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Feynman diagrams in nuclear physics at low and intermediate energies
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Several aspects of using Feynman diagram formalism in nuclear theory at low and
intermediate energies are considered, including extrapolation of differential cross sections
to the pole position, derivation of the generalized folding potential and investigation of
the asymptotic behavior of nuclear wave functions. Recent results on using the deuteron
exchange diagram to resolve the problem of the quadrupole moment of 6Li are briefly
outlined.

INTRODUCTION

Nowadays diagram methods are extensively used not only in elementary particle physics,
but in nuclear physics as well. The subject matter of this paper is related to bound nuclear sys-
tems and nuclear reactions at low and intermediate energies when one can use non-relativistic
kinematics. In that case a distinction should be made between four-dimensional and three-
dimensional diagrams. Four-dimensional non-relativistic diagrams are usual Feynman dia-
grams, in which an individual non-relativistic propagator (Ei−~k2

i /2mi + i0)−1 corresponds to
each virtual particle i and integration over 4- momentum corresponds to each closed contour.
On the other hand, in three-dimensional diagrams, a propagator (E−H0 + i0)−1 and integra-
tion over 3-momentum correspond to each intermediate state, E and H0 being the total energy
and the free Hamiltonian of the system, respectively. Note that if one considers processes in a
three-body system, then four-dimensional diagrams can be reduced to three-dimensional ones
by performing trivial integrations over energy variables. For four- (or more) body systems the
one-to-one correspondence between four- and three-dimensional diagrams does not exist.

In what follows several aspects of using Feynman diagram formalism in nuclear theory at
low and intermediate energies are considered.

I. EXTRAPOLATION OF DIFFERENTIAL CROSS SECTIONS TO THE POLE POSITION

Consider the A+ x→ B+ y reaction where composite bound systems A and y can be
represented as A = B+ c, y = x+ c, c being a nucleon or a cluster. The amplitude of this
reaction has a pole in z= cosθ at z= z0, z0 lying in the unphysical region |z0| > 1 (θ is the
c.m. scattering angle). This pole corresponds to the diagram of Fig. 1.
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Fig. 1

The differential cross section of the reaction has a pole of the second order and can be
written as

σ(z) =
a0

(z−z0)2 +
a1

z−z0
+a2(z) (1)

Consider a quantity ϕ(z) = (z−z0)2σ(z). At z= z0 one has ϕ(z0) = a0. a0 can be expressed
in terms of the product squared G2

ABcG
2
yxc of the vertex constants corresponding to the vertices

of the diagram in Fig. 1. The vertex constant GABc is the on-shell matrix element of the virtual
process A↔ B+c. It is an important nuclear characteristic related directly to the asymptotic
normalization coefficient of the wave function of the A nucleus in the B+ c channel. To
find a0, ϕ(z) is written approximately as ϕ(z) = ∑N

i=1ciRi(z) where Ri(z) are some known
polynomials, for example, the Hermite polynomials. Coefficients ci are fitted by χ2 procedure
to experimental values of ϕ(z) in the physical region −1≤ z≤ 1. Then ϕ(z) is extrapolated
to the pole position by putting z= z0. The method under discussion allows one to extract the
valuable information on asymptotic normalization coefficients of bound-state nuclear wave
functions. It is of interest to extend that method to the case of singularities other than a pole
one, in particular, to logarithmic singularities due to triangle Feynman diagrams.

II. DERIVATION OF THE GENERALIZED FOLDING POTENTIAL

The four-dimensional covariant formalism of non-relativistic Feynman diagrams was used
for the derivation of the general expression for the generalized folding potential (GFP), de-
scribing the interaction of a particle with a composite system (say, a nucleus) [1]. The input,
which is required to construct the GFP, is the same as that for the standard folding potential
(SFP). This input includes the potentials of the pair interaction of the incoming particle with
the constituents (nucleons or clusters) of the composite system as well as the inner wave
function of this system. The GFP corresponds to the amplitude of the triangle Feynman di-
agram containing three vertices: i) the vertex of the virtual decay of the target nucleus into
constituents; ii) the vertex of the reverse process of the virtual synthesis of the nucleus and
iii) the vertex describing the above-mentioned pair interaction. In the simple case that target
A consists of two constituents b and c , the GFP is the sum of two terms, one of which is
represented in Fig. 2. The second term is obtained from Fig. 2 by the substitution b↔ c.

In Fig. 2 particles x and x′ are on energy shell and A and A′ are off shell. The potential thus
obtained is non-local and energy-dependent. It becomes complex above the inelastic threshold.
As distinct from the SFP, the GFP, being inserted into the Schrödinger or Lippmann-Schwinger
equations, leads to the solutions accounting for the contribution not only from the elastic
channel but from inelastic channels as well. The difference between the SFP and the GFP
is due to the different way of going off energy shell. On shell, the expression for the GFP
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Fig. 2

goes over into that for the SFP. This property implies, in particular, that, within the first Born
approximation, the scattering amplitudes corresponding to the GFP and the SFP coincide.

Fig. 3

The results described above can easily be extended to the case of the double-folding po-
tential. In that case the expression for the GFP is written as a product of the amplitudes of
two diagrams of the type of Fig. 2.

III. ASYMPTOTIC BEHAVIOR OF BOUND STATE WAVE FUNCTIONS

Consider a non-relativistic composite bound system a , say, a nucleus, which can be divided
into two subsystems (fragments) b and c. Define the overlap integral (OI) I(~r) for the virtual
process a→ b+c

I(~r) =
∫

Ψ+
b (τb)Ψ+

c (τc)Ψa(τa,τb,τc)dτbdτc, (2)

where Ψi(τi) is the internal wave function of the system i. For brevity we neglect the long-
range Coulomb interaction and consider spinless systems a, b and c, hence I(~r) = I(r), r being
the distance between b and c. In the general case the results given below are valid for radial
OI’s Ils(r) corresponding to specific values of a channel orbital momentum l and channel spin
s [2]. For a wide class of processes, main contributions to their amplitudes come from the
values of OIТs at large r . In particular, the asymptotics of OIТs determines the cross sections
for certain reactions, which are of interest for nuclear astrophysics [3]. Relating the OI by
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a Fourier transform to the form factor G(q) for the a→ b+ c vertex (q being the relative
momentum of b and c fragments) and making use of the Cauchy theorem, one obtains the
asymptotic form of I(r) as [4]

I(r) = c0e−κr/r +c1e−κ1r/r p, r → ∞, (3)

where c0 and c1 are some constants, κ is related to the binding energy in the a→ b+c vertex,
κ = κabc, κi jk =

√
2µjk(mj +mk−mi), µjk = mjmk/(mj + mk), mi is a mass of a particle i,

iκ1 is the position of the singularity of G(q) in the complex q plane, which is the nearest to
the physical region, and p > 1 is determined by the type of this singularity. The first term in
Eq.(2) corresponds to the usually adopted УnormalФ asymptotics of the OI. If the system a
consists of three or more constituents, then, as a rule, iκ1 is a proper singularity of one of
triangle Feynman diagrams of the type of Fig.3 where b,c,d,e and f are certain fragments into
which the composite system a can virtually be divided.

For such a diagram κ1 = (mb/md)(κade+κbd f) [4,5] and p = 2. Apart from that diagram,
one may consider generalized triangle diagrams, which are obtained from Fig. 3 by substituting
two or more inner lines for lines d, e or f . According to the general theory of the singularities
of Feynman diagrams [6], the position iκ1 of the singularity of such a diagram is obtained
from that of an ordinary triangle diagram by the substitution of the corresponding sums of
masses for the masses of d, e and f . If the total number of inner lines in a generalized triangle
diagram is n, then in Eq.(3) the exponent p= (3n−5)/2. The examples of generalized triangle
diagrams are shown in Fig. 4 (n = 4, p = 7/2) and Fig. 5 (n = 5, p = 5).

Fig. 4

It is possible that κ1 < κ; in that case the asymptotics of I(r) is determined by the second
("anomalous") term in Eq.(2).

The typical examples of the anomalous asymptotics of the OI (κ1 < κ) are as follows:
16O→13 N +3 H and 20Ne→17 O+3 He (Fig. 3), 9Be→6 Li +3 H and 12C→9 Be+3 He
(Fig. 4), and 16O→9 Be+7 Be (Fig. 5).

IV. TENSOR INTERACTION IN THE dα SYSTEM

There exists a long-standing problem of describing tensor interaction in the dα system. In
particular, calculations of the 6Li quadrupole moment Q within various versions of a three-
body model (n,p,α) result in large positive values (Qtheor≈ 4÷6 mb), whereas the experimen-
tal value is small negative (Qexp= 0.82 mb) [7]. Note that these models predict excellently all
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Fig. 5

other properties of A = 6 nuclei for ground and low-lying levels. The recent results [8] show
that the problem under discussion could be solved by allowing for the exchange mechanism,
which is described by the diagram of deuteron transfer (see Fig. 6).

dα

αd

d

Fig. 6

The amplitude V of this diagram could be considered as an exchange potential of dα
interaction, which is non-local and energy-dependent. This potential has a tensor component
due to the D state admixture in the d + d channel of the α particle wave function. In the
momentum space potential V assumes the form

V(~k,~k′) = Γ1Γ2Gd, (4)

where Γ1 and Γ2 are the vertex functions corresponding to the virtual α↔ d+d processes and
Gd is the non-relativistic deuteron propagator. The vertex functions Γi depend on the relative
momenta of two deuterons and are expressed by well known way [9] through the Fourier
component of the overlap integral < dd|α >, for which the authors [8] used the results of
realistic four-nucleon calculations as well as some phenomenological results derived from the
analyses of (d,α) and (α,d) reactions on heavy targets.

The exchange potential thus constructed leads to coupled-channel integral equations for
the 4He-d system. Numerical solution of these equations gives both the S-wave and D-wave
functions for the 4He-d relative motion, which, being substituted into the matrix element for
the quadrupole operator, result in negative contribution to the Q value. The calculations, which
used several types of the 4He modern four-body wave function, have demonstrated for the first
time the almost complete cancellation between the negative contribution of exchange origin
and the positive contribution (due to the direct 4He-d tensor interaction of folding type) to the
value of Q. So that, in agreement with the experiment, the resulting value of Q is quite small
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in magnitude and should be very sensitive to fine details of the 4He wave function and of the
deuteron distortion in 6Li.

It is worth noting that, though the exchange potential under discussion is not taken into
account in the existing three-body α−n− p models of 6Li, it can be included in these models
by adding the corresponding projector onto the deuteron state. The potential thus obtained
represents the three-body α−n− p force.
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