi are Q2 independent. Then the total cross
section can be written as

σ (Eν) =

∫ Q2
+

Q2
−

[
dσ

dQ2

]
dQ2 = (GF cos θCM)

2 2

π

(
P ∗
e

M

)(
E∗

ν

Eν

)(
M

Eν

)
[A+B+ C] , (6.31)

where

A = A0 +A1I1 +A2I2 +A3I3,

B = B0 +B1I1 +B2I2,

C = C0 + C1I1 + C2I2 + C3I3.

and we neglected the factor κ2. There is no sense in writing out all the coefficients since it can be done directly in FORM
or Maple.

The most important fact is that7

A0 +B0 + C0 = 0.

Therefore

σ (Eν) =
G2

F cos2 θCM
2

2π

(
P ∗
e

M

)(
E∗

ν

Eν

)[
c± + f±

(
Eν

M

)]
, (6.32)

where c± are some constants and f±(z) are the functions proportional to z (thus f±(0) = 0).

7This is a consequence of the following, more general result: for any complex form factors Fi

(
Q2

)
which are finite at small Q2

lim
Eν→0

[Eνσ (Eν)] = 0 while lim
Eν→0

[σ (Eν)] = σ0 ̸= 0.
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VBRT approximation.

According to Ref. [44] with the reference to Vogel [45],8 the absorption cross section at Eν ≲ 10 MeV is given by the
following approximate expression:

σVBRT (Eν) = σe

(
1 + 3g2A

4

)(
Eν ±∆

me

)2
√
1−

(
me

Eν ±∆

)2(
1 +

a±Eν

mn

)
, (6.33)

where

σe =
4G2

F cos2 θCm
2
e

π
≃ 1.674× 10−44 cm2

is a reference neutrino cross section,
∆ = mn −mp ≃ 1.293332MeV/c2,

and a± are the constants which account for the correction for weak magnetism and recoil,

a+ ≃ 1.1, a− ≃ −7.1.

In order to simplify our cumbersome result to the simple VBRT formula (6.33) we note that

E∗
e =


(Eν +∆)

[
1− ∆2 −m2

e

mn (Eν +∆)

] [
1 +

2Eν

mn

]−1/2

for neutrino,

(Eν −∆)

[
1− ∆2 −m2

e

mp (Eν −∆)

] [
1 +

2Eν

mp

]−1/2

for antineutrino.

Let us rewrite this as
E∗

e = (Eν ±∆) (1− α±) ,

where

α+ =
∆2 −m2

e

mn (Eν +∆)

(
1 +

Eν

mn

)
− 3

2

(
Eν

mn

)2

+ . . . ,

α− =
∆2 −m2

e

mp (Eν −∆)

(
1 +

Eν

mp

)
− 3

2

(
Eν

mp

)2

+ . . . .

Then

P ∗
e = (Eν ±∆)

[
1− m2

e

(Eν ±∆)
2

]1/2
(1− β±) ,

where

β± = 1−

√√√√1− 2α±

(
1− α±

2

)[
1−

(
me

Eν ±∆

)2
]−1

= α±

[
1−

(
me

Eν ±∆

)2
]−1

1 +
α±

2

[(
Eν ±∆

me

)2

− 1

]−1

+ . . .

 .

Let us write out some numerical values. By using the exact formula for the α± we have

α+ → α0
+ ≃ +1.161636× 10−3 and α− → α0

− ≃ −1.163237× 10−3

as Eν → 0. Therefore

β+ → β0
+ = +10−3 ×


1.3765 (1st approximation),
1.37666 (2nd approximation),
1.376668 (exact),

β− → β0
− = −10−3 ×


1.3784 (1st approximation),
1.37828 (2nd approximation),
1.378269 (exact).

• By comparing these numbers, we can conclude that the first approximation is quite appropriate and the second one
is practically exact.

• It is clear that the VBRT formula neglects the corrections β± in the factor P ∗
e . Considering that the “ABC” factor

is exactly proportional to Eν , this completely explains the O
(
10−3

)
difference between the exact and VBRT

asymptotic values for the νen cross section.

The following steps are quite obvious and I’ll try to write out all these soon.
8See also Ref. [40]. In that follows, we will call this approximation “VBRT”.
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Asymptotics of the νen → e−p cross section.

Since this asymptotics is important (I guess...) for cosmology, we consider it with more details here. By applying the
above formulas, one can prove that

lim
Eν→0

[A+B+ C] = 0

and

lim
Eν→0

[A+B+ C]

(
M

Eν

)
=

rK

1 + r
(1 +∆1 +∆2) ,

where
K = |FV |2 + 3 |FA|2 ,

the correction ∆1 is due to the FCC only while the ∆2 accounts for the SCC contributions and vanishes when FT = FS =
0. These two corrections are given by

rK∆1 =
[
r2 (2 + 3r)− κ2

(
1 + 4r− r2

)
− 2κ4

]
|FV |2

+
[
r2 (2 + r) + κ2

(
1− 4r− r2

)
− 2κ4

]
|FA|2

+
(
r+ κ2

) (
r2 − κ2

) [(
2 + κ2

)
|FM |2 + 4κ2 |FP |2

]
+ 2

(
r2 − κ2

)
Re
{[
2r+ κ2 (3 + r)

]
F ∗
V FM

−2F ∗
A

[(
1− κ2

)
(FV + FM ) + κ2 (1 + r)FP

]}
,

≃
(
2r2 − κ2

)
|FV |2 +

(
2r2 + κ2

)
|FA|2 − 4

(
r2 − κ2

)
Re [F ∗

A (FV + FM )] ,
r

4
K∆2 =

(
r2 − κ2

) [
r (1 + r)

2 − κ2
(
1 + r+ r2

)
+ κ4

]
|FT |2

+ κ2
(
1− κ2

) (
r+ κ2

)
|FS |2

+ Re
{(

r2 − κ2
)
F ∗
T

[
(1 + r)

(
1 + r− κ2

)
FA − 2κ2

(
1 + r+ r2 − κ2

)
FP

]
+κ2

(
1− κ2

)
F ∗
S

[(
r2 − κ2

)
FM − (1 + r)FV

]}
≃ Re

[(
r2 − κ2

)
F ∗
TFA − κ2F ∗

SFV

]
.

Therefore the asymptotic value of the νen → e−p cross section at Eν = 0 is

σ0 =
4r

π

(
GF cos θCM

1 + r

)2√
(1− κ2) (r2 − κ2)K (1 +∆1 +∆2)

=
G2

F cos2 θCmn

2π

(
1−

m2
p

m2
n

)
KPmin

e (1 +∆1 +∆2) ,

where

Pmin
e =

1

2mn

√[
(mn −mp)

2 −m2
] [

(mn +mp)
2 −m2

]
≃ 1.187282648MeV/c

is the minimum electron momentum.
By using the standard values

• cos θC = 0.9748± 0.0005, 9

• FV (0) = 1,

• FM (0) = µp − µn − 1 = 3.7058901± 0.00000045, 10

• FA(0) = gA = −1.267± 0.0030, 11

• FP (0) = 2gA(M/mπ)
2 ≃ −114.68,

we can estimate the FCC correction as12

∆1 ≃ 3.01× 10−3.

Assuming that FT (0) = ηT gAe
iϕT and FS(0) = ηSe

iϕS and taking into account the upper limits to ηT and ηS
obtained from the nuclear structure studies [372–374] and from the BNL-AGS neutrino experiment [29], we can estimate
the upper limit to the SCC correction as13

|∆2| < 1.4× 10−4 ≪ ∆1.

9The error in cos θC has been estimated from the PDG value sin θC = s12 = 0.2229± 0.0022 [3] as (0.2229/0.9748)× 0.0022 ≃ 0.0005.
10The latest PDG values are µp = 2.792847337± 0.000000029, µn = −1.91304272± 0.00000045. Therefore µp − µn − 1 = 3.7058901±

0.00000045. However the code uses the exact value 3.705890057.
11This is according to PDG but both the value and the error are quite doubtful as is explained in Ref. [51, p. 1716].
12FORTRAN output: 3.014832393844721E-003 (Q2 = −m2

e) or 3.014831917005820E-003 (Q2 = 0).
13FORTRAN output: 1.3831117E-04 for maximum value and -1.3820046E-04 for minimum value. The estimation was done straightforwardly by

testing 5000× 5000 values of the phases ηT and ηS within the [0, 2π] interval. The calculations are done with Q2 = 0.



6.3. QUASIELASTIC SCATTERING 97

The examples shown in Fig. 6.2 demonstrate variations of the correction ∆2 when only one of the two SCC induced form
factors is assumed to be nonzero. Finally, one can safely neglect this unknown correction even in comparison to ∆1. This
conclusion is important since ensures the strength of the predicted value of σ0.14

Taking all these notes into account, we can estimate the asymptotic cross section as 15

σ0 ≃ 1.4343× 10−43 cm2. (6.34)

As we know, this value must be corrected to take into the energy-independent inner radiative corrections [47,48,50,51]
According to the recent analysis by Fukugita and Kubota [51], the inner radiative corrections to Fermi and Gamov–Teller
matrix elements are, respectively,

δF
in = 0.02370± 0.0008, and δGT

in = 0.02616± 0.0008.

So, we must replace the factor 1 + 3g2A with

1 + δF
in + 3

(
1 + δGT

in

)
g2A = (1.0257± 0.0008) (1 + 3g2A)

and thus 16

σ0 ≃ 1.4712× 10−43 cm2. (6.35)

Clearly, the uncertainty in the estimation of the inner radiative correction does not affect essentially to the uncertainty
of σ0, in contrast with the errors in GF , θC and gA. The maximum uncertainty is probably due to the error in gA
(considering also that the PDG value of the gA has to be reevaluated properly taking into account the inner radiative
corrections Ref. [51, p. 1716]).
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Figure 6.2: The SCC correction ∆2 (scaled with the factor of 105) as a function of ϕ. The calculations are done under
assumption that the SCC form factors at Q2 = 0 are defined as FT (0) = ηT gAe

iϕ and FS(0) = ηSe
iϕ. Then the values

ηT = 0.1 and ηS = 1.0 roughly correspond to the upper limits obtained from the nuclear structure studies [372–374] and
from the BNL-AGS experiment [29], The standard FCC form factors are taken as is explained in the text. Note that ∆2 is
invariant under transformation ϕ 7→ 2π − ϕ. It is also clear that ∆2 = 0 if C invariance occurs (ϕ = π/2).

14It can be noted that in general the FCC form factors in the time-like region are complex even in absence of SCC. However, due to analyticity of the
form factors, this cannot essentially change the value of σ at low energies. This is an attractive fact because one can firmly estimate the impact of νen
interactions for the earlier stages of the primordial nucleosynthesis, at the temperatures T = (0.1−1)MeV, when free neutrons are still abundant while
electron antineutrinos do not interact with protons through CC currents.

15FORTRAN output: 1.434266314800469E-043 (Q2 = −m2
e) or 1.434264823913649E-043 (Q2 = 0).

16FORTRAN output: 1.471180054501232E-043 (Q2 = −m2
e) or 1.471178525243429E-043 (Q2 = 0).
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Figure 6.3 shows a comparison of the numerical calculation of the total νen cross section at very low energies with
the exact asymptotics given by Eq. (6.34). The oscillations of the numerical curve are due to numerical arithmetics of
PENTIUM IV.
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Figure 6.3: Comparison of the numerical calculation of the total νen cross section at very low energies with the exact
asymptotics (6.34). The oscillations of the numerical curve are due to numerical arithmetics of PENTIUM IV.
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6.3.4 QES cross section in nuclear mixture.
Let’s define

Ni is the number of nuclei (Ai, Zi) of type i in the target, where, of course, Ai = Zi +Ni is the mass number and
Zi and Ni are the numbers of protons and neutrons in the nucleus.

ci =
Ni∑
j Nj

is the concentration of nuclei i.

Ci =
NiAiM∑
j NjAjM

=
NiAi∑
j NjAj

is the mass concentration (mass fraction) of the nuclei i. Here M is the nucleon

mass (so that
∑

i NiAiM is the full mass of the target) and we yet neglect the proton-neutron mass difference and
binding energy in nuclei. As will be seen, this is an approximation quite enough for our purposes and we can not
complicate the calculations by small corrections.

By definition ∑
i

ci =
∑
i

Ci = 1, (6.36)

Let’s find the relation of the concentrations ci and Ci. Obviously ci ∝ Ci/Ai, so put ci = aiCi/Ai and find ai. Since

ci
Ci

=
ai
Ai

=
Ni∑
j Nj

·
∑

j NjAj

NiAi
=

∑
j NjAj

Ai

∑
j Nj

,

we see that ai is a constant independent of i,

ai =

∑
j NjAj∑
j Nj

≡ a,

so ci = aCi/Ai. Taking into account that (6.36) we obtain

1 = a
∑
i

Ci

Ai
, 1 =

1

a

∑
i

ciAi

and therefore

ci =
Ci

Ai

∑
j

Cj

Aj

−1

, Ci = ciAi

∑
j

cjAj

−1

. (6.37)

Let us now find the cross sections per nucleon for the quasi-elastic scattering of neutrinos and antineutrinos on a mixture
of nuclei. Let σ(i)

νn and σ
(i)
νp be the cross sections on the bound nucleons of the nucleus i. Then the cross sections (per

nucleon) on the mixture are

⟨σνn⟩ =
∑

i Niciσ
(i)
νn∑

i Nici
=

∑
i NiCiσ

(i)
νn/Ai∑

i NiCi/Ai
, (6.38a)

⟨σνp⟩ =
∑

i Ziciσ
(i)
νp∑

i Zici
=

∑
i ZiCiσ

(i)
νp/Ai∑

i ZiCi/Ai
. (6.38b)

We will call these cross sections partial cross sections. Let us consider important partial cases.

1. Scattering on a “molecule” (A1, Z1)n1
(A2, Z2)n2

· · · (AK , ZK)nK
.

Obviously ci = ni/
∑K

j=1 ni. So from (6.38) we get

⟨σνn⟩ =
∑

i Niniσ
(i)
νn∑

i Nini
, ⟨σνp⟩ =

∑
i Ziniσ

(i)
νp∑

i Zini
. (6.39)

2. Scattering on an isoscalar target.

If all the nuclei in the mixture are isoscalar (Ni = Zi), it is convenient to use mass concentrations:

⟨σνn⟩ =
∑
i

Ciσ
(i)
νn, ⟨σνp⟩ =

∑
i

Ciσ
(i)
νp . (6.40)

3. Approximation: universal nuclear effects.

If for some reason it is possible to neglect the difference of scattering cross sections on the target nuclei, i.e. put
σ
(i)
νn = σνn and σ

(i)
νp = σνp,, we get the obvious result beforehand:

⟨σνn⟩ = σνn, ⟨σνp⟩ = σνp.
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If the difference between the sections is small, i.e.

δσ(i)
νn = σ(i)

νn − σνn and δσ
(i)
νp = σ

(i)
νp − σνp

are small compared to the sections themselves (which is almost always the case), then the differences of the partial
sections from σνn and σνp are small:

⟨σνn⟩ = σνn +

∑
i Niciδσ

(i)
νn∑

i Nici
, ⟨σνp⟩ = σνp +

∑
i Ziciδσ

(i)
νp∑

i Zici
.

This is also a trivial fact, but it explains why we can safely put into global fit M eff
A data on any mixtures: there

should be no significant difference in M eff
A on different theoretically mixtures.

All these results explain why one does not care about taking into account such trivialities as the difference in masses
of the proton and neutron and the binding energy of nucleons in nuclei.

Another important conclusion is that the presence of hydrogen in the mixture invisibly but significantly affects on the
partial cross section ⟨σνn⟩, but only when there are at least two types of nuclei other than hydrogen. Indeed, if the mixture
consists of a mixture of nuclei of type I and hydrogen, then

⟨σνn⟩ = σ(I)
νn ,

i.e., the presence of hydrogen does not play any role. But if the target has two types of nuclei (plus hydrogen), then

⟨σνn⟩ =
N1c1σ

(1)
νn +N2c2σ

(2)
νn

N1c1 +N2c2
=

N1c1σ
(1)
νn +N2(1− c1 − cH)σ

(2)
νn

N1c1 +N2(1− c1 − cH)

=
N1C1σ

(1)
νn /A1 +N2C2σ

(2)
νn /A2

N1C1/A1 +N2C2/A2
=

N1C1σ
(1)
νn /A1 +N2(1− C1 − CH)σ

(2)
νn /A2

N1C1/A1 +N2(1− C1 − CH)/A2
.

As we can see, the presence of hydrogen manifests itself in the presence of the value cH (or CH ) – the concentration (or
mass concentration) of hydrogen. This not very obvious fact is directly related to the “mystery of T2K”.17

17The puzzle taking place on December 9, 2013. I’m not sure if all of this will help us solve the problem, but at least we’ll get it right. By the way,
we need to take a close look at the situation with other complex targets (where there are multiple types of nuclei and hydrogen), including NOMAD –
don’t we have a discrepancy there? VVL obviously has a discrepancy because he only took into account the carbon. The question is – how significant
is the correction and should it not be included in the data...?
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6.3.5 Numerical results
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Figure 6.4: Comparison of the neutrino and antineutrino QE total cross sections with the simplified Vogel’s formula given
by Burrows et al. [44] (“VBRT approximation”; see Eq. (6.33)). Right panel shows the percentage deviations of the
“VBRT” approximation from the exact result. Calculations are done with the dipole model for the electromagnetic form
factors. The axial form factor is taken in the standard dipole form with gA = −1.267 and MA = 1 GeV/c2. The SCC
induced contributions are neglected.
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Figure 6.5: Effect of the Mi ̸= Mf corrections for the electron neutrino and antineutrino QE total cross sections. Calcula-
tions are done with the dipole and GKex(02S) models for the electromagnetic form factors. The axial form factor is taken
in the standard dipole form with gA = −1.267 and MA = 1 GeV/c2. The SCC induced contributions are neglected. The
dotted curves show the standard approximation Mi = Mf , the dashed curves are calculated with the exact kinematics
but neglecting the O (rn) corrections in the coefficients A, B and C of Eq. (6.25), the solid curves is the result of exact
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are taken at Q2 = 0). Right panel: relative effect of the O (rn) corrections to “ABC”.
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Figure 6.7: Relative effect of the corrections for muon production. Calculations are done with the dipole and GKex(02S)
model for the electromagnetic form factors.



104 CHAPTER 6. POLARIZATION DENSITY MATRIX

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

10 10
2

E
ν
   ( GeV )

σ
 (

 e
xa

ct
 )

 /
 σ

 (
 m

n
 =

 m
p
 a

p
p

ro
xi

m
a

ti
o

n
 )

ν
τ
 n → τ

-
 p

ν

–

τ
 p → τ

+
 n

Dipole

0.994

0.995

0.996

0.997

0.998

0.999

1

1.001

1.002

10 10
2

E
ν
   ( GeV )

σ
 (

 e
xa

ct
 )

 /
 σ

 (
 e

xa
ct

 k
in

em
a

ti
cs

 )

ν
τ
 n → τ

-
 p

ν

–

τ
 p → τ

+
 n

Dipole

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

10 10
2

E
ν
   ( GeV )

σ
 (

 e
x
a

c
t 

) 
/ 

σ
 (

 m
n
 =

 m
p
 a

p
p

ro
x
im

a
ti

o
n

 )

ν
τ
 n → τ

-
 p

ν

–

τ
 p → τ

+
 n

GKex(02S)

0.994

0.995

0.996

0.997

0.998

0.999

1

1.001

1.002

10 10
2

E
ν
   ( GeV )

σ
 (

 e
xa

ct
 )

 /
 σ

 (
 e

xa
ct

 k
in

em
a

ti
cs

 )

ν
τ
 n → τ

-
 p

ν

–

τ
 p → τ

+
 n

GKex(02S)

Figure 6.8: Relative effect of the corrections for tau production. Calculations are done with the dipole and GKex(02S)
model for the electromagnetic form factors.

6.4 Resonance production

6.4.1 Single resonance production

In this section, we study the reactions of single nucleon resonance production,

νℓ + p → ℓ− +∆++, νℓ + p → ℓ+ +∆0,

νℓ + n → ℓ− +∆+, νℓ + n → ℓ+ +∆−.

In this case the hadronic weak currents are

Jα = cos θC uβ (p′) [(Vαβγγ
γ + Vαβ) γ5 +Aαβγγ

γ +Aαβ ]u (p) ,

Jα = cos θC uβ (p) [(Vαβγγ
γ − Vαβ) γ5 +Aαβγγ

γ +Aαβ ]u (p
′) ,
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Figure 6.9: Total QE νµn cross section extracted from νµD scattering at ANL [24,25], BNL [28], FNAL [30], CERN WA-
25 [17] and from recent NOMAD measurements on carbon target at CERN [22]. All the data are corrected to nuclear
effects. The theoretical band corresponds to variations of MA from 0.7 to 1.2 GeV/c2. Solid curve is are calculated with
the PDG average value MA = 1.03 GeV/c2. All calculations are done with the GKex(02S) model for the electromagnetic
form factors.
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where

Vαβγ = CV
3

gαβqγ − gαγqβ
M

,

Aαβγ = CA
3

gαβqγ − gαγqβ
M

,

Vαβ = CV
4

gαβ (qp
′)− p′αqβ
M2

+ CV
5

gαβ (qp)− pαqβ
M2

+ CV
6

qαqβ
M2

,

Aαβ = CA
4

gαβ (qp
′)− p′αqβ
M2

+ CA
5 gαβ + CA

6

qαqβ
M2

,

CV,A
j are vector and axial form factors,18 u (p′) and uα (p) are the Dirac spinor and the Rarita-Schwinger spin-vector,

respectively ∑
spin

u (p)u (p) = p̂+M,

∑
spin

uα (p′)uβ (p′) =
(
p̂′ +M ′

)(
−gαβ +

2

3

p′αp′β

M ′2 − p′αγβ − γαp′β

3M ′ +
γαγβ

3

)
.

Wαβ =
cos2 θC

4

∫
Tr

∑
spin

uγ (p′)uδ (p′) Jαγ (p̂+M) Jβδ

 δ (p′ − p− q)
dp′

2EN ′
,

∫
δ (p′ − p− q)

dp′

2EN ′
→ 1

π

WΓ
(
W 2
)(

W 2 −M ′2
)2

+W 2Γ (W 2)
,

Γ
(
W 2
)
= Γ (M ′)

λ1/2
(
W 2,M2,mπ

)
λ1/2

(
M ′2,M2,mπ

) ,
here 19 λ (a, b, c) = a2 + b2 + c2 − 2 (ab+ bc+ ca).

18The vertex Γαβ for the transition p → ∆+ is usually expressed in terms of the 8 weak form factors as

Γαβ = CA
3

gαβ q̂ − γαqβ

M
+ CA

4

gαβ (qp′)− p′αqβ

M2
+ CA

5 gαβ + CA
6

qαqβ

M2

+

(
CV

3

gαβ q̂ − γαqβ

M
+ CV

4

gαβ (qp′)− p′αqβ

M2
+ CV

5

gαβ (qp)− pαqβ

M2
+ CV

6

qαqβ

M2

)
γ5.

19For numerical calculation is used the form λ(a) = a (a− c1) + c2, c1 = 2
(
M2 +m2

π

)
, c2 =

(
M2 −m2

π

)2.
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The structure functions are

W (RES)
i =

2 cos2 θC
3ζ

M2

[
1

π

WΓ (W )(
W 2 −M ′2

)2
+W 2Γ2 (W )

]
×
∑
jk

(
V jk
i CV

j CV
k +Ajk

i CA
j CA

k +Kjk
i CV

j CA
k

)
,

j, k = 3, 4, 5, 6. The nonzero coefficients V jk
i , Ajk

i and Kjk
i are given in appendices.

6.4.2 Single pion production in the extended Rein–Sehgal model
In this section, we describe an extension of the famous model by Rein and Sehgal [100] for the neutrino induced single
pion production (RS model from here on) in order to take account for the final lepton mass and polarization.

The charged hadronic current in the RS approach has been derived in terms of the FKR relativistic quark model [87]
and its explicit form has been written in the resonance rest frame (RRF); below we will mark this frame with asterisk (⋆).
Therefore

q⋆ = −p⋆.

In RRF, the energy of the incoming neutrino, outgoing lepton, target nucleon and the 3-momentum transfer are, respec-
tively,

E⋆
ν =

1

2W

(
2MEν −Q2 −m2

)
=

Eν

W
[M − (Eℓ − Pℓ cos θ)] , (6.41a)

E⋆
ℓ =

1

2W

(
2MEℓ +Q2 −m2

)
=

1

W

[
MEℓ −m2 + Eν (Eℓ − Pℓ cos θ)

]
, (6.41b)

E⋆
N = W − (E⋆

ν − E⋆
ℓ ) =

M

W
(M + Eν − Eℓ) and (6.41c)

Q⋆ = |q⋆| = M

W
Q, (6.41d)

where

Q = |q| =
√
E2

ν − 2EνPℓ cos θ + P 2
ℓ =

√
(Eν − Pℓ cos θ)

2
+ P 2

ℓ sin2 θ.

It is convenient to direct the spatial axes of the RRF in such a way that p⋆ = −q⋆ = (0, 0,−Q⋆) and k⋆y = k′y
⋆ = 0.

These conditions lead to the following system of equations:

k⋆x = k′x
⋆ =

√
(E⋆

ν)
2 − (k⋆z)

2
, (6.42a)

k⋆z − k′z
⋆ = Q⋆, (6.42b)

k⋆z + k′z
⋆ =

1

Q⋆

[
(E⋆

ν)
2 − (E⋆

ℓ )
2
+m2

]
. (6.42c)

The final equations for the neutrino and lepton 3-momenta, k⋆ and k′⋆ written in terms of the kinematical variables
defined in the lab. frame are

k⋆x = k′x
⋆ =

EνPℓ

Q
sin θ,

k⋆z =
Eν

QW

[
Pℓ (Eν + Eℓ −M) cos θ − Eν (Eℓ −M)− P 2

ℓ

]
,

k′z
⋆ =

Eν

QW

[
Pℓ (Eν + Eℓ +M) cos θ − EνEℓ − P 2

ℓ

(
1 +

M

Eν

)]
.

By fixing the outgoing lepton helicity λ in the lab. frame we can write20

λms =

(
Pℓ,

Eℓ

Pℓ
k′
)

= (Pℓ, Eℓ sin θ, 0, Eℓ cos θ) =
MEℓk

′ −m2p

MPℓ
. (6.43)

By using Eqs. (6.41), (6.42) and (6.43) we can determine the components of the lepton spin 4-vector in RRF:

s⋆0 =
λ

mW
[MPℓ + Eν (Pℓ − Eℓ cos θ)] , s⋆x = λ

EνEℓ

mQ
sin θ, s⋆y = 0,

s⋆z =
λ

mQW

[
(Eν cos θ − Pℓ)

(
MEℓ −m2 + EνEℓ

)
− EνPℓ (Eν − Pℓ cos θ)

]
.

20Here it is assumed that the spatial axes of the lab. frame are directed in such a way that k = (Eν , 0, 0, Eν) and k′ = (Eℓ, Pℓ sin θ, 0, Pℓ cos θ).



108 CHAPTER 6. POLARIZATION DENSITY MATRIX

The general equation for leptonic weak current (for neutrino case) is:

j
α

λ
= u (k′, s) γα

(
1− γ5

2

)
u(k)

= Nλ

[
mkα + k′

α
(ks)− sα(kk′)− iϵαβγδsβkγk

′
δ

]
where the normalization constant Nλ is expressed in terms of the kinematic variables and of two intrinsically indeterminate
phases φ+ and φ− (see Sect. 6.2):

Nλ =
(1 + λ) eiφ+ + (1− λ) eiφ−

2
√
υλ

, υλ = (kk′) +m(ks) =
m2Eν (1− λ cos θ)

Eℓ − λPℓ
,

Then, by applying the general equation, the components of the leptonic current in RRF with the lepton helicity λ
measured in the lab. frame, are expressed as

j⋆0 = Nλm
Eν

W
(M − Eℓ − λPℓ) (1− λ cos θ),

j⋆x = Nλm
Eν

Q
(Pℓ − λEν) sin θ,

j⋆y = iλNλmEν sin θ,

j⋆z = Nλm
Eν

QW
[(Eν + λPℓ) (M − Eℓ) + Pℓ (λEν + 2Eν cos θ − Pℓ)] (1− λ cos θ).

On the other hand, in the spirit of the RS model, the leptonic current may be decomposed into three polarization 4-vectors
corresponding to left-handed, right-handed and scalar polarization of the intermediate W boson:

jαλ =
1

C

[
cλLe

α
L + cλRe

α
R + cλSe

α
(λ)

]
,

eαL =
1√
2
(0, 1,−i, 0), eαR =

1√
2
(0,−1,−i, 0), eα(λ) =

1√
Q2

(
Q⋆

(λ), 0, 0, ν
⋆
(λ)

)
.

Here the vectors eαL and eαR are the same as in ref. [100] while eα(λ) has been modified to include the lepton mass effect.
The remaining notation is

cλL =
C√
2

(
j⋆x + ij⋆y

)
, cλR = − C√

2

(
j⋆x − ij⋆y

)
, cλS = C

√
|(j⋆0 )2 − (j⋆z )

2|,

Q⋆
(λ) =

C
√

Q2

cλS
j⋆0 , ν⋆(λ) =

C
√

Q2

cλS
j⋆z , C =

Q
Eν

√
2Q2

.

Within the extended RS model, the elements of the polarization density matrix for neutrino case may be written as the
superpositions of the partial cross sections σλλ′

L , σλλ′

R and σλλ′

S :21

dσλλ′

dQ2dW
=

G2
F cos2 θC

π2

(
WQ2

MQ2

) ∑
i=L,R,S

cλi c
λ′

i σλλ′

i

(
Q2,W

)
,

σλλ′

L,R =
πW

2M

(
Aλ

±3A
λ′

±3 +Aλ
±1A

λ′

±1

)
, σλλ′

S =
πMQ2

2WQ2

(
Aλ

0+A
λ′

0+ +Aλ
0−A

λ′

0−

)
.

The amplitudes Aλ
κ (with κ = ±3, ±1 or 0±) are defined by

Aλ
κ
(
pπ+

)
=

√
3
∑

(I=3/2)

aλκ
(
N ∗+

3

)
,

Aλ
κ
(
pπ0
)
=

√
2

3

∑
(I=3/2)

aλκ
(
N ∗+

3

)
−
√

1

3

∑
(I=1/2)

aλκ
(
N ∗+

1

)
,

Aλ
κ
(
nπ+

)
=

√
1

3

∑
(I=3/2)

aλκ
(
N ∗+

3

)
+

√
2

3

∑
(I=1/2)

aλκ
(
N ∗+

1

)
.

Only those resonances are allowed to interfere which have the same spin and orbital angular momentum. Any amplitude
aλκ (N ∗+

ı ) referring to a single resonance consists of two factors which describe the production and subsequent decay of
the resonance N ∗+

ı :
aλκ (N ∗

ı ) = fλ
κ (νN → N ∗

ı ) η(N ∗
ı → Nπ) ≡ fλ(ı)

κ η(ı).

21Here and below, we use the same definitions and (almost) similar notations as in ref. [100].
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The resonance production amplitudes, fλ(ı)
κ , are collected in Table II of Ref. [100]. The corresponding decay amplitudes,

η(ı), can be split into three factors,
η(ı) = sign(N ∗

ı )
√
χı η

(ı)
BW (W ), (6.44)

irrespective of isospin, charge or helicity. Here sign (N ∗
ı ) is the pure sign given in Table III of ref. [100], χ

ı
is the elasticity

of the resonance taking care of the branching ratio into the Nπ final state and

η
(ı)
BW (W ) =

√
1

2πNı

[
Γı(W )

(W −Mı)2 + Γ2
ı (W )/4

]
,

where

Γı(W ) = Γ0
ı

[
λ(W 2,M2,mπ)

λ(M2
ı ,M

2,mπ)

]L+1/2

,

Nı =
1

2π

∫ Wmax

W−

[
Γı(W )dW

(W −Mı)2 + Γ2
ı (W )/4

]
,

and Wmax = min (W+,Wcut). The kinematic limits W± are defined in Sect. 3.2.
It is obvious that total cross section is the sum of the partial cross sections with λ = λ′ = ±1. Equation for charge

conjugate antineutrino reaction can be obtained by simple interchange of cλR ↔ c−λ
L .

In the generalized RS model, the structure of the vector eα(λ) has been changed by including the lepton spin dependence.
Thus we have to recalculate the inner products JV,A

α eα(λ), where JV,A
α are the vector and axial hadronic currents in the

FKR model. The new definitions for the structures SV , BA and CA involved into the model are the following:

SV =
(
ν⋆(λ)ν

⋆ −Q⋆
(λ)Q

⋆
)(

1 +
Q2

M2
− 3W

M

)
GV (Q2)

6Q2
,

BA =

√
Ω

2

(
Q⋆

(λ) + ν⋆(λ)
Q⋆

2Mg2

)
ZGA(Q2)

3WQ⋆
,

CA =

[(
Q⋆

(λ)Q
⋆ − ν⋆(λ)ν

⋆
)(1

3
+

ν⋆

2Mg2

)
+ν⋆(λ)

(
2

3
W − Q2

2Mg2
+

nΩ

6Mg2

)]
ZGA(Q2)

2WQ⋆
.

We will quote the unchanged equations for the reader’s convenience (don’t mix that λ, used in Table II of [100] with
the lepton helicity):

λ =

√
2

Ω

M

W
Q,

TV =
1

3W

√
Ω

2
GV
(
Q2
)
= T,

RV =
√
2
M

W

[
(W +M)Q

(W +M)2 +Q2

]
GV
(
Q2
)
= R,

TA =
2

3

√
Ω

2

M

W

[
Q

(W +M)2 +Q2

]
ZGA

(
Q2
)
,

RA =

[
W +M +

2NΩW

(W +M)2 +Q2

] √
2ZGA

(
Q2
)

6W
.

6.4.3 Numerical results
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Table 6.2: Nucleon Resonances with masses below 2 GeV according to PDG-2004.

1 2 3 4 5 6 7 8
✓ P11(1440) [56, 0+]2 a 1430÷ 1470 250÷ 450 (350) 60–70 (0.65) +

✓ D13(1520) [70, 1−]1 a 1515÷ 1530 110÷ 135 (120) 50–60 (0.56) −
✓ S11(1535) [70, 1−]1 a 1520÷ 1555 100÷ 200 (150) 35–55 (0.45) −
✓ S11(1650) [70, 1−]1 a 1640÷ 1680 145÷ 190 (150) 55–90 (0.60) +

✓ D15(1675) [70, 1−]1 a 1670÷ 1685 140÷ 180 (150) 40–50 (0.35) +

✓ F15(1680) [56, 2+]2 a 1675÷ 1690 120÷ 140 (130) 60–70 (0.62) +

✓ D13(1700) [70, 1−]1 b 1650÷ 1750 50÷ 150 (100) 5–15 (0.10) −
✓ P11(1710) [70, 0+]2 b 1680÷ 1740 50÷ 250 (100) 10–20 (0.19) +

✓ P13(1720) [56, 2+]2 a 1650÷ 1750 100÷ 200 (150) 10–20 (0.19) +

P13(1900) c ∼ 1900 ? 26 ± 6

✓ F17(1990) [70, 2+]2 c ∼ 1990 ? (350) 6 ± 2 (0.06) +

✓ P33(1232) [56, 0+]0 a 1230÷ 1234 115÷ 125 (120) > 99 (1.) +

✓ P33(1600) [56, 0+]2 b 1550÷ 1700 250÷ 450 (350) 10–25 (0.20) +

✓ S31(1620) [70, 1−]1 a 1615÷ 1675 120÷ 180 (150) 20–30 (0.25) +

✓ D33(1700) [70, 1−]1 a 1670÷ 1770 200÷ 400 (300) 10–20 (0.12) +

P31(1750) d ∼ 1750 ? 8 ± 3

S31(1900) c 1850÷ 1950 140÷ 240 (200) 10–30
✓ F35(1905) [56, 2+]2 a 1870÷ 1920 280÷ 440 (350) 5–15 (0.15) −
✓ P31(1910) [56, 2+]2 a 1870÷ 1920 190÷ 270 (250) 15–30 (0.19) −
✓ P33(1920) [56, 2+]2 b 1900÷ 1970 150÷ 300 (200) 5–20 (0.17) +

D35(1930) b 1920÷ 1970 250÷ 450 (350) 10–20
D33(1940) d ∼ 1940 ? 18 ± 12

✓ F37(1950) [56, 2+]2 a 1940÷ 1960 290÷ 350 (300) 35–40 (0.40) +

1: The mark indicates that the resonance has been included into the original RS calculation (see Table II of the RS paper).
2: Resonance symbol L2I,2J (Mı), where L = S,D, F, P , the labels I and J indicate the isospin and spin, respectively, and Mı is the (approximate) mass.
3: Quark-model assignment in terms of the flavor-spin SU(6) basis [D,LP ]N , where D is the dimensionality of the SU(6) representation, L is the total quark

orbital angular momentum, P is the total parity and N is the number of quanta of excitation.
4: Resonance status (according to PDG):

(a) existence is certain, and properties are at least fairly well explored;
(b) existence ranges from very likely to certain, but further confirmation is desirable and/or quantum numbers, branching fractions, etc. are not well determined;
(c) evidence of existence is only fair;
(d) evidence of existence is poor.

5: Resonance mass Mı range (in MeV).
6: Breit-Wigner width Γ0

ı range and, in parentheses, its mean value (in MeV).
7: Branching ratio of the resonance decay into the Nπ state (in %) and, in parentheses, the selected elasticity, χı (see Eq. (6.44)).
8: The pure decay sign, sign(N∗

ı ), involved into Eq. (6.44).
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Figure 6.12: Comparison of calculations of differential cross section for the reaction νµp → µ−∆++ with experimental
data from FNAL [], BEBC (CERN) [66] and ANL [62]. Solid curve is for the ExRS model while the dotted curve is for
the single ∆(1232) resonance production according to the Rarita-Schwinger approach.
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Figure 6.13: Comparison of calculations with experimental data from ANL [62], BNL [54], BEBC (CERN) [17, 66],
FNAL [78], GGM (CERN) [71], SKAT (IHEP) [83], for the reaction νµp → µ−pπ+. The data and calculations are for
W < 1.4 GeV (top panel), W < 1.6 GeV (central panel), W < 2.0 GeV and with no cutoff (bottom panel). Solid
curves are for the ExRS model while the dotted curves are for the single ∆(1232) resonance production according to the
Rarita-Schwinger approach.
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Figure 6.14: Comparison of calculations with experimental data (the same as in Fig. 6.13) for the reaction νµp → µ−pπ+

The filled bands calculated with the ExRS model correspond to variations of MA from 0.7 to 1.2 GeV/c2, solid curves
are for the best global fit value MA = 1.09 GeV/c2. Single ∆(1232) contribution calculated within the Rarita-Schwinger
approach with the best fit value MA = 0.99 GeV/c2 is also shown by dashed curves.
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Figure 6.15: Comparison of calculations with experimental data from ANL [62], BNL [54], SKAT (IHEP) [83], for the
reaction νµn → µ−pπ0. The data and calculations are for W < 1.4 GeV (top panel), W < 1.6 GeV (central panel),
W < 2.0 GeV and with no cutoff (bottom panel). Solid and dashed curves are for the ExRS model with and without
nonresonance background contribution, respectively; dotted curves are for the single ∆(1232) resonance production.



6.4. RESONANCE PRODUCTION 115

0

0.1

0.2

0.3

10
-1

1 10 10
2

E
ν
 (GeV)

σ
 (

1
0

 -
3

8
 c

m
 2

)

ν
µ
 + n → µ

−
 + p + π

0

W < 1.4 GeV

ANL 82, H
2 

/
 
D

2

ExRS model

Best fit

0

0.1

0.2

0.3

0.4

10
-1

1 10 10
2

E
ν
 (GeV)

σ
 (

1
0

 -
3

8
 c

m
 2

)

ν
µ
 + n → µ

−
 + p + π

0

W < 1.6 GeV

ANL 82, H
2 

/
 
D

2

ExRS model

Best fit

0

0.1

0.2

0.3

0.4

0.5

0.6

10
-1

1 10 10
2

E
ν
 (GeV)

σ
 (

1
0

 -
3

8
 c

m
 2

)

ν
µ
 + n → µ

−
 + p + π

0

W < 2.0 GeV

ANL 82, H
2 

/
 
D

2 
, no W cut

BNL 86, D
2 

, no W cut

SKAT 89, CF
3 

Br, W < 2.0 GeV

ExRS model

Best fit

Figure 6.16: Comparison of calculations with experimental data (the same as in Fig. 6.15) for the reaction νµn → µ−pπ0.
The filled bands calculated with the ExRS model correspond to variations of MA from 0.7 to 1.2 GeV/c2, solid curves
are for the best global fit value MA = 1.09 GeV/c2.
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Figure 6.17: Comparison of calculations with experimental data from ANL [62], BNL [54], SKAT (IHEP) [83], for the
reaction νµn → µ−nπ+. The data and calculations are for W < 1.4 GeV (top panel), W < 1.6 GeV (central panel),
W < 2.0 GeV and with no cutoff (bottom panel). Solid and dashed curves are for the ExRS model with and without
nonresonance background contribution, respectively; dotted curves are for the single ∆(1232) resonance production.
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Figure 6.18: Comparison of calculations with experimental data (the same as in Fig. 6.17) for the reaction νµn → µ−nπ+.
The filled bands calculated with the ExRS model correspond to variations of MA from 0.7 to 1.2 GeV/c2, solid curves
are for the best global fit value MA = 1.09 GeV/c2.
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curves have the same meaning as in Fig. 6.15.
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Figure 6.21: Comparison of the calculations with the experimental data (the same as in Fig. 6.20) for the sum of cross
sections for the reactions νµn → µ−pπ0 and νµn → µ−nπ+. The band and curve have the same meaning as in Fig. 6.16.
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Figure 6.22: Comparison of the calculations with the experimental data (the same as in Fig. 6.20) for the reaction νµp →
µ+nπ0. The band and curve have the same meaning as in Fig. 6.16.
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Figure 6.23: Comparison of calculations with experimental data from GGM (CERN) [73], SKAT (IHEP) [83], BEBC
(CERN) [17], FNAL [80], for the reactions νµn → µ+nπ− and νµp → µ+pπ−. The data and calculations are for
W < 1.4 GeV (top panel) and W < 2.0 GeV (central panel) and W < 1.9 GeV and W < 2.0 GeV (bottom panel). Solid
and dashed curves are for the ExRS model with and without nonresonance background contribution, respectively; dotted
curves are for the single ∆(1232) resonance production.
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Figure 6.24: Comparison of calculations with experimental data (the same as in Fig. 6.23) for the reactions νµn →
µ+nπ− and νµp → µ+pπ−. The band and curve have the same meaning as in Fig. 6.16.
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Figure 6.25: Effect of lepton mass for the differential cross section ντp → τ−pπ+ at Eν = 5, 10, 20, 50 GeV and
W < 2 GeV. Dotted and dashed curves are, respectively, for the standard RS model with zero lepton and with the mass
included only into kinematics only; solid curves are for the extended RS model in which the τ lepton mass is included in
both kinematics and dynamics.
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Figure 6.26: The same as in Fig. 6.25 but for the reaction ντn → τ−nπ+.
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Figure 6.27: Contributions of different resonasnces to the double differential cross sections for the reaction ντp → τ−pπ+

at three neutrino energies and two scattering angles.



6.4. RESONANCE PRODUCTION 125

10
-6

10
-5

10
-4

10
-3

10

-2

10
-1

1

10

10
2

10
3

1 1.5 2 2.5 3 3.5 4 4.5 5

P
τ
 ( GeV )

d
 σ

 /  d
 P

τ
 d

 c
o
s

 θ
  
(  1

0
 −

3
8
c
m

 2
/  G

e
V

 )

ν
_

τ
 + n → τ

+
 + n + π

−

E
ν
 = 5 GeV, θ = 0˚

P33 (1232)

P33 (1600)

S31 (1620)

D33 (1700)

F35 (1905)

P31 (1910)

P33 (1920)

F37 (1950)

10
-6

10
-5

10
-4

10
-3

10

-2

10
-1

1

10

10
2

10
3

1 1.5 2 2.5 3 3.5 4 4.5 5

P
τ
 ( GeV )

d
 σ

 /  d
 P

τ
 d

 c
o
s

 θ
  
(  1

0
 −

3
8
c
m

 2
/  G

e
V

 )

ν
_

τ
 + n → τ

+
 + n + π

−

E
ν
 = 5 GeV, θ = 5˚

P33 (1232)

P33 (1600)

S31 (1620)

D33 (1700)

F35 (1905)

P31 (1910)

P33 (1920)

F37 (1950)

10
-6

10
-5

10

-4

10
-3

10
-2

10
-1

1

10

10
2

10
3

1 2 3 4 5 6 7

P
τ
 ( GeV )

d
 σ

 /  d
 P

τ
 d

 c
o
s

 θ
  
(  1

0
 −

3
8
c
m

 2
/  G

e
V

 )

ν
_

τ
 + n → τ

+
 + n + π

−

E
ν
 = 7 GeV, θ = 0˚

P33 (1232)

P33 (1600)

S31 (1620)

D33 (1700)

F35 (1905)

P31 (1910)

P33 (1920)

F37 (1950)

10
-6

10
-5

10

-4

10
-3

10
-2

10
-1

1

10

10
2

10
3

1 2 3 4 5 6 7

P
τ
 ( GeV )

d
 σ

 /  d
 P

τ
 d

 c
o
s

 θ
  
(  1

0
 −

3
8
c
m

 2
/  G

e
V

 )
ν
_

τ
 + n → τ

+
 + n + π

−

E
ν
 = 7 GeV, θ = 5˚

P33 (1232)

P33 (1600)

S31 (1620)

D33 (1700)

F35 (1905)

P31 (1910)

P33 (1920)

F37 (1950)

W > 2 GeV

10

-7

10
-6

10
-5

10

-4

10
-3

10
-2

10
-1

1

10

10
2

10
3

10
4

1 2 3 4 5 6 7 8 9 10

P
τ
 ( GeV )

d
 σ

 /  d
 P

τ
 d

 c
o
s

 θ
  
(  1

0
 −

3
8
c
m

 2
/  G

e
V

 )

ν
_

τ
 + n → τ

+
 + n + π

−

E
ν
 = 10 GeV, θ = 0˚

P33 (1232)

P33 (1600)

S31 (1620)

D33 (1700)

F35 (1905)

P31 (1910)

P33 (1920)

F37 (1950)

W > 2 GeV

10

-7

10
-6

10
-5

10

-4

10
-3

10
-2

10
-1

1

10

10
2

10
3

10
4

1 2 3 4 5 6 7 8 9 10

P
τ
 ( GeV )

d
 σ

 /  d
 P

τ
 d

 c
o
s

 θ
  
(  1

0
 −

3
8
c
m

 2
/  G

e
V

 )

ν
_

τ
 + n → τ

+
 + n + π

−

E
ν
 = 10 GeV, θ = 5˚

P33 (1232)

P33 (1600)

S31 (1620)

D33 (1700)

F35 (1905)

P31 (1910)

P33 (1920)

F37 (1950)

Figure 6.28: Contributions of different resonasnces to the double differential cross sections for the reaction ντn →
τ+nπ− at three neutrino energies and two scattering angles.
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Figure 6.29: Contributions of different resonasnces to the double differential cross sections for the reaction ντn → τ−pπ0

at three neutrino energies and two scattering angles.



6.4. RESONANCE PRODUCTION 127

10
-6

10
-5

10
-4

10
-3

10

-2

10
-1

1

10

10
2

10
3

1 1.5 2 2.5 3 3.5 4 4.5 5

P
τ
 ( GeV )

d
 σ

 /  d
 P

τ
 d

 c
o
s

 θ
  
(  1

0
 −

3
8
c
m

 2
/  G

e
V

 )

ν
_

τ
 + p → τ

+
 + n + π

0

E
ν
 = 5 GeV, θ = 0˚

∑ S i1

∑ P i1

∑ P i3

∑ D i3

∑ D i5

∑ F i5

∑ F i7

10
-6

10
-5

10

-4

10
-3

10
-2

10
-1

1

10

10
2

10
3

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

P
τ
 ( GeV )

d
 σ

 /  d
 P

τ
 d

 c
o
s

 θ
  
(  1

0
 −

3
8
c
m

 2
/  G

e
V

 )

ν
_

τ
 + p → τ

+
 + n + π

0

E
ν
 = 6 GeV, θ = 0˚

∑ S i1

∑ P i1

∑ P i3

∑ D i3

∑ D i5

∑ F i5

∑ F i7

10
-6

10
-5

10

-4

10
-3

10
-2

10
-1

1

10

10
2

10
3

1 2 3 4 5 6 7

P
τ
 ( GeV )

d
 σ

 /  d
 P

τ
 d

 c
o
s

 θ
  
(  1

0
 −

3
8
c
m

 2
/  G

e
V

 )

ν
_

τ
 + p → τ

+
 + n + π

0

E
ν
 = 7 GeV, θ = 0˚

∑ S i1

∑ P i1

∑ P i3

∑ D i3

∑ D i5

∑ F i5

∑ F i7

10
-6

10
-5

10

-4

10
-3

10
-2

10
-1

1

10

10
2

10
3

1 2 3 4 5 6 7

P
τ
 ( GeV )

d
 σ

 /  d
 P

τ
 d

 c
o
s

 θ
  
(  1

0
 −

3
8
c
m

 2
/  G

e
V

 )
ν
_

τ
 + p → τ

+
 + n + π

0

E
ν
 = 7 GeV, θ = 5˚

∑ S i1

∑ P i1

∑ P i3

∑ D i3

∑ D i5

∑ F i5

∑ F i7

W > 2 GeV

10

-7

10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

1

10

10
2

10
3

1 2 3 4 5 6 7 8 9 10

P
τ
 ( GeV )

d
 σ

 /  d
 P

τ
 d

 c
o
s

 θ
  
(  1

0
 −

3
8
c
m

 2
/  G

e
V

 )

ν
_

τ
 + p → τ

+
 + n + π

0

E
ν
 = 10 GeV, θ = 0˚

∑ S i1

∑ P i1

∑ P i3

∑ D i3

∑ D i5

∑ F i5

∑ F i7

W > 2 GeV

10

-7

10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

1

10

10
2

10
3

1 2 3 4 5 6 7 8 9 10

P
τ
 ( GeV )

d
 σ

 /  d
 P

τ
 d

 c
o
s

 θ
  
(  1

0
 −

3
8
c
m

 2
/  G

e
V

 )

ν
_

τ
 + p → τ

+
 + n + π

0

E
ν
 = 10 GeV, θ = 5˚

∑ S i1

∑ P i1

∑ P i3

∑ D i3

∑ D i5

∑ F i5

∑ F i7

Figure 6.30: Contributions of different resonasnces to the double differential cross sections for the reaction ντp → τ+nπ0

at three neutrino energies and two scattering angles.
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Figure 6.31: Contributions of different resonasnces to the double differential cross sections for the reaction ντn → τ−nπ+

at three neutrino energies and two scattering angles.
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Figure 6.32: Contributions of different resonasnces to the double differential cross sections for the reaction ντp → τ+pπ−

at three neutrino energies and two scattering angles.
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Figure 6.33: Comparison of the double differential cross sections for different ντ induced CC1π reactions at three energies
and two scattering angles. Also shown are the cross sections for ∆++(1232) production.
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Figure 6.34: Comparison of the double differential cross sections for different ντ induced CC1π reactions at three energies
and two scattering angles. Also shown are the cross sections for ∆−(1232) production.
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Figure 6.35: Comparison of the degree of polarization of τ− lepton for different ντ induced CC1π reactions at three
energies and two scattering angles. Also shown are the τ− degrees of polarization for ∆++(1232) production.
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Figure 6.36: Comparison of the degree of polarization of τ+ lepton for different ντ induced CC1π reactions at three
energies and two scattering angles. Also shown are the τ+ degrees of polarization for ∆−(1232) production.
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Figure 6.37: Comparison of the longitudinal polarization of τ− lepton for different ντ induced CC1π reactions at three
energies and two scattering angles. Also shown are the longitudinal polarizations of τ− for ∆++(1232) production.



6.4. RESONANCE PRODUCTION 135

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

1.5 2 2.5 3 3.5 4 4.5 5

P
τ
 ( GeV )

L
o
n
g
it
u
d
in

a
l 
P

o
la

ri
z
a
ti
o
n

E
ν
 = 5 GeV, θ = 0˚

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

1.5 2 2.5 3 3.5 4 4.5 5

P
τ
 ( GeV )

L
o
n
g
it
u
d
in

a
l 
P

o
la

ri
z
a
ti
o
n

E
ν
 = 5 GeV, θ = 0˚

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

1 2 3 4 5 6 7

P
τ
 ( GeV )

L
o
n
g
it
u
d
in

a
l 
P

o
la

ri
z
a
ti
o
n

E
ν
 = 7 GeV, θ = 0˚

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

1 2 3 4 5 6 7

P
τ
 ( GeV )

L
o
n
g
it
u
d
in

a
l 
P

o
la

ri
z
a
ti
o
n

E
ν
 = 7 GeV, θ = 5˚

W > 2 GeV

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

1 2 3 4 5 6 7 8 9 10

P
τ
 ( GeV )

L
o
n
g
it
u
d
in

a
l 
P

o
la

ri
z
a
ti
o
n

E
ν
 = 10 GeV, θ = 0˚

W > 2 GeV

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

1 2 3 4 5 6 7 8 9 10

P
τ
 ( GeV )

L
o
n
g
it
u
d
in

a
l 
P

o
la

ri
z
a
ti
o
n

E
ν
 = 10 GeV, θ = 5˚

Figure 6.38: Comparison of the longitudinal polarization of τ+ lepton for different ντ induced CC1π reactions at three
energies and two scattering angles. Also shown are the longitudinal polarizations of τ+ for ∆−(1232) production.
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Figure 6.39: Comparison of the perpendicular polarization of τ− lepton for different ντ induced CC1π reactions at three
energies and two scattering angles. Also shown are the perpendicular polarizations of τ− for ∆++(1232) production.
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Figure 6.40: Comparison of the perpendicular polarization of τ+ lepton for different ντ induced CC1π reactions at three
energies and two scattering angles. Also shown are the perpendicular polarizations of τ+ for ∆−(1232) production.
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6.5 Deep inelastic scattering

6.5.1 Generic formulas

dxdy =

∣∣∣∣ ∂ (x, y)

∂ (cos θ,Eℓ)

∣∣∣∣ dEℓd cos θ =
PℓdEℓd cos θ

MyEν
,

d2σCC

dxdy
=

G2
FMy

2π
LαβWαβ =

G2
FMEν

π

5∑
i=1

AiFi,

A1 = y

(
xy +

m2

2MEν

)
,

A2 = 1− y − M

2Eν
xy − m2

4E2
ν

,

A3 = ±y

[
x
(
1− y

2

)
− m2

4MEν

]
,

A4 =
m2

2MEν

(
xy +

m2

2MEν

)
,

A5 = − m2

2MEν
.

The structure functions W (DIS)
i

(
x,Q2

)
are ........
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6.5.2 Altarelli–Martinelli relation
The Altarelli–Martinelli relation [193] reads

6.5.3 Charm production, target mass correction, etc.
In this section we follow the approach by Kretzer and Reno [194–198].

The charm production contribution to the cross section is represented by the structure functions F c
i . Kretzer and

Reno [194] introduce “theoretical structure functions” (i = 1, . . . , 5)

Fc
i

(
x,Q2

)
= (1− δi4)s

′(η̄, µ2) +
αs(µ

2)

2π
Ic
i

(
x,Q2

)
(6.45)

for scattering off the CKM-rotated weak eigenstate

s′ = |Vs,c|2 s+ |Vd,c|2 d (6.46)

and its QCD evolution partner
g′ ≡

(
|Vs,c|2 + |Vd,c|2

)
g. (6.47)

Here

Ic
i

(
x,Q2

)
=

∫ 1

η̄

dξ

ξ

[
Hq

i

(
η̄

ξ
, κ, λ

)
s′
(
ξ, µ2

)
+Hg

i

(
η̄

ξ
, κ, λ

)
g′
(
ξ, µ2

)]
(6.48a)

≡
∫ 1

η̄

dξ

ξ

[
Hq

i (ξ, κ, λ) s
′
(
η̄

ξ
, µ2

)
+Hg

i (ξ, κ, λ) g′
(
η̄

ξ
, µ2

)]
, (6.48b)

η̄ = η

(
1 +

m2
c

Q2

)
=

η

λ
, λ =

(
1 +

m2
c

Q2

)−1

, κ =
Q2

µ2
,

η ≡ xN =
Q2

2M2x

(√
1 +

4M2x2

Q2
− 1

)
=

2x

1 +
√

1 + 4M2x2/Q2

is the Nachtmann variable and µ is the factorization scale.
Equation (6.48b) (which seems to be more convenient for numerical integration) has been obtained from Eq. (6.48a)

by the change variable of integration ξ → η̄/ξ.

Symbol []+.

According to Ref. [199], for any h(x), the corresponding distribution [h(x)]+ is defined by its convolutions with the
arbitrary functions f(x)∫ 1

x

dξ

ξ
f(ξ)

[
h

(
x

ξ

)]
+

=

∫ 1

x

dξ

ξ

[
f(ξ)− x

ξ
f(x)

]
h

(
x

ξ

)
− f(x)

∫ x

0

dξh(ξ), (6.49)

or, equivalently, ∫ 1

x

dξ

ξ
f

(
x

ξ

)
[h(ξ)]+ =

∫ 1

x

dξ

ξ
f

(
x

ξ

)
h(ξ)− f(x)

∫ 1

0

dξh(ξ). (6.50)

Functions Hq
i .

Hq
i=1,2,3,5 (ξ, κ, λ) = P (0)

qq (ξ) ln
κ

λ
+ hq

i (ξ, λ),

Hq
i=4(ξ, κ, λ) = Hq

4 (ξ, λ) =
4λ(1− ξ)ξ [1 + (1− 2λ)ξ]

3(1− λξ)2
,

P (0)
qq (ξ) =

4

3

[
1 + ξ2

1− ξ

]
+

,

hq
i (ξ, λ) =

4

3

{
hq +Aiδ(1− ξ) +B1,i

[
1

1− ξ

]
+

+B2,i

[
1

1− λξ

]
+

+B3,i

[
1− ξ

(1− λξ)2

]
+

}
,

hq = −
(
4 +

1

2λ
+

π2

3
+

1 + 3λ

2λ
KA

)
δ(1− ξ)− (1 + ξ2) ln ξ

1− ξ
+ (1 + ξ2)

[
2 ln(1− ξ)− ln(1− λξ)

1− ξ

]
+

,

KA =

(
1

λ
− 1

)
ln(1− λ).
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Functions Hg
i .

Hg

i= 1,2,5
3

(ξ, κ, λ) = P (0)
qg (ξ)

(
±Lλ + L̃λ + ln

κ

λ

)
+ h̃g

i (ξ, λ),

Hg
i=4(ξ, κ, λ) = Hg

4 (ξ, λ) = 2λξ [1− ξ − (1− λ)ξ Lλ] ,

P (0)
qg (ξ) =

1

2
− ξ(1− ξ),

h̃g
i (ξ, λ) = C1,iξ(1− ξ) + C2,i + (1− λ)ξLλ (C3,i + λξC4,i) ,

Lλ = ln

[
1− λξ

(1− λ)ξ

]
,

L̃λ = ln

[
(1− ξ)2

ξ(1− λξ)

]
.

Light quark limit.

Let’s consider the limit λ → 1 with the simplest choice µ2 = Q2.

Hq
i (ξ, κ, λ) → C

(1)
F,i(ξ),

Hg
i (ξ, κ, λ) → C

(1)
F,i(ξ) = lim

λ→1

{
Hg

i (ξ, κ, λ) + ζi (1− δi4)P
(0)
qg (ξ) ln[κ(1− λ)]

}
κ=1

,

where ζi ̸=3 = 1 and ζ3 = −1. The limits can be derived straightforwardly:

C
(1)
F,1(ξ) =

4

3
hq
1 + 2(1− 2ξ)

[
1

1− ξ

]
+

,

C
(1)
F,2(ξ) =

4

3
hq
1 + 2

[
1− 2

3
(1 + 2ξ)

] [
1

1− ξ

]
+

,

C
(1)
F,3(ξ) =

4

3
hq
1 +

2

3
[1 + 2ξ(1 + ξ)]

[
1

1− ξ

]
+

,

C
(1)
F,4(ξ) =

4

3
ξ,

C
(1)
F,5(ξ) =

4

3
hq
1 + 2

[
1− 2

3
(1 + 2ξ)

] [
1

1− ξ

]
+

;

hq
1 = −

(
9

2
+

π2

3

)
δ(1− ξ)− (1 + ξ2) ln ξ

1− ξ
+ (1 + ξ2)

[
ln(1− ξ)

1− ξ

]
+

,

C
(1)
G,1(ξ) = [1− 2ξ(1− ξ)] ln

(
1− ξ

ξ

)
+ 4ξ(1− ξ)− 1,

C
(1)
G,2(ξ) = [1− 2ξ(1− ξ)] ln

(
1− ξ

ξ

)
+ 8ξ(1− ξ)− 1,

C
(1)
G,3(ξ) = 0,

C
(1)
G,4(ξ) = 2ξ(1− ξ),

C
(1)
G,5(ξ) = [1− 2ξ(1− ξ)] ln

(
1− ξ

ξ

)
+ 8ξ(1− ξ)− 1.

6.5.4 Numerical results
Comments to Table 6.3:

1. Barish et al., ANL 1979: “In this paper we present results < . . . > from an experiment using < . . . > bubble
chamber filled with hydrogen and deuterium.” “The σN total cross section, defined as the mean of the νn and νp
cross sections, is given in Fig. 29(a) < . . . > σT (10

−38cm2/nucleon)”

2. Barish et al., ANL 1977: “Fig. 1(c) Total νN cross section measured as the mean for νn and νp cross sections.
< . . . > σT (10

−38cm2/nucleon)”.

3. Baker et al., BNL 1982: “The resulting nucleon total cross section σT (νN) = 1/2[σT (νn) + σT (νp)] is plotted
as function of energy < . . . >”
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Table 6.3: Explanation of signs for DIS experimental data. F and R – tick ✓ indicates that the total cross sections have
been corrected for Fermi motion and for radiative corrections. I – ticks ✓ or ✓ indicate that the total cross sections have
been corrected for an isoscalar nucleus or isoscalar nucleon (that is neutron or proton excess in the matter of detector),
irrespectively. The ✗ sign indicates that there is unambiguous information in the cited document that this effect has not
been taken into account. The sign ? means there is no information in the cited document.

Experiment Year Refs. Detector F R I
working medium

Barish et al., ANL 1979 [61] H2, D2 ? ? ✓
Barish et al., ANL 1977 [147] H2, D2 ? ? ✓
Baker et al., BNL 1982 [152] H2, D2 ? ? ✓
Baltay et al., BNL 1980 [150] Ne-H2 ? ? ✓
Naples, NuTeV 2003 [182] Fe ? ✓ ✓
Taylor et al., FNAL 1983 [167] Ne-H2 ? ? ✓
Baker et al., FNAL 1983 [166] Ne-H2 ? ? ✓
Kitagaki et al., FNAL 1982 [164] D2 ? ? ✓
Barish et al., CITF 1975 [158] Fe ? ? ✓
Benvenuti et al., HPWF 1974 [156] Fe ? ? ✓
Barish et al., CITFR 1977 [159] D2 ? ? ✓
Seligman, CCFR 1997 [181] Fe ? ? ?
Auchincloss et al., CCFR 1990 [169] Fe ? ? ✓
MacFarlane et al., CCFRR 1984 [168] Fe ? ? ?
Barish et al., CCFR 1981 [163] Fe ? ✓ ✓
Aderholz et al., BEBC 1986 [135] Ne-H2 ? ? ✓
Parker et al., BEBC 1984 [132] Ne-H2 ? ? ✓
Allasia et al., BEBC 1984 [133] Be ✓ ✓ ✓
Bosetti et al., BEBC 1982 [131] Ne-H2 ? ? ✓
Colley et al., BEBC 1979 [130] Ne-H2 ? ? ✓
Groot et al., CDHS 1979 [123] Fe ? ? ?
Berge et al., CDHSW 1987 [127] Fe ? ? ✓
Abramowicz et al., CDHS 1983 [124] Fe ? ? ?
Allaby et al., CHARM 1988 [146] Fe ? ? ✓
Morfin et al., GGM 1981 [143] C3H8-CF3Br ✓ ✗ ✓
Ciampolillo et al., GGM 1979 [142] C3H8-CF3Br ? ? ✓
Erriquez et al., GGM 1979 [141] C3H8-CF3Br ? ? ✓
Eichten et al., GGM 1973 [136] C3H8-CF3Br ? ? ✓
Vovenko et al., IHEP-ITEP 1979 [174] Fe ? ? ✓
Asratyan et al., IHEP-ITEP 1978 [170] Fe ? ? ✓
Anikeev et al., IHEP-JINR 1996 [178] Al ? ? ✓
Asratyan et al., IHEP-ITEP 1984 [33] Ne-H2 ✓ ? ✓
Baranov et al., SKAT 1979 [173] CF3Br ? ? ✓

4. Baltay et al., BNL 1980: “The bubble chamber chamber was filled with heavy Ne-N2 mixture (62 at % Ne) <
. . . >” “The charged current cross sections per nucleon are < . . . >”.

5. Naples, NuTeV 2003: “Corrected to isoscalar target. Iron(N − Z)/A = 0.0567” “Radiative corrections applied
before F2 fits performed D. Yu. Bardin and V. A. Dokuchaeva, JINR-E2-86-260 (1986)”

6. Taylor et al., FNAL 1983: “The present result < . . . > for an isoscalar target”. “The 15-ft bubble chamber filled
with a Ne/H2 mixture < . . . >”

7. Baker et al., FNAL 1983: “The 15-ft bubble chamber was filled with a 59% atomic-neon-hydrogen mixture which
is almost an isoscalar target, with a 3.4% proton excess.” “To express the cross section slope for an isoscalar target,
one has to correct for the slight proton excess of the neon-hydrogen mixture. With use of 2σνp = σνn, the final
result < . . . > was obtained.”

8. Kitagaki et al., FNAL 1982: “We have studied the total cross section for charged-current reactions in hight-energy
neutrino-deuterium interactions.” “The total charged-current cross section per nucleon on isoscalar target is calcu-
lated by < . . . >. The factor of 2, representing the number of nucleons in the deuterium nucleus, is included to
ensure that σt is a cross section per nucleon.”

9. Barish et al., CITF 1975: “The total cross sections data for νµ(νµ) incident on iron nuclei were obtained < . . . >”.
“The total neutrino cross section per nucleon was obtained from the relation σtot = T/FBϵ where T is the total
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number of observed interacting neutrinos with measured final muon energy, ϵ is the efficiency for the muon to
traverse the magnet, F is the total number of incident neutrinos, and B = 3.087× 1027 nucleons/cm2.”

10. Benvenuti et al., HPWF 1974: “Fig. 3(a) < . . . > σν × 1038 (cm2/nucleon)”.

11. Barish et al., CITFR 1977: “Fig. 2 < . . . > σν (cm2/nucleon)”.

12. Seligman, CCFR 1997:

13. Auchincloss et al., CCFR 1990: “The quantity αν at fixed Eν may be written in experimental terms as σν/Eν =
Neν/(ρNEνΦν), where Neν represents the fully corrected event sample, ρN the density of the target in nucleons
per cm−2 < . . . >”. “Finally, the cross section was corrected for the fact that the mostly iron target contained an
excess of neutrons over protons. < . . . > The final cross section results were multiplied by 0.9755 and 1.0212 fora
neutrinos and antineutrinos, respectively < . . . > to give the cross section for an isoscalar target.”

14. MacFarlane et al., CCFRR 1984:

15. Barish et al., CCFR 1981: “< . . . > parametrization was used to convert our results from cross-section/nucleon
on an iron target to cross-section/nucleon on a pure isoscalar target < . . . >”. “The analysis for both CDHS and this
experiment < . . . > corrects for neutron excess in iron, strange sea quarks with 2s/(u + d) = 0.35, and radiative
corrections”.

16. Aderholz et al., BEBC 1986: “In table 2 the values for the cross section ratios from this analysis are compared
with similar measurements from other experiments; all values shown have been corrected for the non-isoscalarity
of the target”.

17. Parker et al., BEBC 1984: “Applying the 8.4% to the Ne sample, after making a small correction for non-isoscalarity
of the target < . . . >”. “Our data agree better with the aluminium and deuterium results than with the total absence
of nuclear effects, although the latter is not excluded. However it seems that in our data any dependent nuclear
correction factors are about the same size as the statistical errors, while the overall correction is small.”

18. Allasia et al., BEBC 1984: “Table 1 summarizes the average values for the corrections applied. < . . . > radiative
corrections 1.010(ν) 1.009(ν)< . . . > The first three corrections were applied for each event individually”. “Deep
inelastic events were generated by means of a Monte Carlo program < . . . > Changes in the generated particle
momenta were introduced to account for the Fermi motion of the target”.

19. Bosetti et al., BEBC 1982: “The observed event rates shown in table 1 had to be corrected for: < . . . > (e) The
7.4% proton excess in the Ne/H2 mixture. This correction (assuming σνn/σνp = σνp/σνn = 2) is done so that the
cross section data refer to an isoscalar target nucleus”. “< . . . > total cross sections for charged-current interactions
of neutrinos and antineutrinos with an isoscalar target nucleus have been measured < . . . >”

20. Colley et al., BEBC 1979: “BEBC was filled with a 74 mole % NE-H2 mixure < . . . >” “Fig. 4. Neutrino and
antineutrino interaction cross sections, divided by the mean value of energy, calculated for an isoscalar target.”
“Table 1. Cross sections, in units of 10−38 cm2/GeV/nucleon, are corrected for an isoscalar target.”

21. Groot et al., CDHS 1979:

22. Berge et al., CDHSW 1987: “Assuming σ/E to be constant, the values corrected for non-isoscalarity are < . . . >
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Figure 6.42: CC νµN and νµN total cross sections calculated with WRES
cut = 1.2 and 1.4 GeV.
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Figure 6.43: CC νµN and νµN total cross sections calculated with WRES
cut = 1.6 and 1.8 GeV.
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Figure 6.44: CC νµN and νµN total cross sections calculated with WRES
cut = 2.0 GeV.
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Figure 6.45: CC νµN and νµN total cross sections calculated with the best fit walues of WRES
cut and WDIS

cut .



Chapter 7

Leptonic τ decay

7.1 τℓ3 decay kinematics

vτ <
∗
vmax, −1 ≤ cos θ ≤ 1, mµ ≤ E′ ≤ E′ ≤ E′+,

Eτ < E0
τ , 0 ≤ P ′ ≤ P ′ ≤ P ′+;

vτ >
∗
vmax, cos θmax ≤ cos θ ≤ 1, E′− ≤ E′ ≤ E′+,

Eτ > E0
τ , max(0, P ′−) ≤ P ′ ≤ P ′+.

Here
∗
v max is the maximum muon velocity in τ lepton rest frame; E0

τ is the boundary τ lepton energy approximate
15 GeV; θmax is the extreme scattering angle of muon, at energy of our interest cos θmax is closely approximated from 1
and muon is scattered only forward.

E0
τ =

m2
τ +m2

µ

2mµ
, cos θmax =

EτE
′−

∗
Emaxmµ

PτP ′ ≈ 1−
m2

τ +m2
µ

2PτP ′ .

E±
τ =

(
1 +

1

r

)
E′

2
∓
(
1− 1

r

)
P ′

2
, E′± =

1 + r

2
Eτ ± 1− r

2
Pτ ,

P±
τ =

(
1− 1

r

)
E′

2
∓
(
1 +

1

r

)
P ′

2
, P ′± =

1− r

2
Eτ ± 1 + r

2
Pτ ,

r = m2
µ/m

2
τ .

7.2 Energy spectra of secondaries

The differential probability of τµ3 decay is

dΓ

dE′ =
G2

F

96π4

P ′

Eτ
d cos θdϕ

{
k2 (pτp

′) + 2 (pτk) (p
′k)−mτ

[
k2 (p′sτ ) + 2 (p′k) (sτk)

]}
,

where GF is the Fermi constant, dϕ is the phase size, pτ , p′ and k are 4-momenta of τ -lepton, µ and neutrino, sτ is the
4-vector of τ polarization. The double differential probability of decay is

dΓ =
G2

F

96π3

dE′ds

EτPτ

{(
m2

τ −m2
µ

)2
+
(
m2

τ +m2
µ

)
s− 2s2

− PL

2vτ

[
m4

µ −m4
τ + 2m2

τ

(
m2

τ −m2
µ

) E′

Eτ
+

(
m2

µ + 3m2
τ − 4m2

τ

E′

Eτ

)
s− 2s2

]}
,

where s = (pτ − pµ)
2, vτ is the τ -lepton velocity, PL is the longitudinal component of τ lepton polarization vector.

⋆ In the region {−1 ≤ cos θ′ ≤ 1, mµ ≤ E′ ≤ E′−, 0 ≤ P ′ ≤ P ′−}, the muon energy spectrum is

dΓ1

dE′ =
G2

F

36π3

P ′

Eτ

{
9
(
m2

τ +m2
µ

)
EτE

′ − 12E2
τE

′2 − 4P 2
τ P

′2 − 6m2
τm

2
µ

− PL

vτ

[
3
(
m2

τ + 3m2
µ

)
EτE

′ − 12E2
τE

′2 − 4E2
τP

′2]} .
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⋆ In the region {cos θmax ≤ cos θ ≤ 1, E′− ≤ E′ ≤ E′+, max(0, P ′−) ≤ P ′ ≤ P ′+}, the muon spectrum is

dΓ2

dE′ =
G2

F

36π3

1

EτPτ

{
3

8

(
m4

τ −m4
µ

) (
m2

τ −m2
µ

)
− 1

16

(
m2

τ +m2
µ

)3
+ 3m2

τm
2
µ (EτE

′ − PτP
′)

− 9

4

(
m2

τ +m2
µ

)
(EτE

′ − PτP
′)
2
+ 2 (EτE

′ − PτP
′)
3

−
η
∥
τ±

vτ

[
1

16

(
m2

τ +m2
µ

)2 (
5m2

µ −m2
τ

)
− 3

4

(
m2

τ + 3m2
µ

)
(EτE

′ − PτP
′)
2

+ 2 (EτE
′ − PτP

′)
3 − 3

2
m2

τm
2
µ

(
m2

τ +m2
µ

) E′

Eτ

+
3

2
m2

τ

(
m2

τ + 3m2
µ

)
(EτE

′ − PτP
′)

E′

Eτ
− 3m2

τ (EτE
′ − PτP

′)
2 E′

Eτ

]}
.

χ = η +
r

η
, η =

E′ + P ′

Eτ + Pτ
, ξ =

Eτ + Pτ

Eτ − Pτ
,

EτE
′ − PτP

′ =
m2

τ

2
χ,

E′

Eτ
=

η2ξ + r

η (ξ + 1)
, r ≤ η ≤ 1.

In thus terms kinematic bounds are

η0 ≤ η ≤ η− : mµ ≤ E′ ≤ E′−, 0 ≤ P ′ ≤ P ′−,
η− ≤ η ≤ η+ : E′− ≤ E′ ≤ E′+, P ′− ≤ P ′ ≤ P ′+,
η̃− ≤ η ≤ η+ : E′− ≤ E′ ≤ E′+, max(0, P ′−) ≤ P ′ ≤ P ′+.

η0 =
mµ

Eτ + Pτ
, η− =

1

ξ
, η+ = 1, η̃− = r.

For detectors with high energy threshold of muon registration muon decay spectrum is only second region spectrum and
it is convenient to write

1

Γ

dΓ2

dE′ =
1

3gPτ

{
5
(
1 + r3

)
− 9r (1 + r) + 24rχ− 9 (1 + r)χ2 + 4χ3

−
η
∥
τ±

vτ

[
(5r − 1) (1 + r)2 − 3 (1 + 3r)χ2 + 4χ3 − 12

η2ξ + r

η (ξ + 1)

[
2r (1 + r)− (1 + 3r)χ+ χ2

] ]}
.

As is well known, the terms proportional to η
∥
τ not make contribution to full width. The full width of τµ3 with non zero

lepton mass decay is

Γ =
G2

F

192π3

m6
τ

Eτ

[(
1− r2

) (
1− 8r + r2

)
− 12r2 ln r

]
=

G2
F

192π3

m6
τ

Eτ
g.

1

Γ

dΓ

dE′ =
1

Γ

(
dΓ1

dE′ +
dΓ2

dE′

)
=

16

3m6
τg

(
P ′
µ

˜dΓ1

dE′ +
1

Pτ

˜dΓ2

dE′

)
.

For further calculation of the neutrino regeneration the neutrino spectral functions in τµ3 decay are essential. All
neutrino spectral functions are depended of dimensionless expression

η =
2Eν

Eτ + Pτ
,

Eν

Eτ
=

η

2
(1 + β) ,

t− = m2
τ (1− ηξ) , tmin = m2

µ, t+ = m2
τ (1− η) .

dΓ

dEν
=

G2
F

96π3

dt

EτPτ

{
m2

τ (1 + 3r) t− 2t2 +
m6

τ

t
r2 (3− r)−

m4
τm

4
µ

t2
(3 + r) +

2m4
τm

6
µ

t3
+m4

τ (1− 3r)

−
η
∥
τ±

vτ

{
m2

τ

(
3− 4

Eν

Eτ
+ 3r

)
t− 2t2 − m6

τ

t
r2 (3 + r) +

m4
τm

4
µ

t2

[
3

(
1− 2

Eν

Eτ

)
+ r

(
3− 2

Eν

Eτ

)]
−

2m4
τm

6
µ

t3

(
1− 2

Eν

Eτ

)
−m4

τ (1 + 3r)

(
1− 2

Eν

Eτ

)}}
.
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⋆ In the region {−1 ≤ cos θν ≤ 1, t− ≤ t ≤ t+, 0 ≤ Eν ≤ E−
ν }, the neutrino spectral function is

Fν =
Pτ

Γ

dΓ

dEν
=

1

3g

{
9
(
ξ2 − 1

)
η2 − 4

(
ξ3 − 1

)
η3 − 9r

(
ξ2 − 1

)
η2 − 18r2 (ξ − 1)

η

(1− η) (1− ξη)

+ 6r3 (ξ − 1)
η
(
1− ξη2

)
(1− η)

2
(1− ξη)

2 + 6r2 (3− r) ln
1− η

1− ξη
−

η
∥
τ±

vτ

[
3
(ξ − 1)

3

ξ + 1
η2 − 4 (ξ − 1)

3
η3 − 9r

(ξ − 1)
3

ξ + 1
η2

+ 18r2 (ξ − 1)
η

(1− η) (1− ξη)

(
1− 2ξ

ξ + 1
η

)
+ 6r3 (ξ − 1)

η

(1− η)
2
(1− ξη)

2

[
1− 2ξη + 3ξη2 − 2

η
(
ξ2η2 + 1

)
y + 1

]
− 6r2 (3 + r) ln

1− η

1− ξη

]}
,

⋆ In the region {cos θmax
ν ≤ cos θν ≤ 1, tmin ≤ t ≤ t+, E−

ν ≤ Eν ≤ E+
ν }, the neutrino spectral function is

Fν =
Pτ

Γ

dΓ

dEν
=

1

3g

{
5− 9η2 + 4η3 − 9r

(
3− η2

)
+ 9r2

3− η

1− η
− r3

5− 4η + 5η2

(1− η)
2 + 6r2 (3− r) ln

1− η

r

−
η
∥
τ±

vτ

[
3
3ξ − 1

1 + ξ
η2 − 4

2ξ − 1

1 + ξ
η3 − 1 + 9r

(
1− 3ξ − 1

ξ + 1
η2
)
+ 9r2

(
3− 2

1− η
+

4ξ

1 + ξ

η2

1− η

)
− r3

[
5 +

12

(1− η)
2 − 18

η

(1− η)
2 +

12ξ

1 + ξ

η2

(1− η)
2

]
− 6r2 (3 + r) ln

1− η

r

]}
.

u− = m2
τ (1− ξη) , umin = m2

µ, u+ = m2
τ (1− η) .

dΓ

dEν
=

G2
F

16π3

du

EτPτ

{
m2

τ (1 + 2r)u− u2 +
m2

τm
4
µ

4
−m4

τr (2 + r)

−
η
∥
τ±

vτ

[
m2

τ

(
1 + 2r − 2

Eν

Eτ

)
u− u2 +

m2
τm

4
µ

u

(
1− 2

Eν

Eτ

)
−m4

τr

(
2 + r − 4

Eν

Eτ

)]}
.

⋆ In the region {−1 ≤ cos θν ≤ 1, umin ≤ u ≤ u+, 0 ≤ Eν ≤ E−
ν , 0 ≤ η ≤ η−}, the antineutrino spectral function

is

Fν =
Pτ

Γ

dΓ

dEν
=

2

g

{
3η2

(
ξ2 − 1

)
− 2η3

(
ξ3 − 1

)
− 6rη2

(
ξ2 − 1

)
− 6r2

[
η (ξ − 1)− ln

1− η

1− ξη

]

−
η
∥
τ±

vτ

[
3
(ξ − 1)

3

ξ + 1
η2 − 2 (ξ − 1)

3
η3 − 6r

(ξ − 1)
3

ξ + 1
η2 − 6r2

[
(ξ − 1) η −

(
1− 2ξ

ξ + 1
η

)
ln

1− η

1− ξη

] ]}
.

⋆ In the region {cos θmax
ν ≤ cos θν ≤ 1, umin ≤ u ≤ u+, E−

ν ≤ Eν ≤ E+
ν , η− ≤ η ≤ η+}, the antineutrino spectral

function is

Fν =
Pτ

Γ

dΓ2

dEν
=

2

g

{
1− 3η2 + 2η3 − 6r

(
1− η2

)
+ 3r2

(
1 + 2η + 2 ln

1− η

r

)
+ 2r3

−
η
∥
τ±

vτ

[
1− 6

ξη

ξ + 1
+ 3η2

3ξ − 1

ξ + 1
− 2η3

2ξ − 1

ξ + 1
− 6r

(
1− 4ξη

ξ + 1
+

3ξ − 1

ξ + 1
η2
)

+ 3r2
[
1− 2

2ξ − 1

ξ + 1
η + 2

(
1− 2ξη

ξ + 1

)
ln

1− η

r

]
+ 2r3

]}
.
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Appendix A. Some details of calculation of the polarization density matrix by the HMY ap-
proach [223]

In this Appendix, we collect useful details of calculation of the polarization density matrix by the noncovariant method
suggested by Hagiwara, Mawatari and Yokoya [223] (“HMY approach”).

It is convenient to use the lab. frame whose z axis is directed along the neutrino momentum k and the (x, z) plane
coincides with the scattering plane. In this frame, the particle 4-momenta are

k = (Eν , 0, 0, Eν) ,

p = (M, 0, 0, 0) ,

k′ = (Eℓ, Pℓ sin θ, 0, Pℓ cos θ) .

In order to simplify formulas, we denote C = cos (θ/2) and S = sin (θ/2). Then

CS =
sin θ

2
, C2 =

1 + cos θ

2
=

a+
2
, S2 =

1− cos θ

2
=

a−
2
, C2 − S2 = cos θ.

Let aα and bβ be the components of some 4-vectors. Then

Lαβaαbβ = L00a0b0 + L01a0b1 + L02a0b2 + L03a0b3+
L10a1b0 + L11a1b1 + L12a1b2 + L13a1b3+
L20a2b0 + L21a2b1 + L22a2b2 + L23a2b3+
L30a3b0 + L31a3b1 + L32a3b2 + L33a0b3 ,

The general form of the hadronic tensor is

Wαβ =− gαβW1 +
pα pβ
M2

W2 −
i ϵαβγδ p

γ qδ

2M2
W3

+
qα qβ
M2

W4 +
pα qβ + qα pβ

2M2
W5 + i

pα qβ − qα pβ
2M2

W6 .

Therefore, taking into account the identities

L00 = L03 = L30 = L33, L11 = L22, L10 = L13, L01 = L31, L02 = L32,

we have to calculate the following convolutions

Lαβgαβ = −2L11 ,

Lαβpα pβ = M2L00 ,

Lαβϵαβγδ p
γ qδ = M

[
q3
(
L12 − L21

)
+ q1

(
L23 − L32

)]
,

Lαβqα qβ = (q0 + q3)
[
(q0 + q3)L

00 + q1L
10
]
+ q1

[
(q0 + q3)L

01 + q1L
11
]
,

Lαβ (pα qβ + qα pβ) = M
[
2 (q0 + q3)L

00 + q1
(
L01 + L10

)]
,

Lαβ (pα qβ − qα pβ) = Mq1
(
L01 − L10

)
.

All these convolutions are collected in Table 1. The upper and lower signs in that table refer to neutrino and antineutrino
tensor, respectively; and a± = 1± cos θ.
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Table 1: Structures Lαβ
λλ′Aαβ involved into the convolution of leptonic and hadronic tensors.

Aαβ ++ +− −+ −−

2Eν (Eℓ ∓ Pℓ) 2Eνm
sin θ

2
2Eνm

sin θ

2
2Eν (Eℓ ± Pℓ)

−gαβ a± ∓2 ∓2 a∓

pα pβ
M2

a∓
2

±1 ±1
a±
2

−i
ϵαβγδ p

γ qδ

2M2
±Eν ∓ Pℓ

2M
a± −Eν

M
−Eν

M
±Eν ± Pℓ

2M
a∓

qα qβ
M2

(Eℓ ± Pℓ)
2

2M2
a∓ ±m2

M2
±m2

M2

(Eℓ ∓ Pℓ)
2

2M2
a±

pα qβ + qα pβ
2M2

−Eℓ ± Pℓ

2M
a∓ ∓Eℓ

M
∓Eℓ

M
−Eℓ ∓ Pℓ

2M
a±

−i
pα qβ − qα pβ

2M2
0 +i

Pℓ

M
−i

Pℓ

M
0

For calculations, we used the explicit form of the leptonic currents given in by Hagiwara et al. [223]. According to

Ref. [223], the leptonic tensor for ℓ− production is Lαβ
λλ′ = jαλ

∗
jβλ′ , where

jα+ =
√
2Eν (Eℓ − Pℓ) ( S ,− C , iC , S) ,

∗
jα+ =

√
2Eν (Eℓ − Pℓ) ( S ,− C ,−iC , S) ,

jα− =
√
2Eν (Eℓ + Pℓ) ( C , S ,−iS , C) ,

∗
jα− =

√
2Eν (Eℓ + Pℓ) ( C , S , iS , C) .

Lαβ
++ = 2Eν (Eℓ − Pℓ)


S2 − CS −iCS S2

− CS C2 iC2 − CS
iCS −iC2 C2 iCS
S2 −CS −iCS S2

 ,

Lαβ
+− = 2Eνm

2


CS S2 iS2 CS

− C2 − CS −iCS −C2

iC2 iCS − CS iC2

CS S2 iS2 CS

 ,

Lαβ
−− = 2Eν (Eℓ + Pℓ)


C2 CS iCS C2

CS S2 iS2 CS
−iCS −iS2 S2 −iCS

C2 CS iCS C2

 ,

Lαβ
−+ = 2Eνm

2


CS − C2 −iC2 CS
S2 − CS −iCS S2

−iS2 iCS − CS −iS2

CS − C2 −iC2 CS

 .
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The leptonic tensor for ℓ+ production is L
αβ

λλ′ = jαλ

∗
jβλ′ , where

j
α
+ =

√
2Eν (Eℓ + Pℓ) ( C , S , iS , C) ,

∗
jα+ =

√
2Eν (Eℓ + Pℓ) ( C , S ,−iS , C) ,

j
α
− =

√
2Eν (Eℓ − Pℓ) (− S , C , iC ,− S) ,

∗
jα− =

√
2Eν (Eℓ − Pℓ) (− S , C ,−iC ,− S) .

L
αβ

++ = 2Eν (Eℓ + Pℓ)


C2 CS −iCS C2

CS S2 −iS2 CS
iCS iS2 S2 iCS
C2 CS −iCS C2

 ,

L
αβ

+− = 2m2Eν


− CS C2 −iC2 − CS
− S2 CS −iCS − S2

−iS2 iCS CS −iS2

− CS C2 −iC2 − CS

 ,

L
αβ

−− = 2Eν (Eℓ − Pℓ)


S2 − CS iCS S2

− CS C2 −iC2 − CS
−iCS iC2 C2 −iCS

S2 − CS iCS S2

 ,

L
αβ

−+ = 2m2Eν


− CS − S2 iS2 − CS

C2 CS −iCS C2

iC2 iCS CS iC2

− CS − S2 iS2 − CS

 .
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Appendix B. Coefficients V jk
i , Ajk

i , Kjk
i

W (RES)
i =

2 cos2 θCMM ′WΓ(W )

3π
[(
W 2 −M ′2

)2
+W 2Γ2 (W )

]∑
jk

(
V jk
i CV

j CV
k +Ajk

i CA
j CA

k + 2Kjk
i CV

j CA
k

)
.

Here i = 1, 2, 3, 4, 5, j, k = 3, 4, 5, 6. The coefficients V jk
i , Ajk

i and Kjk
i are found to be cubic polynomials over the

invariant dimensionless variables

w =
(pq)

M2
=

Eν − Eℓ

M
and x =

−q2

2(pq)
=

2Eν (El − Pl cos θ)−m2

2M (Eν − El)

and over the parameter ζ = M/M ′. The nonzero coefficients are

V 33
1 = ζ3(1− 2x)2w3 + ζ[1 + ζ2(1− 2x)2]w2 + 2(1 + ζ)xw,

V 34
1 = ζ2(1− 2x)2w3 + [1− ζ(2− ζ)(1− 2x)](1− 2x)w2,

V 35
1 = ζ2(1− 2x)w3 + [1− ζ(2− ζ)(1− 2x)]w2,

V 44
1 = ζ(1− 2x)2w3 − (1− ζ)(1− 2x)2w2,

V 45
1 = 2ζ(1− 2x)w3 − (1− ζ)(1− 4x)w2,

V 55
1 = ζw3 − (1− ζ)w2;

V 33
2 = 2ζ3xw2 + 2ζ(1 + ζ2)xw,

V 34
2 = 2ζ2xw2 + 2(1− ζ)2xw,

V 35
2 = 2ζ2(1 + 2x)xw2 + 2(1− ζ)2xw,

V 44
2 = 2ζxw2 − 2(1− ζ)xw,

V 45
2 = 4ζxw2 − 4(1− ζ)xw,

V 55
2 = 4ζ3x2w3 + 2ζ[1− 2ζ(1− ζ)x]xw2 − 2(1− ζ)xw;

V 33
4 = 2ζ3(1− x)w2 + 2ζ3(1− x)w − 1− ζ,

V 34
4 = 2ζ2(1− x)w2 + [1− 2ζ(2− ζ)(1− x)]w,

V 35
4 = 2ζ2w2 − ζ(2− ζ)w,

V 36
4 = −2ζ2xw2 − (1− ζ)2w,

V 44
4 = 2ζ(1− x)w2 − 2(1− ζ)(1− x)w,

V 45
4 = 2ζw2 − 2(1− ζ)w,

V 46
4 = −2ζw2 + 2(1− ζ)w,

V 55
4 = ζ3w3 − ζ2(1− ζ)w2,

V 56
4 = 2ζ3(1− 2x)w3 − 2ζ [1 + ζ(1− ζ)(1− 2x)]w2 + 2(1− ζ)w,

V 66
4 = ζ3(1− 2x)2w3 − ζ

[
ζ(1− ζ)(1− 2x)2 − 2x

]
w2 − 2(1− ζ)xw;

V 33
5 = 2ζ3w2 + 2ζ(1 + ζ2)w,

V 34
5 = 2ζ2w2 + 2(1− ζ)2w,

V 35
5 = 2ζ2(1 + 2x)w2 + 2(1− ζ)2w,

V 36
5 = −4ζ2x2w2 − 2(1− ζ)2xw,

V 44
5 = 2ζw2 − 2(1− ζ)w,

V 45
5 = 4ζw2 − 4(1− ζ)w,

V 46
5 = −4ζxw2 + 4(1− ζ)xw,

V 55
5 = 4ζ3xw3 + 2ζ[1− 2ζ(1− ζ)x]w2 − 2(1− ζ)w,

V 56
5 = 4ζ3(1− 2x)xw3 − 4ζ[ζ(1− ζ)(1− 2x) + 1]xw2 + 4(1− ζ)xw;
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A33
1 = ζ3(1− 2x)2w3 + ζ[1 + ζ2(1− 2x)2]w2 − 2(1− ζ)xw,

A34
1 = ζ2(1− 2x)2w3 + [1 + ζ(2 + ζ)(1− 2x)](1− 2x)w2,

A35
1 = ζ2(1− 2x)w2 + [1 + ζ(2 + ζ)(1− 2x)]w,

A44
1 = ζ(1− 2x)2w3 + (1 + ζ)(1− 2x)2w2,

A45
1 = 2ζ(1− 2x)w2 + 2(1 + ζ)(1− 2x)w,

A55
1 = ζw + 1 + ζ;

A33
2 = 2ζ3xw2 + 2ζ(1 + ζ2)xw,

A34
2 = 2ζ2xw2 + 2(1 + ζ)2xw,

A35
2 = 2ζ2xw,

A44
2 = 2ζxw2 + 2(1 + ζ)xw,

A55
2 = ζ3w + ζ2(1 + ζ);

A33
4 = 2ζ3(1− x)w2 + 2ζ3(1− x)w + 1− ζ,

A34
4 = 2ζ2(1− x)w2 + [1 + 2ζ(2 + ζ)(1− x)]w,

A35
4 = 2ζ2w + ζ(2 + ζ),

A36
4 = −2ζ2xw2 − (1 + ζ)2w,

A44
4 = 2ζ(1− x)w2 + 2(1 + ζ)(1− x)w,

A45
4 = 2ζw + 2(1 + ζ),

A46
4 = −2ζw2 − 2(1 + ζ)w,

A55
4 = ζ3w + ζ2(1 + ζ),

A56
4 = 2ζ3(1− 2x)w2 + 2ζ[ζ(1 + ζ)(1− 2x)− 1]w − 2(1 + ζ),

A66
4 = ζ3(1− 2x)2w3 + ζ[ζ(1 + ζ)(1− 2x)2 + 2x]w2 + 2(1 + ζ)xw;

A33
5 = 2ζ3w2 + 2ζ(1 + ζ2)w,

A34
5 = 2ζ2w2 + 2(1 + ζ)2w,

A35
5 = 2ζ2(1 + x)w + (1 + ζ)2,

A36
5 = −4ζ2x2w2 − 2(1 + ζ)2xw,

A44
5 = 2ζw2 + 2(1 + ζ)w,

A45
5 = 2ζw + 2(1 + ζ),

A46
5 = −4ζxw2 − 4(1 + ζ)xw,

A55
5 = 2ζ3w + 2ζ2(1 + ζ),

A56
5 = 2ζ3(1− 2x)w2 + 2ζ2(1 + ζ)(1− 2x)w;

K33
3 = −2ζ3(1− 2x)2w2 + 2ζ(2− 3x)w,

K34
3 = −ζ2(1− 2x)2w2 + 2(1 + ζ)(1− 2x)w,

K35
3 = −ζ2(1− 2x)w + 2(1 + ζ),

K43
3 = −ζ2(1− 2x)2w2 + 2(1− ζ)(1− 2x)w,

K44
3 = ζ(1− 2x)2w2,

K45
3 = ζ(1− 2x)w,

K53
3 = −ζ2(1− 2x)w2 − 2(1− ζ)w,

K54
3 = ζ(1− 2x)w2,

K55
3 = ζw.
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Appendix C. Partonic Cross Sections
The elementary cross sections dσ/dxdy for νq, νq, νq, and νq CC scattering are listed in Table 2 borrowed from

Ref. [190].

Table 2: The “naive” parton model cross sections for proton and neutron targets.

Process p n Process p n

νd → ℓ−u σd
c (x) σu

c (x) νd → ℓ+u σd
c (x) σu

c (x)

νs → ℓ−u σs
s(x) σs

s(x) νs → ℓ+u σs
s(x) σs

s(x)

νu → ℓ−d σu
c (x) σd

c(x) νu → ℓ+d σu
c (x) σd

c(x)

νu → ℓ−s σu
s (x) σd

s(x) νu → ℓ+s σu
s (x) σd

s(x)

νd → ℓ−c σd
s (z) + ςds σu

s (z) + ςus νd → ℓ+c σd
s (z) + ςds σu

s (z) + ςus

νs → ℓ−c σs
c(z) + ςsc σs

c(z) + ςsc νs → ℓ+c σs
c(z) + ςsc σs

c(z) + ςsc

νc → ℓ−d σc
s(z) + ςcs σc

s(z) + ςcs νc → ℓ+d σc
s(z) + ςcs σc

s(z) + ςcs

νc → ℓ−s σc
c(z) + ςcc σc

c(z) + ςcc νc → ℓ+s σc
c(z) + ςcc σc

c(z) + ςcc

The following notation has been used in the Table:

σq
c (x) =

(
G2

F sx

π

)
cos2 θC q(x), σq

c(x) =

(
G2

F sx

π

)
cos2 θC q(x)(1− y)2,

σq
s(x) =

(
G2

F sx

π

)
sin2 θC q(x), σq

s(x) =

(
G2

F sx

π

)
sin2 θC q(x)(1− y)2,

ςqc =

(
G2

F sx

π

)
cos2 θC q(x)(z − x)(1− y),

ςqs =

(
G2

F sx

π

)
sin2 θC q(x)(z − x)(1− y).

Here q(x) is the quark density specified in respect to proton and z is the momentum fraction of the scattering parton which
is defined in Ref. [190] through the condition (q + zp)2 = m2

c . The formal positive solution to this equation is given by

z =
Q2

2M2x

[√
1 +

4M2x2

Q2

(
1 +

m2
c

Q2

)
− 1

]
=

2x

(
1 +

m2
c

Q2

)
1 +

√
1 +

4M2x2

Q2

(
1 +

m2
c

Q2

) . (1)

As is easy to see from this equation, z = xN (where xN is the Nachtmann variable) in the limit mc = 0. Any case, the
authors do not even mention Eq. (1) but use its approximation,

z ≈ x

(
1 +

m2
c

Q2

)
,

which is valid at Q2 ≫ 4M2x2. Therefore the (approximate) z is just the scaling variable used by Hagiwara et al. [223].
Clearly it has no physical meaning when Q2 ≲ 4M2x2.

Let us study a bit the properties of the exact variable z. First we note that

∂z

∂x
=

z

x

(
1 +

2M2xz

Q2

)−1

> 0 and
∂z

∂Q2
=

x− z

Q2

(
1 +

2M2xz

Q2

)−1

.

Next, the condition z = x holds if and only if x = mc/M . Since mc > M and z/x is a monotonically decreasing
function of x, it is easy to see that z ≥ x at any Q2 and the equality only holds in the limit Q2 → ∞. Therefore z is a
monotonically decreasing function of Q2. Finally 0 ≤ z ≤ 1 when

0 ≤ x ≤
(
1 +

m2
c −M2

Q2

)−1

.

[Compare this with Eq. (5.2).]
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Appendix D. Distributions etc.
Here we derive some trivial formulas for the distributions. Let F (Eν) be the neutrino energy spectrum and x be some

kinematic variable (Eℓ, cos θ, Q2, . . .). The number of events per unit time,1 caused by neutrinos with energies from Eν

to Eν + dEν in the interval (x, x+ dx) is equal to

dN(Eν , x) =
dσ(Eν , x)

dx
F (Eν)dEνdx.

The sum over the spectrum of the number of events in the same interval (x, x+ dx) is

⟨dN(Eν , x)⟩ = dx

∫ ∞

0

dσ(Eν , x)

dx
F (Eν)dEν ,

whence 〈
dN(Eν , x)

dx

〉
=

∫ ∞

0

dσ(Eν , x)

dx
F (Eν)dEν ,

Let the measurements be made on a finite interval (x1, x2).2 Then the total number of events is

N =

∫
⟨dN(Eν , x)⟩ =

∫ x2

x1

〈
dN(Eν , x)

dx

〉
dx =

∫ x2

x1

dx

∫ ∞

0

dσ(Eν , x)

dx
F (Eν)dEν ,

Let’s assume that the cross section dσ(Eν , x)/dx is always defined so that it is zero outside the kinematically admissible
region of the variables Eν and x. Then, assuming that the interval (x1, x2) is wide enough,3∫ x2

x1

dx
dσ(Eν , x)

dx
= σ(Eν)

is the total cross section. Hence

N =

∫ ∞

0

σ(Eν)F (Eν)dEν . (2)

Then the normalized distribution of the numbers of events on the variable x is

dρ

dx
=

〈
1

N

dN(Eν , x)

dx

〉
=

∫∞
0

dσ(Eν ,x)
dx F (Eν)dEν∫∞

0
σ(Eν)F (Eν)dEν

=
⟨dσ(Eν , x)/dx⟩

⟨σ(Eν)⟩
. (3)

This is what we usually call the distribution and denote simply ⟨dN/dx⟩. This value is only approximately equal to〈
1

σ(Eν)

dσ(Eν , x)

dx

〉
. (4)

The value of (3) itself is generally defined only approximately, since in a real experiment the interval (x1, x2) experiment,
strictly speaking, the interval (x1, x2) can never be wide enough – something is always undercounted and undermeasured.
But we always assume that the experimenters know all this and make the necessary corrections.4 Thus, the correct
formula for distribution is (3), not (4)... Unless experimenters specifically state that their data should be understood as (4)
(i.e., for some reason the data have been recalculated to that quantity) – which I generally don’t recall. It’s useful to do
calculations in individual fits using the formulas (3) and (4), to see how different these values can be. In the case of QES,
we should expect the differences to be small at high energies and large at low energies, with the difference being larger
for antineutrinos at high energies than for neutrinos. In general, the differences will affect both the form of the dρ/dx
distribution dependence on x, and in the normalization of N0 determined from fit.,5 as well as in the value of χ2. Note
also that at first glance it may seem that the value dρ/dx is rather poorly measured, since rather crude approximations are
used in its determination. Let me reassure you (as one of Zadornov’s characters used to say): for obvious reasons, the
sections themselves are defined even worse...

1Tha is count rate.
2That is, x1 is the left boundary of the leftmost experimental bin, and x2 is the right boundary of the rightmost experimental bin.
3Which, of course, is by no means always the case, and which is mainly due to the difficulty of conversion of the measured count rates into the cross

sections, distributions, etc.
4Since the main errors due to undercounting are concentrated in the extreme x bins, these bins are the least reliable and clever experimenters should

not even show them.
5The letter N is used in every way imaginable. I hope there will be no confusion here. We almost always have an unknown normalization for both

normalized and non-normalized distributions, because the value (2) is always defined with an error.
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Appendix E. Additional notes

Integration over x and y for DIS.
Davaj akkuratno napishem formulu dlja dσDIS

νN→lhX/dy. Ya nadejus’, chto uzhe posle etogo vse stanet yasno. Tem ne menee ya
vypshu i formulu dlja polnogo sechenija. Nizhe ya budu ispol’zovat’ oboznachenija iz svoego faila Nachtmann.pdf (vozmozhno, ne
slishkom udachnye) s uchetom popravki, kotoraja v nem ne byla otrazhena, no o kotoroj ty znaesh. Dlja polnoty ya napomnju osnovnye
oboznachenija i vvedu po hodu dela neskol’ko novyh. Ves’ etot konglomerat gromozdkih oboznachenij ne dlja stat’i, konechno, a dlja
togo lish, chtoby ne voznikalo neodnoznachnostej v ponimanii. Dlja toj-zhe celi tekst pishetsja na English (v otsutstvie kirillicy - on
bolee odnoznachen).

Correct integration over Bjorken x.

First, let us remind ourselfs that the DIS physical boundary is given by the equation(
Q2 +m2

ℓ

)2
+

2Q2Eν

MNx

(
Q2 +m2

ℓ

)
− 4Q2E2

ν = 0

and its solution for the Bjorken variable y consists of two branchs

y± = y±(x,Eν) =

1− m2
ℓ

2E2
ν

(
1 +

Eν

MNx

)
±

√(
1− m2

ℓ

2MNxEν

)2

− m2
ℓ

E2
ν

2

(
1 +

MNx

2Eν

) .

This solution exists if

x ≥ x− =
m2

ℓ

2MN (Eν −mℓ)
.

Therefore the full DIS physical region is given by the inequalities

x− ≤ x ≤ 1, y− ≤ y ≤ y+, Eν ≥ (MN +mℓ)
2 −M2

N

2MN
.

The equation W = Mh written in terms of variables x and Q2 is

(1− x)Q2 =
(
M2

h −M2
N

)
x.

Here Mh is the total mass of the final state hadron system h and we assume below that Mh > MN (Mh = MN +
mπ ,Mh = MN + 2mπ , etc.).

Now we enumerate the main definitions.

1. The points of intersection between the DIS physical boundary and the curve W = Mh are

x = x±
h =

ah ± bh
2ch

,

where

ah = 1−
(
M2

h −M2
N −m2

ℓ

) [(
M2

h −M2
N

)
Eν +m2

ℓMN

]
2MN (M2

h −M2
N )E2

ν

,

b2h =

[
1− (Mh −mℓ)

2 −M2
N

2MNEν

][
1− (Mh +mℓ)

2 −M2
N

2MNEν

]
,

ch = 1 +

(
M2

h −M2
N −m2

ℓ

)2
4 (M2

h −M2
N )E2

ν

.

Clearly b2h ≥ 0 (and thus the physical solution there exists) when

Eν ≥ Eh
ν =

(Mh +mℓ)
2 −M2

N

2MN

and Eh
ν is exactly the threshold neutrino energy for the inclusive raction νN → lhX .

A little bit more compact formula for x±
h is

x±
h = 1− a′h ∓ bh

2ch
,

where

a′h = 2ch − ah = 1 +
(M2

h −M2
N −m2

ℓ)(Eν +MN )

2MNEν
.
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2. The boundary values of the Bjorken variable in the points x = x±
h :

y±h (Eν) =
M2

h −M2
N

2MN

(
1− x±

h

)
Eν

.

3. The value of y± in the point x = x−:

y0 = y−(x−, Eν) = y+(x−, Eν) =

1− m2
ℓ

2E2
ν

(
1 +

Eν

MNx−

)
2
(
1 + MNx−

2Eν

) =
mℓ

Eν

(
Eν −mℓ

2Eν −mℓ

)
.

By using the above definitions we can write the differential cross section

dσDIS
νN→lhX(y,Eν)

dy
=

∫ xmax
h

xmin
h

d2σνN→l+anyth(x, y, Eν)

dxdy
dx (5a)

=
(
xmax
h − xmin

h

) ∫ 1

0

d2σνN→l+anyth(x, y, Eν)

dxdy
dx′. (5b)

The new variable of integration x′ in Eq. (5b) is given by the equation

x =
(
xmax
h − xmin

h

)
x′ + xmin

h ;

and the limits of integration in Eq. (5a) are

xmin
h =

{
x− if y−h ≤ y0,

x−
h if y−h > y0,

xmax
h = x+

h . (6)

Obviously the dσDIS
νN→lhX/dy is nonzero under the conditions

Eν > Eh
ν =

(Mh +mℓ)
2 −M2

N

2MN
, y−h < y < y+h .

Correct integration over Bjorken y.

This is already a trivial task:

σDIS,tot
νN (Eν) =

∫ y+
h (Eν)

y−
h (Eν)

dσνN→lhX(y,Eν)

dy
dy (7a)

=
[
y+h (Eν)− y−h (Eν)

] ∫ 1

0

dσνN→lhX(y,Eν)

dy
dy′. (7b)

The new variable of integration y′ in Eq. (7a) is given by

y =
[
y+h (Eν)− y−h (Eν)

]
y′ + y−h (Eν).

The total cross section is nonzero for

Eν > Eh
ν =

(Mh +mℓ)
2 −M2

N

2MN
.
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Hadronic Tensor (must be translated)
Otkuda voobshe berutsja novye (po sravneniju s bezmassovym sluchaem) struktury v adronnom tenzore? V sluchae
nepoljarizovannoj misheni iz impul’sov p i q (indeks N opuskaju), tenzora gαβ i psevdotenzora ϵαβγδ mozhno sostavit’
tol’ko 6 nezavisimyh tenzornyh kombinacij:

gαβ , pαpβ , pαqβ , qαpβ , qαqβ , ϵαβγδp
γqδ.

Pri etom, vmesto 3-ej i 4-oj struktur udobno ispol’zovat’ ih simmetrichnuju i antisimmetrichnuju kombinacii pαqβ±qαpβ .
V bezmassovom sluchae adronnyj tenzor ortogonalen vektoru q, t.k. CC tok sohranjaetsja. Mozhno poostroit’ lish 3

ortogonal’nye kombinacii:
qαqβ
q2

− gαβ , p̃αp̃β , ϵαβγδp
γqδ, (8)

gde
p̃α = pα − pq

q2
qα.

T.o., v obshem sluchae imeem:

Wαβ = − gαβW1 +
pαpβ
M2

W2 − i
ϵαβγδp

γqδ

2M2
W3

+
qαqβ
M2

W4 +
pαqβ + qαpβ

2M2
W5 − i

pαqβ − qαpβ
2M2

W6. (9)

Obrati vnimanie na mnozhiteli. Ya pishu ih v tochnosti kak v obzore [6].
Mozhno zapisat’ to-zhe samoe ispol’zuja struktury (8):

Wαβ =

(
qαqβ
q2

− gαβ

)
W1 +

p̃αp̃β
M2

W2 − i
ϵαβγδp

γqδ

2M2
W3

+
qαqβ
M2

W̃4 +
pαqβ + qαpβ

2M2
W̃5 − i

pαqβ − qαpβ
2M2

W6. (10)

Strukturnye funkcii W4,5 i W̃4,5 svjazany sootnoshenijami

W4 = W̃4 +
M2

q2
W1 +

(
pq

q2

)2

W2, W5 = W̃5 − 2

(
pq

q2

)
W2. (11)

Kak pokazano v rabotah [L14] i [D7], citiruemyh v obzore Llewellyn Smith [6], funkcii W1,2 neotricatel’ny. Ostal’nye
funkcii Wi udovletvorjajut neravenstvam6 iz kotoryh sleduet, chto vse oni veshestvenny i nesinguljarny pri q2 → 0.
Togda iz Eq. (11) vidno, chto funkcii W̃4,5 singuljarny pri q2 → 0. Poetomu oni nikoim obrazom ne mogut byt’ linejnymi
kombinacijami kvarkovyh plotnostej s postojannymi koefficientami i etim ves’ma neudobnu dlja nashih celej.

T.o., vyrazhenie (9), ispol’zuemoe v rabote [222], a takzhe formuly, svjazyvajushie Wi s Fi sovershenno pravil’ny
(chego nel’zja skazat’ o konechnyh rezul’tatah [222], ravno ravno kak i [6]). Starkov [221] etogo ne ponjal i napisal
nepravil’nye svjazi mezhdu W̃i i Fi. Krome togo, on pochti vo vseh vkladah nadelal oshibok. Koroche, ego stat’ju – na
pomojku...

Eshe odno trivila’noe zamechanie dlja polnoty. V predele m2
l → 0 slagaemye v (9), soderzhashie W4,5,6 ischezajut.

Poetomu mozhno zapisat’

Wαβ = −gαβW1 +
pαpβ
M2

W2 − i
ϵαβγδp

γqδ

2M2
W3

ili, chto ekvivalentno dlja rascheta sechenij,

Wαβ =

(
qαqβ
q2

− gαβ

)
W1 +

p̃αp̃β
M2

W2 − i
ϵαβγδp

γqδ

2M2
W3.

Razumeetsja, dlja rascheta poljarizacionnoj matricy leptona obe eti formy neprigodny. No ih obobshenie na sluchaj
poljarizovannoj misheni, napisannoe u Efremova i Ko [12], vpolne prigodno dlja reakcij s electronnym i muonnym
(anti)nejtrino. Tak chto v PDG net oshibok v etom meste.

6Eti neravenstva mozhno poluchit’ iz uslovija, chto vse minory matricu ∥ Wαβ ∥ neotricatel’ny [6].
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