

Precise experimental constraints of the strong interaction between a proton and a |S|= 3 baryon using femtoscopy

Otón Vázquez Doce (TUM) for the ALICE Collaboration

XIV Workshop on Particle Correlations and Femtoscopy June 4, 2019, Dubna, Russian Federation

The goal

- Experimental study on the <u>interaction between a proton and a multi-strange baryon</u>
 - \circ Ω⁻ is a hyperon with quark content: sss
- Use the most recent datasets to <u>test recent models</u> of the p- Ω interaction:
 - Lattice QCD: HAL-QCD Collaboration
 - Meson exchange (Sekihara, Kamiya, Hyodo)
- Femtoscopy delivers precise data in the low momentum range, that cannot be accessed with other experimental approaches (hypernuclei, scattering experiments)
 - o In particular for p- Ω interaction femtoscopy is the only experimental method!
- $N\Omega$ di-baryon (strangeness = -3, spin = 2, isospin = 1/2)
 - \circ Lattice QCD simulations predict an N-Ω interaction attractive at all distances, leading to the possible existence of a NΩ di-baryon
 - Pauli principle does not apply to this system, the absence of a repulsive core favors the existence of a compact state.

Previously available experimental data: STAR

- Study of the p- Ω^- correlation function in Au-Au collisions at $\sqrt{s_{NN}} = 200 \, \text{GeV}$ STAR Collaboration. Phys. Lett. B790 (2019) 490-497
- Observable: ratio of the correlation function peripheral/central collisions.
- Comparison with Lattice QCD calculations (with large masses)

Test different fits to Lattice QCD data (delivering three different binding energies of the NΩ):

Binding energy $(\mathbf{E_b})$, scattering length $(\mathbf{a_0})$ and effective range $(\mathbf{r_{eff}})$ for the Spin-2 proton- Ω potentials [24].

8 (cm)	1	•	,,
Spin-2 $p\Omega$ potentials	V_I	V_{II}	V _{III}
E _b (MeV)	_	6.3	26.9
$\mathbf{a_0}$ (fm)	-1.12	5.79	1.29
r _{eff} (fm)	1.16	0.96	0.65
			$\overline{}$

[24] K. Morita, A. Ohnishi, F. Etminan, T. Hatsuda, Phys. Rev. C 94 (2016), 031901

STAR data favor V_{III} , with $E_h = 27 \text{ MeV}$

The method

- Study the correlation function of p- Ω pairs as a function of k*:
 - \circ proton-proton (pp) collisions \Rightarrow small particle source (of the order of 1 fm)
- The size of the source core is determined from the femtoscopic analysis of the p-p correlation function performed differentially in <m_T> bins
 - Assume a p-p known interaction → determination of the source size
 - Effect of resonances is taken into account
 - Assume a common source and the same <m_→> dependence for all pairs:
 - The radius of the source core is obtained for the p- Ω pairs considering the corresponding pair <m₋>
- The theoretical correlation function is computed by CATS from the shape of the local potential provided by the different models.

 D. L. Mihaylov et al., EPJ C 78 (2018) 394

ALICE high-mult. data

- Analyzed 10 9 events data of ALICE Run2 (2016, 2017, 2018), pp collisions at \sqrt{s} = 13 TeV
- <u>High multiplicity trigger</u>: 0.1% highest multiplicity with respect to Minimum Bias events (V0M, forward rapidities: $2.8 < \eta < 5.1, -3.7 < \eta < -1.7$).
 - \circ Increased yield of Ω baryon

Selection of Ω^{-} candidates

- Identified by its decay: $\Omega^{-} \rightarrow \Lambda K^{-} \rightarrow (p\pi^{-})K^{-}$
- Total of 1.2×10^6 selected $(\Omega^- + \Omega^+)$ candidates
- Purity of the sample = **75**%
- Sidebands analysis delivers the shape of the background correlation function

Source core for $p\Omega^{-}$ pairs

- Source core dependence on <m_T> of p-p pairs fitted with power law
- For p Ω pairs <m_T> = 2.21 GeV/ $c^2 \rightarrow r_{core} = 0.72 \pm 0.03$ fm

$p-\Omega^{-}\oplus p\overline{-}\overline{\Omega^{+}}$ correlation function

- $0.6x10^6 \text{ p-}\Omega^{-}\oplus \overline{p-}\Omega^{-}$ pairs
- ~700 pairs at k* < 100 MeV/c
- Strong enhancement of the correlation function: the "Coulomb only" scenario is discarded by a χ^2 comparison to the data, $n_a \sim 6$
- λ parameters:

Pair	λ [%]		
p – Ω^-	61.5		
$p_{\Lambda}\!\!-\!\!\Omega^-$	8.3		
$p_{\Sigma^+}\!\!-\!\!\Omega^-$	3.8		
$\tilde{p}\!\!-\!\!\Omega^-$	1.5		
$p\!\!-\!\! ilde{\Omega^-}$	20.5		
p_{Λ} – $ ilde{\Omega^-}$	2.8		
p_{Σ^+} – $ ilde{\Omega^-}$	1.3		
<u> </u>	0.5		

ALI-PREL-3156

Comparison with models: $p-\Omega^-$ interaction potentials

- Lattice HAL-QCD potential with <u>physical quark masses</u> (⁵S₂ channel)
 - $om_{\pi} = 146 \text{ MeV}/c^2$
 - \circ m_K = 525 MeV/ c^2

T. Iritani et al., arXiv:1810.03416

- Sekihara: Meson-exchange model (5S_2 channel)
 - Including inelastic channels (strong decays into XΞ)
 - → small contributions, neglected for now
 - Short range attractive interaction fitted to HAL-QCD scattering parameters

T. Sekihara et al., Phys. Rev. C 98, 015205 (2018)

Model	NΩ binding energy		
HAL-QCD	1.54 MeV/ <i>c</i> ²		
Sekihara	0.1 MeV/ <i>c</i> ²		

Lattice HAL-QCD potential with heavy quarks

- Based on Lattice calculations with heavy quark masses F. Etminan et al.(HAL QCD Collaboration), Nucl. Phys. A928,89(2014)
 - $om_{\pi} = 875 \text{ MeV}/c^2$
 - $o m_{\kappa}^{"} = 916 \text{ MeV}/c^{2}$
- Used in the STAR p Ω analysis in Au-Au collisions at $\sqrt{s_{NN}}$ = 200GeV
- Lattice calculations fitted by an attractive Gaussian core + an attractive tail, varying the range parameter at long distance (b₅)
 - V_{II}: best fit to Lattice calculations
 - ∘ V_I / V_{III}: weaker / stronger attraction

$$V(r) = b_1 e^{-b_2 r^2} + b_3 (1 - e^{-b_4 r^2}) (e^{-b_5 r}/r)^2$$

Binding energy (E_b) , scattering length (a_0) and effective range (r_{eff}) for the Spin-2 proton- Ω potentials [24].

Spin-2 p Ω potentials	V_I	V_{II}	V_{III}
E _b (MeV)	_	6.3	26.9
$\mathbf{a_0}$ (fm)	-1.12	5.79	1.29
r _{eff} (fm)	1.16	0.96	0.65

Lattice HAL-QCD potential with heavy quarks

- Based on Lattice calculations with heavy quark masses F. Etminan et al.(HAL QCD Collaboration), Nucl. Phys. A928,89(2014)
 - \circ m_{π} = 875 MeV/ c^2
 - $o m_{K}^{"} = 916 \text{ MeV}/c^{2}$
- Used in the STAR p Ω analysis in Au-Au collisions at $\sqrt{s_{NN}}$ = 200GeV
- Lattice calculations fitted by an attractive Gaussian core + an attractive tail,
 varying the range parameter at long distance (b₅)
 - V_{II}: best fit to Lattice calculations
 - V_I / V_{III}: weaker / stronger attraction

$$V(r) = b_1 e^{-b_2 r^2} + b_3 (1 - e^{-b_4 r^2}) (e^{-b_5 r}/r)^2$$

Binding energy (E_b) , scattering length (a_0) and effective range (r_{eff}) for the Spin-2 proton- Ω potentials [24].

Spin-2 p Ω potentials	V_I	V_{II}	V_{III}
E _b (MeV)	_	6.3	26.9
$\mathbf{a_0}$ (fm)	-1.12	5.79	1.29
r eff (fm)	1.16	0.96	0.65

$p-\Omega^{-}$ correlation function: comparison with models

- Calculations from Lattice and phenomenological models provide the potential shape for th ⁵S₂ channel.
- The 3S_1 channel, with weight ${}^3\!\!/_8$, is modelled following the recipe in K. Morita et al., Phys. Rev. C 94 (2016), 031901
 - \circ Complete absorption of the N Ω wave function at short distance r < r₀
 - \circ r₀ = 2 fm (for r > 2 fm Coulomb dominates over the strong potential)
 - \circ Implemented in CATS by adding the "repulsive core"-like potential with an infinite barrier for r < r₀

$p-\Omega^{-}$ correlation function: comparison with models

- The comparison of the model expectation with the experimental C(k*) by ALICE is very sensitive to the shape of the model potential.
- Models predicting <u>large binding energies</u> for the NΩ di-baryon are **excluded** by ALICE data $(V_{III}, E_b \sim 27 \text{ MeV}/c^2, n_a > 10)$

Sensitivity of ALICE and STAR data

- Expected correlation function from heavy quark Lattice QCD potentials
- Smaller radius source offers the ideal conditions to test the models
- Better purity of ALICE data increases the sensitivity of the test

- Correlation function from 5S_2 channel with cutoff in r (for $r < r_{\text{cutoff}} \Rightarrow V = 0$)
- HAL-QCD with physical quark masses (t=12): maximum of the $C(k^*)$ for $r_{\text{cutoff}} = 0.5 \text{ fm}$

- Correlation function from 5S_2 channel with cutoff in r (for $r < r_{\text{cutoff}} \Rightarrow V = 0$)
- HAL-QCD with physical quark masses (t=12): maximum of the $C(k^*)$ for $r_{\text{cutoff}} = 0.5$ fm

- Correlation function from 5S_2 channel with cutoff in r (for $r < r_{\text{cutoff}} \Rightarrow V = 0$)
- HAL-QCD with physical quark masses (t=12): maximum of the $C(k^*)$ for $r_{\text{cutoff}} = 0.5$ fm

- Correlation function from 5S_2 channel with cutoff in r (for $r < r_{\text{cutoff}} \Rightarrow V = 0$)
- HAL-QCD with physical quark masses (t=12): maximum of the $C(k^*)$ for $r_{\text{cutoff}} = 0.5$ fm

- Correlation function from 5S_2 channel with cutoff in r (for $r < r_{\text{cutoff}} \Rightarrow V = 0$)
- HAL-QCD with physical quark masses (t=12): maximum of the $C(k^*)$ for $r_{\text{cutoff}} = 0.5$ fm

- Correlation function from 5S_2 channel with cutoff in r (for $r < r_{\text{cutoff}} \Rightarrow V = 0$)
- HAL-QCD with physical quark masses (t=12): maximum of the $C(k^*)$ for $r_{\text{cutoff}} = 0.5$ fm

Femtoscopic studies on p- Ω correlations with ALICE

- Correlation function from 5S_2 channel with cutoff in r (for $r < r_{\text{cutoff}} \Rightarrow V = 0$)
- HAL-QCD with physical quark masses (t=12): maximum of the $C(k^*)$ for $r_{\text{cutoff}} = 0.5$ fm
- For VI potential (no bound state) $C(k^*)$ always increases with decreasing $r_{\rm cutoff}$

Summary

- ALICE delivers the first **precise data** to test the p- Ω interaction.
- The <u>small source size</u> of pp collisions and the <u>high purity</u> of the sample favor the sensitivity of ALICE data:
 - The comparison of the experimental C(k*) by ALICE with the expectation from the models is very sensitive to the shape of the model potential.
- The Coulomb-only hypothesis is excluded showing the **strong attractive character of the** interaction.
- Models predicting large binding energies for the N Ω di-baryon are **excluded** by ALICE data

backup

p-Ω⁻ Correlation function: source dependence

- Comparison of the C(k*) for the different models for different source assumptions
- Size of the source determined from p-p fitted radius vs $< m_{\tau} >$
 - core gaussian source + resonances effects
 - pure gaussian source

p-Ω⁻ Correlation function: source dependence

