Квазиупругие взаимодействия нейтрино с ядрами в эмпирической модели бегущей аксиальной массы нуклона ¹

К. С. Кузьмин^{†,‡}, В. А. Наумов[†], О. Н. Петрова[†]

† Объединенный институт ядерных исследований, 141980 Дубна, Россия

[‡] Институт теоретической и экспериментальной физики, 117218 Москва,

Россия

Аннотация

В рамках модели бегущей (зависящей от энергии) аксиальной массы нуклона изучаются неопределенности предсказаний скоростей счета событий квазиупругого рассеяния нейтрино и антинейтрино на ядерных мишенях, используемых в ускорительных экспериментах по измерению параметров смешивания нейтрино.

PACS: 13.15.+g, 13.60.Hb, 14.60.Lm, 14.60.Pq, 25.30.Pt

Введение

Наибольшую неопределенность расчета сечений квазиупругого (QE) рассеяния нейтрино на нуклонах вносит аксиальный формфактор нуклона $F_A(q^2)$. Как правило, в вычислениях используется дипольная параметризация зависимости F_A от квадрата переданного 4-импульса q^2 , в которую входит параметр M_A (аксиальная масса нуклона), измеренный с очень невысокой точностью. В работе предлагается метод расчета QE сечений рассеяния нейтрино на ядрах в рамках модели релятивистского ферми-газа (РФГ) [1] с модифицированной трактовкой аксиальной массы нуклона, позволяющей существенно снизить неопределенности расчета сечений, и, следовательно, более надежно определять параметры смешивания нейтрино в современных ускорительных экспериментах. Результаты расчетов иллюстрируются на примере эксперимента NO ν A (FNAL) [2], нацеленного на измерение фазы CP-нарушения δ_{CP} , определение иерархии масс нейтрино и уточнение углов смешивания θ_{23} и θ_{13} . NO ν A – т.н. внеосевой ("off-axis") эксперимент с двумя детекторами, использующими в качестве мишеней углеродосодержащий сцинтиллятор. Конструкция детекторов позволяет выделять QE события по их топологии. Дальний детектор массой 14 кт расположен под углом 14 мрад к оси пучка мюонных (анти)нейтрино NuMI и находится на расстоянии 810 км от ближнего калибровочного детектора.

¹Доклад на Международной сессии-конференции Секции ЯФ ОФН РАН "Физика фундаментальных взаимодействий", ОИЯИ, Дубна, Апрель 12–15, 2016.

Бегущая аксиальная масса нуклона

Анализ экспериментальных данных по измерению полных и дифференциальных QE сечений и q^2 -распределений в ν_{μ} D-реакциях приводит к значению $M_A \approx 1$ ГэВ [3–5]. Это значение хорошо описывает результаты экспериментов на ядерных мишенях с A > 2 при средней энергии ν_{μ} и $\overline{\nu}_{\mu}$ -пучков, $\langle E_{\nu} \rangle$, выше нескольких ГэВ (таких как NOMAD, CERN). Однако для описания данных недавних экспериментов MINER ν A и MiniBooNE (FNAL)² по измерению дифференциальных и дважды дифференциальных сечений СС-взаимодействия ν_{μ} и $\overline{\nu}_{\mu}$ на углеродосодержащих мишенях при $\langle E_{\nu} \rangle \lesssim 1$ ГэВ значение M_A необходимо существенно увеличить. Этот эффект очевидно связан с неприменимостью РФГ модели в ее стандартной формулировке для расчета ядерных поправок при низких энер-

Рис. 1: Усредненные по спектру дифференциальные сечения рассеяния ν_{μ} (а) и $\overline{\nu}_{\mu}$ (б), полученные в эксперименте MINER ν A. Сплошные кривые и полосы – расчет с M_A^{run} с учетом неопределенностей параметров M_0 и E_0 на 63%-ном уровне значимости. Штриховые кривые – расчет, выполненный с генератором NuWro в модели РФГ+ТЕМ [6] при $M_A = 0.99$ ГэВ.

гиях. Структурные функции T_i , описывающие QE рассеяние на ядре, зависят не только от q^2 , но так же от переданных ядру энергии q_0 и 3-импульса $|\mathbf{q}|$. С учетом сохранения энергии-импульса эта зависимость сводится (в лаб. системе) к зависимости T_i от q^2 и энергии нейтрино E_{ν} , что позволяет свести учет ядерных эффектов, выходящих за рамки РФГ, к замене параметра M_A в структурных функциях на эмпирическую, убывающую с энергией функцию $M_A^{\text{run}} = M_A^{\text{run}}(E_{\nu})$ – "бегущую аксиальную массу". Детальный статистический анализ имеющихся ускорительных данных показал, что простейшая параметризация $M_A^{\text{run}} = M_0 (1 + E_0/E_{\nu})$ обеспечивает хорошее описание полных, дифференциальных и дважды дифференциальных QE сечений, а также

²Ссылки на статьи с экспериментальными результатами приведены в [4,5].

 q^2 -распределений для всех ядерных мишеней, используемых в нейтринных экспериментах, при значениях параметров $M_0 = 1.006 \pm 0.025 \, \Gamma$ эВ и $E_0 = 0.334^{+0.058}_{-0.054} \, \Gamma$ эВ. Для расчета электромагнитных формфакторов нуклона использовалась модель [7]. Параметр M_0 , чье значение близко к токовому значению M_A , извлеченному из дейтериевых данных, можно отождествить с истинной (токовой) аксиальной массой M_A .

На рис. 1 показано сравнение нашего расчета дифференциальных сечений рассеяния ν_{μ} и $\overline{\nu}_{\mu}$ на нуклонах углеродосодержащей мишени с данными эксперимента MINER ν A. Сравнения расчетов с полным набором экспериментальных данных приведены в работах [4, 5].

На рис. 2 показаны ожидаемые числа событий, вызванных QE взаимодействиями нейтрино и антинейтрино в дальнем детекторе NO ν A. Числа событий определяются потоком (анти)нейтрино от ускорителя,

Рис. 2: Числа QE событий, индуцированные ν_e и ν_μ в ν -моде, $\overline{\nu}_e$ и $\overline{\nu}_\mu$ в $\overline{\nu}$ -моде, в дальнем детекторе NO ν A при $\delta_{\rm CP} = 3\pi/2$. Расчет сделан в предположении нормальной (a,b) и обратной (c,d) иерархий масс нейтрино. Показаны расчеты, использующие постоянное значение M_A , принятое в эксперименте NO ν A по умолчанию, и с $M_A^{\rm run}$. Полосы неопределенности у кривых соответствуют неопределенностям M_A и $M_A^{\rm run}$ на уровне 1σ .

вероятностями флейворных осцилляций, сечениями взаимодействия (анти)нейтрино с веществом детектора и эффективностью регистрации событий данного типа (полагалась равной 1 в данном примере). Для расчета усиления эффекта CP-нарушения в дальнем детекторе NO ν A за счет когерентного рассеяния нейтрино на электронах при прохождении пучка сквозь вещество Земли (MCB механизм) использована модель плотности земной коры CRUST 1.0 [8], но вместо меняющейся вдоль траектории пучка плотности использовалось ее эффективное постоянное значение, наилучшим образом воспроизводящее результаты расчета с модельным профилем плотности (см. [5]). Для среды с постоянной плотностью вероятности флейворных переходов $\nu_{\mu} \rightarrow \nu_{e}$ и $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ вычислялись по точному решению эволюционного уравнения (см., например, [9]). Параметры смешивания и разности квадратов масс нейтрино взяты из [10].

Выводы

Учет эффективной зависимости M_A от энергии приводит к общему увеличению чисел событий и значительному уменьшению систематической ошибки, обусловленной неопределенностями расчета сечений взаимодействия (анти)нейтрино с ядрами. Метод бегущей аксиальной массы можно использовть для моделирования событий и обработки данных ускорительных экспериментов по изучению нейтринных осцилляций.

Благодарности. Авторы благодарят Л. Д. Колупаеву, А. Г. Ольшевского, О. Б. Самойлова, Д. В. Тайченачева, И. М. Шандрова и А. С. Шешукова за полезные обсуждения и помощь в работе, а так же коллаборацию NOνA за предоставленную информацию. Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований в рамках научных проектов № 14-22-03090 и № 16-02-01104-а.

Список литературы

- Smith R. A. and Moniz E. J. // Nucl. Phys. B. 1972. V. 43. P. 605. Erratum ibid. B. 1975. V. 101. P. 547.
- [2] Patterson R. B. (on behalf of the NOvA Collaboration) // Nucl. Phys. B. (Proc. Suppl.) 2013. V. 151. P. 235. [arXiv:1209.0716 [hep-ex]].
- [3] Kuzmin K. S., Lyubushkin V. V. and Naumov V. A. // Eur. Phys. J. C. 2008. V. 54. P. 517. [arXiv:0712.4384 [hep-ph]].
- [4] Kuzmin K. S. and Naumov V. A. // in preparation.

- [5] Kolupaeva L. D., Kuzmin K. S., Petrova O. N. and Shandrov I. M. // Mod. Phys. Lett. A. 2016. V. 31. No. 12. P. 1650077. [arXiv:1603.07451 [hep-ph]].
- [6] Bodek A., Budd H.S., Christy M.E. and Gautam T.N.S. // arXiv:1310.7669 [nucl-ex].
- [7] Bodek A., Avvakumov S., Bradford R. and Budd H. S. // J. Phys. Conf. Ser. 2008. V. 110. P. 082004 [arXiv:0709.3538 [hep-ex]].
- [8] Laske G., Masters G., Ma Z. and Pasyanos F. Geophys. Res. Abstracts, 2013. V. 15, Abstract EGU2013-2658.
- [9] Naumov V. A. ЖЭТФ. 1992. Т. 101. С. 3.
- [10] Olive K. A. et al. (Particle Data Group). // Chin. Phys. C. 2014. V. 38.
 P. 090001.