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Preface

Neutrinos are a kind of electrically neutral and extremely light spin-1/2 parti-
cles which only have weak and gravitational interactions with matter. Their
distinctive properties make them become one of Nature’s most mysterious
messengers. Since the birth of neutrino physics in 1930, when Wolfgang Pauli
postulated the existence of neutrinos as a “desperate remedy” for the con-
tinuous energy spectrum observed in the beta decay, intriguing puzzles and
exciting discoveries have been associated with elusive neutrinos in nuclear
physics, particle physics, astronomy and cosmology.

Enrico Fermi took advantage of Pauli’s neutrino hypothesis and invented
an effective theory of weak interactions in 1933. There were several milestones
associated with neutrinos in the subsequent development of particle physics.
The discovery of electron antineutrinos from nuclear reactors was made by
Clyde Cowan and Frederick Reines in 1956. In the same year Tsung-Dao Lee
and Chen Ning Yang published a seminal paper on parity violation in weak
interactions, which was soon confirmed by a number of elegant experiments.
Motivated by the experimental fact that neutrinos were almost massless and
left-handed, Richard Feynman and Murray Gell-Mann proposed the V−A
theory of weak interactions in 1958. Leon Lederman, Melvin Schwartz and
Jack Steinberger discovered the muon neutrino, a sister of the electron neu-
trino, by doing the first high-energy accelerator neutrino experiment in 1962.
A unified gauge theory of electromagnetic and weak interactions, the so-called
standard model (SM), was established by Sheldon Glashow, Steven Weinberg
and Abdus Salam in the 1960’s. This theory was experimentally verified in
1973, thanks to the discovery of neutral-current interactions via the neutrino-
electron and antineutrino-electron scattering. The massive mediators of weak
interactions (i.e., W± and Z0 bosons) were finally observed by Carlo Rubbia
and Simon van der Meer in 1983.

In this book we start with the SM and elaborate on the intrinsic prop-
erties and fundamental interactions of massless neutrinos. Thanks to several
compelling neutrino oscillation experiments done in the 1990’s and 2000’s, we
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are now convinced that neutrinos are massive and lepton flavors are mixed.
Generally speaking, one has to rely on a specific neutrino mass model when
discussing massive neutrinos and their interactions with matter. But our main
strategy is to focus on the model-independent properties of elusive neutrinos,
such as their electromagnetic dipole moments, flavor mixing, CP violation
and oscillations in vacuum and matter. To address the origin of finite neu-
trino masses, we shall concentrate on various seesaw mechanisms which have
currently attracted a lot of interest for model building. By choosing these
kinds of topics, we hope to keep us and the readers of our book as close as
possible to the true theory of massive neutrinos.

Furthermore, we aim to give an introduction to two newly developed
branches of astronomy and cosmology — neutrino astronomy and neutrino
cosmology. The subjects of neutrino astronomy include the studies of relic
neutrinos of the Big Bang, stellar neutrinos, supernova neutrinos and high-
energy cosmic neutrinos. Such studies may help us to deeply understand the
crucial role of neutrinos in the evolution of the Universe, the nuclear burning
mechanism of stars in their interiors, the dynamics of supernova explosions,
the origin of ultrahigh-energy cosmic rays and gamma rays, and so on. So
far solar neutrinos have been well investigated. The deficit of solar neutrinos,
which was first observed by Raymond Davis in 1968, provided us with the first
experimental evidence for the phenomenon of neutrino oscillations. Another
milestone in neutrino astronomy was the observation of a neutrino burst
from the Supernova 1987A explosion in the Kamiokande-II experiment led
by Masatoshi Koshiba. Davis and Koshiba received the Nobel Prize in Physics
in 2002 for their revolutionary contributions to neutrino astronomy. With the
development of more advanced experimental technologies, more discoveries
and breakthroughs in neutrino astronomy are highly anticipated in the (near)
future. In particular, every effort is being made to detect the cosmic neutrino
background, supernova neutrinos and ultrahigh-energy cosmic neutrinos.

As an important branch of cosmology, neutrino cosmology describes the
most profound interplay between neutrino physics and cosmology. The re-
markable success of the standard Big Bang model of cosmology has proved the
crucial role of neutrinos in the primordial nucleosynthesis, in the anisotropies
of the cosmic microwave background radiation, in the formation of the large-
scale structures, and so on. The cosmic neutrino background and neutrino
dark matter are also hot topics in cosmology. In addition, the production
and decays of heavy Majorana neutrinos in the very early Universe might be
responsible for the origin of cosmological matter-antimatter asymmetry via
the leptogenesis mechanism. We foresee that more reliable knowledge on the
properties of massive neutrinos to be obtained from a variety of new experi-
ments will allow us to understand the role of neutrinos in the evolution of the
Universe in a better way and to a better level. On the other hand, the devel-
opment of neutrino cosmology is likely to provide us with more compelling
information about neutrino masses, flavor mixing and CP violation.
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The text of this book can be divided into two parts: the first part consists
of chapters 1—5 and is devoted to neutrino physics, and the second part is
composed of chapters 6—11 and devoted to neutrino astronomy and neutrino
cosmology. We admit that it is a big challenge for us to catch up with the
rapid developments in neutrino physics, neutrino astronomy and neutrino
cosmology, which are partly characterized by the rising number of publica-
tions everyday. Although we have tried to cover recent progress in neutrino
science, a lot of interesting materials and technical details have to be skipped
from this book for a given page limitation. We apologize for missing many
useful references for the same reason.

We are deeply indebted to our families for their understanding and sup-
port during the writing of this book. We would like to thank many of our
collaborators and colleagues who kindly allow us to quote some tables, fig-
ures and physical results from their papers. One of us (Z.Z.X.) is grateful
to Harald Fritzsch for collaborating on his first scientific paper on neutrino
masses in September 1995. One of us (S.Z.) is grateful to Georg G. Raffelt
for suggesting the present title of this book and for his encouragement and
hospitality at the Max-Planck-Institute in Munich. We would also like to
thank the editorial staff of Zhejiang University Press and Springer Verlag for
inviting us to write this book and coming to our assistance. This work was
supported in part by the National Natural Science Foundation of China un-
der grant No. 10425522 and No. 10875131 (Z.Z.X.), in part by the Ministry
of Science and Technology of China under grant No. 2009CB825207 (Z.Z.X.),
and in part by the Alexander von Humboldt Foundation of Germany (S.Z.).

Zhi-Zhong Xing
Beijing, August 2010

Shun Zhou
Munich, August 2010
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1

Neutrinos: Past, Present and Future

Elusive neutrinos have been playing a special and important role in nuclear
physics, particle physics, astronomy and cosmology. They exist everywhere
in the Universe and are Nature’s mysterious messengers. In this chapter we
shall give a broad but brief overview of the history of neutrino physics and
the present situation of neutrino astrophysics. The prospects of neutrino as-
tronomy and neutrino cosmology will also be described.

1.1 Neutrinos in Nuclear and Particle Physics

The history of neutrino physics can be traced back to 4 December 1930, when
Wolfgang Pauli wrote his famous letter to the “Dear radioactive ladies and
gentlemen” who had gathered in Tübingen 1. In this letter Pauli conjectured
the existence of neutrinos as a desperate remedy for the energy crisis observed
in the beta decay because the energy and momentum conservation laws,
which had been regarded to be very sacrosanct, were severely challenged
by the continuous energy spectrum of the beta ray. Based on the neutrino
hypothesis, Enrico Fermi put forward an effective quantum theory of the
beta decay in 1933, through which people made the first acquaintance with
a new force in nature — the weak interaction. Soon after the experimental
discovery of electron antineutrinos in 1956, the space-inversion symmetry
(or parity conservation) was found to be maximally violated in a number of
processes of weak interactions. Hence neutrinos were assumed to be massless
Weyl particles with only two components: left-handed neutrinos and right-
handed antineutrinos. They were naturally included into the V−A theory of
weak interactions in 1958 and into the standard model (SM) of electroweak
interactions in 1967. The latter was experimentally verified in 1974 thanks

1See, e.g., Pauli’s lecture given in 1957 in Zürich: “Zur älteren und neueren
Geschichte des Neutrinos” (i.e., “On the Earlier and More Recent History of the
Neutrino”), which was published in 1984 (Pauli, 1984).
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to the discovery of neutral-current interactions — a neutrino could interact
with another particle and remained to be a neutrino. Although the SM has
so far passed almost all experimental tests, it must be incomplete because it
does not allow neutrinos to be massive.

Since 1998, a lot of robust experimental evidence has pointed to the fact
that neutrinos can oscillate — a pure quantum phenomenon which can take
place only if neutrinos have finite masses. This great breakthrough is opening
an important window towards new physics beyond the SM. In this section we
shall follow the historical line to briefly address the role played by neutrinos
in the development of nuclear and particle physics. Some particular attention
will be paid to the following three aspects: (1) the background for Pauli to
conjecture the existence of neutrinos; (2) the establishment of the V−A the-
ory of weak interactions; and (3) the discovery of neutrinos. An introduction
to the experimental and theoretical aspects of neutrino oscillations will be
presented in Section 3.1 and Chapter 5.

1.1.1 Pauli’s Neutrino Hypothesis

The ultimate goal of particle physics is to explore the fundamental building
blocks of matter and the fundamental forces between them, and to discover
the basic laws governing how Nature works as it does. In the early stage of the
20th century electrons and protons were commonly regarded as the elemen-
tary particles and thus the unique ingredients of atoms, which made up the
matter. This picture encountered some serious difficulties, among which the
most important two were the “wrong statistics” problem and the continuous
energy spectrum of the beta decay.

At that time the nitrogen nucleus 14N was expected to contain 14 protons
and 7 electrons. Hence the spin of 14N should be half-integral and obey the
Fermi-Dirac statistics. The experiments, however, indicated that 14N actually
followed the Bose-Einstein statistics (Kronig, 1928; Heitler and Herzberg,
1929; Rasetti, 1930). This was just the “wrong statistics” problem.

The continuous energy spectrum of the beta decay was first discovered by
James Chadwick in 1914 (Chadwick, 1914). After a longtime debate it was
finally established. But the final state of the beta decay of an unstable nucleus
was assumed to consist of only two particles: the daughter nucleus and the
electron. A simple kinematic analysis of this two-body decay mode led to the
conclusion that the emitted electron must be monoenergetic. There were two
conflicting viewpoints on the observed continuous spectrum at that time: (1)
the energy spectrum was originally monochromatic, but it was subsequently
broadened due to the energy loss of electrons in nuclei; (2) the electrons
from the individual decay modes carried various energies that distributed
continuously. In order to verify or falsify either point, one had to measure the
energy released in the beta decay as accurately as possible. Such a precision
measurement was done by making use of the calorimetry of heat generation,
and its result showed that the mean disintegration energy was consistent
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with the energy of electrons averaged over the continuous spectrum (Ellis
and Wooster, 1927). How to resolve the energy crisis observed in the beta
decay became a great challenge to many important theorists in the 1920’s.
Some exotic ideas emerged, although they sounded unimaginable. In 1929,
for instance, Niels Bohr even considered to abandon the conservation laws of
energy and momentum in an individual subatomic process.

In December 1930, Pauli postulated that the beta decay might be a three-
body decay mode in which an electrically neutral and extremely light particle
of spin 1/2 was also emitted from the decaying nucleus. He also conjectured
that this new particle should have a small magnetic moment such that it
could be bounded in the decaying nucleus. The consequences of Pauli’s hy-
pothesis are obvious: (a) in the final state of the beta decay the electron has
to share the available energy with the new particle, and hence its energy
spectrum must be continuous; (b) because each electron is accompanied by
a new particle of spin 1/2, the spin of 14N must be an integer and obeys the
Bose-Einstein statistics 2. In 1932, Chadwick discovered the neutron (Chad-
wick, 1932) — the counterpart of the proton in a nucleus (Heisenberg, 1932).
Then Fermi named Pauli’s neutral particle as the “neutrino” and formulated
an effective quantum theory of the beta decay (Fermi, 1933).

1.1.2 Weak Interactions and Neutrinos

By combining Pauli’s neutrino hypothesis, Dirac’s idea about the creation of
particles and Heisenberg’s isospin concept for neutrons and protons in a co-
herent way, Fermi proposed the effective Hamiltonian HβH = g(pγμn)(eγμνe)
to account for the beta decay n→ p+ e− + νe, where the vector-current in-
teraction form was analogous to the second-order electromagnetic interaction
(Fermi, 1933, 1934). This effective theory allowed Fermi to show the correct
energy spectrum of the beta decay. He even suggested that an accurate mea-
surement of the continuous energy spectrum’s endpoint be able to pin down
the rest mass of the neutrino. However, it turned out that HβH itself was too
selective to explain all the beta decays. This unfortunate situation motivated
other theorists to postulate different selection rules for the decays of nuclei
(Gamow and Teller, 1936). The most general Lorentz-invariant form of the
effective Hamiltonian responsible for the beta decay should contain the scalar
1 (S), vector γμ (V ), tensor σμν (T ), pseudoscalar γ5 (P ) and pseudovector
γμγ5 (A) interactions. Historically, it took a long time for experimentalists
to clarify the form of weak interactions (Franklin, 2000).

The breakthrough took place in 1956 and 1957. Questioning the validity
of parity conservation in weak interactions, Tsung-Dao Lee and Chen Ning

2In 1931, Pauli gave up the idea that his neutral particles were the necessary
ingredients of nuclei because it was in conflict with the nuclear mass relations.
It was actually the neutron that had later been employed to resolve the “wrong
statistics” problem of the nitrogen nucleus.
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Yang suggested an experiment to examine the angular distribution of the
beta rays emitted from the 60Co nuclei with spins polarized along an external
magnetic field (Lee and Yang, 1956) — if parity were conserved, there should
be no correlation between the spin and momentum of every electron emitted
in the decay 3. Chien-Shiung Wu and her collaborators did this experiment
and found that the electrons were almost always emitted in the direction
opposite to the nuclear spins — a signature of maximal parity violation (Wu
et al., 1957). More evidence for maximal parity non-conservation was later on
obtained by other experimental groups in different weak processes (Garwin et
al., 1957; Friedman and Telegdi, 1957). Soon after the observation of parity
violation, several important theorists independently put forward the idea that
neutrinos might simply be massless and could naturally be described in terms
of the two-component Weyl spinor (Lee and Yang, 1957; Landau, 1957; Salam,
1957). In such a two-component neutrino theory the helicity of a neutrino
must be identical with its handedness or chirality. The aforementioned 60Co
experiment indicated that the emitted electron and its accompanying electron
antineutrino should have left (λ = −1/2) and right (λ = +1/2) helicities,
respectively. Direct helicity measurements confirmed λ = −1/2 for neutrinos
and λ = +1/2 for antineutrinos (Goldhaber et al., 1958; Bardon et al., 1961).
That is why neutrinos (antineutrinos) had commonly been accepted to be
exactly massless and purely left-handed (right-handed) for several decades
before the phenomena of atmospheric and solar neutrino oscillations were
firmly established at the end of the 1990’s and the beginning of the 2000’s.

The discovery of parity non-conservation, together with a coherent anal-
ysis of many other experimental data on various weak processes, led to
the theoretical observation that weak interactions should have the univer-
sal V−A form with maximal parity and charge-conjugation violation (Su-
darshan and Marshak, 1958; Feynman and Gell-Mann, 1958). In the V−A
theory of weak interactions a four-fermion interaction can be expressed
as gψ1γ

μ(1 − γ5)ψ2ψ3γμ(1 − γ5)ψ4. Hence it is the effective Hamiltonian
HβH = gpγμ(1−γ5)n eγμ(1−γ5)νe that governs the beta decay n→ p+e−+νe.
Such a current-current interaction picture actually serves for a low-energy
approximation of the SM of weak interactions mediated by massive gauge
bosons W± and (or) Z0 (Weinberg, 1967; Salam, 1968).

1.1.3 Discoveries of Neutrinos

Since the beginning of the 1930’s, numerous experiments have been done to
search for neutrinos and measure their properties. Before the 1950’s, however,
all of the experiments were designed to observe the energy and momentum
carried away by the neutrino in the beta decay. This kind of kinematic mea-
surement was actually realized by detecting the recoil of relevant nuclei and

3The correlation between spin and momentum is measured by the average value
of the helicity λ ≡ s · p/|p| = ±1/2, which changes sign under a parity inversion
and thus must vanish if parity is conserved in a given process.
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the emitted electrons (Crane and Halpern, 1939). In 1942, Kan Chang Wang
proposed a different idea to kinematically detect neutrinos: since the β+-
radioactive atom could capture aK-shell electron rather than emit a positron,
the recoil energy and momentum of the resulting atom would merely depend
on the emitted neutrino (Wang, 1942). Taking the element 7Be for example,
Wang suggested that one use the process 7Be + e−K → 7Li + νe + (1 MeV)
to do the experiment. Such an experiment was soon done by James Allen,
who found that the recoil energy of 7Li was well consistent with the expecta-
tion from a neutrino emission. So he published the result in a paper entitled
“Experimental Evidence for the Existence of a Neutrino” (Allen, 1942).

However, those indirect hints had never been regarded as a real discovery
of neutrinos (Crane, 1948). As Hans Bethe and Robert Bacher noted, “It
seems practically impossible to detect neutrinos in the free state, i.e., after
they have been emitted by the radioactive atom. There is only one process
which neutrinos can certainly cause. That is the inverse beta process, con-
sisting of the capture of a neutrino by a nucleus together with the emission
of an electron (or positron)” (Bethe and Bacher, 1936). Hence a conclusive
experiment to verify Pauli’s neutrino hypothesis should detect the inverse
beta decay νe + p → n + e+. In 1952, Clyde Cowan and Frederick Reines
realized that a coincidence measurement of the photon signals coming both
from the positron annihilation and from the neutron capture on cadmium
in the liquid scintillator would greatly reduce the background and provide
a convincing signature of the inverse beta decay. They built a detector near
the nuclear reactor pile in Hanford in 1953, but their experiment was unsuc-
cessful because it suffered from the intolerable noise induced by cosmic rays.
To improve the experiment, Cowan and Reines moved the detector to the
Savannah River reactor and placed it underground to reduce the background
from cosmic rays. This time they succeeded in observing an unambiguous sig-
nature of the inverse beta decay and demonstrated that its cross section was
compatible with the theoretical prediction (Cowan et al., 1956) 4. On 14 June
1956, Reines and Cowan sent a telegram to Pauli: “We are happy to inform
you that we have definitely detected neutrinos from fission fragments by ob-
serving inverse beta decay of protons. Observed cross section agrees well with
expected six times ten to minus forty-four square centimeters”. They received
no reply from Pauli but learnt later that Pauli and some friends consumed a
case of champagne in celebration of this good news (Reines, 1979).

In 1946, Bruno Pontecorvo suggested a radiochemical technique to cap-
ture electron neutrinos via the process 37Cl + νe → 37Ar + e− (Pontecorvo,

4Note that the theoretical prediction that Cowan and Reines quoted in their
experiment was based on the parity-conserving formulation of the beta decay. Given
maximal parity violation discovered in 1957, the V −A theory of weak interactions
predicted that the cross section of the inverse beta decay should be twice as large
as that reported previously. Cowan and Reines redid their experiment and arrived
at the correct result in 1960 (Reines et al., 1960).
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1946). The cross section of this reaction was precisely computable and its
energy threshold E(νe) � 0.814 MeV was low enough to make the mea-
surement sensitive to solar 8B neutrinos. It was John Bahcall who carefully
calculated the flux of solar neutrinos and the capture rate of 8B neutrinos,
demonstrating that Pontecorvo’s idea was experimentally feasible (Bahcall,
1964). In the middle of 1960’s, Raymond Davis and his team built a 105-gallon
Chlorine-Argon neutrino detector in the Homestake Gold Mine to detect so-
lar neutrinos (Davis, 1964). The final result of their experiment came out in
1968: the measured flux of solar 8B neutrinos was only about one third of
the value predicted by the standard solar model (SSM) (Davis et al., 1968;
Bahcall and Shaviv, 1968). This was just the famous solar neutrino problem,
which was actually caused by the flavor conversion of solar νe neutrinos on
their way from the core of the Sun to the detector on the Earth. Davis re-
ceived the Nobel Prize in Physics in 2002, at the age of 88, for his discovery
of solar neutrinos and their deficit.

In the 1960’s, another burning question was whether the neutrinos emit-
ted from the primary decay modes of π± mesons were the same as those from
the beta decay. If they were the same particles, the branching ratio of the
lepton-flavor-violating decay μ→ e+γ would be of O(10−5), several orders of
magnitude larger than the experimental upper bound (Lee and Yang, 1960).
If there were only one neutrino species, electrons and muons would be equally
produced from the collision between a neutrino beam of several GeV and a
nucleon. The situation was clarified by Leon Lederman, Melvin Schwartz and
Jack Steinberger, who did the first high-energy accelerator neutrino experi-
ment at the Brookhaven National Accelerator Laboratory in 1962. In their
experiment the charged pions were produced by bombarding the metal beryl-
lium target with protons, while the muons emitted from the decaying pions
were stopped by ionization loss in the shield. The events of single muon track
in the spark chamber were observed, providing the robust evidence for the
existence of the muon neutrino νμ (Danby et al., 1962). The tau neutrino ντ

was naturally expected to exist, after the tau lepton was discovered and the
missing energy from its decay was observed by Martin Perl and his team in
1975 (Perl et al., 1975). But the ντ -induced interactions were not directly
observed until the end of 2000 at the Fermilab (Kodama et al., 2001). A
picture of three lepton families, including three charged leptons (e, μ, τ) and
three neutrinos (νe, νμ, ντ ), was therefore completed in the SM.

1.2 Neutrinos in Astronomy and Cosmology

Neutrinos were made in astonishing numbers at the time of the Big Bang and
took part in the evolution of the Universe from its very beginning. Neutrinos
can also be produced in staggering numbers from nuclear burning of stars,
violent explosions of supernovae, interactions between the cosmic microwave
background (CMB) radiation and ultrahigh-energy cosmic rays, annihilation
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of dark matter, and a variety of distant astrophysical sources such as gamma
ray bursts and active galactic nuclei. Only the neutrinos emitted from the
Sun and Supernova 1987A have been observed. Hence neutrino astronomy
is still very much in its infancy, so is neutrino cosmology. We shall give a
short account of astrophysical neutrinos in this section. Detailed discussions
about hot and important topics of neutrino astronomy and cosmology will
be presented in the second part of this book, from Chapter 6 to Chapter 11.

1.2.1 Neutrinos from Stars and Supernovae

In the 1930’s, it was unclear whether neutrinos had something to do with why
the Sun was shining. Bethe did not include neutrinos into solar nuclear fusion
chains when he published his seminal paper on the energy production in stars
in 1939 (Bethe, 1939). One year later, George Gamow and Mario Schönberg
pointed out that neutrinos would take away a certain part of stellar energies
and their role was particularly important in a collapsed star because of the
high temperature and density in its interior (Gamow and Schönberg, 1940,
1941). Today we know that solar neutrinos take away a few percent of the
total energy of the Sun. Another example is the Supernova 1987A explosion,
in which about 99% of the energy was taken away by neutrinos.

The Sun shines as a result of nuclear fusion in its core. The pp and CNO
chains of hydrogen fusion in the Sun can be expressed as 4p4 + 2e− → 4He +
2νe + (26.7 MeV), so about 98% of the energy radiates in the form of light
and only 2% of the energy is taken away by neutrinos. Soon after the V−A
theory of weak interactions emerged in 1958, Pontecorvo realized that the
bremsstrahlung radiation of neutrinos from the Sun was also possible to take
place (Pontecorvo, 1959). But the energy of this kind of solar neutrinos must
be very low because it is subject to the Sun’s temperature (T�TT ∼ 107 K ∼ 1
keV). In comparison, those neutrinos emitted from nuclear reactions inside
the Sun are more energetic and their typical energies are of O(1) MeV.

Solar neutrinos were first observed by Davis in Homestake — the first
radiochemical experiment which was sensitive to solar 8B neutrinos (Davis
et al., 1968). The subsequent radiochemical experiments, GALLEX/GNO in
Gran Sasso (Hampel et al., 1999; Altmann, et al., 2005) and SAGE in Baksan
(Abdurashitov et al., 2002), employed the reaction 71Ga + νe → 71Ge + e−

to detect solar neutrinos. The energy threshold of this reaction is as low as
E(νe) � 0.233 MeV, and hence more than half of the νe-induced events in
the GALLEX/GNO or SAGE experiment are attributed to solar pp neutrinos
emitted from the nuclear reaction p + p → D + e+ + νe inside the Sun. The
neutrino flux measured in either of these two gallium experiments was only
about one half of that predicted by the SSM, implying that the solar neutrino
anomaly revealed by the Homestake experiment might be a real problem
independent of the uncertainties of the SSM itself. Such an anomaly was also
observed in the Kamiokande and Super-Kamiokande (SK) experiments with
the help of water Cherenkov detectors, where solar 8B neutrinos (emitted
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from the decay 8B → 8Be + e+ + νe) and hep neutrinos (emitted from the
reaction 3He + p→ 4He + e+ + νe) were measured via the elastic neutrino-
electron scattering process νe +e− → νe +e− (Fukuda et al., 1996; Fukuda et
al., 2001). The simplest solution to this solar neutrino problem was based on
the assumption that solar νe neutrinos might have converted into other types
of neutrinos which were undetectable in the detectors located on the Earth
(Wolfenstein, 1978; Mikheyev and Smirnov, 1986). A decisive experiment was
done in 2001 at the Sudbury Neutrino Observatory (SNO), where solar 8B
neutrinos were detected via the charged-current process νe +D → p+p+ e−,
the neutral-current process να + D → p + n + να and the elastic scattering
process να+e− → να+e− for α = e, μ and τ (Ahmad et al., 2001). The total
neutrino flux measured in the SNO experiment was in agreement with that
predicted by the SSM. Furthermore, the SNO experiment confirmed the SK
result and gave very convincing evidence for νe → νμ and νe → ντ transitions.
These important results point to solar neutrino oscillations. The theory of
neutrino oscillations will be described in Chapter 5, and the properties of
stellar neutrinos will be discussed in Chapter 6.

The observation of neutrinos arising from the Supernova 1987A explosion
was another milestone in neutrino astronomy. At 07:35:41 UT on 23 February
1987, the burst of neutrinos from a supernova explosion in the Large Mag-
ellanic Cloud at a distance of about 50 kpc was recorded by three neutrino
telescopes on the Earth: Kamiokande-II led by Masatoshi Koshiba in Japan
(Hirata et al., 1987), IMB in the United States (Bionta et al., 1987) and
Baksan in Russia (Alekseev et al., 1987). This burst lasted less than 13 sec-
onds. Totally 24 events of electron antineutrinos were detected in the above
observatories (11 at Kamiokande-II, 8 at IMB and 5 at Baksan), and their
average energy was around 10 MeV. About 2.5 hours later, the visible light
emitted from this supernova explosion reached the Southern Hemisphere and
was observed by three independent groups (Arnett et al., 1989). Koshiba won
the Nobel Prize in Physics in 2002 for his detection of supernova neutrinos.

The picture of a supernova explosion and the burst of supernova neutrinos
can be sketched as follows (Bethe and Wilson, 1985; Bethe, 1990): (a) when
the iron core of a star reaches the Chandrasekhar mass limit, the gravitational
collapse occurs; (b) after the inner core exceeds the nuclear density, the in-
falling outer core bounces and a shock forms; (c) the shock wave propagates
outward and loses energies by disintegrating the Fe nuclei; (d) the inner core
becomes a protoneutron star by releasing the gravitational binding energy of
O(1053) erg in the form of neutrinos; (e) neutrinos exchange energies with
matter via the reactions νe + n � p + e− and νe + p � n + e+; and (f)
the shock receives energies from these processes and revives to make the fi-
nal explosion. Although only the Supernova 1987A neutrinos were observed,
they have greatly improved our understanding of the stellar evolution and
explosion mechanisms. This observation has also been used to constrain neu-
trino masses, lifetimes and magnetic dipole moments (Raffelt, 1996, 1999).
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It is therefore important to study supernova neutrinos so as to probe the
dynamics of stars and supernovae and to learn about the intrinsic properties
of neutrinos themselves. We shall elaborate these points in Chapter 7.

1.2.2 High-energy Cosmic Neutrinos

The study of high-energy cosmic neutrinos is well motivated because their
sources must be associated with the astrophysical sources of high-energy or
ultrahigh-energy cosmic rays (Gaisser, 1991; Stanev, 2004). It has been found
that the most energetic cosmic ray particles can have kinetic energies up to
1021 eV, but where and how they are accelerated remain unknown. Neutrinos
are expected to play an important role in searching for cosmic accelerators for
two simple reasons: (a) they are electrically neutral and thus their trajectories
cannot be bent by interstellar magnetic fields; (b) they do not interact with
the CMB and hence they can travel very long distances, from some distant
astrophysical sources to the Earth. So high-energy cosmic neutrinos should
be a unique cosmic messenger complementary to photons and protons. If
there exists an astrophysical object responsible for the production of both
cosmic rays and neutrinos, then a successful measurement of the neutrinos
(e.g., their direction, energy and flavor distribution) will allow us to probe
where this astrophysical source is located and how it accelerates cosmic rays.

There are a number of possible candidates for the sources of high-energy
cosmic neutrinos, including active galactic nuclei, gamma ray bursts and su-
pernova remnants (Halzen and Hooper, 2002). In such a violent astrophysical
source protons are likely to be accelerated to extremely high energies, lead-
ing to high-energy proton-proton (pp) and proton-photon (pγ) collisions from
which vast quantities of pions and kaons can be produced. High-energy neu-
trinos can subsequently be produced from the primary and secondary decays
of π± and K± mesons. Another possible source of high-energy cosmic neutri-
nos is related to the so-called Greisen-Zatsepin-Kuzmin (GZK) cutoff in the
energy spectrum of cosmic rays. Given the existence of the CMB, the cosmic
rays with energies higher than EthEE = 5 × 1019 eV would interact with the
background photons via theΔ-resonance process p+γCMB → Δ+ → p+π0 or
n+ π+. This implies that the extragalactic cosmic rays with E � EthEE should
not travel more than 50 Mpc and thus never reach the Earth (Greisen, 1966;
Zatsepin and Kuzmin, 1966). Some recent observational data have indicated
that the GZK cutoff seems to exist (Abbasi et al., 2008; Abraham et al.,
2008). If such a cutoff is finally verified, it will be a “guaranteed” source of
ultrahigh-energy cosmic neutrinos since neutrons and π+ mesons generated
from the Δ+ decays will definitely produce neutrinos and antineutrinos in
their subsequent decays.

The events of high-energy cosmic neutrinos are as rare as those of high-
energy cosmic rays, and hence they can only be detected by using extraordi-
narily large neutrino detectors — the so-called neutrino telescopes. In a given
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telescope the neutrino flux is identified by detecting its charged-current in-
teractions with nuclei (i.e., να + N → l−α + N ′ and να + N → l+α + N

′

reactions for α = e, μ, τ). The produced charged leptons move in the detector
medium so rapidly that they can emit visible Cherenkov light. An optical
Cherenkov neutrino telescope must satisfy the following conditions: (a) large
enough that some of the rare galactic or extragalactic neutrinos can interact
as they pass by; (b) transparent enough to allow light to travel through a
widely-spaced array of optical sensors; (c) dark enough to avoid the inter-
ference of natural light; and (d) deep enough below the Earth’s surface to
avoid the contamination from cosmic rays. Only dark lakes or oceans and
deep fields of ice meet all these requirements. The km3-scale neutrino tele-
scope IceCube is now under construction at the South Pole (Ahrens et al.,
2003) and its possible counterpart in the Mediterranean Sea, KM3NeT, has
been proposed (Carr et al., 2007). Such a neutrino telescope is expected to
be most sensitive to high-energy muon neutrinos, simply because the muon
can have a long and clear track in the detector to assure excellent energy and
direction resolutions. Needless to say, a measurement of the flavor distribu-
tion of high-energy cosmic neutrinos from a distant astrophysical source will
be very helpful to probe the production mechanism of cosmic rays and to
examine the intrinsic properties of massive neutrinos.

High-energy cosmic neutrinos might also come from the annihilation of
dark matter. In addition, the origin of high-energy cosmic neutrinos might be
associated with the production of high-energy photons and even gravitational
waves at an astrophysical source. Such topics will be discussed in Chapter 8.

1.2.3 Cosmic Neutrino Background

One of the greatest discoveries in the history of cosmology was Edwin Hub-
ble’s observation that galaxies were receding from each other at velocities
proportional to their distances (Hubble, 1929). This observation, which was
consistent with Albert Einstein’s prediction for the relationship between ve-
locities and distances (Einstein, 1915), strongly indicated that the Universe
was expanding and its dynamics could be correctly described by general rel-
ativity. Starting from the present-day data and allowing the equations of
general relativity to run backwards in time, one may immediately infer that
the Universe should become increasingly hotter and denser until the Big
Bang (i.e., the initial singularity or a state of infinite density and temper-
ature) is finally encountered (Lemaitre, 1931). One can then run the clock
forward from the Big Bang and construct a time line which orders the evolu-
tion of the Universe. Some important events in the evolution of the Universe
include cosmological inflation, quark-baryon transition, Big Bang nucleosyn-
thesis (BBN), recombination, large-scale structure formation, and so on.

In the early Universe the energy density was dominated by relativistic
leptons, quarks and gauge bosons. Within a few microseconds, the quarks
were confined to form protons and neutrons. Within about one second, soon
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after neutrinos lose their contact with the thermal bath and decoupled from
the rest of matter, the synthesis of primordial nuclei (e.g., D, 3He, 4He and
7Li) began (Alpher et al., 1948). The BBN was completed when the Uni-
verse was about several minutes old, but the Universe itself remained too
hot for nuclei to capture electrons and form neutral atoms. The epoch of
recombination arrived about 3 × 105 years after the Big Bang, when the ex-
panding Universe cooled to a temperature of 0.3 eV, allowing electrons and
protons to combine to form neutral hydrogen atoms. This epoch marked the
decoupling of matter and electromagnetic radiation. The relic photons finally
became the CMB of the Universe, just like the relic neutrinos which formed
the cosmic neutrino background (CνB) of the Universe. In 1965, Arno Pen-
zias and Robert Wilson succeeded in detecting the existence of the CMB
(Penzias and Wilson, 1965). Their great discovery offered a strong support
to the model of hot Big Bang proposed by Alpher, Bethe and Gamow in
1948. The average temperature of the CMB has been measured to an un-
precedented accuracy: TγTT = (2.725 ± 0.001) K, and its spectrum fits the
blackbody radiation formula very well. The average temperature of the CνB
is predicted to be TνTT = (4/11)1/3TγTT = (1.945 ± 0.001) K in the hot Big
Bang model, implying that the kinetic energy of relic neutrinos is only about
Eν ∼ 1.6 × 10−4 eV. How to detect the CνB turns out to be a big challenge
in modern neutrino astronomy because the cross section of such a low-energy
neutrino flux interacting with matter within a detector is too small, charac-
terized by (GFEν)2 ∼ 1.4 × 10−63 cm2.

The number density of relic neutrinos can be computed with the Fermi-
Dirac statistics at their present-day average temperature. It is found that
there are totally about 336 neutrinos and antineutrinos per cubic centimeter
in the Universe; i.e., nνα

≈ nνα
≈ 56 cm−3 for α = e, μ and τ . In comparison,

the cosmic background photons are slightly more numerous and their number
density is about nγ ≈ 411 cm−3. Relic neutrinos are therefore the second
most abundant particles in the Universe (Dondelson, 2003; Weinberg, 2008).
They must contribute to the total energy density of the Universe, which
governs how the Universe evolves. The species of neutrinos must have affected
the primordial abundances of light elements during the BBN. In addition,
the existence of the CνB can have an impact on the evolution of the CMB
anisotropy and the growth of matter perturbations. We shall spell out the
crucial roles of neutrinos played in the evolution of the Universe, such as the
BBN and the structure formation, in Chapter 9 and Chapter 10.

1.3 Knowledge and Questions on Neutrinos

Neutrinos are very elusive. A neutrino is by Pauli’s definition an electrically
neutral and extremely light particle of spin 1/2. This section will first out-
line some fundamental knowledge of neutrinos that we have accumulated in
the past eight decades, and then list some important open questions about
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the properties of massive neutrinos and their unique roles in the micro- and
macro-worlds. The prospects of neutrino physics, neutrino astronomy and
neutrino cosmology rely on the extent to which those questions will be an-
swered, and on new discoveries and surprises on the road ahead.

1.3.1 Present Knowledge on Neutrinos

There are three neutrino species (νe, νμ, ντ ), consistent with the existence
of three families of charged leptons (e, μ, τ), Q = +2/3 quarks (u, c, t) and
Q = −1/3 quarks (d, s, b). The invisible decay width of the gauge boson
Z0 measured in the LEP experiment provides the most stringent constraint
on the number of neutrino species: NνNN = 2.984 ± 0.008 (Nakamura et al.,
2010), which is in excellent agreement with the SM expectation NνNN = 3.
Note that this constraint is only valid for the active neutrinos that take
part in the standard weak interactions and have masses below MZM 0/2 ≈
45.6 GeV. Moreover, the observational data on the BBN and CMB set the
following consistent but looser bounds on the number of neutrino species:
NνNN = 3.14+0.70

−0.65 (BBN) at the 68% confidence level (Cyburt et al., 2005) and
NνNN = 4.4 ± 1.5 (CMB) at the same confidence level (Komatsu et al., 2009).

Neutrinos and antineutrinos are electrically neutral fermions of spin 1/2;
and they have left (λ = −1/2) and right (λ = +1/2) helicities, respectively.
Given the electric charge conservation as a fundamental law, one may ex-
perimentally constrain the electric charge of an electron antineutrino to be
eν < 3 × 10−21e in the beta decay thanks to the precision measurements of
the electric charges of electrons, protons and neutrons (Ignatiev and Joshi,
1995). The astrophysical bounds on the electric charges of neutrinos, such as
the one eν < 2 × 10−14e obtained from the observational data on the glob-
ular clusters (Raffelt, 1999), are much looser but they also point to eν = 0.
Given the angular momentum conservation as a fundamental law, one may
consider π+ → μ+ + νμ, π+ → e+ + νe and other weak processes to in-
fer that neutrinos must have spin 1/2. In the orbital-electron capture re-
action 152

63Eu + e− → 152
62Sm∗ + νe and the decay mode π− → μ− + νμ,

for example, the helicity of the electron neutrino and that of the muon an-
tineutrino were found to be left (Goldhaber et al., 1958) and right (Bardon
et al., 1961), respectively. The ALEPH Collaboration measured the decay
mode τ− → l−α + να + ντ (for α = e or μ) and determined the helicity of
the tau neutrino to be λ = −0.496 ± 0.006 (Heister et al., 2001), consistent
with the SM expectation λ = −1/2. All the available experiments indicate
that neutrinos are essentially left-handed while antineutrinos are essentially
right-handed, even though their rest masses may not be exactly vanishing.

Neutrinos are actually massive but their rest masses are very tiny, at
most of O(1) eV. Since 1998, the phenomena of neutrino oscillations have
convincingly been observed in atmospheric, solar, reactor and accelerator
neutrino experiments (Nakamura et al., 2010). The discovery of neutrino os-
cillations marks a great breakthrough in particle physics, because it implies
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that neutrinos have rest masses and the SM itself is incomplete. Current
experimental data have revealed the magnitudes of two independent neu-
trino mass-squared differences: Δm2

21 ≡ m2
2 − m2

1 ∼ 7.7 × 10−5 eV2 and
Δm2

32 ≡ m2
3 −m2

2 = ±2.4 × 10−3 eV2. Hence at least two neutrinos must be
massive and at least one neutrino mass must be larger than

√
|Δm2

32| ∼ 0.049
eV. But the absolute scale of neutrino masses cannot be determined from
neutrino oscillations. The kinematic measurements of the tritium beta decay
3H → 3He + e− + νe and the pion and tau decays have yielded some up-
per bounds on the effective masses of three neutrinos, but they are looser
than those obtained from the neutrinoless double-beta (0ν2β) decay and the
cosmological constraints (Fogli et al., 2008). One may conservatively expect
that the absolute neutrino mass scale should be of O(1) eV or smaller.

The neutrino mass eigenstates (ν1, ν2, ν3) do not match the neutrino
flavor eigenstates (νe, νμ, ντ ), leading to the phenomenon of neutrino flavor
mixing which is exactly analogous to that of quark flavor mixing. In the
basis where the mass eigenstates of three charged leptons are identified with
their flavor eigenstates, the mismatch between mass and flavor eigenstates
of three neutrinos can be described by a 3 × 3 unitary matrix V — the
so-called Maki-Nakagawa-Sakata (MNS) matrix (Maki et al., 1962) or the
MNS-Pontecorvo matrix (Pontecorvo, 1968), which is usually parametrized
in terms of three mixing angles (θ12, θ13, θ23) and three CP-violating phases
(δ, ρ, σ). A global analysis of current neutrino oscillation data yields θ12 ≈
34◦, θ23 ≈ 45◦ and θ13 < 10◦ (Fogli et al., 2008; Schwetz et al., 2008), but
three CP-violating phases are entirely unrestricted due to the lack of relevant
experimental information. The fact that θ12 and θ23 are remarkably larger
than the largest quark mixing angle (i.e., the Cabibbo angle ϑC ≈ 13◦) is
an intriguing puzzle, implying an intrinsic difference between the origin of
lepton flavor mixing and that of quark flavor mixing.

Neutrinos take part in both neutral- and charged-current weak interac-
tions. The available experimental results for neutrino-electron scattering,
neutrino-nucleus scattering and quasi-elastic or inelastic neutrino-nucleon
scattering are all consistent with the SM. Hence the SM remains to be the
standard theory of neutrino interactions even after neutrino oscillations have
been discovered, and it is the guiding principle of various man-made exper-
iments to produce and detect neutrinos. Up to now solar neutrinos, atmo-
spheric neutrinos and Supernova 1987A neutrinos have been observed, thanks
to the rapid development of detector techniques, so have geoneutrinos 5. The
technology of producing low- and high-energy neutrinos from reactors and
accelerators has been very mature, too. We can therefore foresee a bright fu-
ture in experimental neutrino physics and astronomy, which will finally help
bring the true theory of massive neutrinos to light.

5Geoneutrinos are the low-energy neutrinos created in the decays of radioactive
isotopes inside the Earth. They have been detected in the KamLAND and Borexino
experiments (Araki et al., 2005; Bellini et al., 2010).
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1.3.2 Open Questions on Neutrinos

Although we have known quite a lot about elusive neutrinos, as briefly sum-
marized in Section 1.3.1, we have many open questions about their intrinsic
properties and their unique roles in the Universe. The following is a partial
list of some immediate and important questions in neutrino physics, neutrino
astronomy and neutrino cosmology.

Question 1: are massive neutrinos the Dirac or Majorana particles? If
massive neutrinos are the Dirac particles, just like the charged leptons and
quarks, then they must be distinguishable from their antiparticles because
of lepton number conservation. By definition, a Majorana neutrino is its
own antiparticle (Majorana, 1937; Case, 1957). Hence the weak processes
mediated by massive Majorana neutrinos can be lepton-number-violating.
At present the only feasible way to identify the Majorana nature of three
known neutrinos is to observe the 0ν2β decays of some even-even nuclei (i.e.,
N(A,Z) → N(A,Z+2)+2e− decays), which can naturally take place via the
exchange of virtual Majorana neutrinos between two associated beta decays
(Xing, 2004). No convincing evidence for an occurrence of the 0ν2β decay
has so far been established, although most theorists believe that massive
neutrinos should be the Majorana particles and the origin of their masses
must be different from that of charged-fermion masses.

Question 2: what is the absolute neutrino mass scale? There are three
feasible ways to probe the absolute mass scale of three known neutrinos.
The KATRIN experiment is the most promising next-generation direct-mass-
search experiment. Its sensitivity to the effective mass of the tritium β-decay
〈m〉e ≡

√
m2

1|VeVV 1|2 +m2
2|VeVV 2|2 +m2

3|VeVV 3|2 may hopefully reach ∼ 0.2 eV
(Bornschein et al., 2003). If massive neutrinos are the Majorana particles,
it is also possible to constrain their masses by observing the 0ν2β decay and
determining its effective mass 〈m〉ee ≡ |m1V

2
eVV 1 +m2V

2
eVV 2 +m3V

2
eVV 3|. The present

0ν2β experiments are sensitive to 〈m〉ee of O(0.1) eV, while the future 0ν2β
experiments are likely to have sensitivities in the meV range (Avignone III
et al., 2008). In addition, one may obtain useful information on the abso-
lute neutrino mass scale from cosmology or astrophysics. A global analysis
of current cosmological data has provided us with a very stringent upper
bound on the sum of light neutrino masses, whose magnitude is typically of
O(0.1) eV to O(1) eV, but its explicit value depends on what assumptions
are made and which data are used (Seljak et al., 2006; Kayser, 2008). Note
that the sign of Δm2

32 has not been determined from the present neutrino
oscillation experiments, implying that the neutrino mass spectrum can be
either m3 > m2 > m1 (normal hierarchy) or m2 > m1 > m3 (inverted hi-
erarchy). The upcoming long-baseline neutrino experiments and the future
neutrino factory or superbeam facilities will be able to pin down the neutrino
mass hierarchy (Bandyopadhyay et al., 2009).

Question 3: how small is the neutrino mixing angle θ13? Whether the
smallest neutrino mixing angle θ13 is exactly vanishing or not is of great
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importance in understanding the dynamics of lepton flavor mixing. While
θ13 = 0 might result from a certain flavor symmetry, it is in general unstable
due to the flavor symmetry breaking or radiative corrections. The value of
θ13, after it is measured, may serve for a sensitive discriminator of various
neutrino models. There will be no CP or T violation in neutrino oscillations
if θ13 is vanishing, unless they get involved with non-standard neutrino in-
teractions. If θ13 is too small, it will be extremely difficult or even impossible
to discover CP violation in the lepton sector. A lesson learnt from the his-
tory of quark flavor physics is that a determination of the smallest quark
mixing angle is a crucial turning-point in doing precision measurements, de-
tecting CP violation and searching for new physics. It is therefore desirable
to measure the smallest neutrino mixing angle θ13. A number of long-baseline
accelerator and reactor neutrino experiments are underway to determine or
constrain this angle (Gonzalez-Garcia and Maltoni, 2008). In particular, the
Daya Bay reactor antineutrino experiment in China will probe θ13 with a
very impressive sensitivity: sin2 2θ13 � 0.01 (Guo et al., 2007).

Question 4: is there CP violation in the lepton sector? Within the SM
the source of CP violation is the nontrivial Kobayashi-Maskawa (KM) phase
which resides in the 3 × 3 quark mixing matrix (Kobayashi and Maskawa,
1973). The phenomena of CP violation have been observed in a number of K-
and B-meson decays (e.g., Christenson et al., 1964; Abe et al., 2001; Aubert
et al., 2001), and all the experimental results are consistent with the KM
mechanism (Nakamura et al., 2010). Now that neutrinos are massive and
lepton flavors are mixed, there should analogously exist CP violation in the
lepton sector. The source of leptonic CP violation is expected to be a KM-like
phase δ in the 3 × 3 MNS matrix V , but two additional CP-violating phases
ought to be taken into account if massive neutrinos are the Majorana particles
(Xing, 2004). The most promising way to discover leptonic CP violation is
to measure an asymmetry between the probabilities of νe → νμ and νe → νμ

transitions. Such a measurement can be done in a neutrino factory (Gonzalez-
Garcia and Maltoni, 2008). Note that the strength of CP violation in neutrino
oscillations depends both on the magnitude of δ itself and on the values of
θ12, θ13 and θ23, and thus how small θ13 is turns out to be crucial in order to
judge whether the effect of CP violation is practically observable or not.

Question 5: are there ultrahigh-energy cosmic neutrinos? The observation
of solar and supernova neutrinos has initiated a new and rapidly-developing
science — neutrino astronomy. Both solar and supernova neutrinos carry
energies of O(1) MeV to O(10) MeV and reach the Earth without any atten-
uation, offering us some good opportunities to learn about the deep interior of
a star (Bahcall, 1989). We believe that much more energetic neutrinos (from
TeV to EeV) should be emitted from other astrophysical objects, such as
supernova remnants, active galactic nuclei and gamma ray bursts, and from
the annihilation of dark matter. For the time being the km3-scale neutrino
telescope IceCube is under construction at the South Pole, and it has already
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constrained the flux of muon neutrinos emitted from the gamma ray bursts to
be lower than 2.7×10−3 erg cm−2 in the energy range 3 TeV < Eν < 2.8 PeV
(Abbasi et al., 2010). A km3-scale underwater neutrino telescope, known as
the KM3NeT (Carr et al., 2007), is now under consideration. The discovery of
ultrahigh-energy cosmic neutrinos will shed light on the origin of ultrahigh-
energy cosmic rays and examine the intrinsic properties of neutrinos them-
selves. In particular, we hope that ultrahigh-energy cosmic neutrinos could
finally become a useful messenger between human beings and the distant or
even invisible Universe.

Question 6: how to detect cosmic background neutrinos? According to the
standard Big Bang model of cosmology, today’s abundance of relic neutrinos
and that of relic photons are of the same order (Weinberg, 2008). The pre-
cision measurement of the CMB has remarkably improved our knowledge on
the matter content and structure formation of the Universe. Unfortunately,
it is a big challenge to directly detect the CνB because the energies of relic
neutrinos are too low (∼ 10−4 eV) and their interactions with matter are
too weak. Current proposals for detecting relic neutrinos fall into three cat-
egories (Ringwald, 2009): (a) using the mechanical force — relic neutrinos
scattering off the nuclei of a target will cause a mechanical force which can
be measured by the Cavendish-type torsion balance; (b) using the capture
on radioactive nuclei — relic neutrinos will be absorbed by radioactive nu-
clei via an inverse beta decay (e.g., νe + 3H → 3He + e−); and (c) using
the cutoff of an ultrahigh-energy neutrino spectrum — the ultrahigh-energy
cosmic neutrinos with energies Eν > 1021 eV will be absorbed or cut off by
the CνB via the resonant reaction να + να → Z0 → anything (Weiler, 1982,
1999; Fargion et al., 1999). However, the sensitivities of such methods are
limited by the present technology and still several orders of magnitude lower
than that demanded by a successful detection of the CνB.

Question 7: what role is played by neutrinos in the evolution of the Uni-
verse? The existence of neutrinos in the early Universe has only indirectly
been confirmed by the success of the standard Big Bang cosmology. Cur-
rent observational data on the abundances of primordial light elements, the
power spectra of CMB anisotropies and the large-scale structure formation
all suggest that neutrinos be playing a crucial role in the evolution of the
Universe (Hannestad, 2006). We expect that this intriguing picture can be
further verified by the future observations. If the observed baryon number
asymmetry of the Universe has something to do with the occurrence of heavy
Majorana neutrinos in the early Universe (Fukugita and Yanagida, 1986),
then they must have affected the evolution of the Universe. How to test such
baryogenesis-via-leptogenesis mechanisms is another burning question in to-
day’s particle physics and cosmology (Xing, 2008).

So far we have only listed some experimental or observational questions
about neutrinos. There are certainly many theoretical questions on the mar-
ket. For example, we wonder what the origin of neutrino masses is, why the
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pattern of lepton flavor mixing is so different from that of quark flavor mixing,
what the origin of CP violation is, how the cosmological matter-antimatter
asymmetry is related to CP violation at low energies, what the role of neu-
trinos is in dark matter, whether neutrinos have something to do with dark
energy, whether there exist sterile neutrinos in the Universe, and so forth.
Motivated by so many interesting and fundamental questions, we are trying
to discover a new physics world with the help of neutrinos in the era of the
Large Hadron Collider and in the era of precision astronomy and cosmology.

Last but not least, will neutrinos spring many more surprises on us? The
history of neutrino physics is full of surprises. So it would be surprising if
further surprises were not in store. In this sense one must be well prepared
to encounter something that is completely unexpected, again and again, on
the way of neutrino exploration. The road ahead must be bright and exciting!
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2

Neutrinos within the Standard Model

Neutrinos are assumed to be massless in the standard model (SM) of par-
ticle physics. They can only have weak interactions with matter. In this
chapter we shall first introduce the SM of electroweak interactions and
then describe neutrino-electron scattering, neutrino-neutrino scattering and
neutrino-nucleon interactions. The coherent forward scattering of neutrinos
with matter, which is very important for neutrino oscillations in matter, will
also be discussed in some detail.

2.1 Fundamentals of the Standard Model

There exist three generations of quarks and leptons which are the fundamen-
tal building blocks of matter. The interactions of these elementary particles
can be described in the language of gauge field theories. For instance, the elec-
tromagnetic force between two charged particles is mediated by the photon, a
gauge boson in quantum electrodynamics (QED) based on the Abelian group
U(1). The perfect agreement between the QED prediction and the experimen-
tal measurement of the muon anomalous magnetic moment aμ ≡ (g − 2)/2
proves the usefulness and exactness of quantum field theories. We shall outline
the structure of the SM, which unifies electromagnetic and weak interactions
of elementary particles, in this section. Three indispensable ingredients of the
SM — gauge principles, spontaneous symmetry breaking and renormalizabil-
ity, will be explained in order.

2.1.1 Gauge Symmetries

Let us illustrate the gauge principle by examining QED, which exhibits the
U(1) gauge invariance. Consider the Lagrangian of a free electron described
by the fermion field Ψ(x),

L0 = Ψ(x)
(
i/∂//−m

)
Ψ(x) , (2.1)
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where /∂// ≡ γμ∂μ is defined and m denotes the electron mass. It is easy to ver-
ify that L0 is invariant under the transformation Ψ(x) → Ψ ′(x) = e−iαΨ(x)
with α being a spacetime-independent real constant. If one promotes the
transformation into Ψ(x) → Ψ ′(x) = e−iα(x)Ψ(x) with α(x) being an arbi-
trary real function of x, however, L0 will not be invariant under this new
transformation. In order to preserve the local gauge invariance of L0, we in-
troduce the covariant derivative Dμ ≡ ∂μ − ieAμ(x), where e is the electric
charge of the proton and Aμ(x) is a four-vector gauge field. The requirement
that DμΨ(x) transforms in the same way as Ψ(x) allows us to determine how
Aμ(x) transforms. More explicitly, we have

DμΨ(x) → D′
μΨ

′(x) =
[
∂μ − ieA′

μ(x)
]
e−iα(x)Ψ(x) = e−iα(x)DμΨ(x) , (2.2)

which gives rise to

Aμ(x) → A′
μ(x) = Aμ(x) − 1

e
∂μα(x) . (2.3)

It is the local gauge invariance that necessitates the introduction of the gauge
field Aμ(x) and uniquely fixes the interaction between the charged particles
and Aμ(x). The kinetic term of Aμ(x) can be constructed from the strength
tensor FμνF ≡ ∂μAν(x)− ∂νAμ(x), which is evidently gauge invariant as indi-
cated by Eq. (2.3). Therefore, the total gauge-invariant Lagrangian of QED
can be written as

LQED = −1
4
FμνFμνF + Ψ(x)

(
i /D// −m

)
Ψ(x) , (2.4)

where /D// ≡ γμDμ is defined. From the above equation, one may easily derive
the electron-photon vertex eΨ(x)γμΨ(x)Aμ(x).

In 1954, Chen Ning Yang and Robert Mills proposed that the local isospin
symmetry could be maintained in strong interactions (Yang and Mills, 1954).
In this seminal paper the proton and neutron were combined to form a doublet
under the non-Abelian group SU(2). It is straightforward to generalize their
idea to any non-Abelian group SU(N). The generators of the group SU (N)
satisfy the commutation relation[

ti, tj
]

= icijktk , (2.5)

where i, j, k run over 1, 2, · · · , N2−1 and cijk is the structure constant which
is fully antisymmetric with respect to the superscripts. The collective fields
Ψ(x) = [ψ1(x), ψ2(x), · · · , ψN (x)]T transform in the following way:

Ψ(x) → Ψ ′(x) = e−iθk(x)T k

Ψ(x) , (2.6)

where T k is the matrix representation of the generator tk, and θk(x) (for
k = 1, 2, · · · , N) are the spacetime-dependent real functions. Similar to the
Abelian gauge theory, the covariant derivative is now defined as
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Dμ = ∂μ − igT kAk
μ(x) , (2.7)

where Ak
μ(x) (for k = 1, 2, · · · , N) stand for the gauge fields. If DμΨ(x)

is required to transform as DμΨ(x) → D′
μΨ

′(x) = e−iθk(x)T k

DμΨ(x), then
Ak

μ(x) must transform as follows:

T kAk
μ → T kA′k

μ = e−iθkT k (
T kAk

μ

)
eiθkTk − i

g

(
∂μe−iθkT k

)
eiθkT k

. (2.8)

For the infinitesimal transformation, we have

Ak
μ(x) → A′k

μ (x) = Ak
μ(x) − 1

g
∂μθ

k(x) − cklmAl
μ(x)θm(x) . (2.9)

The field strength tensor reads

F i
μνF = ∂μA

i
ν(x) − ∂νA

i
μ(x) + gcijkAj

μ(x)Ak
ν(x) , (2.10)

which constitutes the kinetic term of the gauge fields. It is obvious that the
gauge-invariant Lagrangian takes the form

LSU(N) = −1
4
F i

μνF F iμν + Ψ(x)i /DΨ// (x) . (2.11)

One of the most successful examples of such a gauge theory is quantum
chromodynamics (QCD), which describes the strong interactions of quarks
with gluons (Fritzsch et al., 1973). One of the experimentally-verified QCD
predictions is the existence of three-gluon and four-gluon interaction vertices
(Ellis et al., 1976; Brandelik et al., 1979), but glueballs (the bound states of
gluons) have not been identified in any high-energy physics experiments.

2.1.2 Spontaneous Symmetry Breaking

Although the preliminary idea of gauge theories appeared as early as in the
1920’s (Weyl, 1929) and the non-Abelian SU(2) gauge symmetry was ex-
plored by Yang and Mills in the 1950’s, their importance was not widely
recognized until the mechanism of spontaneous symmetry breaking was in-
vented in the 1960’s. A simple reason is that the weak interactions must be
mediated by massive gauge bosons, but a naive mass term like mAi

μA
iμ ex-

plicitly violates the local gauge invariance. Inspired by the Bardeen-Cooper-
Schrieffer theory of superconductivity, Yoichiro Nambu applied the concept
of spontaneous symmetry breaking to particle physics (Nambu, 1960; Nambu
and Jona-Lasinio, 1961a, 1961b; Goldstone, 1961) and paved the way for the
Higgs mechanism and to a true gauge theory of weak interactions.

To explain the mechanism of spontaneous symmetry breaking, let us con-
sider a scalar theory with the global U(1) symmetry:
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Lφ = ∂μφ†∂μφ− μ2φ†φ− λ
(
φ†φ
)2
, (2.12)

where μ2 and λ are real parameters. One can easily verify that Lφ is invariant
under the transformation φ→ φ′ = e−iαφ, or equivalently δφ ≡ φ′−φ = −iαφ
for the infinitely small constant α. We similarly have φ† → φ′† = eiαφ† or
δφ† = iαφ† for the Hermitian-conjugate field φ†. The variation of Lφ with
respect to δφ can be cast into

δLφ =
∂Lφ

∂φ
δφ+

∂Lφ

∂(∂μφ)
∂μδφ

=
∂Lφ

∂φ
δφ+ ∂μ

(
∂Lφ

∂(∂μφ)
δφ

)
− ∂μ

(
∂Lφ

∂(∂μφ)

)
δφ

=
[
∂Lφ

∂φ
− ∂μ

(
∂Lφ

∂(∂μφ)

)]
δφ+ ∂μ

(
∂Lφ

∂(∂μφ)
δφ

)
. (2.13)

As the equation of motion must be satisfied, the term inside the square
brackets is vanishing. Requiring the theory to be invariant, one may define
a symmetry current by identifying the remaining term in Eq. (2.13) as its
divergence. This current turns out to be

JμJ = i
(
φ†∂μ∂ φ− φ∂μφ

†) , (2.14)

and the corresponding symmetry charge is

Q ≡
∫

d3xJ0JJ (x) = i
∫

d3x
(
φ†φ̇− φφ̇†

)
, (2.15)

where the irrelevant constant α has been discarded. The conservation of the
current ∂μJ

μ = 0 implies that the charge is independent of time, namely
dQ
dt

= 0. The above discussion is actually a concise version of the famous
Noether theorem, which states that there always exists a conserved current
in the theory with a continuous symmetry (Noether, 1918). The commutators
between the charge Q and the field operators (φ and φ†) actually generate
the transformations

[Q, φ] = −φ ,
[
Q,φ†
]

= +φ† , (2.16)

where the commutative relations between field operators and their conjugate
momenta at the equal time have been used. Taking φ and φ† as independent
variables, one can immediately verify[

φ(t,x), φ̇†(t,y)
]

=
[
φ†(t,x), φ̇(t,y)

]
= iδ3(x− y) . (2.17)

Note that the charge eigenvalues of φ and φ† are −1 and +1, respectively,
as indicated by Eq. (2.16). Note also that one or more massless bosons, the
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so-called Goldstone bosons or Nambu-Goldstone bosons, will appear in the
theory if the original Lagrangian has a continuous symmetry but the vacuum
state has a reduced symmetry (Goldstone, 1961; Goldstone et al., 1962).

To see the occurrence of a Goldstone boson in this scalar theory, we define
the complex field φ = (η + iχ)/

√
2 and rewrite the Lagrangian Lφ as

Lφ =
1
2
∂μη∂μη +

1
2
∂μχ∂μ∂ χ− 1

2
μ2(η2 + χ2) − 1

4
λ
(
η2 + χ2

)2
. (2.18)

One can observe that Lφ is invariant under the rotation

η → η′ = +η cosα+ χ sinα ,
χ→ χ′ = −η sinα+ χ cosα ; (2.19)

or equivalently,

δη = +αχ , δχ = −αη . (2.20)

This transformation is just the rotation in the (x, y) plane, and the corre-
sponding symmetry group is SO(2) which is locally equivalent to the U(1)
group as it should be. If the vacuum expectation value (vev) of η is nonzero,
〈η〉 = u with u being real and positive, then the vacuum state is no longer
invariant under the rotation as the preferred direction is along the x-axis. To
find out the physical modes in the theory, one may disturb the field variables
around their classical values and redefine η = u+ η̃. Therefore, the minimiza-
tion of the scalar potential in Eq. (2.18) determines the vev u =

√
−μ2/λ .

Given λ > 0, μ2 must be negative to produce a meaningful vev. Now we have

Lφ =
1
2
∂μη∂˜ μη̃ +

1
2
∂μχ∂μχ− 1

2
(
−2μ2
)
(η̃)2 + · · · , (2.21)

where the ellipsis denotes those non-quadratic terms of η̃ and χ. It becomes
evident that the masses of two scalar particles are given by m2

η̃ = −2μ2 and
m2

χ = 0. The massless boson χ, known as the Goldstone boson, occurs after
the spontaneous breaking of the global U(1) symmetry.

In 1964, Peter Higgs and some other theorists applied the idea of spon-
taneous symmetry breaking to the local gauge theories and found that the
massless gauge bosons could absorb those unwanted Goldstone bosons and
then become massive (Higgs, 1964a, 1964b, 1966; Englert and Brout, 1964;
Guralnik et al., 1964). This is just the famous Higgs mechanism. Based on the
SU(2)L×U(1)Y gauge symmetry (Glashow, 1961) and the Higgs mechanism,
Steven Weinberg and Abdus Salam successfully proposed a coherent unified
theory of electromagnetic and weak interactions — the SM of electroweak
interactions (Weinberg, 1967; Salam, 1968).

2.1.3 Renormalizability

In quantum field theories one frequently encounters various infinities when
going beyond the tree-level calculations. Richard Feynman, Julian Schwinger
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(a) (b) (c)

Fig. 2.1 The one-loop Feynman diagrams for (a) the electron self-energy, (b) the
photon self-energy and (c) the electron-photon vertex in QED

and Sin-Itiro Tomonaga found a solution to this problem in QED in the
late 1940’s (Schwinger, 1958). In modern language, the mass and coupling
parameters present in the classical Lagrangian are the so-called bare quanti-
ties which will receive radiative corrections at the quantum level. One must
decompose the bare quantities into the renormalizable ones and the countert-
erms: the renormalizable quantities are physical and can be confronted with
the experimental observables, while the counterterms are used to cancel the
infinities arising from the quantum corrections. Hence we should rewrite the
Lagrangian of QED in Eq. (2.4) in terms of bare quantities:

LQED = −1
4
F 0

μνF F 0μν + Ψ0iγμ
(
∂μ − ie0A

0
μ

)
Ψ0 −m0Ψ

0Ψ0 , (2.22)

where F 0
μνF = ∂μA

0
ν − ∂νA

0
μ. It is well known that a quantum field theory is

characterized by its Green functions. In order to see where the infinity comes
from and how to deal with it, here we consider the simplest Green function
of QED (i.e., the electron propagator) at the one-loop level. The tree-level
propagator of a free electron is

iSF(/p//) =
i

/p//−m0 + iε
. (2.23)

The full propagator can be figured out by evaluating the one-loop electron
self-energy −iΣ(/p//), for which the Feynman diagram is given in Fig. 2.1(a).
To be explicit, we have

iS′
F(/p//) = iSF(/p//) + iSF(/p//)

[
−iΣ(/p//)

]
iSF(/p//) + · · · =

i
/p//−m0 −Σ(/p//)

, (2.24)

where the infinite insertions of the electron self-energy are implied, and Σ(/p//)
can be treated as a perturbative quantity. Because of Lorentz invariance,

Σ(/p//) = A(p2) + /pB// (p2) (2.25)

holds. Then the physical mass of the electron can be identified as the pole of
the full propagator

iS′
F(/p//) =

iZ2

/p//−m+ iε
. (2.26)
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where m = Z2(m0 + A) is just the renormalized or physical mass of the
electron with Z−1

2 ≡ 1 − B being the wave function renormalization con-
stant. One may similarly obtain the renormalized propagator of the photon:
iDμν(p2) = −iZ3Z gμν/(p2 + iε), for which the one-loop Feynman diagram is
shown in Fig. 2.1(b). We can absorb the constants Z2 and Z3Z by rescaling
the electron and photon fields Ψ0 ≡ Z

1/2
2 Ψ and A0

μ = Z
1/2
3Z Aμ. As for radia-

tive corrections to the electron-photon vertex in Fig. 2.1(c), one may intro-
duce the physical electric charge e by using another renormalization constant
e0Z2Z

1/2
3Z = eZ1. The bare Lagrangian of QED can therefore be divided into

the renormalized terms and their counterterms (Peskin and Schroeder, 1995)

LQED = −1
4
FμνF Fμν + Ψ iγμ

(
∂μ − ieAμ

)
Ψ −mΨΨ

−1
4
δZ3Z FμνF Fμν + Ψ iγμ

(
δZ2∂μ − iδZ1eAμ

)
Ψ − δmΨΨ , (2.27)

where δZiZ ≡ ZiZ − 1 (for i = 1, 2, 3) and δm ≡ Z2m0 −m have been defined.
Starting from this Lagrangian one can immediately read off the relevant Feyn-
man rules and calculate the Green functions including the contributions from
the counterterms. A detailed calculation shows that the infinities arise from
the integration over the loop momentum. Such infinities can be removed by
choosing suitable renormalization constants δZiZ and δm, for instance, by im-
posing the renormalization conditions

Σ(/p//)
∣∣∣∣
/p//=m

= 0 ,
dΣ(/p//)

d/pd//

∣∣∣∣∣∣∣∣∣∣
/p//=m

= 0 ; (2.28)

and

Π(p2)
∣∣∣∣
p2=0

= 0 , ieΓμ(p, p′)|p−p′=0 = ieγμ , (2.29)

where Π(p2) and Γμ(p, p′) stand respectively for the photon self-energy and
the proper electron-photon vertex. It is worth mentioning that the relation
Z1 = Z2 exactly holds to all orders in QED as a consequence of the gauge
invariance. This identity ensures that the physical electric charge e or the
gauge coupling constant is universal for all the charged particles. The full
renormalization of QED has been described in some standard textbooks of
quantum field theories (Peskin and Schroeder, 1995; Weinberg, 1995).

A proof of the renormalizability of non-Abelian gauge theories is more
complicated. First comes the quantization of non-Abelian gauge fields. To
preserve the gauge invariance or to satisfy the Ward-Takahashi identity,
Feynman found that scalar particles with the Fermi-Dirac statistics were
necessary in the calculation of the one-loop self-energies of gauge bosons
(Feynman, 1963). In the path-integral language Ludvig Faddeev and Victor
Popov pointed out that these strange scalar particles arose from removing the
freedom of gauge invariance (Faddeev and Popov, 1967; De Witt, 1967). It
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was even unclear whether the spontaneous gauge symmetry breaking would
spoil the renormalizability of the whole theory or not in the 1960’s. In 1971,
Gerardus ’t Hooft gave the first complete proof of the renormalizability of
non-Abelian gauge theories (’t Hooft, 1971a, 1971b; Lee and Zinn-Justin,
1972a, 1972b, 1972c). Since then, the Weinberg-Salam model has gradually
been accepted to be the standard theory of electroweak interactions.

2.1.4 The Standard Electroweak Model

One of the greatest successes in particle physics is the establishment of the
unified theory of electromagnetic and weak interactions, or the SM of elec-
troweak interactions. This model is based on the SU(2)L × U(1)Y gauge
group, and its gauge symmetry is spontaneously broken down to U(1)Q. The
U(1)Q gauge boson, which is just the photon, keeps massless due to the gauge
invariance. In contrast, the SU(2)L gauge bosons acquire their masses via the
Higgs mechanism and mediate the short-range weak interactions. In the SM
the left-handed components of quarks and leptons are assigned to be the
SU(2)L doublets

QL ≡
(
uL

dL

)
,

(
cL
sL

)
,

(
tL
bL

)
; �L ≡

(
νeL

eL

)
,

(
νμL

μL

)
,

(
ντL

τLττ

)
. (2.30)

The right-handed components of quarks and leptons are all the SU(2)L sin-
glets defined as

URUU ≡ uR, cR, tR ; DR ≡ dR, sR, bR ; ER ≡ eR, μR, τRττ . (2.31)

Note that only the left-handed components of three neutrinos take part in
weak interactions, because they have been assumed to be the massless Weyl
particles in the SM 1. Quarks and leptons also carry the hypercharges Y ,
which are related to the weak isospin I3 components and the electric charges
Q through the relation Q = I3 + Y . Table 2.1 is a list of all the quantum
numbers of quarks and leptons in the SM.

As discussed in Section 2.1.1, the gauge fields should be introduced to
maintain the local gauge invariance via the definition of covariant derivatives.
Hence the kinetic terms of fermion fields are

LF = QLi /DQ// L + �Li /D�// L + URUU i/∂//′URUU +DRi/∂//′DR +ERi/∂//′ER , (2.32)

where the covariant derivatives are defined as

Dμ ≡ ∂μ − igτkW k
μW − ig′Y Bμ ,

1The discovery of neutrino oscillations implies that neutrinos must be massive.
Hence the SM is actually incomplete. The possibilities of incorporating massive
neutrinos into the SM will be discussed in Chapters 3 and 4.
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Table 2.1 Quantum numbers of quarks and leptons in the SM

Particle content Weak isospin I3 Hypercharge Y Electric charge Q

QL ≡
⎛⎝⎛⎛uL

dL

⎞⎠⎞⎞ ,

⎛⎝⎛⎛cL

sL

⎞⎠⎞⎞ ,

⎛⎝⎛⎛tL

bL

⎞⎠⎞⎞ ⎛⎝⎛⎛+1/2

−1/2

⎞⎠⎞⎞ +1/6

⎛⎝⎛⎛+2/3

−1/3

⎞⎠⎞⎞

�L ≡
⎛⎝⎛⎛νeL

eL

⎞⎠⎞⎞ ,

⎛⎝⎛⎛νμL

μL

⎞⎠⎞⎞ ,

⎛⎝⎛⎛ντL

τLττ

⎞⎠⎞⎞ ⎛⎝⎛⎛+1/2

−1/2

⎞⎠⎞⎞ −1/2

⎛⎝⎛⎛ 0

−1

⎞⎠⎞⎞

URUU ≡ uR, cR, tR 0 +2/3 +2/3

DR ≡ dR, sR, bR 0 −1/3 −1/3

ER ≡ eR, μR, τRττ 0 −1 −1

∂′μ ≡ ∂μ − ig′Y Bμ . (2.33)

Note that τkτ ≡ σk/2 (for k = 1, 2, 3) and Y denote the generators of the
gauge groups SU(2)L and U(1)Y, respectively. In Eq. (2.33), g and g′ are
the corresponding gauge coupling constants. Since the gauge fields are also
dynamic, their kinetic terms are given by

LG = −1
4
W iμνW i

μνW − 1
4
BμνBμν (2.34)

with

W i
μνW ≡ ∂μW

i
νWW − ∂νW

i
μW + gεijkW j

μW W k
νWW ,

Bμν ≡ ∂μBν − ∂νBμ , (2.35)

where W i
μW (for i = 1, 2, 3) and Bμ are the SU(2)L and U(1)Y gauge bosons,

respectively. It is straightforward to verify that Eqs. (2.32) and (2.34) are
gauge-invariant. However, the local gauge symmetry must be broken; i.e.,
SU(2)L×U(1)Y → U(1)Q, where U(1)Q is just the gauge group of QED. The
symmetry breaking can be realized by adding a doublet scalarH ≡ (φ+, φ0)T ,
which has the hypercharge Y (H) = +1. The gauge-invariant Lagrangian for
the scalar fields reads

LH = (DμH)†
(
DμH
)
− μ2H†H − λ

(
H†H
)2
, (2.36)

where μ2 is real and λ is real and positive. To figure out the particle spectrum,
one has to determine the vacuum of the theory by minimizing the scalar
potential. If μ2 > 0, the minimum is located at the original point (i.e., 〈H〉 ≡
〈0|H|0〉 = 0). In this case the vacuum state is also invariant under the gauge
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transformation, such that the gauge symmetry of the theory is preserved. If
μ2 < 0, the minima are fixed by 2

|〈H〉|2 =
1
2
v2 , (2.37)

where v =
√
−μ2/λ is the vev of H. Eq. (2.37) shows that there exist infinite

and degenerate vacua. Once one chooses a special direction,

〈H〉 =
1√
2

(
0
v

)
, (2.38)

the gauge symmetry is broken down and the corresponding gauge bosons get
masses. To make this point clear, we parametrize the Higgs doublet as

H = eiτkξk(x)/v 1√
2

(
0

v + h(x)

)
, (2.39)

where ξk(x) (for k = 1, 2, 3) and h(x) stand for the four degrees of freedom
in the doublet H. After performing the gauge transformation with U(ξ) =
e−iτkξk(x)/v, we turn to the unitary gauge. In this case the transformed Higgs
and gauge fields are

H =
1√
2

(
0

v + h(x)

)
,

τkW̃ k
μW = U(ξ)τkW k

μW U−1(ξ) − i
g

[
∂μU(ξ)

]
U−1(ξ) . (2.40)

In the unitary gauge only one physical scalar boson h survives, and the gauge
bosons are no longer massless. The latter can be understood from the second
equation in Eq. (2.40): there is a longitudinal polarization of W̃ k

μW in contrast
with the massless or transverse W k

μW gauge bosons.
After spontaneous gauge symmetry breaking, let us proceed to discuss

the particle spectrum of the SM.
(1) The masses of gauge bosons come from the first term in Eq. (2.36):

v2

8
(
0 1
) (
gσkW k

μW + g′Bμ

) (
gσkW kμ + g′Bμ

)(0
1

)

=
v2

8
(
W 1

μW W 2
μW W 3

μW Bμ

)⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
g2 0 0 0
0 g2 0 0
0 0 g2 −gg′
0 0 −gg′ g2

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟
⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
W 1μ

W 2μ

W 3μ

Bμ

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ . (2.41)

As usual, we define the physical gauge bosons
2One might wonder what will happen if μ2 = 0. In fact, it has been proved that

the spontaneous gauge symmetry breaking can be triggered by radiative corrections
even if μ2 is vanishing at the tree-level (Coleman and Weinberg, 1973).
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W±
μW ≡ 1√

2

(
W 1

μW ∓ iW 2
μW
)

(2.42)

and (
ZμZ
Aμ

)
=
(

cos θw − sin θw
sin θw cos θw

)(
W 3

μW
Bμ

)
. (2.43)

The weak mixing angle θw and masses of gauge bosons can be determined
from the diagonalization of the mass matrix in Eq. (2.41):

tan θw =
g′

g
, M2

WMM ± =
1
2
gv , M2

ZM 0 =
1
2

√
g
√√

2 + g′2 v . (2.44)

Note that Aμ describes the photon, whose mass keeps vanishing because the
U(1)Q gauge symmetry is unbroken. Both the charged gauge bosons W± and
the neutral gauge boson Z0 are massive, and their masses are proportional
to the vev of the Higgs field. The W± and Z0 particles were experimentally
discovered by Carlo Rubbia, Simon van der Meer and the UA1 Collaboration
in 1983 at CERN (Arnison et al., 1983a, 1983b). Their masses, together with
the weak mixing angle θw, have now been measured to a high degree of
accuracy: MWMM = (80.398 ± 0.025) GeV, MZM = (91.1876 ± 0.0021) GeV and
sin2 θw = 0.23119 ± 0.00014 (Nakamura et al., 2010).

(2) The mass of the Higgs boson arises from the last two terms (i.e., the
Higgs potential) in Eq. (2.36). More explicitly,

V (H) ≡ μ2H†H + λ
(
H†H
)2

= −μ2h2 + λvh3 +
λ

4
h4 +

1
4
μ2v2 . (2.45)

Hence the mass of the Higgs boson h is MhM =
√

−2μ2 . It is worth stressing
that the Higgs boson is the only SM particle that has not been observed.
Current experimental lower bound on MhM is MhM > 114.4 GeV at the 95%
confidence level (Nakamura et al., 2010). Recently, a combined analysis of
the data from the CDF and D0 Collaborations at the Fermilab Tevatron has
excluded a SM Higgs boson in the mass range 162 GeV < MhM < 166 GeV
at the 95% confidence level (Aaltonen et al., 2010). The search for the Higgs
boson is the main mission of the Large Hadron Collider (LHC), which is
running with the center-of-mass energy

√
s from 7 TeV to 14 TeV at CERN.

(3) The masses of six quarks and three charged leptons stem from the
Yukawa interactions

LY = −QLYuYY H̃URUU −QLYdYY HDR − �LYlYY HER + h.c. , (2.46)

where H̃ ≡ iσ2H
∗ is defined, YuYY , YdYY and YlYY are the 3 × 3 Yukawa coupling

matrices. After the Higgs field acquires its vev, the mass matrices of up-type
quarks, down-type quarks and charged leptons are respectively given by

MuMM =
1√
2
vYuYY , MdMM =

1√
2
vYdYY , MlM =

1√
2
vYlYY , (2.47)
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where v 
 246 GeV. They can simply be diagonalized by means of the bi-
unitary transformations

U†
uUU MuMM U ′

uUU = Diag {mu, mc, mt} , U†
dU MdMM U ′

dUU = Diag {md, ms, mb} ,
U†

lU MlM U ′
lU = Diag

{
me, mμ, mτ

}
, (2.48)

where mq (for q = u, c, t or d, s, b) and mα (for α = e, μ, τ) stand respectively
for the physical masses of quarks and charged leptons. These nine fundamen-
tal parameters of the SM have all been determined with the help of QED,
QCD and relevant experimental data (Nakamura et al., 2010), and their val-
ues at a given energy scale exhibit the puzzling hierarchies mu � mc � mt,
md � ms � mb and me � mμ � mτ .

A combination of Eqs. (2.32), (2.34), (2.36) and (2.46) leads us to the
full Lagrangian of the SM at the classical level. The quantization of the non-
Abelian gauge fields will involve the gauge-fixing terms and the Faddeev-
Popov ghost fields, as excellently described in some standard textbooks
(Cheng and Li, 1988; Peskin and Schroeder, 1995; Weinberg, 1995). In the
subsequent sections we shall focus our attention on the interactions of neu-
trinos with quarks and leptons within the SM.

2.2 Standard Interactions of Neutrinos

In view of the fact that neutrinos can weakly interact with other elementary
particles via W± and Z0, let us first of all give a brief summary of the
charged-current and neutral-current interactions of quarks, charged leptons
and neutrinos in the SM.

(1) Eq. (2.32) allows us to fix the charged-current interactions of quarks:

Lq
cc = gQLγ

μ
(
τ1W

1
μW + τ2ττ W

2
μW
)
QL =

g√
2
QLγ

μτ+W+
μW QL + h.c.

=
g√
2

(
u c t
)
L
γμ

⎛⎝⎛⎛ds
b

⎞⎠⎞⎞
L

W+
μW + h.c. , (2.49)

where W+
μW and W−

μW have been defined in Eq. (2.42), and

τ+ ≡ τ1 + iτ2ττ =
(

0 1
0 0

)
, τ− ≡ τ1 − iτ2ττ =

(
0 0
1 0

)
. (2.50)

As shown in Eq. (2.48), one may always diagonalize the quark mass matrices
MuMM and MdM by using the bi-unitary transformations. This treatment is equiv-
alent to transforming the flavor eigenstates of up- and down-type quarks into
their mass eigenstates (u′, c′, t′ and d′, s′, b′). Then Lq

cc can be rewritten as
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Lq
cc =

g√
2

(
u′ c′ t′

)
L
γμV

⎛⎝⎛⎛d′s′
b′

⎞⎠⎞⎞
L

W+
μW + h.c. , (2.51)

where V ≡ U†
uUU UdU is the Cabibbo-Kobayashi-Maskawa (CKM) quark fla-

vor mixing matrix (Cabibbo, 1963; Kobayashi and Maskawa, 1973). A full
parametrization of V needs three mixing angles and one CP-violating phase,
whose values have all been measured to a very good degree of accuracy (Naka-
mura et al., 2010). Similarly, the charged-current interactions of leptons are
described by

Ll
cc =

g√
2

(
e μ τ
)
L
γμ

⎛⎝⎛⎛νe

νμ

ντ

⎞⎠⎞⎞
L

W−
μW + h.c. . (2.52)

Since neutrinos are massless in the SM, it is always possible to make the mass
eigenstates of charged leptons and neutrinos simultaneously coincide with
their corresponding flavor eigenstates. In other words, there is no lepton flavor
mixing. If three neutrinos have non-degenerate masses, however, a CKM-
like lepton flavor mixing matrix will appear in Ll

cc. The phenomenology of
neutrino masses and lepton flavor mixing will be discussed in Chapter 3.

(2) Eq. (2.32) can also allow us to determine the neutral-current interac-
tions of quarks:

Lq
nc = gQLγ

μτ3ττ QLW
3
μW + g′

(
QLγ

μY QL + URUU γμY URUU +DRγ
μY DR

)
Bμ

=
3∑

i=1

[
g
(
qi q

′
i

)
L
γμ

(
I3
qI iL

0
0 I3

q′
iL

)(
qi
q′i

)
L

W 3
μW

+ g′
(
qi q

′
i

)
L
γμ

(
YqYY iL

0
0 Yq′

iL

)(
qi
q′i

)
L

Bμ

+ g′
(
qi q

′
i

)
R
γμ

(
YqYY iR

0
0 Yq′

iR

)(
qi
q′i

)
R

Bμ

]
, (2.53)

where qi and q′i (for i = 1, 2, 3) run over (u, c, t) and (d, s, b), respectively.
The neutral-current interactions of leptons can analogously be written out.
With the help of Eq. (2.43), we express the weak neutral-current interactions
of quarks and leptons in terms of the physical gauge field ZμZ :

Lnc =
g

cos θw

∑
f

(
Cf

LCC fLff γ
μfLff ZμZ + Cf

RCC fRff γμfRff ZμZ
)
, (2.54)

where Cf
LCC ≡ I3

fI L
− Qf sin2 θw, Cf

RCC ≡ I3
fI R

− Qf sin2 θw, and f runs over all

quarks and leptons. The explicit results of Cf
LCC and Cf

RCC are listed in Table 2.2.
In addition, the electromagnetic interactions of leptons and quarks take the
same form as in QED:
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LEM = e
∑

f

Qffγ
μfAμ , (2.55)

with Qf = I3
fI +YfYY . Sometimes it is more convenient to express Lnc as a sum

of the vector- and pseudovector-current contributions. In this case,

Lnc =
g

cos θw

∑
f

fγμ
(
Cf

VCC − Cf
AC γ5

)
fZμZ , (2.56)

where

Cf
VCC ≡ Cf

LCC + Cf
RCC , Cf

AC ≡ Cf
LCC − Cf

RCC . (2.57)

The explicit results of Cf
VCC and Cf

AC are also given in Table 2.2.

Table 2.2 The coefficients Cf
LCC and Cf

R versus Cf
VCC and Cf

AC for weak neutral-current
interactions of leptons and quarks in the SM, where f = u, d, l or ν denotes the
up-type quarks, down-type quarks, charged leptons or neutrinos, respectively

f = u f = d f = l f = ν

Cf
LCC +

1
2
− 2

3
sin2 θw −1

2
+

1
3

sin2 θw −1
2

+ sin2 θw +
1
2

Cf
RCC −2

3
sin2 θw +

1
3

sin2 θw sin2 θw 0

Cf
VCC +

1
2
− 4

3
sin2 θw −1

2
+

2
3

sin2 θw −1
2

+ 2 sin2 θw +
1
2

Cf
AC +

1
2

−1
2

−1
2

+
1
2

In the following we shall elaborate on the neutrino interactions by taking
a few typical examples — neutrino-electron, neutrino-neutrino and neutrino-
nucleon scattering processes.

2.2.1 Neutrino-electron Scattering

Let us first calculate the cross section of the elastic neutrino-electron scat-
tering process νe + e− → νe + e−, which has played an important role in
detecting solar neutrinos. The invariant amplitude for νe(p, sν)+e−(q, se) →
νe(p

′, s′ν) + e−(q′, s′e) receives contributions from both neutral- and charged-
current interactions, as shown in Fig. 2.2. We ignore the transferred energy
in the low-energy region since it is much smaller than MWMM and MZM . In this
good approximation the amplitude for neutral-current interactions is
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Fig. 2.2 Feynman diagrams for the elastic neutrino-electron scattering process
νe + e− → νe + e− in the SM

Mnc(sν , se; s
′
ν , s

′
e) =

−g2

4M2
ZM cos2 θw

Cν
LCC u(p′, s′ν)γμ(1 − γ5)u(p, sν)

×u(q′, s′e)γμ

[
Cl

LCC (1 − γ5) + Cl
RCC (1 + γ5)

]
u(q, se) , (2.58)

and the amplitude for charged-current interactions reads

Mcc(sν , se; s
′
ν , s

′
e) =

−g2

8M2
WMM
u(q′, s′e)γ

μ(1 − γ5)u(p, sν)

×u(p′, s′ν)γμ(1 − γ5)u(q, se) . (2.59)

The overall amplitude is the sum of Eqs. (2.58) and (2.59). Before going into
the details of our calculations, we briefly review the Fierz transformations.
It is well known that an arbitrary 4× 4 matrix can be expanded in the basis
of sixteen independent matrices Γ r (for r = 1, 2, · · · , 16) defined as

Γ 1 ≡ 14 ,

Γ 2,3,4,5 ≡ γμ , (for μ = 0, 1, 2, 3) ,
Γ 6,7,8,9,10,11 ≡ σμν , (for μ, ν = 0, 1, 2, 3 and μ < ν) ,
Γ 12,13,14,15 ≡ iγμγ5 , (for μ = 0, 1, 2, 3) ,

Γ 16 ≡ γ5 . (2.60)

It is easy to verify that the normalization relation

Tr [Γ rΓsΓ ] = 4δr
s (2.61)

holds (for r, s = 1, 2, · · · , 16), where the subscripts imply that the correspond-
ing Lorentz indices should be lowered down by the metric tensor. Consider
the product

P =
16∑

r=1

grΨ1ΨΨ Γ rΨ2ΨΨ Ψ3ΨΨ ΓrΓΓ Ψ4Ψ

=
16∑

r=1

gr (Γ r)αβ (ΓrΓΓ )ηλ

(
Ψ1ΨΨ
)
α

(Ψ2ΨΨ )β

(
Ψ3ΨΨ
)
η
(Ψ4Ψ )λ , (2.62)
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where ΨiΨΨ (for i = 1, 2, 3, 4) are Dirac spinors with the Greek subscripts being
the spinor indices. This product should obviously be equivalent to

P = −
16∑

s=1

ĝs (Γ s)αλ (ΓsΓ )ηβ

(
Ψ1ΨΨ
)
α

(Ψ4Ψ )λ

(
Ψ3ΨΨ
)
η
(Ψ2ΨΨ )β , (2.63)

where the minus sign comes from the exchange of fermion field operators.
Identifying the coefficients in front of the fermion fields in these two equations,

16∑
s=1

ĝs (Γ s)αλ (ΓsΓ )ηβ = −
16∑

r=1

gr (Γ r)αβ (ΓrΓΓ )ηλ , (2.64)

and multiplying both sides of Eq. (2.64) by
(
ΓpΓΓ
)
λα

(Γ q)βη, we obtain

ĝp = − 1
16

16∑
r=1

Tr
[
ΓrΓΓ ΓpΓΓ Γ rΓ p

]
gr , (2.65)

where the normalization relation in Eq. (2.61) has been used. In view of
Lorentz invariance, one usually needs to treat the interactions with Γ I (for
I = S, V, T,A, P ) defined in Eq. (2.60). In this case one may find the relations
between ĝI and gI by using Eq. (2.65):⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

ĝS

ĝV

ĝT

ĝA

ĝP

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ = −1
4

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
1 4 6 4 1
1 −2 0 2 −1
1 0 −2 0 1
1 2 0 −2 −1
1 −4 6 −4 1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
gS

gV

gT

gA

gP

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ . (2.66)

For the (V−A)-type interaction, it is straightforward to get

Ψ1ΨΨ γμ(1 − γ5)Ψ2ΨΨ Ψ3ΨΨ γμ(1 − γ5)Ψ4Ψ = Ψ1ΨΨ γμ(1 − γ5)Ψ4Ψ Ψ3ΨΨ γμ(1 − γ5)Ψ2ΨΨ . (2.67)

Applying this Fierz identity to Eq. (2.59), we can simplify the overall ampli-
tude M = Mnc + Mcc for the elastic neutrino-electron scattering:

M(sν , se; s
′
ν , s

′
e) =

GF√
2
u(p′, s′ν)γμ(1 − γ5)u(p, sν)u(q′, s′e)γμ

×
[
(1 + Cl

LCC )(1 − γ5) + C l
RCC (1 + γ5)

]
u(q, se) , (2.68)

where M2
ZM cos2 θw = M2

WMM has been used, and GF = g2/(4
√

2M2
WMM ) is the

Fermi constant. Note that |M|2 should be summed over the spins of the final
state and averaged over the spins of the initial state:

1
2

∑
spin

|M|2 =
G2

F

4
L−

μν(p, p′)
[(

1 + Cl
LCC
)2
L−μν(q, q′)
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+16m2
eg

μν(1 + Cl
LCC )Cl

RCC +
(
Cl

RCC
)2
L+μν(q, q′)

]
, (2.69)

where

L±
μν(p, p′) ≡ Tr

[
/pγ
[[
// μ(1 ± γ5)/p//

′γν(1 ± γ5)
]

= 8
(
pμp

′
ν + pνp

′
μ − p · p′gμν ± iεμνρσp

ρp′σ
)

(2.70)

have been defined. Note also that neutrinos are always left-handed in the SM,
so an average over the spins of the initial state is only acting on the electron.
Given p+ q = p′ + q′, Eq. (2.69) is simplified to

1
2

∑
spin

|M|2 = 64G2
F

[(
1 + C l

LCC
)2

(p · q)2 +
(
Cl

RCC
)2

(p′ · q)2

−
(
1 + Cl

LCC
)
C l

RCC m2
e(p · p′)

]
. (2.71)

In the laboratory frame where the electron is at rest, we have

q =
(
me, 0, 0, 0

)
, p =

(
Eν , p
)
, (2.72)

and Eν = |p|. Denoting the energy of the outgoing electron as Ee and that of
the scattered neutrino as E′

ν , we express the total cross section of the elastic
neutrino-electron scattering as follows:

σES(νee
−) =

1
4Eνme

∫
d3p′

(2π)32E′
ν

d3q′

(2π)32Ee

(2π)4δ4(p+ q − p′ − q′)

×64G2
Fm

2
eE

2
ν

[(
1 + C l

LCC
)2

+
(
Cl

RCC
)2 (

1 − T

Eν

)2

−
(
1 + Cl

LCC
)
C l

RCC (1 − cos θ)
E′

ν

Eν

]
, (2.73)

where the kinetic energy of the recoil electron is defined as T = Ee − me,
and cos θ is the cosine of the angle between the momenta of the scattered
and incident neutrinos. With the help of Eq. (2.73), it is easy to obtain the
differential cross section (’t Hooft, 1971c; Marciano and Parsa, 2003)

dσES

dT
(Eν , T ) =

G2
Fme

2π

[
ε2+ + ε2−

(
1 − T

Eν

)2

− ε+ε−
meT

E2
ν

]
, (2.74)

where ε± ≡ ge
V ± ge

A and

ge
V ≡ 1 + Cl

VCC , ge
A ≡ 1 + Cl

AC . (2.75)

A measurement of this differential cross section allows one to pin down the
coefficients ge

V and ge
A, so as to test the SM.
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Fig. 2.3 Feynman diagrams for the elastic antineutrino-electron scattering process
νe + e− → νe + e− in the SM

If the energy of the incident neutrino is much larger than the electron
mass (i.e., Eν � me), then the total cross section given in Eq. (2.73) can
safely approximate to

σES(νee
−) =

2G2
F

π
meEν

[(
1 + C l

LCC
)2

+
1
3
(
Cl

RCC
)2]

. (2.76)

One may similarly figure out the total cross section of the elastic antineutrino-
electron scattering, which takes place via the Feynman diagrams shown in
Fig. 2.3. The result is

σES(νee
−) =

2G2
F

π
meEν

[
1
3
(
1 + Cl

LCC
)2

+
(
Cl

RCC
)2]

. (2.77)

For the sake of completeness, we also consider the neutral-current scattering
processes νx + e− → νx + e− and νx + e− → νx + e− (for x = μ or τ). Their
Feynman diagrams are given in Fig. 2.4, and their total cross sections read

σES(νxe
−) =

2G2
F

π
meEν

[(
C l

LCC
)2

+
1
3
(
Cl

RCC
)2]

,

σES(νxe
−) =

2G2
F

π
meEν

[
1
3
(
Cl

LCC
)2

+
(
Cl

RCC
)2]

, (2.78)

where x = μ or τ . The ratio of σES(νxe
−) to σES(νee

−) turns out to be

σES(νxe
−)

σES(νee
−)

=
3
(
Cl

LCC
)2 +
(
Cl

RCC
)2

3
(
1 + Cl

LCC
)2 +
(
Cl

RCC
)2 ≈ 0.155 , (2.79)

where Cl
LCC and C l

RCC can be found in Table 2.2, and sin2 θw ≈ 0.2381 (Porsev et
al., 2009) has been input. It is worth stressing that gauge coupling constants
depend on the energy scale where the interactions take place. At the elec-
troweak scale we have sin2 θw = 0.23119 ± 0.00014 (Nakamura et al., 2010),
which is slightly smaller than the values measured at extremely low energies.
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Fig. 2.4 Feynman diagrams for the elastic neutrino-electron scattering processes
νx + e− → νx + e− and νx + e− → νx + e− (for x = μ or τ) in the SM
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Fig. 2.5 Feynman diagrams for the elastic neutrino-neutrino scattering processes
να + να → να + να (for α = e, μ, τ) in the SM

2.2.2 Neutrino-neutrino Scattering

Contrary to the elastic neutrino-electron scattering, the elastic neutrino-
neutrino scattering seems less important in the development of particle
physics. However, it has recently been noticed that the coherent neutrino-
neutrino scattering processes in supernovae are essential to the flavor con-
versions of supernova neutrinos (Dighe, 2008; Duan and Kneller, 2009).
Neutrino-neutrino interactions are also expected to be significant in the
neutrino-decoupling era of the early Universe. In this subsection we shall
briefly discuss the total cross sections of elastic neutrino-neutrino scattering
and neutrino-antineutrino annihilation.

Fig. 2.5 shows the Feynman diagrams for the elastic neutrino-neutrino
scattering process να(p)+να(q) → να(p′)+να(q′) (for α = e, μ, τ). Although
only the neutral-current interactions contribute to this process, there are two
different channels due to the exchange of the final-state neutrinos. The overall
amplitude can be written as

M = −GF√
2
u(p′)γμ(1 − γ5)u(p)u(q

′)γμ(1 − γ5)u(q) , (2.80)

where the Fierz identity has been used to combine the t- and u-channels. The
total cross section is found to be

σES(νανα) =
G2

Fs

π
, (2.81)
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where s ≡ (p + q)2. It is worth mentioning that the above result multiplied
by a factor 1/2 will be applicable to the elastic να + νβν → να + νβν reac-
tions (for β = α). The reason is simply that these processes only have the
t-channel contributions and their final-state neutrinos are not identical. Fur-
thermore, one can immediately figure out the total cross sections of the elastic
antineutrino-antineutrino scattering processes. The final results are

σES(νανα) = σES(νανα) =
G2

Fs

π
,

σES(νανβ) = σES(νανβν ) =
G2

Fs

2π
, (2.82)

where α = β. The two equalities obtained above are guaranteed by the CPT
theorem, which is always valid in the local and Lorentz-invariant field theories
(Schwinger, 1951; Pauli, 1955; Bell, 1955; Lüders, 1957). Following the elastic
neutrino-neutrino scattering, one may write out the amplitude for the elastic
neutrino-antineutrino scattering process να(p) + να(q) → να(p′) + να(q′),
whose Feynman diagrams are given in Fig. 2.6:

M = −GF√
2
u(p′)γμ(1 − γ5)u(p)v(q

′)γμ(1 − γ5)v(q) . (2.83)

Different from the elastic νανα scattering, the elastic νανα scattering does
not involve the symmetry factor 1/2 originating from the identical final-state
particles. Therefore,

σES(νανα) = 2σES(νανα) =
2G2

Fs

π
. (2.84)

Note that the elastic να + νβ → να + νβ scattering processes (for β = α)
can only take place via the t-channel. Hence it is straightforward to obtain
σES(νανβ) = σES(νανβν ) = σES(νανα)/4. Note also that one should perform
the thermal average over the initial particles if the frequent scattering occurs
in a thermal bath, such as in the early Universe or in the interior of a massive
star. In this case it is evident that the neutrino-antineutrino scattering process
should be most important. Nevertheless, the total cross sections for neutrino
interactions are extremely small and can be neglected in most cases. As we
shall show later, the coherent forward scattering of neutrinos off matter or
other neutrinos plays a crucial role in astrophysics and cosmology (e.g., it
has to be taken into account in understanding solar neutrino oscillations and
supernova neutrino oscillations).

2.2.3 Neutrino-nucleon Interactions

The first detection of electron antineutrinos in 1956 made use of a kind of
neutrino-nucleon interactions — the inverse beta decay νe + p → e+ + n
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Fig. 2.6 Feynman diagrams for the elastic neutrino-antineutrino scattering pro-
cesses να + να → να + να (α = e, μ, τ) in the SM

(Cowan et al., 1956; Reines and Cowan, 1956). In the SM both the beta decay
and the inverse beta decay take place via the charged-current interactions of
quarks and leptons. It remains difficult to quantitatively describe how quarks
interact and form hadrons at low energies, so one has to find out a consistent
way to convert the neutrino interactions with quarks into those with nucleons.
The effective Lagrangian responsible for the inverse beta decay is given by

Leff =
GF√

2
J l

μJ Jqμ + h.c. =
GF√

2
VudVV lαγμ(1 − γ5)ναuγ

μ(1 − γ5)d+ h.c. , (2.85)

where J l
μJ and Jq

μJ stand respectively for the charged currents of leptons and
quarks, and VudVV is an element of the CKM matrix V . The amplitude for the
quasi-elastic scattering νe(k) + p(q) → e+(k′) + n(q′) can therefore be read
off from Leff :

M =
GF√

2
vν(k)γμ(1 − γ5)ve(k

′)〈n(q′)|Jq†
μJ |p(q)〉 , (2.86)

where we have replaced the charged current of quarks with the corresponding
nucleon matrix element. Although protons and neutrons are not elementary
particles, they must obey the Fermi-Dirac statistics and satisfy the Dirac
equation. It is instructive to divide the charged current Jq

μJ into the vector
component vq

μ = uγμd and the pseudovector component aq
μ = uγμγ

5d, such
that Jq

μJ = VudVV (vq
μ − aq

μ). With the help of Lorentz invariance and Dirac
equations, the nucleon matrix element can be written as (Llewellyn Smith,
1971; Alberico et al., 2002)

〈n(q′)|vq
μ(0)|p(q)〉 = un(q′)

[
γμF1FF (Q2) +

iσμνq
ν−

2mN

F2FF (Q2)
]
up(q) , (2.87)

and

〈n(q′)|aq
μ(0)|p(q)〉 = un(q′)

[
γμγ

5GA(Q2) +
q−μ

mN

γ5GP(Q2)
]
up(q) , (2.88)

where q− ≡ q′ − q and Q2 ≡ −q2− are defined, and mp ≈ mn ≡ mN is taken.
Let us give some comments on the form factors in Eqs. (2.87) and (2.88).
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First, the time reversal invariance makes all the form factors real 3. Second,
the isospin symmetry in strong interactions makes the second-class currents
vanishing (Weinberg, 1958). Among the four form factors, F1FF and F2FF are
associated with the electromagnetic properties of nucleons, while GA and GP

are related with the weak interactions. All of them can be extracted from the
relevant experimental results (Cheng and Li, 1988). Combining Eqs. (2.86),
(2.87) and (2.88), one obtains the differential cross section in the laboratory
frame (Llewellyn Smith, 1971):

dσ(νep)
dQ2

=
G2

F |VudVV |2m4
N

8π(k · q)2
[
C1 − C2CC

s− u

m2
N

+ C3C
(s− u)2

m4
N

]
, (2.89)

where CiCC (for i = 1, 2, 3) are the analytical functions of Q2 depending on the
form factors defined above, and s = (k + q)2, t = (q′ − q)2 and u = (k′ − q)2

are the Mandelstam invariants. The results of CiC are summarized as follows
(Llewellyn Smith, 1971):

C1 = 4κ
[
(1 + κ)G2

A − (1 − κ)
(
F 2

1FF − κF 2
2FF
)

+ 4κF1FF F2FF
]
,

C2CC = 4κG2
A ,

C3C =
1
4
(
G2

A + F 2
1FF + κF 2

2FF
)
, (2.90)

where κ ≡ Q2/(4m2
N ), and the terms involving m2

e/m
2
N have been neglected.

For low-energy neutrinos (Eν � mN ) in the laboratory frame, where the
nucleon is at rest, the total cross section of the inverse beta decay reads

σ(νep) ≈
G2

F |VudVV |2
π

(
1 + 3g2

A

)
E2

ν , (2.91)

where the vector and pseudovector couplings of nucleons are gV ≡ F1FF (0) ≈ 1
and gA ≡ GA(0) ≈ 1.25. The total cross section of the quasi-elastic scattering
νe + n → e− + p, defined as σ(νen), is found to be equal to σ(νep) in the
same approximation. Taking GF = 1.166 × 10−5 GeV−2 and |VudVV | = 0.973
(Nakamura et al., 2010), we obtain

σ(νep) = σ(νen) ≈ 9.1 × 10−44

(
Eν

MeV

)2

cm2 . (2.92)

It is worth mentioning that the first theoretical estimation of the total cross
section of the neutrino-nucleon scattering was done by Hans Bethe and Rudolf
Peierls in 1934 (Bethe and Peierls, 1934), soon after Enrico Fermi formulated
his effective theory for the beta decay (Fermi, 1933). Their result is amazingly
consistent with the one given in Eq. (2.92).

3The C, P and T transformations and their implications in quantum field the-
ories will be discussed in Section 3.3.
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We have discussed the neutrino-nucleon scattering processes mediated by
weak charged-current interactions. Note that the elastic scattering processes
να + N → να +N (for α = e, μ, τ ) can take place via weak neutral-current
interactions, and they have been used to extract the weak mixing angle in the
SM. To study the high-energy neutrino interactions with nucleons, however,
one has to consider the fine structure of a proton or a neutron (e.g., its parton
distributions) (Llewellyn Smith, 1971).

2.3 Neutrino Propagation in a Medium

In 1978, Lincoln Wolfenstein pointed out that the coherent forward scattering
of neutrinos off matter could be very important in studying the behavior of
neutrino flavor conversions in a dense medium (Wolfenstein, 1978). This ob-
servation has been verified in understanding solar neutrino oscillations, since
the Sun itself is just a dense medium in which the propagation of solar νe

neutrinos may be modified by their interactions with the ambient electrons
and nucleons. The main effects induced by a medium can be described by an
effective potential, or equivalently a neutrino refractive index. In this section
we present three different approaches for calculating the effective potential
of neutrinos propagating in a medium: (1) to compute the coherent forward
scattering amplitudes and then derive neutrino refractive indices; (2) to eval-
uate the effective potential directly from the effective Hamiltonian; (3) to
calculate the neutrino self-energy in a medium and then extract the effective
potential via the dispersion relation. We show that these three methods are
equivalent and lead to the same result. We also apply the result to two inter-
esting cases — neutrinos propagating in a normal matter environment and in
a dense neutrino environment. The detailed discussions of matter effects on
neutrino flavor conversions will be given in Chapter 5, while the applications
to solar and supernova neutrinos can be found in Chapters 6 and 7.

2.3.1 Coherent Forward Scattering

In quantum field theories, the probability amplitude of the scattering process
α→ β is given by the S-matrix element

SβαS ≡ 〈Φout
β |Φin

α 〉 , (2.93)

where Φin
α and Φout

β are the in and out states, respectively. Here the sub-
scripts α and β stand for the momentum, spin and other quantum numbers
characterizing the corresponding particles. If there is no any interaction, the
in-state must be identical to the out-state such that the probability for α→ α
is unity. Hence the transition amplitude of the scattering process α→ β (for
α = β) can be defined through S ≡ 1 + iT and written as
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iTβαT = (2π)4 iδ4(pα − pβ)Mβα , (2.94)

where the Feynman amplitude Mβα is free of the delta functions. It is
straightforward to compute the differential cross section for the reaction
1 + 2 → 3 + 4 + · · · + n with n−2 particles in the final state (Cheng and
Li, 1988; Peskin and Schroeder, 1995):

dσ =
(2π)4 δ4 (p1 + p2 − p3 − · · · − pn)

4
√

(p1 · p2)
2 −m2

1m
2
2

|M|2
n∏

j=3

d3pj

(2π)32EjE
, (2.95)

where pi, pi and Ei =
√
|pi|2 +m2

i (for i = 1, 2, · · · , n) stand respectively for
the four-momenta, three-momenta and energies of relevant particles with mi

being their masses. Let us consider a two-body scattering process a+b→ c+d
for example. Its differential cross section involves the integration over the
final-state phase space

(2π)4δ4(pa + pb − pc − pd)
d3pc

(2π)32Ec

· d3pd

(2π)32Ed

. (2.96)

In the center-of-mass frame we have pa + pb = 0. The total energy of the
initial particles is E = Ea + Eb. The integration over pd is equivalent to
dropping the three-dimensional delta function δ3(pc + pd) and replacing the
three-momentum pd with −pc in the integrand. The phase-space factor in
Eq. (2.96) is therefore simplified to

1
16π2EcEd

δ(Ec +Ed −E) |pc|2 d|pc|dΩ , (2.97)

where Ec =
√

|pc|2 +m2
c and Ed =

√
|pc|2 +m2

d , and dΩ ≡ sin θdθdφ is the
differential element of the solid angle. The integration of the delta function
over d|pc| requires us to find out the zero point of the argument of the delta
function. Namely, √

|p′
c|2 +m2

c +
√

|p′
c|2 +m2

d = E (2.98)

leads us to the solution

|p′
c| =

1
2E

√
(E2 −m2

c −m2
d)

2 − 4m2
cm

2
d . (2.99)

It is then straightforward to see that the integration with the delta function
δ(Ec + Ed − E) contributes the factor[

d
d|pc|

(√
|pc|2 +m2

c +
√

|pc|2 +m2
d − E

)]−1

|pc|=|p′
c|

=
E′

cE
′
d

|p′
c|E

, (2.100)
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where E′
c =
√

|p′
c|2 +m2

c and E′
d =
√
|p′

c|2 +m2
d . Combining Eqs. (2.96),

(2.97), (2.99) and (2.100) with Eq. (2.95), we arrive at the differential cross
section of the two-body scattering process a+ b→ c+ d as follows:

dσ(a+ b→ c+ d) =
1

64π2
· |p′

c|
|pa|E2

|M(a+ b→ c+ d)|2 dΩ (2.101)

in the center-of-mass frame. This result will be used later on to discuss the
propagation of neutrinos in matter. When a neutrino beam propagates in
matter, the scattered neutrino waves may coherently interfere in the forward
direction. We shall show that this coherent forward scattering of neutrinos off
matter is very important in some astrophysical environments where neutrinos
are copiously produced (Wolfenstein, 1978, 1979; Mikheyev and Smirnov,
1985; Raffelt, 1996).

Now let us consider that a neutrino beam propagating with momentum k
in the direction of the z-axis interacts with a scatterer at the location r = 0.
Such a neutrino beam is usually described by the plane wave Ψ = eikz, and
the wave function of the system at extremely far distances after scattering
can be regarded as a superposition of the original and the scattered waves
(Landau and Lifshitz, 1977):

ΨfΨΨ (r) ≈ eikz + f(θ)
eikr

r
, (2.102)

where f(θ) is the scattering amplitude. The differential cross section of this
scattering process is then given by dσ = |f(θ)|2 dΩ. Linking it to the differ-
ential cross section of a two-body scattering process a + b → c + d, we can
establish the relation between the Feynman amplitude M(a+ b→ c+ d) in
the center-of-mass frame and the scattering amplitude f(θ) 4:

f(θ) =
1

8πE

√
|p′

c|
|pa|

M(a+ b→ c+ d) . (2.103)

In a perturbation theory one may first calculate the Feynman amplitude order
by order and then compute the forward scattering amplitude f(0), which can
be used to derive the refractive index of neutrinos propagating in matter.

For this purpose, we consider the neutrino beam to be a plane wave eikz

incident on a slab which is located at z = 0 and perpendicular to the z-axis.
We assume that the slab has an infinitesimal thickness δ and is infinitely large
in both the x-axis and the y-axis. After traversing the slab, the neutrino wave
is still a plane wave at the distance z � 2π/k but it has attained a phase
eik[z+(n−1)δ] with n being the neutrino refractive index. On the other hand,

4The sign of the scattering amplitude has been chosen in such a way that f(θ)
is just the coefficient of the outgoing wave in the solution of the time-dependent
Schrödinger equation (Weinberg, 1995).
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the asymptotic form of the original and scattered waves reads (Fermi, 1949;
Sakurai, 1967; Raffelt, 1996)

ΨfΨΨ (z) = eikz + 2π

∫ ∞

0

∫∫
Nδf(θ)

eikr

r
ρdρ , (2.104)

where ρ =
√
x2 + y2 and θ = arctan(ρ/z), and N is the number of the

scatterers per unit volume. Note that ρdρ = rdr holds. Replacing k by k+ iε
with ε→ 0+ in the integrand in Eq. (2.104), one obtains

ΨfΨΨ (z) = eikz

[
1 + i

2πf(0)Nδ
k

]
. (2.105)

For the slab with a finite thickness d ≡ mδ, where m can be taken as the
number of the layers and m→ ∞ holds, it is straightforward to obtain

ΨfΨΨ (z) = lim
m→∞ eikz

[
1 + i

2πf(0)Nd
mk

]m
= eikzei2πf(0)Nd/k , (2.106)

which should be identified with the plane wave eik[z+(n−1)d]. The refractive
index of neutrinos in matter turns out to be (Wolfenstein, 1978)

n = 1 +
2π

k2
Nf(0) . (2.107)

Note that the energy dependence of the forward scattering amplitude f(0)
is implied. A nonzero refractive index means that the dispersion relation of
neutrinos is modified in matter, so is their flavor oscillation in matter. This
mechanism has offered a natural solution to the longstanding solar neutrino
problem (Wolfenstein, 1978; Mikheyev and Smirnov, 1985). The details of
neutrino oscillations in matter will be discussed in Chapter 5.

Now that a relationship between the scattering amplitude f(θ) and the
Feynman amplitude M(a + b → c + d) has been established, it is ready to
calculate the forward scattering amplitude f(0) by using the same techniques
in perturbative quantum field theories. For instance, we shall compute f(0)
for νe-e

− scattering in matter in Section 2.3.2. Here let us figure out the
charged-current contribution to f(0) in the elastic νe-e

− scattering process.
The relevant Feynman amplitude has been given in Eq. (2.59). One may set
|pa| = |p′

c| in Eq. (2.103) for the elastic forward scattering under consider-
ation. Using the normalization conditions u†(p, r)u(p, s) = 2Eδrs for Dirac
spinors, one can then arrive at

f(0) = − GF√
2π
E . (2.108)

This result, together with Eq. (2.107), leads to the neutrino refractive index
n−1 = −

√
2GFne/E, where ne is the number density of electrons in matter.
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The distribution of electrons in matter is assumed to be isotropic, and thus
the average of their three-momenta is vanishing. One should take account
of both neutral- and charged-current contributions to f(0) in a complete
analysis of the elastic forward scattering of neutrinos in matter, but only the
differences between the refractive indices of different neutrinos are relevant
to neutrino flavor conversions.

2.3.2 The Effective Potential

The neutrino waves scattered by the background particles may coherently
interfere in the forward direction. This matter-induced effect on the propaga-
tion of neutrinos can be described by an effective potential. Since neutrinos
are massless in the SM, their dispersion relation in matter is modified to
|p| = nE, where n is just the refractive index. Since neutrinos only have
weak interactions with matter, (n− 1) � 1 must hold. In this case one may
define the effective potential of the neutrino beam in matter as

V ≡ E − |p| = −(n− 1)E = −2πN

E
f(0) , (2.109)

where Eq. (2.107) has been used. This relationship links the effective potential
V to the refractive index n, or equivalently, to the forward scattering ampli-
tude f(0). If only the charged-current interactions are taken into account,
then the effective potential of electron neutrinos in an electron background
can be given by

V = −2πN

E
f(0) =

√
2 GFne , (2.110)

where Eq. (2.108) has been used. Hence a dense medium is possible to affect
the behavior of neutrino propagation, in particular the oscillation of neutrino
flavors. Because neutrinos are massless and lepton flavors are conserved in the
SM, the phenomenon of neutrino oscillations is impossible to take place either
in vacuum or in matter unless non-standard neutrino interactions are intro-
duced (Wolfenstein, 1978). Although three neutrinos may have finite masses
beyond the SM, the precision measurements of electroweak interactions have
indicated that their interactions with other SM particles can still be described
by the SM to an excellent degree of accuracy (Nakamura et al., 2010). Hence
the neutrino refractive indices calculated in the SM are applicable, at least
in the leading-order approximation, to those reasonable extensions of the SM
which can naturally accommodate massive neutrinos.

Now we consider the ordinary matter which is made of electrons and
nucleons but electrically neutral as a whole. In this case the number densities
of electrons and protons are equal (i.e., ne = np). The forward scattering
of νe neutrinos off electrons is caused by both charged- and neutral-current
interactions, while that of νμ or ντ neutrinos off electrons can only be caused
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by neutral-current interactions. The Feynman amplitude of νe+e− → νe+e−

scattering has been given in Eq. (2.68) and can be rewritten as

M(νee
−) = −GF√

2
uν(p′)γμ(1 − γ5)uν(p)ue(q

′)γμ (ge
V − ge

Aγ5)ue(q) , (2.111)

where ge
V ≡ 1 + Cl

VCC and ge
A ≡ 1 + Cl

AC have been defined in Eq. (2.75).
The Feynman amplitude of νμ + e− → νμ + e− scattering or ντ + e− →
ντ + e− scattering can directly be read off from Eq. (2.111) by replacing the
coefficients ge

V and ge
A with C l

VCC and Cl
AC given in Table 2.2. One may construct

a low-energy effective Hamiltonian for elastic νe-e
− scattering, which should

be able to reproduce the exact Feynman amplitude in Eq. (2.111). Such a
requirement is a common criterion for constructing the effective Hamiltonians
in quantum field theories.

The fact that neutrinos propagating in matter may interact with the back-
ground particles can be described by means of the picture of free neutrinos
traveling in an effective potential. The first step to derive the effective poten-
tial is to write down the effective Hamiltonian at an energy scale much lower
than the masses of W± and Z0 bosons. The effective Hamiltonian density
responsible for the interactions of νe neutrinos with electrons is

Heff(x) =
GF√

2
νe(x)γ

μ(1 − γ5)νe(x)e(x)γμ (ge
V − ge

Aγ5) e(x) . (2.112)

Assuming the background electrons to be thermally distributed and unpo-
larized, we should average the effective Hamiltonian over the electron states.
This can be done in the following way:

Heff(x) =
1
2

∑
se

∫
d3p

(2π)3
gef(p, T )〈e(p, se)|Heff(x)|e(p, se)〉 , (2.113)

where ge = 2 denotes an internal degree of freedom, f(p, T ) is the distribution
function of electrons in the phase space, and |e(p, se)〉 =

√
2Ep b

†
e(p, se)|0〉

stands for the one-particle electron state with the momentum p and the spin
eigenvalue se. Recalling the quantization of the electron field,

e(x) =
∫

dΠqΠ
∑

s

[
be(q, s)ue(q, s)e

−iqx + d†e(q, s)ve(q, s)e
iqx
]

(2.114)

with the phase element dΠqΠ ≡ d3q/[(2π)3
√

2Eq], one may figure out the
averaged effective Hamiltonian in Eq. (2.113):

Heff(x) =
GF√

2
neg

e
Vνe(x)γ

0(1 − γ5)νe(x) , (2.115)

where the integration over the distribution function gives rise to the number
density of electrons ne, and the three-momentum p is taken to be isotropic.
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Therefore, the electrons in matter contribute an effective potential for the
left-handed electron neutrinos:

Ve =
∫

d3p d3x
(2π)32Ep

〈νeL(p, s)|Heff(x)|νeL(p, s)〉 =
√

2 GFneg
e
V , (2.116)

where we have introduced the one-particle state |νeL(p, s)〉 corresponding to
the left-handed neutrino field νeL(x). Note that (1−γ5)νeL(x) = 2νeL(x) and
the normalization relation of the one-particle states 〈νeL(p, s)|νeL(q, s′)〉 =
2Ep(2π)3δ3(p−q)δss′ should be carefully taken into account in the above cal-
culation. For this reason, a similar calculation done in the finite-volume quan-
tization scheme is somewhat more transparent and simpler (Linder, 2005;
Giunti and Kim, 2007).

In comparison, the effective Hamiltonian responsible for νμ or ντ neutrinos
propagating in matter only arises from neutral-current interactions and can
therefore be written as

Heff(x) =
GF√

2
να(x)γμ(1 − γ5)να(x)e(x)γμ(C l

VCC − C l
AC γ5)e(x) , (2.117)

where α = μ or τ . Following a way similar to the treatment of electron
neutrinos, one may easily figure out the effective potentials of muon and tau
neutrinos in normal matter:

VμV = VτVV =
√

2 GFneC
l
VCC . (2.118)

Note that the equality VμV = VτVV will no more hold if the radiative corrections
are taken into account (Botella et al., 1987). The difference between VμV and
VτVV is likely to impact the flavor conversions of supernova neutrinos (Esteban-
Pretel et al., 2008).

We proceed to consider the effective Hamiltonian responsible for neutrino-
nucleon interactions. The above results indicate that an effective potential of
neutrinos propagating in isotropic matter is independent of the pseudovec-
tor couplings. In addition, the conservation of vector currents implies that
the vector couplings of nucleons can simply be taken as a sum over the vec-
tor couplings of valence quarks. Both neutrino-proton and neutrino-neutron
scattering processes are mediated by the neutral gauge boson Z0, so their
effective Hamiltonian takes the form

Heff(x) =
GF√

2
να(x)γμ(1 − γ5)να(x)N(x)γμ

(
CN

VCC − γ5C
N
AC
)
N(x) , (2.119)

where CN
VCC ,A ≡ 2Cu

VCC ,A + Cd
VCC ,A for protons N(x) = p(x), or CN

VCC ,A ≡ 2Cd
VCC ,A +

Cu
VCC ,A for neutrons N(x) = n(x). One can then work out the effective poten-

tials of neutrinos induced by the background protons and neutrons in matter:

Vp
αV =

√
2 GFnp

(
2Cu

VCC + Cd
VCC
)

=
1√
2
GFnp

(
1 − 4 sin2 θw

)
,
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Vn
αV =

√
2 GFnn

(
2Cd

VCC + Cu
VCC
)

= − 1√
2
GFnn , (2.120)

where α = e, μ or τ , np and nn stand respectively for the number densities
of protons and neutrons, and the values of Cu

VCC and Cd
VCC given in Table 2.3

have been used. Note that the neutral-current contributions are universal for
all three types of neutrinos. Note also that the total effective potential for
electron neutrinos is VeV + Vp

eV + Vn
e =

√
2 GFne + Vn

αV , but the total effective
potential for muon (or tau) neutrinos is VμV + Vp

μV + Vn
μV = Vn

αV , where ne = np

is taken as a consequence of the electric neutrality of matter. The difference
between the potentials of electron and muon (or tau) neutrinos turns out to
be ΔV = VeV − VμV =

√
2 GFne. An important comment should be made on

the effective potentials of antineutrinos in matter. The effective Hamiltonian
of neutrinos is also applicable to the corresponding antineutrinos. But a dif-
ference appears when evaluating the effective potential in Eq. (2.116). For
neutrinos, we are left with a unique non-vanishing matrix element of Heff

(Linder, 2005):

〈να(p)|Heff(x)|να(p)〉 ∝ 〈0|bν(p)
[∫

d3q b†ν(q)bν(q)
]
b†ν(p)|0〉 ; (2.121)

while for antineutrinos, the corresponding matrix element of Heff reads

〈να(p)|Heff(x)|να(p)〉 ∝ 〈0|dν(p)
[∫

d3q dν(q)d†ν(q)
]
d†ν(p)|0〉

= −〈0|dν(p)
[∫

d3q d†ν(q)dν(q)
]
d†ν(p)|0〉 , (2.122)

where the quantization of neutrino fields is the same as that in Eq. (2.114).
Hence we conclude that the effective potentials responsible for neutrinos and
antineutrinos propagating in matter have the opposite signs. For the same
reason, we can see from Eq. (2.113) that the effective potentials of neutri-
nos will change their signs if the background particles are replaced by the
corresponding antiparticles.

Finally, let us turn to the coherent forward scattering of neutrinos off
their ambient neutrinos — a phenomenon which can be extremely important
for the flavor conversions of supernova neutrinos. It is obvious that only the
neutral-current interactions contribute to this process. The Feynman ampli-
tude of να + να → να + να scattering has been given in Eq. (2.80), which
corresponds to the following effective Hamiltonian:

Heff(x) =
GF

2
√

2
να(x)γμ(1 − γ5)να(x)να(x)γμ(1 − γ5)να(x) . (2.123)

It is straightforward to reproduce Eq. (2.80) from Eq. (2.123). An average over
the background neutrinos receives contributions from both spinor bilinears
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in Eq. (2.123) and thus gives rise to a factor 2. Taking account of this factor,
one can work out the effective potential for να neutrinos propagating in the
background of να neutrinos:

Vνα
= 2

√
2 GFnνα

, (2.124)

where nνα
is the number density of the background neutrinos. One should

keep in mind that neutrinos are always left-handed in the SM when doing the
above calculation. One may analogously find that the effective potential for
να neutrinos traveling in the background of νβν neutrinos (for β = α) is simply
Vνα

=
√

2 GFnνβ
. Hence the effective potential of neutrino-neutrino scatter-

ing can be recast into a much more compact form: Vνα
=

√
2 GF(1+δαβ)nνβ

.
The angular correlation between the incident and background neutrinos is
very important in the case of supernova neutrinos. This effect is neglected
here but it will be discussed in detail in Chapter 7.

2.3.3 Neutrino Self-energy Approach

In the astrophysical and cosmological environments, such as in the core of
a supernova or in the early Universe, there may exist neutrinos in thermal
equilibrium with other particles. In this case it is more reasonable to deal
with the system by means of quantum field theories at finite temperatures
(Landsman and van Weert, 1987; Kapusta, 1989; Quiros, 1999). On the other
hand, it is certainly inappropriate to treat neutrinos in the early Universe as
a beam of free particles. A proper strategy is to calculate the self-energies
of neutrinos in the presence of background particles and then extract the
effective potential by using the dispersion relation. The dispersion relation
can be derived from (Nötzold and Raffelt, 1988)

Det
[
/p
[[
//−Σ(/p//)

]
= 0 , (2.125)

where Σ(/p//) denotes the self-energy of a fermion. For a free fermion with mass
m, we have Σ(/p//) = m. Then an explicit calculation of the determinant in
Eq. (2.125) yields the dispersion relation E2 = |p|2 +m2. In the presence of
interactions, the general form of the neutrino self-energy in the SM can be
written as Σ(/p//) = {c1/p//+ c2/u//+ c3[/p,[[// /u//]}PLPP with uμ being the four-velocity of
the medium (Weldon, 1982). A calculation of the coefficients ci (for i = 1, 2, 3)
involves the Feynman rules in quantum field theories at finite temperatures,
which will be briefly discussed in the following.

Consider a thermal system at rest with the Hamiltonian H and the con-
served charge Q. The equilibrium states are then described by the grand-
canonical density operator 5

5The grand canonical ensemble can exchange the energy and particles with the
thermal reservoir, but its temperature, volume and chemical potential are fixed.
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ρ =
1
N e−β(H−μQ) , (2.126)

where N ≡ Tr
[
e−β(H−μQ)

]
is the normalization factor, μ denotes the chemi-

cal potential, and β = 1/T with T being the temperature is introduced. Here
the normalization Tr[ρ] = 1 is implied. The thermal average of an operator
O is then defined as

〈O〉 = Tr [ρO] . (2.127)

For simplicity, we temporarily ignore the chemical potential μ and discuss
the case of real scalar particles. In the Heisenberg picture one may write the
scalar field operator as φ(x) = eiHtφ(0,x)e−iHt, where the time x0 = t is
to be analytically continued to the complex plane. As usual, the two-point
Green function is defined as the thermal average of the time-ordered field
operators:

GC(x− y) ≡ 〈TCTT [φ(x)φ(y)]〉
≡ ΘC

(
x0 − y0

)
〈φ(x)φ(y)〉 +ΘC

(
y0 − x0

)
〈φ(y)φ(x)〉 , (2.128)

where the TCTT -ordering indicates that the fields should be ordered along the
path C in the complex-time plane. We explicitly parametrize the path as
t = z(τ) with τ being a real parameter, then the ordering in t is defined as
that in τ . In addition, we have the step function ΘC(t) = Θ(τ) and the Dirac

delta function δC(t) =
(

dz
dτ

)−1

δ(τ). The functional formalism in quantum

field theories is also applicable, so one may similarly define the generating
functional of Green functions and that of the one-particle irreducible Green
functions (Landsman and van Weert, 1987). The two-point Green function
defined in Eq. (2.128) can be rewritten as

GC(x− y) ≡ ΘC(x0 − y0)G+(x− y) +ΘC(y0 − x0)G−(x− y) , (2.129)

where G+(x−y) ≡ 〈φ(x)φ(y)〉 and G−(x−y) = G+(y−x). Now we evaluate
G+(x − y) at the point x = y = 0 by implementing the complete set of
eigenstates |n〉 of the Hamiltonian (i.e., H|n〉 = En|n〉). More explicitly,

G+(x0 − y0) =
1
N
∑

n

〈n|e−βHeiHx0
φ(0)e−iH(x0−y0)φ(0)e−iHy0 |n〉

=
1
N
∑
m,n

|〈m|φ(0)|n〉|2 e−iEm(x0−y0)eiEn(x0−y0+iβ) . (2.130)

To assure the summation to be convergent, we require −β � Im(x0−y0) � 0
together with ΘC(x0 − y0) = 0 for Im(x0 − y0) > 0. A similar analysis
of G−(x0 − y0) yields the condition 0 � Im(x0 − y0) � β together with
ΘC(y0 − x0) = 0 for Im(x0 − y0) < 0. Consequently, the convergence of the
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Green function in the range −β � Im(x0 − y0) � β restricts us to define
ΘC(t) = 0 for Im(t) > 0. The latter implies that the point along the chosen
path C should have a constant or monotonically decreasing imaginary part
(Quiros, 1999). Starting with the definition of the two-point Green function,
we can further derive

G+(t− iβ,x) ≡ 〈φ(t− iβ,x)φ(0)〉

=
1
N Tr
[
e−βHeiH(−iβ)φ(t,x)e−iH(−iβ)φ(0)

]
=

1
N Tr
[
e−βHφ(0)φ(t,x)

]
= G+(−t,−x) = G−(t,x) , (2.131)

where the cyclic invariance of the trace and the identityG−(x−y) = G+(y−x)
have been used. This is just the famous Kubo-Martin-Schwinger relation
(Kubo, 1957; Martin and Schwinger, 1959).

Now we calculate the thermal two-point Green function for a free real
scalar field, whose Hamiltonian can be written as

H =
∫

d3p
(2π)3

Epa
†
pap , (2.132)

where Ep =
√
|p|2 +m2. Note that a† and a stand respectively for the

creation and annihilation operators, which satisfy the commutation relation[
ap, a

†
q

]
= (2π)3δ3(p−q). We first consider a system with a single momentum

mode and the energy ω. Its Hamiltonian is H = ωa†a, and its complete set
of eigenstates are denoted by |n〉. We get

Tr
[
e−βH
]

=
∞∑

n=0

〈n|e−βH |n〉 =
∞∑

n=0

e−nβω =
1

1 − e−βω
, (2.133)

and

Tr
[
e−βHa†a

]
=

∞∑
n=0

ne−nβω =
e−βω

(1 − e−βω)2
. (2.134)

Therefore, the thermal average of the number operator reads 〈a†a〉 = nB(ω)
and 〈aa†〉 = 1 + nB(ω), where nB(ω) ≡ 1/(eβω − 1) is the Bose-Einstein
distribution function. Then it is straightforward to obtain the results for any
momentum mode:

〈a†paq〉 = nB(Ep)(2π)3δ3(p− q) ,

〈apa†q〉 =
[
1 + nB(Ep)

]
(2π)3δ3(p − q) . (2.135)

Recalling the quantization of a real scalar field and using Eq. (2.135), we
compute the two-point Green function (Altherr, 1993)
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GC(x− y) =
∫ {

ΘC(x0 − y0)
[
〈a†paq〉ei(px−qy) + 〈apa†q〉e−i(px−qy)

]
+ ΘC(y0 − x0)

[
〈aqa†p〉ei(px−qy) + 〈a†qap〉e−i(px−qy)

]}
=
∫

d4p

(2π)4
κ(p)e−ip(x−y)

[
ΘC(x0 − y0) + nB(p0)

]
, (2.136)

where the integration over the phase space in the first equality is implied,
and the spectrum function κ(p) ≡ 2πδ(p2 −m2)

[
Θ(p0) −Θ(−p0)

]
has been

introduced. It is worth pointing out that the specific expression of GC(x−y)
definitely depends on the choice of the path C. There exist two conven-
tional options — the imaginary- and real-time formalisms (Landsman and
van Weert, 1987). We shall concentrate on the real-time formalism, in which
the path C is chosen in the complex-time plane as follows: (1) from the initial
real time ti along the real axis to the final real time tf ; (2) from tf to tf − iσ
along the imaginary axis with 0 < σ < β; (3) from tf − iσ to ti − iσ in the
opposite direction of the real axis; and (4) from ti − iσ to ti − iβ. In this
formalism four distinct propagators arise from Eq. (2.136) and they can be
expressed in the momentum space as

GC(p) =
(
G11(p) G12(p)
G21(p) G22(p)

)
= U(β, p)

(
Δ(p) 0

0 Δ∗(p)

)
U(β, p) , (2.137)

where

U(β, p) =
(

cosh θp sinh θp

sinh θp cosh θp

)
(2.138)

with cosh θp ≡ 1/
√

1 − e−βEp , and Δ(p) is just the usual Feynman propa-
gator at zero temperature. Although there are propagators associated with
the superscript “2”, the physical fields are only related to G11(p). Explicitly,
we have (Bernard, 1974; Dolan and Jackiw, 1974; Weinberg, 1974; Landsman
and van Weert, 1987)

G11(p) =
i

p2 −m2 + iε
+ 2πnB(Ep)δ(p2 −m2) . (2.139)

One may discuss the case of fermions in a similar way. The fermionic Green
function can be written as

SC(p) =
(
S11(p) S12(p)
S21(p) S22(p)

)
= V (β, p)

(
SF(p) 0

0 S∗
F(p)

)
V (β, p) , (2.140)

where

V (β, p) =
(

cos θp sin θp

sin θp cos θp

)
(2.141)
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Fig. 2.7 The Feynman diagrams for the self-energy of neutrinos in the presence of
background particles: (a) charged-current contributions; (b) neutral-current contri-
butions with f being all the relevant particles in a medium; and (c) contributions
from the background neutrinos

with cos θp ≡ [Θ(p0)−Θ(−p0)]/
√

1 + e−βEp , and SF(p) is just the fermionic
propagator at zero temperature. Eq. (2.140) allows us to obtain the physical
component of the Green function:

S11(p) =
(
/p//+m

) [ i
p2 −m2 + iε

− 2πnF(Ep)δ(p2 −m2)
]
, (2.142)

where nF(Ep) ≡ 1/(eβEp + 1) is the Fermi-Dirac distribution function. In
fact, the Feynman diagrams of a specific process in the real-time formalism
is the same as those in the zero-temperature field theory. But all the vertices
should be labeled by “1” or “2”, and the physical legs must be assigned as
“1”. The Feynman rules for the vertex “1” are the same as those in the zero-
temperature field theory, and those for the vertex “2” are just the Hermitian
conjugate (Landsman and van Weert, 1987).

Now we are ready to calculate the self-energy of neutrinos in the presence
of background particles. To be more specific, we consider the ordinary mat-
ter in which there are electrons and nucleons or neutrinos themselves. The
Feynman diagrams for possible contributions to the neutrino self-energy are
shown in Fig. 2.7, where the unitary gauge is implied. So far we have only
discussed the propagators of bosons and fermions in a thermal system at
rest. It has been proposed that all the calculations at finite temperatures can
be performed in a Lorentz-invariant way by introducing the four-velocity uμ

of the thermal bath (Weldon, 1982). In this case the propagator of electron
fields is (Landsman and van Weert, 1987)

S11
F (p) =

(
/p//+me

) [ i
p2 −m2

e + iε
− 2πδ(p2 −m2

e)η(p · u)
]
, (2.143)

where we have defined

η(p · u) ≡ Θ(p · u)
eβ(p·u−μ) + 1

+
Θ(−p · u)

e−β(p·u−μ) + 1
(2.144)
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with μ being the chemical potential. In the absence of the chemical potential
and in the rest frame, one can easily reproduce the propagator in Eq. (2.142).
For instance, we look at the background-dependent term in the neutrino self-
energy from Fig. 2.7(a) (Nötzold and Raffelt, 1988; Nieves, 1992):

−iΣa(k) =
(

ig√
2

)2 ∫ d4p

(2π)4
γμPLPP

−i
(p− k)2 −M2

WMM
S̃11

F (p)γμPLPP , (2.145)

where S̃11
F singles out the temperature-dependent part of the full electron

propagator, PLPP ≡ (1 − γ5)/2 is the left-handed projection operator, and the
terms suppressed by m2

e/M
2
WMM have been neglected. Assuming (p−k)2 �M2

WMM
and using the identity γμ/pγ// μ = −2/p//, we simplify Eq. (2.145) to

Σa(k) =
g2

M2
WMM

∫
d4p

(2π)3
δ(p2 −m2

e)/pP// LPP η(p · u) . (2.146)

Given its Lorentz structure, the above integration should uniquely depend
on /u//. In order to further identify the coefficient, we work in the rest frame of
the medium with uμ = (1,0). Then Eq. (2.146) becomes

Σa(k)|uμ=(1,0) =
g2

M2
WMM
γ0PLPP

∫
d4p

(2π)3
p0δ(p2 −m2

e)η(p
0)

=
g2

M2
WMM
γ0PLPP

∫
d3p

(2π)3

∫ +∞

−∞

∫∫
p0δ(p2 −m2

e)η(p
0)dpd 0 , (2.147)

and the integration over dpd 0 can be evaluated as follows:∫ +∞

−∞

∫∫
p0

1
2|p0|
[
δ(p0 − Ep) + δ(p0 + Ep)

]
η(p0)dpd 0

=
1
2

∫ +∞

0

∫∫
δ(p0 − Ep)Θ(p0)dpd 0

eβ(p0−μ) + 1
− 1

2

∫ 0

−∞

∫∫
Θ(−p0)δ(p0 + Ep)dpd 0

e−β(p0−μ) + 1

=
1
2

(
1

eβ(Ep−μ) + 1
− 1

eβ(Ep+μ) + 1

)
(2.148)

with Ep ≡
√

|p|2 +m2
e. Substituting Eq. (2.148) into Eq. (2.147), we find

Σa(k)|uμ=(1,0) =
g2

4M2
WMM
γ0PLPP (ne− − ne+) , (2.149)

where ne− (or ne+) denotes the number density of electrons (or positrons):

ne∓ ≡ ge∓

∫
d3p

(2π)3
· 1
eβ(Ep∓μ) + 1

(2.150)

with ge∓ = 2 being an internal degree of freedom. The general covariant form
of the neutrino self-energy in Eq. (2.146) turns out to be
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Σa(k) =
√

2 GF(ne− − ne+)/uP// LPP . (2.151)

Now let us examine how the above self-energy in the rest frame of the medium
affects the dispersion relation of neutrinos. The latter is just the solution to
the equation

0 = Det [/k// −Σa(k)]

= Det
[(
E − c2 k · σ
−k · σ c2 −E

)]
=
[
(E − c2)

2 − |k|2
]2
, (2.152)

where c2 =
√

2 GF(ne−−ne+). It becomes evident that the dispersion relation
for massless neutrinos is c2 = E − |k|, so c2 is just the effective potential V
defined in Eq. (2.109). This result is consistent with our previous calculations
by means of the coherent scattering amplitude and the effective Hamiltonian
in the absence of positrons in matter. One may follow a similar procedure
to compute the effective potentials or the refractive indices of neutrinos in-
duced by the processes in Fig. 2.7(b) and Fig. 2.7(c). The final results for the
effective potentials are summarized below (Nötzold and Raffelt, 1988).

(1) In the e± background:

Ve = Vcc
e + Vnc

eV =
1√
2
GF

(
1 + 4 sin2 θw

)
(ne− − ne+) ,

VμV = VτVV = Vnc
μV = Vnc

τVV = − 1√
2
GF

(
1 − 4 sin2 θw

)
(ne− − ne+) . (2.153)

(2) In the nucleon background:

Vp
αV =

1√
2
GF

(
1 − 4 sin2 θw

) (
np − np

)
,

Vn
αV = − 1√

2
GF (nn − nn) , (2.154)

where α = e, μ or τ .
(3) In the neutrino background:

Vνα
=

√
2 GF

(
1 + δαβ

) (
nνβ

− nνβ

)
, (2.155)

where νβν (or νβ) denote the background neutrinos (or antineutrinos).
For the antineutrino beam in a given medium, the corresponding effective

potential takes the opposite sign. Note that only the leading-order results
have been presented here. More general results including the next-to-leading-
order corrections can be found in some literature (Botella et al., 1987; Nötzold
and Raffelt, 1988; Nieves, 1992; Mirizzi et al., 2009).
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3

Neutrinos beyond the Standard Model

Some salient and model-independent properties of massive neutrinos will be
introduced in this chapter. First of all, we shall summarize current experimen-
tal evidence for neutrino oscillations, which point to finite neutrino masses
and lepton flavor mixing angles. Then we shall describe how to write out the
mass terms of Dirac and Majorana neutrinos, analyze their C, P and T prop-
erties, and discuss their electromagnetic properties. The phenomenology of
lepton flavor mixing and CP violation, together with the running behaviors
of neutrino mass parameters from one energy scale to another, will also be
discussed in some detail.

3.1 Experimental Evidence for Neutrino Masses

The mass of an elementary particle represents its inertial energy when it exists
at rest. Hence a massless particle has no way to exist at rest — instead, it
must always move at the speed of light. A massive fermion must exist in both
left-handed and right-handed states, because the field operators responsible
for the non-vanishing mass of a fermion have to be bilinear products of the
spinor fields which flip the fermion’s handedness or chirality (Xing, 2004).

The standard model (SM) of electroweak interactions contains three neu-
trinos (νe, νμ, ντ ) which are purely left-handed and massless. Note that the
masslessness of the photon in the SM is guaranteed by the electromagnetic
U(1)Q gauge symmetry. Although the masslessness of three neutrinos cor-
responds to the lepton number conservation 1, the latter is an accidental
symmetry rather than a fundamental symmetry of the SM. Therefore, many

1It is actually the B−L symmetry that makes neutrinos exactly massless in the
SM, where B = baryon number and L = lepton number. The reason is simply that
a neutrino and an antineutrino have different values of B−L (Witten, 2001). Thus
the naive argument for massless neutrinos is valid to all orders in perturbation and
non-perturbation theories, if B−L is an exact symmetry.
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physicists strongly believed that neutrinos should be massive even long be-
fore some incontrovertible experimental evidence for massive neutrinos were
accumulated. A good reason for this belief is that neutrinos are more natural
to be massive than to be massless in some grand unified theories (GUTs),
such as the SO(10) theory (Fritzsch and Minkowski, 1975; Georgi, 1975),
which try to unify the electromagnetic, weak and strong interactions on the
one hand and the leptons and quarks on the other hand.

If neutrinos are massive and their masses are non-degenerate, it will in
general be impossible to find a flavor basis in which the coincidence be-
tween flavor and mass eigenstates holds both for charged leptons (e, μ, τ)
and for neutrinos (νe, νμ, ντ ). In other words, the phenomenon of flavor mix-
ing is naturally expected to appear between three charged leptons and three
massive neutrinos, just like the phenomenon of flavor mixing between three
up-type quarks (u, c, t) and three down-type quarks (d, s, b) (Cabibbo, 1963;
Kobayashi and Maskawa, 1973).

The neutrino oscillation, or the spontaneous periodic change from one
neutrino flavor eigenstate to another, is a wonderful quantum phenomenon
which can naturally take place if neutrinos are massive and lepton flavors are
mixed. In a simple two-neutrino mixing scheme, the neutrino flavor eigen-
states να and νβν are linear combinations of the neutrino mass eigenstates νa

and νb (Maki et al., 1962): να = νa cos θ+νb sin θ and νβν = νb cos θ−νa sin θ,
where θ denotes the flavor mixing angle. Then the probabilities of neutrino
oscillations are governed by two characteristic parameters: one is the neutrino
mass-squared difference Δm2 ≡ m2

b −m2
a (in units of eV2) and the other is

the flavor mixing factor sin2 2θ. Corresponding to the “disappearance” and
“appearance” neutrino experiments, the survival and conversion probabilities
of a neutrino flavor eigenstate να can explicitly be expressed as

P (να → να) = 1 − sin2 2θ sin2

(
1.27

Δm2L

E

)
(3.1)

and P (να → νβν ) = 1−P (να → να) with β = α, where E is the neutrino beam
energy (in units of GeV), and L denotes the distance between the neutrino
source and the neutrino detector (in units of km). A lot of data, including
those from solar, atmospheric, reactor and accelerator neutrino oscillation
experiments, have been analyzed by using Eq. (3.1) as a good approximation.

3.1.1 Atmospheric Neutrino Oscillations

The first compelling and model-independent evidence for neutrino oscilla-
tions was achieved from the Super-Kamiokande (SK) experiment (Fukuda
et al., 1998b) on atmospheric neutrinos, which are produced in the Earth’s
atmosphere by cosmic rays and are detected in an underground detector. If
there were no neutrino oscillation, the atmospheric νe (or νe) and νμ (or νμ)
neutrinos entering and exiting the detector should have an almost perfect
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spherical symmetry. In other words, the downward-going and upward-going
neutrino fluxes should be equal to each other: Φα(θz) = Φα(π − θz) versus
the zenith angle θz (for α = e or μ). The SK Collaboration has observed
an approximate up-down flux symmetry for atmospheric νe neutrinos (or νe

antineutrinos) and a significant up-down flux asymmetry for atmospheric νμ

neutrinos (or νμ antineutrinos). For example (Ashie et al., 2005),

Φe(−1 � cos θz � −0.2)
Φe(+0.2 � cos θz � +1)

= 0.961+0.086
−0.079 ± 0.016 ,

Φμ(−1 � cos θz � −0.2)
Φμ(+0.2 � cos θz � +1)

= 0.551+0.035
−0.033 ± 0.004 , (3.2)

for the multi-GeV e-like events and for the single-ring multi-GeV μ-like events
plus partially-contained events, respectively. This result can well be inter-
preted in the assumption of νμ → ντ neutrino oscillations. Current neutrino
oscillation experiments have convincingly ruled out the possibility that the at-
mospheric neutrino anomaly is dominantly attributed to νμ → νe or νμ → νs

oscillations, where νs stands for a “sterile” neutrino which does not take part
in the normal electroweak interactions.

The SK Collaboration studied the νμ disappearance probability as a func-
tion of the neutrino flight length L over the neutrino energy E and claimed
the first direct evidence for atmospheric neutrino oscillations (Ashie et al.,
2004). A dip in the L/E distribution was observed in the experimental data
(see Fig. 3.1 for illustration), as predicted from the sinusoidal flavor transi-
tion probability of neutrino oscillations. We observe that the exotic neutrino
decay and neutrino decoherence scenarios are disfavored by the data, because
they are unable to reproduce the dip. In addition, the no-oscillation case is
strongly disfavored by the data at large L/E.

3.1.2 Accelerator Neutrino Oscillations

If the atmospheric νμ disappearance is attributed to νμ → ντ oscillations,
then a significant fraction of the accelerator-produced νμ events should also
disappear on their way to a sufficiently distant detector. This expectation
has been confirmed by the long-baseline K2K (Ahn et al., 2003) and MINOS
(Michael et al., 2006) experiments. As for the K2K experiment, the νμ beam
was produced at the KEK accelerator, first measured by a near detector
before any oscillation was developed, and then measured 250 km away by the
SK detector at the Kamiokande. In comparison, the baseline length of the
MINOS experiment is 735 km, from Fermilab (the source of νμ neutrinos)
to northern Minnesota (the location of the far detector). Both experiments
have observed a reduction of the νμ flux and a distortion of the νμ energy
spectrum, which must take place in the presence of νμ → ντ oscillations.

The atmospheric neutrino data from the SK experiment and the accelera-
tor neutrino data from the K2K and MINOS experiments can simultaneously
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Fig. 3.1 A ratio of the experimental data to the Monte Carlo events without
neutrino oscillations (points) as a function of the reconstructed L/E together with
the best-fit expectation for νμ → ντ oscillations (solid line). As a comparison,
the best-fit expectations for the neutrino decay (dashed line) and the neutrino
decoherence (dotted line) are also shown in this plot (Ashie et al., 2004. With
permission from the American Physical Society)

be interpreted as the standard νμ → ντ oscillations. Fig. 3.2 shows the allowed
region of Δm2 and sin2 2θ constrained by these data (Adamson et al., 2008).
One can see that the best-fit point of the MINOS measurement corresponds
to |Δm2| = 2.43 × 10−3 eV2 and sin2 2θ = 1.0.

In spite of a careful search for the ντ appearance from atmospheric neu-
trino oscillations, no significant evidence has been established by the SK Col-
laboration (Abe et al., 2006). It is expected that the ντ appearance can be
observed from νμ → ντ oscillations in the OPERA experiment (Acquafredda
et al., 2006), which possesses a much higher neutrino beam energy (E ∼ 5
GeV to 30 GeV, above the ντ → τ production threshold) and a suitable
baseline length (L = 730 km, from CERN to Gran Sasso).

3.1.3 Solar Neutrino Oscillations

The long-standing problem associated with solar neutrinos is that the flux
of solar νe neutrinos measured in almost all experiments, such as the SK
(Fukuda et al., 1998a) and SNO (Ahmad et al., 2002) experiments as well
as the earlier Homestake (Cleveland et al., 1998), GALLEX/GNO (Hampel
et al., 1999; Altmann et al., 2000) and SAGE (Abdurashitov et al., 2002)
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Fig. 3.2 Contours for the oscillation fit to the MINOS data taken in 2008. Also
shown are the results from the SK and K2K measurements (Adamson et al., 2008.
With permission from the American Physical Society)

experiments, is significantly smaller than that predicted by the standard so-
lar model (SSM) (Bahcall et al., 2001). The deficits of solar neutrinos are
not the same in different experiments, implying that the relevant physical
effects are energy-dependent. Before the SNO experiment, it had been hy-
pothesized that the solar neutrino anomaly was due to the conversion of
solar νe neutrinos into other active or sterile neutrinos on their way from
the core of the Sun to the detectors on the Earth. The SNO measurement
has model-independently demonstrated that νe → νμ and νe → ντ transi-
tions are dominantly responsible for the solar neutrino deficit. It is actually
the νe → νμ oscillation with a large mixing angle that dominates the solar
neutrino flavor change.

What the SNO Collaboration has measured is the flux of solar 8B neutri-
nos via the charged-current (CC), neutral-current (NC) and elastic-scattering
(ES) reactions (Ahmad et al., 2002): νe +D → e−+p+p, να +D → να +p+n
and να+e− → να+e− (for α = e, μ or τ). In the presence of flavor conversion,
the observed neutrino fluxes in different reactions satisfy

φCC = φe , φNC = φe +φμτ , φES = φe +
σμ

σe

φμτ ≈ φe + 0.155φμτ , (3.3)
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Fig. 3.3 The νμ+ντ flux versus the νe flux determined from the SNO data. The
total 8B solar neutrino flux predicted by the SSM is shown as dashed lines, parallel
to the NC measurement. The narrow band parallel to the SNO’s ES measurement
corresponds to the SK’s ES result. The best-fit point is obtained using only the
SNO data (Aharmim et al., 2005. With permission from the American Physical
Society)

where σμ/σe ≈ 0.155 is the ratio of elastic νμ-e and νe-e scattering cross-
sections, and φμτ denotes the flux of active non-electron neutrinos. Of course,
φμτ = 0 or equivalently φCC = φNC = φES would hold, if there were no flavor
conversion. The SNO data yield (Aharmim et al., 2005)

φCC = 1.68+0.06
−0.06(stat.)+0.08

−0.09(syst.) ,

φES = 2.35+0.22
−0.22(stat.)+0.15

−0.15(syst.) ,

φNC = 4.94+0.21
−0.21(stat.)+0.38

−0.34(syst.) , (3.4)

from which the flavor composition of 8B solar neutrinos is determined and
summarized in Fig. 3.3. This impressive result is consistent with the SSM
prediction (Bahcall et al., 2005) and indicates the existence of νμ and ντ

neutrinos in the flux of solar neutrinos onto the Earth.
The flavor conversion of solar 8B neutrinos, whose typical energies are

about 6 MeV to 7 MeV, is most likely due to νe → νμ oscillations associated
with the Mikheyev-Smirnov-Wolfenstein (MSW) matter effects (Wolfenstein,
1978; Mikheyev and Smirnov, 1985). Before the KamLAND reactor neutrino
experiment (Eguchi et al., 2003), a global analysis of all available experi-
mental data on solar neutrinos (in particular, those from the SK and SNO
measurements) in the two-flavor oscillation scheme led to several allowed re-



3.1 Experimental Evidence for Neutrino Masses 67

���� �

����

���	
��
�����	�
����	�
�������	�
��������

�����
�����	�
����	�
�������	�
��������

�

θ��� 

!�
�"�

#
��

�Δ

Fig. 3.4 Allowed region for two-flavor neutrino oscillation parameters from the
solar neutrino and KamLAND experiments (Abe et al., 2008. With permission
from the American Physical Society)

gions of Δm2
� and tan2 θ�: the SMA (small mixing angle), LMA (large mixing

angle) and LOW (low mass-squared difference) regions based on the MSW
mechanism as well as the VO (vacuum oscillation) and other possible regions.
It was the KamLAND measurement that singled out the LMA MSW solution
as the only acceptable solution to the solar neutrino problem.

Note also that the Borexino experiment (Arpesella et al., 2008a; 2008b)
has provided the first real-time detection of the mono-energetic solar 7Be neu-
trinos with E = 0.862 MeV and observed a remarkable deficit corresponding
to P (νe → νe) = 0.56±0.1. This result can be interpreted as νe → νμ oscilla-
tions in vacuum, as the matter effects on low-energy 7Be neutrino oscillations
are fairly insignificant (Kayser, 2008). More accurate measurements of 7Be-
associated νe events will be very important for much better understanding of
the interplay between solar neutrino oscillations and MSW matter effects.

3.1.4 Reactor Neutrino Oscillations

The KamLAND Collaboration has measured the partial disappearance of
νe events, which were originally produced from distant nuclear reactors, by
means of the inverse β-decay reaction νe + p→ e+ + n (Eguchi et al., 2003;
Abe et al., 2008). The typical baseline of this experiment is 180 km, allowing
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Fig. 3.5 Ratio of the background and geoneutrino-subtracted νe spectrum to
the no-oscillation expectation as a function of L0/E, where L0 = 180 km is the
effective KamLAND baseline taken as a flux-weighted average (Abe et al., 2008.
With permission from the American Physical Society)

a terrestrial test of the LMA solution to the solar neutrino problem. The ratio
of the observed inverse β-decay events to the expected number without νe

disappearance turns out to be convincingly smaller than one. Such a deficit
can naturally be interpreted in the hypothesis of νe → νμ oscillations, and
the corresponding parameter space shown in Fig. 3.4 is compatible very well
with the LMA region of solar νe → νμ oscillations under CPT invariance
(Abe et al., 2008): Δm2

� = (7.59± 0.21)× 10−5 eV2 and tan2 θ� = 0.47+0.06
−0.05.

In particular, P (νe → νe) measured in the KamLAND experiment dis-
plays a striking sinusoidal behavior of two-flavor oscillations (see Fig. 3.5).
Note that the KamLAND detector detects νe events coming from a number
of reactors at different distances, so the distance L travelled by any given νe

is unknown (Kayser, 2008). For this reason, Fig. 3.5 plots the experimental
data versus L0/E with L0 = 180 km being a flux-weighted average distance.
The oscillatory curve and histogram in this figure have taken account of the
actual distances to the individual reactors. One can see almost two cycles of
the sinusoidal structure of neutrino oscillations.

The CHOOZ (Apollonio et al., 1998) and Palo Verde (Boehm et al., 2000)
reactor antineutrino experiments were done to search for νe → νe oscillations
in the atmospheric range of Δm2. No indication in favor of neutrino oscilla-
tions was found from both experiments, leading to a strong constraint on the
smallest neutrino mixing angle: sin2 2θchz < 0.10 for Δm2

chz > 3.5×10−3 eV2;
or sin2 2θchz < 0.18 for Δm2

chz > 2.0 × 10−3 eV2.
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3.1.5 Implications of Experimental Data

The neutrino experiments that we have briefly summarized involve different
neutrino sources, different neutrino flavors, different neutrino beam energies
and (or) different neutrino travel distances. But the observed neutrino deficits
can all be explained in the framework of three-flavor oscillations, only if three
known neutrinos have non-degenerate masses and nontrivial mixing angles.
Such a solution is natural and economical in the sense that it does not invoke
any (exotic) new particles or new forces, or change the SSM, or fine-tune
the parameter space (Xing, 2008a). We conclude that neutrino oscillations
have definitely been observed, implying that at least two neutrinos must
be massive. This is the only new physics beyond the SM which has been
established on solid experimental ground in the past four decades.

A global three-flavor analysis of all the available experimental data on
solar (SNO, SK, Borexino), atmospheric (SK), reactor (KamLAND and
CHOOZ) and accelerator (K2K and MINOS) neutrino oscillations has been
done by two different groups (Schwetz et al., 2008; Fogli et al., 2008a). Tables
3.1 and 3.2 list their main results for two neutrino mass-squared differences
and three neutrino mixing angles, respectively. One can see that the numer-
ical results of these two analyses are essentially compatible with each other.
Although sin2 θ13 = 0.016± 0.010 (1σ) is claimed to be an interesting hint at
θ13 > 0 (Fogli et al., 2008b), its significance remains quite poor.

Only some upper bounds on the absolute neutrino mass scale have been
obtained from current data on the beta decay, the neutrinoless double-beta
(0ν2β) decay and cosmology (Strumia and Vissani, 2006; Seljak et al., 2006).
The following statements should be true: (a) every neutrino mass must be
below O(1) eV; (b) one neutrino mass must be larger than

√
|Δm2

31| ∼ 0.05
eV; and (c) the smallest neutrino mass can be zero. The origin of finite
neutrino masses demands a kind of new physics beyond the SM.

3.2 Dirac and Majorana Neutrino Mass Terms

To write out the mass term for three known neutrinos, let us make a minimal
extension of the SM by introducing three right-handed neutrinos. Then we
totally have six neutrino fields 2:

νL =

⎛⎝⎛⎛νeL

νμL

ντL

⎞⎠⎞⎞ , NRNN =

⎛⎝⎛⎛N1RNN
N2RNN
N3RNN

⎞⎠⎞⎞ , (3.5)

2The left- and right-handed components of a fermion field ψ(x) are denoted as
ψL(x) = PLPP ψ(x) and ψR(x) = PRPP ψ(x), respectively, where PLPP ≡ (1 − γ5)/2 and
PRPP ≡ (1+γ5)/2 are the chiral projection operators. Note, however, that νL = PLPP νL

and NRNN = PRPP NRNN are in general independent of each other.
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Table 3.1 Best-fit values with 1σ errors together with 2σ and 3σ intervals for
three-flavor neutrino oscillation parameters from a global analysis of current data
(Schwetz et al., 2008. With permission from the Institute of Physics). Here Δm2

21 ≡
m2

2 − m2
1 and Δm2

31 ≡ m2
3 − m2

1 are defined

Parameter Best fit + 1σ 2σ 3σ

Δm2
21

(
10−5 eV2

)
7.65+0.23

−0.20 7.25 to 8.11 7.05 to 8.34∣∣∣∣Δm2
31

∣∣∣∣ (10−3 eV2
)

2.40+0.12
−0.11 2.18 to 2.64 2.07 to 2.75

sin2 θ12 0.304+0.022
−0.016 0.27 to 0.35 0.25 to 0.37

sin2 θ23 0.50+0.07
−0.06 0.39 to 0.63 0.36 to 0.67

sin2 θ13 0.01+0.016
−0.011 � 0.040 � 0.056

Table 3.2 Best-fit values and allowed 1σ, 2σ and 3σ ranges for three-flavor neutrino
oscillation parameters from a global analysis of current data (Fogli et al., 2008a.
With permission from the American Physical Society). Here δm2 ≡ m2

2 − m2
1 and

Δm2 ≡ |m2
3 − (m2

1 + m2
2)/2| are defined

Parameter Best fit 1σ 2σ 3σ

δm2
(
10−5 eV2

)
7.67 7.48 to 7.83 7.31 to 8.01 7.14 to 8.19

Δm2
(
10−3 eV2

)
2.39 2.31 to 2.50 2.19 to 2.66 2.06 to 2.81

sin2 θ12 0.312 0.294 to 0.331 0.278 to 0.352 0.263 to 0.375

sin2 θ23 0.466 0.408 to 0.539 0.366 to 0.602 0.331 to 0.644

sin2 θ13 0.016 0.006 to 0.026 < 0.036 < 0.046

where only the left-handed fields take part in the electroweak interactions.
The charge-conjugate counterparts of νL and NRNN are defined as

(νL)c ≡ CνLT , (NRNN )c ≡ CNRNN
T

; (3.6)

and accordingly,

(νL)c = (νL)TC , (NRNN )c = (NRNN )T C , (3.7)

where C denotes the charge-conjugation matrix and satisfies the conditions

CγT
μ C−1 = −γμ , CγT

5 C−1 = γ5 , C−1 = C† = CT = −C . (3.8)

It is easy to check that PLPP (NRNN )c = (NRNN )c and PRPP (νL)c = (νL)c hold; namely,
(νL)c = (νc)R and (NRNN )c = (N c)L hold. Hence (νL)c and (NRNN )c are right-
and left-handed fields, respectively. One may then use the neutrino fields νL,
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NRNN and their charge-conjugate partners to write out the gauge-invariant and
Lorentz-invariant neutrino mass terms.

In the SM the weak charged-current interactions of three active neutrinos
are given by

Lcc =
g√
2
(e μ τ)L γ

μ

⎛⎝⎛⎛νe

νμ

ντ

⎞⎠⎞⎞
L

W−
μW + h.c. . (3.9)

Without loss of generality, we choose the basis in which the mass eigen-
states of three charged leptons are identified with their flavor eigenstates.
If neutrinos have nonzero and non-degenerate masses, their flavor and mass
eigenstates are in general not identical in the chosen basis. This mismatch
signifies the phenomenon of lepton flavor mixing (Maki et al., 1962).

3.2.1 Dirac Masses and Lepton Number Conservation

A Dirac neutrino is described by a four-component Dirac spinor ν = νL+NRNN ,
whose left-handed and right-handed components are just νL and NRNN . The
Dirac neutrino mass term comes from the Yukawa interactions

−LDirac = �LYνYY H̃NRNN + h.c. , (3.10)

where H̃ ≡ iσ2H
∗ with H being the SM Higgs doublet, and �L denotes the

left-handed lepton doublet. After spontaneous gauge symmetry breaking (i.e.,
SU(2)L × U(1)Y → U(1)Q), we obtain

−L′
Dirac = νLMDMM NRNN + h.c. , (3.11)

whereMDMM = YνYY 〈H〉 with 〈H〉 
 174 GeV being the vacuum expectation value
of H. This mass matrix can be diagonalized by a bi-unitary transformation:
V †MDMM U = M̂νMM ≡ Diag{m1, m2,m3} with mi being the neutrino masses (for
i = 1, 2, 3). After this diagonalization, Eq. (3.11) becomes

−L′
Dirac = ν′LM̂νMM N ′

RNN + h.c. , (3.12)

where ν′L = V †νL and N ′
RNN = U†NRNN . Then the four-component Dirac spinor

ν′ = ν′L +N ′
RNN =

⎛⎝⎛⎛ν1ν2
ν3

⎞⎠⎞⎞ , (3.13)

which automatically satisfies PLPP ν′ = ν′L and PRPP ν′ = N ′
RNN , describes the mass

eigenstates of three Dirac neutrinos. In other words,

−L′
Dirac = ν′M̂νMM ν′ =

3∑
i=1

miνiνi . (3.14)
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The kinetic term of Dirac neutrinos turns out to be

Lkinetic = iνLγμ∂
μνL + iNRNN γμ∂

μNRNN = iν′γμ∂
μν′ = i

3∑
k=1

νkγμ∂
μνk , (3.15)

where V †V = V V † = 1 and U†U = UU † = 1 have been used.
Now we rewrite the weak charged-current interactions of three neutrinos

in Eq. (3.9) in terms of their mass eigenstates ν′L = V †νL in the chosen basis
where the flavor and mass eigenstates of three charged leptons are identical:

Lcc =
g√
2
(e μ τ)L γ

μV

⎛⎝⎛⎛ν1ν2
ν3

⎞⎠⎞⎞
L

W−
μW + h.c. . (3.16)

The 3×3 unitary matrix V , which actually links the neutrino mass eigenstates
(ν1, ν2, ν3) to the neutrino flavor eigenstates (νe, νμ, ντ ), just measures the
phenomenon of neutrino mixing.

A salient feature of massive Dirac neutrinos is lepton number conser-
vation. Table 3.3 lists the lepton number L and the lepton flavor (family)
number Lα of every lepton in the SM. To see why massive Dirac neutrinos
are lepton-number-conserving, we make the global phase transformations

l(x) → eiΦl(x) , ν′L(x) → eiΦν′L(x) , N ′
RNN (x) → eiΦN ′

RNN (x) , (3.17)

where l denotes the column vector of e, μ and τ fields, and Φ is an arbitrary
spacetime-independent phase. Because the mass term L′

Dirac, the kinetic term
Lkinetic and the charged-current interaction term Lcc are all invariant un-
der these transformations, the lepton number must be conserved for massive
Dirac neutrinos. It is evident that lepton flavors are violated, unless MDMM is di-
agonal or equivalently V is the identity matrix. In other words, lepton flavor
mixing leads to lepton flavor violation, or vice versa.

Table 3.3 Lepton number L and lepton flavor (family) number Lα of charged
leptons and neutrinos (for α = e, μ, τ) in the SM

e− νe e+ νe μ− νμ μ+ νμ τ− ντ τ+ ντ

L +1 +1 −1 −1 +1 +1 −1 −1 +1 +1 −1 −1
Le +1 +1 −1 −1 0 0 0 0 0 0 0 0
Lμ 0 0 0 0 +1 +1 −1 −1 0 0 0 0
Lτ 0 0 0 0 0 0 0 0 +1 +1 −1 −1

For example, the decay mode π− → μ− + νμ preserves both the lepton
number and lepton flavors. In contrast, μ+ → e+ + γ preserves the lepton
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number but violates the lepton flavors. The observed phenomena of neutrino
oscillations verify the existence of neutrino flavor violation. Note that the
0ν2β decay (A,Z) → (A,Z + 2) + 2e− violates the lepton number. This
process cannot take place if neutrinos are massive Dirac particles, but it may
naturally happen if neutrinos are massive Majorana particles.

3.2.2 Majorana Masses and Lepton Number Violation

The left-handed neutrino field νL and its charge-conjugate counterpart (νL)c

can in principle form a neutrino mass term, as (νL)c is actually right-handed.
But this Majorana mass term is forbidden by the SU(2)L × U(1)Y gauge
symmetry in the SM, which contains only one SU(2)L Higgs doublet and
preserves lepton number conservation. We shall show in Section 4.1.2 that
the introduction of an SU(2)L Higgs triplet into the SM can accommodate
such a neutrino mass term with gauge invariance. Here we ignore the details
of the Higgs triplet models and focus on the Majorana neutrino mass term
itself (Gribov and Pontecorvo, 1969):

−L′
Majorana =

1
2
νLMLMM (νL)c + h.c. . (3.18)

Note that the mass matrix MLMM must be symmetric. Because the mass term
is a Lorentz scalar whose transpose keeps unchanged, we have

νLMLMM (νL)c = [νLMLMM (νL)c]T = −νLCTMT
LMM νL

T = νLM
T
LMM (νL)c , (3.19)

where a minus sign appears when interchanging two fermion field opera-
tors, and CT = −C has been used. Hence MT

LMM = MLMM holds. This symmetric
mass matrix can be diagonalized by the transformation V †MLMM V ∗ = M̂νMM ≡
Diag{m1,m2,m3}, where V is a unitary matrix 3. After this diagonalization,
Eq. (3.18) becomes

−L′
Majorana =

1
2
ν′LM̂νMM (ν′L)c + h.c. , (3.20)

where ν′L = V †νL and (ν′L)c = Cν′L
T
. Then the field

ν′ = ν′L + (ν′L)c =

⎛⎝⎛⎛ν1ν2
ν3

⎞⎠⎞⎞ , (3.21)

which satisfies the Majorana condition (ν′)c = ν′ (Majorana, 1937), describes
the mass eigenstates of three Majorana neutrinos. In other words,

3A proof of this theorem is very easy (see, e.g., Bilenky and Petcov, 1987; Dreiner
et al., 2008; and references therein).
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−L′
Majorana =

1
2
ν′M̂νMM ν′ =

1
2

3∑
i=1

miνiνi . (3.22)

The kinetic term of Majorana neutrinos turns out to be

Lkinetic = iνLγμ∂
μνL = iν′Lγμ∂

μν′L =
i
2
ν′γμ∂

μν′ =
i
2

3∑
k=1

νkγμ∂
μνk , (3.23)

where we have used a generic relationship (ψL)cγμ∂
μ(ψL)c = ψLγμ∂

μψL. This

relationship can easily be proved by taking account of ∂μ
[
(ψL)cγμ(ψL)c

]
= 0;

i.e., we have

(ψL)cγμ∂
μ(ψL)c = −∂μ(ψL)cγμ(ψL)c = −

[
∂μ(ψL)cγμ(ψL)c

]T
=
(
CψL

T
)T

γT
μ ∂

μ
[
(ψL)T C

]T
= ψLγμ∂

μψL , (3.24)

where CT γT
μ CT = γμ, which can be read off from Eq. (3.8), has been used.

It is worth pointing out that the factor 1/2 in L′
Majorana allows us to

get the Dirac equation of massive Majorana neutrinos analogous to that of
massive Dirac neutrinos. To see this point more clearly, let us consider the
Lagrangian of free Majorana neutrinos (i.e., their kinetic and mass terms):

Lν = iνLγμ∂
μνL −

[
1
2
νLMLMM (νL)c + h.c.

]
= iν′Lγμ∂

μν′L −
[
1
2
ν′LM̂νMM (ν′L)c + h.c.

]
=

1
2

(
iν′γμ∂

μν′ − ν′M̂νMM ν′
)

= −1
2

(
i∂μν′γμν

′ + ν′M̂νMM ν′
)
, (3.25)

where ∂μ(ν′γμν
′) = 0 has been used. Then we substitute Lν into the Euler-

Lagrange equation

∂μ ∂Lν

∂
(
∂μν′
) − ∂Lν

∂ν′
= 0 (3.26)

and obtain the Dirac equation

iγμ∂
μν′ − M̂νMM ν′ = 0 . (3.27)

More explicitly, iγμ∂
μνk −mkνk = 0 holds (for k = 1, 2, 3). That is why the

factor 1/2 in L′
Majorana makes sense.

The weak charged-current interactions of three neutrinos in Eq. (3.9)
can now be rewritten in terms of their mass eigenstates ν′L = V †νL. In the
chosen basis where the flavor and mass eigenstates of three charged leptons
are identical, the expression of Lcc for Majorana neutrinos is the same as
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Fig. 3.6 The 0ν2β decay of some even-even nuclei via the exchange of virtual
Majorana neutrinos between two beta decays

that given in Eq. (3.16) for Dirac neutrinos. The unitary matrix V is just the
3×3 Majorana neutrino mixing matrix, which contains two more irremovable
CP-violating phases than the 3×3 Dirac neutrino mixing matrix (see Section
3.5 for detailed discussions).

The most salient feature of massive Majorana neutrinos is lepton number
violation. Let us make the global phase transformations

l(x) → eiΦl(x) , ν′L(x) → eiΦν′L(x) , (3.28)

where l stands for the column vector of e, μ and τ fields, and Φ is an arbitrary
spacetime-independent phase. One can immediately see that the kinetic term
Lkinetic and the charged-current interaction term Lcc are invariant under these
transformations, but the mass term L′

Majorana is not invariant because of both
ν′L → e−iΦν′L and (ν′L)c → e−iΦ(ν′L)c. The lepton number is therefore violated
for massive Majorana neutrinos. Similar to the case of Dirac neutrinos, the
lepton flavor violation of Majorana neutrinos is described by V .

The 0ν2β decay (A,Z) → (A,Z+2)+2e− is a clean signature of the Ma-
jorana nature of massive neutrinos. Fig. 3.6 shows that this lepton-number-
violating process can occur when there exists neutrino-antineutrino mixing
induced by the Majorana mass term (i.e., the neutrino mass eigenstates are
self-conjugate, νi = νi). The effective mass of the 0ν2β decay is defined as

〈m〉ee ≡
∣∣∣∣∣∣∣∣∣∣∣∣∣∑

i

miV
2
eiVV

∣∣∣∣∣∣∣∣∣∣∣∣∣ , (3.29)

where mi comes from the helicity suppression factor mi/E for the νi = νi

exchange between two ordinary beta decays with E being the energy of the
virtual νi or νi. Current experimental data only yield an upper bound 〈m〉ee <
0.23 eV (or < 0.85 eV as a more conservative bound) at the 2σ level (Fogli
et al., 2008a).

3.2.3 Hybrid Mass Terms and Seesaw Mechanisms

Similar to Eq. (3.18), NRNN and its charge-conjugate counterpart (NRNN )c can also
form a Majorana mass term. Hence it is possible to write out the following
hybrid neutrino mass terms in terms of νL, NRNN , (νL)c and (NRNN )c fields:
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−L′
hybrid = νLMDMM NRNN +

1
2
νLMLMM (νL)c +

1
2
(NRNN )cMRMM NRNN + h.c.

=
1
2
[
νL (NRNN )c

](MLMM MDMM
MT

DMM MRMM

)[
(νL)c

NRNN

]
+ h.c. , (3.30)

where MLMM and MRMM are symmetric mass matrices because the corresponding
mass terms are of the Majorana type, and the relationship

(NRNN )cMT
DMM (νL)c =

[
(NRNN )TCMT

DMM CνLT
]T

= νLMDMM NRNN (3.31)

has been used. The overall 6× 6 mass matrix in Eq. (3.30) is also symmetric
and can be diagonalized by a 6×6 unitary matrix through the transformation(

V R
S U

)†(
MLMM MDMM
MT

DMM MRMM

)(
V R
S U

)∗
=

(
M̂νMM 0
0 M̂NM

)
, (3.32)

where M̂νMM ≡ Diag{m1,m2,m3}, M̂NM ≡ Diag{M1,M2MM ,M3MM }, and the 3 × 3
sub-matrices V , R, S and U satisfy the unitarity conditions

V V † +RR† = SS† + UU † = 1 ,

V †V + S†S = R†R+ U†U = 1 ,

V S† +RU† = V †R+ S†U = 0 . (3.33)

After this diagonalization, Eq. (3.30) becomes

−L′
hybrid =

1
2
[
ν′L (N ′

RNN )c
](M̂νMM 0

0 M̂NM

)[
(ν′L)c

N ′
RNN

]
+ h.c. , (3.34)

where ν′L = V †νL + S†(NRNN )c and N ′
RNN = RT (νL)c + UTNRNN together with

(ν′L)c = Cν′L
T

and (N ′
RNN )c = CN ′

RNN
T
. Then the field

ν′ =
[
ν′L

(N ′
RNN )c

]
+
[
(ν′L)c

N ′
RNN

]
=

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
ν1
ν2
ν3
N1NN
N2NN
N3NN

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ (3.35)

satisfies the Majorana condition (ν′)c = ν′ and describes the mass eigenstates
of six Majorana neutrinos. In other words,

−L′
hybrid =

1
2
ν′
(
M̂νMM 0
0 M̂NM

)
ν′ =

1
2

3∑
i=1

(
miνiνi +MiMM NiNN NiNN

)
. (3.36)

Because of νL = V ν′L +R(N ′
RNN )c and NRNN = S∗(ν′L)c +U∗N ′

RNN , we immediately
have (νL)c = V ∗(ν′L)c + R∗N ′

RNN and (NRNN )c = Sν ′L + U(N ′
RNN )c. Given the re-

lations (ψL)cγμ∂
μ(ψL)c = ψLγμ∂

μψL and (ψR)cγμ∂
μ(ψR)c = ψRγμ∂

μψR for
an arbitrary fermion field ψ, the kinetic term of Majorana neutrinos reads
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Lkinetic = iνLγμ∂
μνL + iNRNN γμ∂

μNRNN

=
i
2
[
νL (NRNN )c

]
γμ∂

μ

[
νL

(NRNN )c

]
+

i
2
[
(νL)c NRNN

]
γμ∂

μ

[
(νL)c

NRNN

]
=

i
2
[
ν′L (N ′

RNN )c
]
γμ∂

μ

(
V R
S U

)†(
V R
S U

)[
ν′L

(N ′
RNN )c

]
+

i
2
[
(ν′L)c N ′

RNN
]
γμ∂

μ

(
V R
S U

)T (
V R
S U

)∗ [(ν′L)c

N ′
RNN

]
=

i
2
[
ν′L (N ′

RNN )c
]
γμ∂

μ

[
ν′L

(N ′
RNN )c

]
+

i
2
[
(ν′L)c N ′

RNN
]
γμ∂

μ

[
(ν′L)c

N ′
RNN

]
= iν′Lγμ∂

μν′L + iN ′
RNN γμ∂

μN ′
RNN

=
i
2
ν′γμ∂

μν′ =
i
2

3∑
k=1

(
νkγμ∂

μνk +NkN γμ∂
μNkN
)
, (3.37)

where the unitarity conditions given in Eq. (3.33) have been used.
The weak charged-current interactions of active neutrinos in Eq. (3.9) can

now be rewritten in terms of the mass eigenstates of six Majorana neutrinos
via νL = V ν′L + R(N ′

RNN )c. In the chosen basis where the flavor and mass
eigenstates of three charged leptons are identical, we have

Lcc =
g√
2
(e μ τ)L γ

μ

⎡⎣V
⎛⎝⎛⎛ν1ν2
ν3

⎞⎠⎞⎞
L

+R

⎛⎝⎛⎛N1NN
N2NN
N3NN

⎞⎠⎞⎞
L

⎤⎦W−
μW + h.c. . (3.38)

Note that V and R are responsible for the charged-current interactions of
three known neutrinos νi and three new neutrinos NiNN (for i = 1, 2, 3), re-
spectively. Their correlation is described by V V † + RR† = 1, and thus V
is not unitary unless νi and NiNN are completely decoupled (i.e., R = 0). A
parametrization of V and R in terms of some mixing angles and CP-violating
phases will be presented in section 4.5.2 (Xing, 2008b).

As a consequence of lepton number violation, the 0ν2β decay (A,Z) →
(A,Z + 2) + 2e− can now take place via the exchanges of both νi and NiNN
between two beta decays, whose coupling matrix elements are VeiVV and Rei

respectively. The relative contributions of νi and NiNN to this lepton-number-
violating process depend not only on mi, MiMM , VeiVV and Rei but also on the
relevant nuclear matrix elements which cannot be reliably evaluated (Haxton
and Stephenson, 1984). For a realistic seesaw mechanism working at the TeV
scale (i.e., MiMM ∼ O(1) TeV) or at a superhigh-energy scale, however, the
contribution of νi to the 0ν2β decay is in most cases dominant (Xing, 2009b).

The hybrid neutrino mass terms in Eq. (3.30) provide us with the neces-
sary ingredients of a dynamic mechanism to interpret why three known neu-
trinos have nonzero but tiny masses. The key point is that the mass scales
of MLMM , MDMM and MRMM may have a strong hierarchy. First, MDMM ∼ 〈H〉 ≈ 174
GeV is naturally characterized by the electroweak symmetry breaking scale.
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Second, MLMM � 〈H〉 satisfies ’t Hooft’s naturalness criterion (’t Hooft, 1980)
because this Majorana mass term violates lepton number conservation. Third,
MRMM � 〈H〉 is naturally expected since right-handed neutrinos are SU(2)L
gauge singlets and thus their mass term is not subject to the electroweak
symmetry breaking scale. The hierarchy MRMM �MDMM �MLMM can therefore al-
low us to make reliable approximations in deriving the effective mass matrix
of three active neutrinos (νe, νμ, ντ ) from Eq. (3.32). The latter yields

RM̂NM = MLMM R∗ +MDMM U∗ ,

SM̂νMM = MT
DMM V ∗ +MRMM S∗ ; (3.39)

and

UM̂NM = MRMM U∗ +MT
DMM R∗ ,

V M̂νMM = MLMM V ∗ +MDMM S∗ . (3.40)

Given MRMM � MDMM � MLMM , R ∼ S ∼ O(MDMM /MRMM ) naturally holds, implying
that U and V are almost unitary up to the accuracy of O(M2

DMM /M2
RMM ) (Xing

and Zhou, 2006). Hence Eq. (3.40) leads to

UM̂NM UT = MRMM (UU†)T +MT
DMM (R∗UT ) ≈MRMM ,

V M̂νMM V T = MLMM (V V †)T +MDMM (S∗V T ) ≈MLMM +MDMM (S∗V T ) . (3.41)

Note that S∗V T = M−1
RMM SM̂νMM V T − M−1

RMM MT
DMM (V V †)T ≈ −M−1

RMM MT
DMM can be

derived from Eq. (3.39). We substitute this expression into Eq. (3.41) and
then obtain

MνMM ≡ V M̂νMM V T ≈MLMM −MDMM M−1
RMM MT

DMM . (3.42)

This result, known as the type-(I+II) seesaw relation, is just the effective mass
matrix of three light neutrinos. The small mass scale of MνMM is attributed to
the small mass scale of MLMM and the large mass scale of MRMM . There are two
particularly interesting limits.

• If the mass term MLMM is absent from Eq. (3.30), one will be left with the
canonical or type-I seesaw relation MνMM ≈ −MDMM M−1

RMM MT
DMM (Fritzsch et al.,

1975; Minkowski, 1977; Yanagida, 1979; Gell-Mann et al., 1979; Glashow,
1980; Mohapatra and Senjanovic, 1980).

• If only the mass term MLMM is present in Eq. (3.30), one will be left with
the type-II seesaw relation MνMM = MLMM (Konetschny and Kummer, 1977;
Magg and Wetterich, 1980; Schechter and Valle, 1980; Cheng and Li, 1980;
Lazarides et al., 1981; Mohapatra and Senjanovic, 1981).

More detailed discussions about various seesaw mechanisms and their phe-
nomenological consequences will be presented in Chapter 4.
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3.3 C, P and T Properties of Fermion Fields

CP violation is one of a few central concepts in flavor physics. The phe-
nomenon of CP violation was first observed by James Cronin and Val Fitch
in the decay modeKL → π+π− (Christenson et al., 1964). Large CP-violating
effects were predicted to appear in a variety of B-meson decays based on the
Kobayashi-Maskawa mechanism of CP violation within the SM (Kobayashi
and Maskawa, 1973), and they were observed to a good degree of accuracy at
B-meson factories (Aubert et al., 2001; Abe et al., 2001). Nevertheless, the
magnitude of CP violation in the quark sector is insufficient to account for
the cosmological matter-antimatter asymmetry. Hence one wonders whether
there is CP violation in the lepton sector and whether it can account for
the observed baryon-antibaryon asymmetry of the Universe. We shall see in
Chapter 11 that it is possible to realize baryogenesis via leptogenesis thanks
to CP violation in the neutrino sector,

In this section we shall first discuss the C, P, T, CP and CPT properties
of quark and lepton fields, and then diagnose both the origin of CP violation
in the quark sector of the SM and that in the lepton sector for a minimal
extension of the SM to accommodate finite neutrino masses. It will be demon-
strated that CP violation arises from the coexistence of the charged-current
interactions of fermions with the W± bosons and the Yukawa interactions of
fermions with the Higgs boson.

3.3.1 C, P and T Transformations of Spinor Bilinears

We begin with a brief summary of the transformation properties of quantum
fields under the discrete space-time symmetries of parity (P), charge con-
jugation (C) and time reversal (T). The parity transformation changes the
space coordinates x into −x. The charge conjugation flips the signs of inter-
nal charges of a particle, such as the electric charge and the lepton (baryon)
number. The time reversal reflects the time coordinate t into −t. The trans-
formation properties of scalar (S), pseudoscalar (P ), vector (VμVV ) and pseu-
dovector (Aμ) fields under C, P and T, which are summarized in Table 3.4,
have been discussed in detail in some literature (Jarlskog, 1989; Peskin and
Schroeder, 1995; Branco et al., 1999; Bigi and Sanda, 2000). Note that VμVV

annihilates a vector particle and creates its antiparticle, while V †
μVV does the op-

posite operation. So do S, P , Aμ and S†, P †, A†
μ. Hence the roles of particles

and antiparticles are interchanged under C.
A free Dirac spinor ψ(t,x) or ψ(t,x) transforms under C, P and T as 4

ψ(t,x) C−→ CC
ψ

T
(t,x) , ψ(t,x) C−→ −ψT (t,x)C−1 ,

4For simplicity, here we have omitted a phase factor associated with each trans-
formation. Because one is always interested in the spinor bilinears, the relevant
phase factor usually plays no physical role.
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Table 3.4 Transformation properties of scalar (S), pseudoscalar (P ), vector (VμVV )
and pseudovector (Aμ) fields under C, P and T

S(t,x) P (t,x) VμVV (t,x) Aμ(t,x)

C S†(t,x) P †(t,x) −V †
μVV (t,x) A†

μ(t,x)
P S(t,−x) −P (t,−x) V μ(t,−x) −Aμ(t,−x)
T S(−t,x) P (−t,x) V μ(−t,x) Aμ(−t,x)
CP S†(t,−x) −P †(t,−x) −V μ†(t,−x) −Aμ†(t,−x)
CPT S†(−t,−x) −P †(−t,−x) −V †

μVV (−t,−x) −A†
μ(−t,−x)

ψ(t,x) P−→ PP
ψ(t,−x) , ψ(t,x) P−→ ψ(t,−x)P† ,

ψ(t,x) T−→ TT
ψ(−t,x) , ψ(t,x) T−→ ψ(−t,x)T † , (3.43)

where C = iγ2γ0, P = γ0 and T = γ1γ3 in the Dirac-Pauli representation.
These transformation properties can simply be deduced from the require-
ment that the Dirac equation iγμ∂

μψ(t,x) = mψ(t,x) be invariant under
C, P or T operation. Note that all the classical numbers (or c-numbers),
such as the coupling constants and γ-matrix elements, must be complex-
conjugated under T. Note also that the charge-conjugation matrix C satisfies
the conditions given in Eq. (3.8). It is very important to figure out how the
Dirac spinor bilinears transform under C, P and T, because both leptons and
quarks are described by spinor fields and they always appear in the bilinear
forms in a Lorentz-invariant Lagrangian. Let us consider the following scalar-,
pseudoscalar-, vector-, pseudovector- and tensor-like spinor bilinears:

ψ1ψ2 , iψ1γ5ψ2 , ψ1γμψ2 , ψ1γμγ5ψ2 , ψ1σμνψ2 , (3.44)

where σμν ≡ i[γμ, γν ]/2 is defined. One may easily verify that all these bilin-
ears are Hermitian, if ψ1 = ψ2 is taken. Under C, P and T, for example,

ψ1γμψ2
C−→ −ψT

1 C−1γμCψ2

T
= ψT

1 γ
T
μ ψ2

T
= −
[
ψ2γμψ1

]T
= −ψ2γμψ1 ,

ψ1γμψ2
P−→ ψ1γ0γμγ0ψ2 = ψ1γ

μψ2 ,

ψ1γμψ2
T−→ ψ1 (γ1γ3)

†
γ∗μ (γ1γ3)ψ2 = ψ1γ

μψ2 ; (3.45)

and thus
ψ1γμψ2

CP−→ −ψ2γ
μψ1 , ψ1γμψ2

CPT−→ −ψ2γμψ1 , (3.46)

with x → −x under P and t→ −t under T for ψ1 and ψ2. The transformation
properties of five spinor bilinears under C, P, T, CP and CPT are summa-
rized in Table 3.5, where one should keep in mind that all the c-numbers are
complex-conjugated under T and CPT. Comparing between Table 3.4 and
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Table 3.5, we arrive at S(t,x) = ψ1(t,x)ψ2(t,x), P (t,x) = ψ1(t,x)γ5ψ2(t,x),
VμVV (t,x) = ψ1(t,x)γμψ2(t,x) and Aμ(t,x) = ψ1(t,x)γμγ5ψ2(t,x), corre-
sponding to scalar, pseudoscalar, vector and pseudovector fields. Note that
ψ(t,x)γ5ψ(t,x) itself is not Hermitian, but iψ(t,x)γ5ψ(t,x) is Hermitian just
because it contains i.

Table 3.5 Transformation properties of the scalar-, pseudoscalar-, vector-,
pseudovector- and tensor-like spinor bilinears under C, P and T. Here x → −x
under P, CP and CPT, together with t → −t under T and CPT, is hidden and
self-explaining for ψ1 and ψ2

ψ1ψ2 iψ1γ5ψ2 ψ1γμψ2 ψ1γμγ5ψ2 ψ1σμνψ2

C ψ2ψ1 iψ2γ5ψ1 −ψ2γμψ1 ψ2γμγ5ψ1 −ψ2σμνψ1

P ψ1ψ2 −iψ1γ5ψ2 ψ1γ
μψ2 −ψ1γ

μγ5ψ2 ψ1σ
μνψ2

T ψ1ψ2 −iψ1γ5ψ2 ψ1γ
μψ2 ψ1γ

μγ5ψ2 −ψ1σ
μνψ2

CP ψ2ψ1 −iψ2γ5ψ1 −ψ2γ
μψ1 −ψ2γ

μγ5ψ1 −ψ2σ
μνψ1

CPT ψ2ψ1 iψ2γ5ψ1 −ψ2γμψ1 −ψ2γμγ5ψ1 ψ2σμνψ1

It is well known that CPT is a good symmetry in a local quantum
field theory which is Lorentz-invariant and possesses a Hermitian Lagrangian
(Schwinger, 1951; Lüders, 1954; Pauli, 1955). The latter is necessary in order
to have a unitary transition operator (i.e., the S-matrix). The CPT invari-
ance of a theory implies that CP and T must be simultaneously conserving
or broken, as already examined in the quark sector of the SM via the K0-K̄0

mixing system (Nakamura et al., 2010). After a slight modification of the
SM by introducing the Dirac or Majorana mass term for three neutrinos, one
may also look at possible sources of CP or T violation in the lepton sector.

3.3.2 CP Violation in Quark and Lepton Sectors

As discussed in Chapter 2, the SM of electroweak interactions is based on
the SU(2)L × U(1)Y gauge symmetry and the Higgs mechanism. The latter
triggers the spontaneous symmetry breaking SU(2)L×U(1)Y → U(1)Q, such
that three gauge bosons, three charged leptons and six quarks can all acquire
masses. But this mechanism itself does not spontaneously break CP, and thus
one may examine the source of CP violation in the SM either before or after
spontaneous symmetry breaking.

The Lagrangian of the SM L = LG + LH + LF + LY is composed of four
parts: the kinetic term of the gauge fields and their self-interactions (LG), the
kinetic term of the Higgs doublet and its potential and interactions with the
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gauge fields (LH), the kinetic term of the fermion fields and their interactions
with the gauge fields (LF), and the Yukawa interactions of the fermion fields
with the Higgs doublet (LY):

LG = −1
4
(
W iμνW i

μνW +BμνBμν

)
,

LH = (DμH)†
(
DμH
)
− μ2H†H − λ

(
H†H
)2
,

LF = QLi /DQ// L + �Li /D�// L + URUU i/∂//′URUU +DRi/∂//′DR +ERi/∂//′ER ,

LY = −QLYuYY H̃URUU −QLYdYY HDR − �LYlYY HER + h.c. , (3.47)

whose notations have been explained in Section 2.1.4. To accommodate finite
neutrino masses, the simplest way is to slightly modify the LF and LY parts
of the SM (e.g., by introducing three right-handed neutrinos into the SM
and allowing for the Yukawa interactions between neutrinos and the Higgs
doublet). CP violation is due to the coexistence of LF and LY.

We first show that LG is always invariant under CP. The transformation
properties of gauge fields Bμ and W i

μW under C and P are[
Bμ, W

1
μW , W 2

μW , W 3
μW
] C−→

[
−Bμ, −W 1

μW , +W 2
μW , −W 3

μW
]
,[

Bμ, W
1
μW , W 2

μW , W 3
μW
] P−→

[
Bμ, W 1μ, W 2μ, W 3μ

]
,[

Bμ, W
1
μW , W 2

μW , W 3
μW
] CP−→

[
−Bμ, −W 1μ, +W 2μ, −W 3μ

]
(3.48)

with x → −x under P and CP for relevant fields. Then the gauge field tensors
Bμν and W i

μνW transform under CP as follows:[
Bμν , W

1
μνW , W 2

μνW , W 3
μνW
] CP−→

[
−Bμν , −W 1μν , +W 2μν , −W 3μν

]
. (3.49)

Hence LG is formally invariant under CP.
We proceed to show that LH is also invariant under CP. The Higgs doublet

H contains two scalar components φ+ and φ0; i.e.,

H =
(
φ+

φ0

)
, H† =

(
φ− φ0∗) . (3.50)

One can directly read off the transformation properties of φ± and φ0 under
CP from Table 3.4. Therefore,

H(t,x) CP−→ H∗(t,−x) =
(
φ−

φ0∗
)
. (3.51)

It is very trivial to prove that the H†H and (H†H)2 terms of LH are CP-
invariant. To examine how the (DμH)†(DμH) term of LH transforms under
CP, we explicitly write out
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DμH =
(
∂μ − igτkW k

μW − ig′Y Bμ

)
H =
(
∂μφ

+ − iX+
μ φ

0 − iY +
μYY φ+

∂μ∂ φ0 − iX−
μ φ

+ + iY −
μYY φ0

)
(3.52)

with X±
μ ≡ gW±

μW /
√

2 = g(W 1
μW ∓ iW 2

μW )/2 and Y ±
μYY ≡ ±g′Y Bμ + gW 3

μW /2. Then

(DμH)†
(
DμH
)

= ∂μφ−∂μφ
+ − i∂μφ−X+

μ φ
0 − i∂μφ−Y +

μYY φ+

+iX−μφ0∗∂μφ
+ +X−μX+

μ |φ0|2 +X−μφ0∗Y +
μYY φ+

+iY +μφ−∂μφ
+ + Y +μX+

μ φ
−φ0 + Y +μY +

μYY |φ+|2

+∂μφ0∗∂μφ
0 − i∂μφ0∗X−

μ φ
+ + i∂μφ0∗Y −

μYY φ0

+iX+μφ−∂μ∂ φ0 +X+μX−
μ |φ+|2 −X+μφ−Y −

μYY φ0

−iY −μφ0∗∂μφ
0 − Y −μX−

μ φ
0∗φ+ + Y −μY −

μYY |φ0|2 . (3.53)

Note that
X±

μ
CP−→ −X∓μ , Y ±

μYY
CP−→ −Y ±μ , (3.54)

together with ∂μ → ∂μ, φ± → φ∓ and φ0 → φ0∗ under CP. So (DμH)†(DμH)
is also CP-invariant. Therefore, LH is formally invariant under CP.

The next step is to examine the CP invariance of LF. To be more specific,
we divide LF into the quark sector and the lepton sector; i.e., LF = Lq +Ll.
We only analyze the CP property of Lq in the following, because that of Ll

can be analyzed in the same way. The explicit form of Lq reads

Lq = QLi /DQ// L + URUU i/∂//′URUU +DRi/∂//′DR

=
3∑

j=1

[(
qjq q′jq
)
L
iγμ

(
∂μ − igτkW k

μW − i
g′

6
Bμ

)(
qjq
q′jq

)
L

+qjq Riγμ

(
∂μ − i

2g′

3
Bμ

)
qjq R + q′jq Riγμ

(
∂μ + i

g′

3
Bμ

)
q′jq R

]
=

3∑
j=1

{g
4

[
q′jq γ

μ (1 − γ5)W
1
μW qjq + qjq γ

μ (1 − γ5)W
1
μW q′jq
]

+
g

4

[
iq′jq γ

μ (1 − γ5)W
2
μW qjq − iqjq γ

μ (1 − γ5)W
2
μW q′jq
]

+
g

4

[
qjq γ

μ (1 − γ5)W
3
μW qjq − q′jq γ

μ (1 − γ5)W
3
μW q′jq
]

+
i
2

[
qjq γ

μ (1 − γ5)
(
∂μ − i

g′

6
Bμ

)
qjq

]
+

i
2

[
q′jq γ

μ (1 − γ5)
(
∂μ − i

g′

6
Bμ

)
q′jq
]

+
i
2

[
qjq γ

μ (1 + γ5)
(
∂μ − i

2g′

3
Bμ

)
qjq

]
+

i
2

[
q′jq γ

μ (1 + γ5)
(
∂μ + i

g′

3
Bμ

)
q′jq
]}

, (3.55)
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where qjq and q′jq (for j = 1, 2, 3) run over (u, c, t) and (d, s, b), respectively.
The transformation properties of gauge fields Bμ and W i

μW under C and P
have been given in Eq. (3.48). With the help of Table 3.5, one can see that
the relevant spinor bilinears transform under C and P as follows:

ψ1γμ (1 ± γ5)ψ2
C−→ −ψ2γμ (1 ∓ γ5)ψ1 ,

ψ1γμ (1 ± γ5)ψ2
P−→ +ψ1γ

μ (1 ∓ γ5)ψ2 ,

ψ1γμ (1 ± γ5)ψ2
CP−→ −ψ2γ

μ (1 ± γ5)ψ1 , (3.56)

with x → −x under P and CP for ψ1 and ψ2. Furthermore,

ψ1γμ (1 ± γ5) ∂
μψ2

C−→ ψ2γμ (1 ∓ γ5) ∂
μψ1 ,

ψ1γμ (1 ± γ5) ∂
μψ2

P−→ ψ1γ
μ (1 ∓ γ5) ∂μψ2 ,

ψ1γμ (1 ± γ5) ∂
μψ2

CP−→ ψ2γ
μ (1 ± γ5) ∂μψ1 , (3.57)

with x → −x under P and CP for ψ1 and ψ2. Then it is straightforward
to check that Lq in Eq. (3.55) is formally invariant under CP. Following the
same procedure and using Eqs. (3.48), (3.56) and (3.57), one can easily show
that Ll = �Li /D�// L +ERi/∂//′ER is also CP-invariant. Thus we conclude that LF

is invariant under CP.
The last step is to examine whether LY is CP-conserving or not. Explicitly,

−LY = QLYuYY H̃URUU +QLYdYY HDR + �LYlYY HER + h.c.

=
3∑

j,k=1

[
(YuYY )jk

(
qjq q′jq
)
L

(
φ0∗

−φ−
)
qkR + (YdYY )jk

(
qjq q′jq
)
L

(
φ+

φ0

)
q′kR

+(YlYY )jk

(
νjν lj
)
L

(
φ+

φ0

)
lkR + h.c.

]
=

3∑
j,k=1

{ (YuYY )jk

2

[
qjq (1 + γ5) qkφ

0∗ − q′jq (1 + γ5) qkφ
−
]

+
(YuYY )∗jk

2
[
qk (1 − γ5) qjq φ

0 − qk (1 − γ5) q
′
jq φ

+
]

+
(YdYY )jk

2

[
qjq (1 + γ5) q

′
kφ

+ + q′jq (1 + γ5) q
′
kφ

0
]

+
(YdYY )∗jk

2

[
q′k (1 − γ5) qjq φ

− + q′k (1 − γ5) q
′
jq φ

0∗
]

+
(YlYY )jk

2
[
νjν (1 + γ5) lkφ

+ + lj (1 + γ5) lkφ
0
]

+
(YlYY )∗jk

2

[
lk (1 − γ5) νjν φ

− + lk (1 − γ5) ljφ
0∗
]}

, (3.58)
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where qjq and q′jq (for j = 1, 2, 3) run over (u, c, t) and (d, s, b), respectively;
while νjν and lj (for j = 1, 2, 3) run over (νe, νμ, ντ ) and (e, μ, τ), respectively.
Because of φ± → φ∓, φ0 → φ0∗ and ψ1(1± γ5)ψ2 → ψ2(1∓ γ5)ψ1 under CP
as shown in Tables 3.4 and 3.5, we immediately arrive at

−LY
CP−→

3∑
j,k=1

{ (YuYY )jk

2
[
qk (1 − γ5) qjq φ

0 − qk (1 − γ5) q
′
jq φ

+
]

+
(YuYY )∗jk

2

[
qjq (1 + γ5) qkφ

0∗ − q′jq (1 + γ5) qkφ
−
]

+
(YdYY )jk

2

[
q′k (1 − γ5) qjq φ

− + q′k (1 − γ5) q
′
jq φ

0∗
]

+
(YdYY )∗jk

2

[
qjq (1 + γ5) q

′
kφ

+ + q′jq (1 + γ5) q
′
kφ

0
]

+
(YlYY )jk

2

[
lk (1 − γ5) νjν φ

− + lk (1 − γ5) ljφ
0∗
]

+
(YlYY )∗jk

2
[
νjν (1 + γ5) lkφ

+ + lj (1 + γ5) lkφ
0
]}

, (3.59)

with x → −x for both scalar and spinor fields under consideration. Compar-
ing between Eqs. (3.58) and (3.59), we see that LY will be formally invariant
under CP if the conditions

(YuYY )jk = (YuYY )∗jk , (YdYY )jk = (YdYY )∗jk , (YlYY )jk = (YlYY )∗jk (3.60)

are satisfied. In other words, the Yukawa coupling matrices YuYY , YdYY and YlYY
must be real to guarantee the CP invariance of LY. Given three massless
neutrinos in the SM, it is always possible to make YlYY real by redefining the
phases of charged-lepton fields. But it is in general impossible to make both
YuYY and YdYY real for three families of quarks (Kobayashi and Maskawa, 1973),
and thus CP violation can only appear in the quark sector.

Given massive neutrinos beyond the SM, LY must be modified. The sim-
plest way is to introduce three right-handed neutrinos and incorporate the
Dirac neutrino mass term in Eq. (3.10) into LY. In this case one should also
add the kinetic term of three right-handed neutrinos into LF. It is straight-
forward to show that the conditions of CP invariance in the lepton sector
turn out to be

YνYY = Y ∗
νYY , YlYY = Y ∗

lYY , (3.61)

exactly in parallel with the quark sector. If an effective Majorana mass term
is introduced into LY, as shown in Eq. (3.18), then the conditions of CP
invariance in the lepton sector become

MLMM = M∗
LMM , YlYY = Y ∗

lYY , (3.62)

where MLMM is the effective Majorana neutrino mass matrix. One may diag-
onalize both YνYY (or MLMM ) and YlYY to make them real and positive, but such
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a treatment will transfer CP violation from the Yukawa interactions to the
weak charged-current interactions. Then lepton flavor mixing and CP viola-
tion are described by the 3×3 unitary matrix V given in Eq. (3.16), analogous
to the 3 × 3 unitary matrix of quark flavor mixing and CP violation given
in Eq. (2.50). In other words, the source of CP violation is the irremovable
complex phase(s) in the flavor mixing matrix of quarks or leptons. That is
why we claim that CP violation stems from the coexistence of LF and LY

within the SM and, in most cases, beyond the SM.
It is worth reiterating that the process of spontaneous gauge symmetry

breaking in the SM does not spontaneously violate CP. After the Higgs dou-
blet H acquires its vacuum expectation value (i.e., φ+ → 0 and φ0 → v/

√
2

with v being real), as described in Section 2.1.4, we obtain three massive
gauge bosons W±

μW and ZμZ as well as one massless gauge boson Aμ. According
to their relations with W i

μW and Bμ shown in Eqs. (2.42) and (2.43), it is easy
to find out the transformation properties of these physical fields under CP:

W±
μW

CP−→ −W∓μ , ZμZ
CP−→ −Zμ , Aμ

CP−→ −Aμ , (3.63)

with x → −x under P and CP for each field. In contrast, the neutral
Higgs boson h is a CP-even particle. After spontaneous electroweak sym-
metry breaking, we are left with the quark mass matrices MuMM = vYuYY /

√
2 and

MdM = vYdYY /
√

2 or the lepton mass matricesMDMM = vYνYY /
√

2 andMlM = vYlYY /
√

2 .
The conditions of CP invariance given in Eq. (3.60), (3.61) or (3.62) can
therefore be replaced with the corresponding mass matrices.

3.4 Electromagnetic Properties of Massive Neutrinos

The effective electromagnetic vertex of a fermion interacting with the photon
is illustrated in Fig. 3.7. Although a neutrino does not possess any electric
charge, it can have electromagnetic interactions via quantum loops. One may
summarize such interactions by means of the following effective interaction
term (Mohapatra and Pal, 2004):

LEM = ψΓμΓ ψAμ ≡ JμJ (x)Aμ(x) , (3.64)

where the form of the electromagnetic current JμJ (x) is our present concern.
Dirac and Majorana neutrinos couple to the photon in different ways, which
are described by their respective electromagnetic form factors.

3.4.1 Electromagnetic Form Factors

For an arbitrary Dirac particle (e.g., a Dirac neutrino), let us write down the
matrix element of JμJ (x) between two one-particle states:

〈ψ(p′)|JμJ (x)|ψ(p)〉 = e−iqx〈ψ(p′)|JμJ (0)|ψ(p)〉
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Fig. 3.7 The effective electromagnetic vertex of a fermion, where Aμ is the photon
field with q = p − p′

= e−iqxu(p′)ΓμΓ (p, p′)u(p) (3.65)

with q = p−p′. Because JμJ (x) is a Lorentz vector, the electromagnetic vertex
function ΓμΓ (p, p′) must be a Lorentz vector too. The electromagnetic current
conservation (or U(1)Q gauge symmetry) requires ∂μJμJ (x) = 0, leading to

〈ψ(p′)|∂μJμJ (x)|ψ(p)〉 = (−iqμ) e−iqxu(p′)ΓμΓ (p, p′)u(p) = 0 . (3.66)

Thus
qμu(p′)ΓμΓ (p, p′)u(p) = 0 (3.67)

holds as one of the model-independent constraints on the form of ΓμΓ (p, p′).
In addition, the Hermiticity of JμJ (x) or its matrix element implies

e−iqxu(p′)ΓμΓ (p, p′)u(p) = e+iqx
[
u(p′)ΓμΓ (p, p′)u(p)

]†
= e+iqxu(p)

[
γ0Γ

†
μΓ (p, p′)γ0

]
u(p′)

= e−iqxu(p′)
[
γ0Γ

†
μΓ (p′, p)γ0

]
u(p) , (3.68)

from which we immediately arrive at the second constraint on ΓμΓ (p, p′):

ΓμΓ (p, p′) = γ0Γ
†
μΓ (p′, p)γ0 . (3.69)

Because of p2 = p′2 = m2 with m being the fermion mass, we have (p+p′)2 =
4m2 − q2. Hence ΓμΓ (p, p′) depends only on the Lorentz-invariant quantity q2.

A careful analysis of the Lorentz structure of u(p′)ΓμΓ (p, p′)u(p), with the
help of the Gordon-like identities and the constraints given in Eqs. (3.67) and
(3.69), shows that ΓμΓ (p, p′) may in general consist of four independent terms
(Kayser, 1982; 1984; Nieves, 1982; Mohapatra and Pal, 2004; Nowakowski et
al., 2005; Giunti and Studenikin, 2009):

ΓμΓ (p, p′) = fQff (q2)γμ + fMff (q2)iσμνq
ν + fEff (q2)σμνq

νγ5

+fAf (q2)
(
q2γμ − qμ/q//

)
γ5 , (3.70)

where fQff (q2), fMff (q2), fEff (q2) and fAf (q2) are usually referred to as the charge,
magnetic dipole, electric dipole and anapole form factors, respectively. In the
non-relativistic limit of LEM, it is easy to find that fQff (0) = Q represents
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the electric charge of the particle, fMff (0) ≡ μ denotes the magnetic dipole
moment of the particle (i.e., LEM(fMff ) = −μσ · B with B being the static
magnetic field), fEff (0) ≡ ε stands for the electric dipole moment of the particle
(i.e., LEM(fEff ) = −εσ · E with E being the static electric field), and fAf (0)
corresponds to the Zeldovich anapole moment of the particle (i.e., LEM(fAf ) ∝
fAf (0)σ · [∇× B − Ė]) (see, e.g., Nowakowski et al., 2005). One can observe
that these form factors are not only Lorentz-invariant but also real (i.e.,
ImfQff = ImfMff = ImfEff = ImfAf = 0). The latter is actually guaranteed by
the Hermiticity condition in Eq. (3.69).

Given the form of ΓμΓ in Eq. (3.70), it is straightforward to check the CP
properties of LEM in Eq. (3.64). Note that the photon field transforms as
Aμ → −Aμ under CP, and 5

ψγμψ
CP−→ −ψγμψ , ψγμγ5ψ

CP−→ −ψγμγ5ψ ,

ψσμνψ
CP−→ −ψσμνψ , ψσμνγ5ψ

CP−→ +ψσμνγ5ψ . (3.71)

Therefore, only the term proportional to fEff in LEM is CP-violating. If CP
were conserved, then this term would vanish (i.e., fEff = 0 would hold). Al-
though there is no experimental hint at CP violation in the lepton sector, we
expect that it should exist as in the quark sector. In any case, all four form
factors are finite for a Dirac neutrino.

If neutrinos are massive Majorana particles, their electromagnetic proper-
ties will be rather different. The reason is simply that Majorana particles are
their own antiparticles and thus can be described by using a smaller number
of degrees of freedom. A free Majorana neutrino field ψ is by definition equal
to its charge-conjugate field ψc = CψT

up to a global phase. Then

ψΓμΓ ψ = ψcΓμΓ ψc = ψT CΓμΓ CψT
=
(
ψT CΓμΓ CψT

)T
= −ψCTΓT

μΓ CTψ , (3.72)

from which one arrives at

ΓμΓ = −CTΓT
μΓ CT = CΓT

μΓ C−1 . (3.73)

Substituting Eq. (3.70) into the right-hand side of Eq. (3.73) and taking
account of CγT

μ C−1 = −γμ, C(γμγ5)
T C−1 = +γμγ5, CσT

μνC−1 = −σμν and
C(σμνγ5)

TC−1 = −σμνγ5, we obtain

ΓμΓ (p, p′) = −fQff (q2)γμ − fMff (q2)iσμνq
ν − fEff (q2)σμνq

νγ5

+fAf (q2)
(
q2γμ − qμ/q//

)
γ5 . (3.74)

A comparison between Eqs. (3.70) and (3.74) leads to

5Taking account of C−1σμνC = −σT
μν and C−1γ5C = γT

5 , one may easily prove
that ψσμνγ5ψ is odd under both C and P. Thus ψσμνγ5ψ is CP-even.
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fQff (q2) = fMff (q2) = fEff (q2) = 0 . (3.75)

This result means that a Majorana neutrino only has the anapole form factor
fAf (q2) (Schechter and Valle, 1981; Nieves, 1982).

More generally, one may write out the matrix elements of the electro-
magnetic current JμJ (x) between two different states (i.e., the incoming and
outgoing particles are different):

〈ψj(p
′)|JμJ (x)|ψi(p)〉 = e−iqxuj(p

′)Γ ij
μΓ (p, p′)ui(p) , (3.76)

where q = p − p′ together with p2 = m2
i and p′2 = m2

j (for i = j). Here the
electromagnetic vertex matrix ΓμΓ (p, p′) can be decomposed into the following
Lorentz-invariant form in terms of four form factors:

ΓμΓ (p, p′) = FQFF (q2)
(
q2γμ − qμ/q//

)
+ FMFF (q2)iσμνq

ν

+FEFF (q2)σμνq
νγ5 + FAF (q2)

(
q2γμ − qμ/q//

)
γ5 , (3.77)

where FQFF , FMFF , FEFF and FAF are all the 2× 2 matrices in the space of neutrino
mass eigenstates (Shrock, 1982). The diagonal case (i.e., i = j) has been
discussed above, from Eq. (3.65) to Eq. (3.75). In the off-diagonal case (i.e.,
i = j), the Hermiticity of JμJ (x) is no more a constraint on ΓμΓ (p, p′) for
Dirac neutrinos because Eq. (3.68) only holds for i = j. It is now possible for
Majorana neutrinos to have finite transition dipole moments, simply because
Eqs. (3.72)—(3.75) do not hold when ψi and ψj represent different flavors.

We conclude that Dirac neutrinos may have both electric and magnetic
dipole moments, while Majorana neutrinos have neither electric nor magnetic
dipole moments. But massive Majorana neutrinos can have transition dipole
moments which involve two different neutrino flavors in the initial and final
states, so can massive Dirac neutrinos.

3.4.2 Magnetic and Electric Dipole Moments

The magnetic and electric dipole moments of massive neutrinos, denoted as
μ ≡ FMFF (0) and ε ≡ FEFF (0), are interesting in both theories and experiments
because they are closely related to the dynamics of neutrino mass generation
and to the characteristic of new physics.

Let us consider a minimal extension of the SM in which three right-
handed neutrinos are introduced and lepton number conservation is required,
just as described in Section 3.2.1. In this case massive neutrinos are Dirac
particles and their magnetic and electric dipole moments can be evaluated
by calculating the Feynman diagrams in Fig. 3.8 (Marciano and Sanda, 1977;
Lee and Shrock, 1977; Fujikawa and Shrock, 1980; Shrock, 1982; Pal and
Wolfenstein, 1982). Taking account of the smallness of both m2

α/M
2
WMM and

m2
i /M

2
WMM , wheremα (for α = e, μ, τ) and mi (for i = 1, 2, 3) stand respectively

for the charged-lepton and neutrino masses, one obtains (Cabral-Rosetti et
al., 2000; Dvornikov and Studenikin, 2004; Giunti and Studenikin, 2009)
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Fig. 3.8 One-loop Feynman diagrams contributing to the magnetic and electric
dipole moments of massive Dirac neutrinos, where α = e, μ, τ and i, j = 1, 2, 3

μD
ij =

3eGFmi

32
√

2π2

(
1 +

mj

mi

)∑
α

(
2 − m2

α

M2
WMM

)
VαiVV V ∗

αjVV ,

εDij =
3eGFmi

32
√

2π2

(
1 −

mj

mi

)∑
α

(
2 − m2

α

M2
WMM

)
VαiVV V ∗

αjVV , (3.78)

to an excellent degree of accuracy. Here VαiVV and VαjVV are the elements of the
unitary lepton flavor mixing matrix V . Some discussions are in order.

(1) In the diagonal case (i.e., i = j), we are left with vanishing electric
dipole moments (i.e., εDii = 0). The magnetic dipole moments μD

ii are finite
and proportional to the neutrino masses mi (for i = 1, 2, 3):

μD
ii =

3eGFmi

8
√

2π2

(
1 − 1

2

∑
α

m2
α

M2
WMM

|VαiVV |2
)
. (3.79)

Hence a massless Dirac neutrino in the SM has no magnetic dipole moment.
In the leading-order approximation, μD

ii are independent of the strength of
lepton flavor mixing and have tiny values

μD
ii ≈

3eGFmi

8
√

2π2
≈ 3 × 10−19

( mi

1 eV

)
μB , (3.80)

where μB = e�/(2me) is the Bohr magneton. Givenmi � 1 eV, the magnitude
of μD

ii is far below its present experimental upper bound (< a few×10−11μB).
(2) In the off-diagonal case (i.e., i = j), the unitarity of V allows us to

simplify Eq. (3.78) to

μD
ij = −3eGFmi

32
√

2π2

(
1 +

mj

mi

)∑
α

m2
α

M2
WMM
VαiVV V ∗

αjVV ,

εDij = −3eGFmi

32
√

2π2

(
1 −

mj

mi

)∑
α

m2
α

M2
WMM
VαiVV V ∗

αjVV . (3.81)

We see that the magnitudes of μD
ij and εDij (for i = j), compared with that of

μD
ii , are further suppressed due to the smallness of m2

α/M
2
WMM . Similar to the

expression given in Eq. (3.80),
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μD
ij ≈ −4 × 10−23

(
mi +mj

1 eV

)(∑
α

m2
α

m2
τ

VαiVV V ∗
αjVV

)
μB ,

εDij ≈ −4 × 10−23

(
mi −mj

1 eV

)(∑
α

m2
α

m2
τ

VαiVV V ∗
αjVV

)
μB , (3.82)

which can illustrate how small μD
ij and εDij are (see, e.g., Raffelt, 1996, 1999;

Giunti and Studenikin, 2009).
(3) Although Majorana neutrinos do not have intrinsic (i = j) magnetic

and electric dipole moments, they may have finite transition (i = j) dipole
moments as we have pointed out in Section 3.4.1. Because of the fact that
Majorana neutrinos are their own antiparticles, their magnetic and electric
dipole moments can also get contributions from two additional one-loop Feyn-
man diagrams involving the charge-conjugate fields of νi, νjν , lα, W± and γ
shown in Fig. 3.8 6. In this case one obtains (Shrock, 1982)

μM
ij = − 3eGFi

16
√

2π2

(
mi +mj

)∑
α

m2
α

M2
WMM

Im
(
VαiVV V ∗

αjVV
)
,

εMij = − 3eGF

16
√

2π2

(
mi −mj

)∑
α

m2
α

M2
WMM

Re
(
VαiVV V ∗

αjVV
)
, (3.83)

where mi = mj must hold. Comparing between Eqs. (3.81) and (3.83), we
observe that the magnitudes of μM

ij and εMij are the same order as those of μD
ij

and εDij in most cases, although the CP-violating phases hidden in VαiVV V ∗
αjVV are

possible to give rise to significant cancellations in some cases.
(4) The fact that μij and εij are proportional to mi or mj can be un-

derstood in the following way. Note that both tensor- and pseudotensor-like
spinor bilinears are chirality-changing operators, which link the left-handed
state to the right-handed one (Mohapatra and Pal, 2004) 7:

ψσμνψ = ψLσμνψR + h.c. , ψσμνγ5ψ = ψLσμνγ5ψR − h.c. . (3.84)

Note also that the same relations hold when ψ is replaced by its charge-
conjugate field ψc for Majorana neutrinos. Because (νi)R and (νjν )R do not
have any interactions with W± in Fig. 3.8, it seems that only (νi)L and (νjν )L
are flowing along the external fermion lines. To obtain a chirality-changing
contribution from the effective (one-loop) electromagnetic vertex, one has to
put a mass insertion on one of the external legs in the Feynman diagrams.
As a result, the magnetic and electric dipole moments must involve mi and
mj , the masses of νi and νjν neutrinos.

6Here we confine ourselves to a simple extension of the SM with three known
neutrinos to be massive Majorana particles, as discussed in Section 3.2.2.

7That is why both magnetic and electric dipole moments must vanish for a Weyl
neutrino, because it is massless and does not possess the right-handed component.
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(5) Is the magnetic or electric dipole moment of a neutrino always pro-
portional to its mass? The answer may be negative if new physics beyond
the SU(2)L ×U(1)Y gauge theory is involved (Giunti and Studenikin, 2009).
For instance, a new term proportional to the charged-lepton mass can con-
tribute to the magnetic dipole moment of a massive Dirac neutrino in the
SU(2)L×SU(2)R×U(1)Y model with broken left-right symmetry (Kim, 1976;
Marciano and Sanda, 1977; Czakon et al., 1999). Depending on the details of
this model, such a term might cancel or exceed the term proportional to the
neutrino mass in the expression of the magnetic dipole moment.

Finite magnetic and electric dipole moments of massive neutrinos may
produce a variety of new processes beyond the SM (Strumia and Vissani,
2006; Giunti and Studenikin, 2009). For example, (a) radiative neutrino de-
cays νi → νjν + γ can happen, so can the Cherenkov radiation of neutri-
nos in an external electromagnetic field; (b) the elastic neutrino-electron or
neutrino-nucleon scattering can be mediated by the magnetic and electric
dipole moments; (c) the phenomenon of precession of the neutrino spin can
occur in an external magnetic field; (d) the photon (or plasmon) can de-
cay into a neutrino-antineutrino pair in a plasma (i.e., γ∗ → νν). Of course,
non-vanishing electromagnetic dipole moments contribute to neutrino masses
too. The following two subsections will briefly cover the topics of radiative
neutrino decays and electromagnetic neutrino-electron scattering effects.

3.4.3 Radiative Decays of Massive Neutrinos

If the electromagnetic moments of a massive neutrino νi are finite, it can
decay into a lighter neutrino νjν and a photon γ via Fig. 3.7, where the
incoming and outgoing fermions are replaced respectively by νi and νjν . The
Lorentz-invariant vertex matrix of this νi → νjν + γ process is in general
described by ΓμΓ (p, p′) in Eq. (3.77). Because q2 = 0 and qμεμ = 0 hold for
a real photon γ (Mohapatra and Pal, 2004), where εμ represents the photon
polarization vector, the form of ΓμΓ (p, p′) can be simplified to

ΓμΓ (p, p′) = [iFMFF (0) + FEFF (0)γ5] σμνq
ν . (3.85)

By definition, F ij
MFF (0) ≡ μij and F ij

EFF (0) ≡ εij are just the magnetic and electric
transition dipole moments between νi and νjν neutrinos. Given the transition
matrix element uj(p

′)Γ ij
μΓ (p, p′)ui(p), it is straightforward to calculate the

decay rate. In the rest frame of the decaying neutrino νi, one obtains

ΓνΓΓ i→νj+γ =

(
m2

i −m2
j

)3
8πm3

i

(∣∣∣∣μij

∣∣∣∣2 +
∣∣∣∣εij∣∣∣∣2) . (3.86)

This result is valid for both Dirac and Majorana neutrinos.
In the framework of the SU(2)L×U(1)Y gauge theory with three massive

Dirac (or Majorana) neutrinos, the radiative decay νi → νjν + γ is mediated
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by the one-loop Feynman diagrams (and their charge-conjugate diagrams)
shown in Fig. 3.8. The explicit expressions of μij and εij have been given in
Eq. (3.81) for Dirac neutrinos and in Eq. (3.83) for Majorana neutrinos. As
a result,

Γ
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α

M2
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2

(3.87)

for Dirac neutrinos (Lee and Shrock, 1977; Marciano and Sanda, 1977;
Shrock, 1982; Pal and Wolfenstein, 1982); or
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(
m2

i −m2
j

)3
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WMM

Re
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VαiVV V ∗

αjVV
)]2⎫⎬⎫⎫⎭⎬⎬ (3.88)

for Majorana neutrinos (Shrock, 1982), where αem = e2/(4π) denotes the
electromagnetic fine-structure constant.

To compare ΓνΓΓ i→νj+γ with the experimental data in a simpler way, one
may define an effective magnetic dipole moment

μeff ≡
√∣∣∣∣μij

∣∣∣∣2 +
∣∣∣∣εij∣∣∣∣2 . (3.89)

Eq. (3.86) can then be expressed as

ΓνΓΓ i→νj+γ = 5.3 ×
(

1 −
m2

j

m2
i

)3 ( mi

1 eV

)3(μeff

μB

)2

s−1 . (3.90)

Although μeff is extremely small in some simple extensions of the SM like
the one discussed in Section 3.4.2, it could be sufficiently large in some more
complicated or exotic scenarios beyond the SM, such as a class of extra-
dimension models (Mohapatra et al., 2004). Experimentally, radiative decays
of massive neutrinos can be constrained by seeing no emission of the photons
from solar νe and reactor νe fluxes. Much stronger constraints on μeff can be
obtained from the Supernova 1987A limit on the neutrino decay and from the
astrophysical limit on distortions of the cosmic microwave background (CMB)
radiation (Raffelt, 1996, 1999), as shown in Fig. 3.9. A brief summary of these
limits is (Raffelt, 1999; Giunti and Studenikin, 2009)
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Fig. 3.9 Astrophysical bounds on the effective magnetic dipole moment μeff in
radiative neutrino decays (Raffelt, 1996, 1999. With permission from the University
of Chicago Press and Elsevier)
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(3.91)

in which mν is used to denote the effective mass of the decaying neutrino
(i.e., mν = mi).

3.4.4 Electromagnetic Neutrino-electron Scattering

In practice, the most sensitive way of probing the electromagnetic dipole mo-
ments of a massive neutrino is to measure the cross section of elastic neutrino-
electron (or antineutrino-electron) scattering, which can be expressed as a
sum of the contribution from the SM (σ0) and that from the electromagnetic
dipole moments of massive neutrinos (σμ):

dσ
dT

=
dσ0

dT
+

dσμ

dT
, (3.92)

where T = Ee −me denotes the kinetic energy of the recoil electron in this
process. Following the calculations done in section 2.2.1, we have

dσ0

dT
=
G2

Fme

2π

[
g2
+ + g2

−

(
1 − T

Eν

)2

− g+g−
meT

E2
ν

]
(3.93)
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for neutrino-electron scattering (’t Hooft, 1971; Marciano and Parsa, 2003),
where g+ = 2 sin2 θw + 1 for νe, g+ = 2 sin2 θw − 1 for νμ and ντ , and g− =
2 sin2 θw for all flavors. Note that Eq. (3.93) is also valid for antineutrino-
electron scattering if one simply exchanges the positions of g+ and g−. On
the other hand (Bardin et al., 1970; Kyuldjiev, 1984; Vogel and Engel, 1989),

dσμ

dT
=
α2

emπ

m2
e

(
1
T

− 1
Eν

)(
μν

μB

)2

(3.94)

with μ2
ν ≡ |μD

ii |2 + |εDii |2 (for i = 1, 2 or 3), which holds for both neutrinos
and antineutrinos. In obtaining Eqs. (3.93) and (3.94) one has assumed the
scattered neutrino to be a Dirac particle and omitted the effects of finite
neutrino masses and flavor mixing (i.e., νe = ν1, νμ = ν2 and ντ = ν3 have
been taken). Hence there is no interference between the contributions coming
from the SM and electromagnetic dipole moments — the latter leads to a
helicity flip of the neutrino but the former is always helicity-conserving. While
an interference term will appear if one takes account of neutrino masses and
flavor mixing, its magnitude linearly depends on the neutrino masses and thus
is strongly suppressed in comparison with the pure weak and electromagnetic

terms (Grimus and Stockinger, 1998). So the incoherent sum of
dσ0

dT
and

dσμ

dT
in Eq. (3.92) is actually an excellent approximation of

dσ
dT

.

It is obvious that the two terms of
dσ
dT

depend on the kinetic energy of the

recoil electron in quite different ways. In particular,
dσμ

dT
grows rapidly with

decreasing values of T . Hence a measurement of smaller T can probe smaller

μν in this kind of experiments. The magnitude of
dσμ

dT
becomes larger than

that of
dσ0

dT
if the condition

T � α2
emπ2

G2
Fm

3
e

(
μν

μB

)2

≈ 3 × 1022

(
μν

μB

)2

keV (3.95)

is roughly satisfied, as one can easily see from Eqs. (3.93) and (3.94). No
distortion of the recoil electron energy spectrum of ναe

− or ναe
− scattering

(for α = e, μ, τ) has so far been observed in any direct laboratory experiments,
and thus only the upper bounds on μν can be derived (Wong and Li, 2005;
Beda et al., 2007). For instance, an analysis of the T -spectrum in the SK
experiment yields μν < 1.1×10−10μB (Liu et al., 2004); several recent reactor
experiments on νee

− scattering yield

μν <

⎧⎨⎧⎧⎩⎨⎨9.0 × 10−11μB MUNU (Darakchieva et al ., 2005) ,
7.4 × 10−11μB TEXONO (Wong et al ., 2007) ,
5.8 × 10−11μB GEMMA (Beda et al ., 2007) ;

(3.96)
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and the present Borexino experiment yields μν < 5.4 × 10−11μB (Arpesella
et al., 2008b). More stringent bounds on μν can hopefully be achieved from
the future experiments of these types (Giunti and Studenikin, 2009).

In view of current experimental data on neutrino oscillations, we know
that neutrinos are actually massive. Hence the effects of finite neutrino masses
and flavor mixing should be taken into account in calculating the cross section
of elastic neutrino-electron or antineutrino-electron scattering (Grimus and
Stockinger, 1998; Beacom and Vogel, 1999). Here let us illustrate how the
neutrino oscillation may affect the weak and electromagnetic terms of elastic
νee

− scattering in a reactor experiment, where the electron antineutrinos are
produced from the beta decay of fission products and detected by their elastic
scattering with electrons in a detector. The antineutrino state created in this
beta decay (via W− → e− + νe) at the reactor is a superposition of three
antineutrino mass eigenstates:

|νe(0)〉 =
3∑

j=1

VejVV |νj〉 , (3.97)

where V is the 3 × 3 neutrino mixing matrix. Such a νe beam propagates
over the distance L to the detector,

|νe(L)〉 =
3∑

j=1

eiqjLVejVV |νj〉 , (3.98)

in which qjq =
√
E2

ν −m2
j is the momentum of νjν with Eν being the beam

energy and mj being the mass of νjν . After taking account of the effect
of neutrino oscillations, one obtains the differential cross section of elastic
antineutrino-electron scattering as follows (Grimus and Stockinger, 1998):
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, (3.99)
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with g− = 2 sin2 θw for νe, and
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with μjk and εjk being the magnetic and electric transition dipole moments
between νjν and νk neutrinos as defined in Eq. (3.85). Because different neu-
trino mass eigenstates are in principle distinguishable in the electromagnetic
νee

− scattering, their contributions to the total cross section are incoherent.
Eq. (3.101) shows that it is in general difficult to determine or constrain the
magnitudes of μjk and εjk (for j, k = 1, 2, 3) from a single measurement. But

it is possible to simplify the above expression for
dσ′

μ

dT
in a few special cases

(Beacom and Vogel, 1999).

3.5 Lepton Flavor Mixing and CP Violation

Regardless of the origin of tiny neutrino masses 8, we may discuss lepton flavor
mixing by taking account of the effective mass terms of charged leptons and
Majorana neutrinos at low energies 9,

−L′
lepton = (e μ τ)L MlM

⎛⎝⎛⎛eμ
τ

⎞⎠⎞⎞
R

+
1
2
(
νe νμ ντ

)
L
MνMM

⎛⎝⎛⎛νc
e

νc
μ

νc
τ

⎞⎠⎞⎞
R

+ h.c. . (3.102)

The phenomenon of lepton flavor mixing arises from a mismatch between
the diagonalizations of MlM and MνMM in an arbitrary flavor basis: V †

lVV MlM UlU =
Diag{me, μμ,mτ} and V †

νVV MνMM V ∗
νVV = Diag{m1,m2, m3}, where VlVV , UlU and VνVV

are the 3×3 unitary matrices. In the basis of mass eigenstates, it is the unitary
matrix V = V †

lVV VνVV that will appear in the weak charged-current interactions
in Eq. (3.9). Although the basis of MlM = Diag{me,mμ,mτ} with VlVV = 1 and
V = VνVV is often chosen in neutrino phenomenology, one should keep in mind
that both the charged-lepton and neutrino sectors may in general contribute
to lepton flavor mixing. In other words, both VlVV and VνVV are not fully physical,
and only their product V = V †

lVV VνVV is a physical description of lepton flavor
mixing and CP violation at low energies.

3.5.1 Classification of Different Parametrizations

Flavor mixing among n different lepton families can be described by an n×n
unitary matrix V , whose number of independent parameters relies on the
nature of neutrinos. If neutrinos are Dirac particles, one may make use of
n(n− 1)/2 rotation angles and (n− 1)(n− 2)/2 phase angles to parametrize

8For simplicity, here we do not consider possible non-unitarity of the 3 × 3
neutrino mixing matrix because its effects are either absent or very small.

9As for Dirac neutrinos, the corresponding mass term is the same as that given in
Eq. (3.11). In this case the neutrino mass matrix MνMM is in general not symmetric and
can be diagonalized by means of the transformation V †

νVV MνMM UνUU = Diag{m1, m2, m3},
where both VνVV and UνUU are unitary.
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V . If neutrinos are Majorana particles, however, a full parametrization of V
needs n(n − 1)/2 rotation angles and the same number of phase angles 10.
The flavor mixing between charged leptons and Dirac neutrinos is completely
analogous to that of quarks, for which a number of different parametrizations
have been proposed and classified in the literature (Fritzsch and Xing, 1998a).
Here we classify all possible parametrizations for the flavor mixing between
charged leptons and Majorana neutrinos with n = 3. Regardless of the free-
dom of phase reassignments, we find that there are nine structurally different
parametrizations for the 3 × 3 lepton flavor mixing matrix V .

The 3 × 3 lepton flavor mixing matrix V , which is often called the Maki-
Nakagawa-Sakata (MNS) matrix (Maki et al., 1962), can be expressed as a
product of three unitary matrices O1, O2 and O3. They correspond to simple
rotations in the complex (1,2), (2,3) and (3,1) planes:

O1(θ1, α1, β1, γ1) =

⎛⎝⎛⎛ c1e
iα1 s1e

−iβ1 0
−s1eiβ1 c1e

−iα1 0
0 0 eiγ1

⎞⎠⎞⎞ ,

O2(θ2, α2, β2, γ2) =

⎛⎝⎛⎛eiγ2 0 0
0 c2eiα2 s2e−iβ2

0 −s2eiβ2 c2e
−iα2

⎞⎠⎞⎞ ,

O3(θ3, α3, β3, γ3) =

⎛⎝⎛⎛ c3e
iα3 0 s3e

−iβ3

0 eiγ3 0
−s3eiβ3 0 c3e

−iα3

⎞⎠⎞⎞ , (3.103)

where si ≡ sin θi and ci ≡ cos θi (for i = 1, 2, 3). Obviously OiO
†
i = O†

iOi = 1
holds, and any two rotation matrices do not commute with each other. We
find twelve different ways to arrange the product of O1, O2 and O3, which
can cover the whole 3× 3 space and provide a full description of V (Fritzsch
and Xing, 2001). Explicitly, six of the twelve different combinations of Oi

belong to the type

V = Oi(θi, αi, βi, γi) ⊗Oj(θj , αj , βjβ , γjγ ) ⊗Oi(θ
′
i, α

′
i, β

′
i, γ

′
i) (3.104)

with i = j, where the complex rotation matrix Oi occurs twice; and the other
six belong to the type

V = Oi(θi, αi, βi, γi) ⊗Oj(θj , αj , βjβ , γjγ ) ⊗Ok(θk, αk, βk, γk) (3.105)

with i = j = k, in which the rotations take place in three different complex
planes. Note that the products OiOjOi and OiOkOi (for j = k) in Eq. (3.104)
are correlated with each other, if the relevant phase parameters are switched

10No matter whether neutrinos are Dirac or Majorana particles, the n×n unitary
flavor mixing matrix has (n − 1)2(n − 2)2/4 Jarlskog invariants of CP violation
defined as J ij

αβJJ ≡ Im
(
VαiVV VβjVV V ∗

αjVV V ∗
βiVV
)

(Botella and Chau, 1986).
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off. Hence only nine of the twelve parametrizations, three from Eq. (3.104)
and six from Eq. (3.105), are structurally different (Xing, 2004).

In each parametrization of V , there apparently exist nine phase parame-
ters. Some of them or their combinations can be absorbed by redefining the
relevant phases of charged-lepton and neutrino fields. For example,⎛⎝⎛⎛eiγ2 0 0

0 c2e
iα2 s2e

−iβ2

0 −s2eiβ2 c2e−iα2

⎞⎠⎞⎞⎛⎝⎛⎛ c3eiα3 0 s3e−iβ3

0 eiγ3 0
−s3eiβ3 0 c3e−iα3

⎞⎠⎞⎞⎛⎝⎛⎛ c1eiα1 s1e−iβ1 0
−s1eiβ1 c1e

−iα1 0
0 0 eiγ1

⎞⎠⎞⎞

= P

⎛⎝⎛⎛ c1c3 s1c3 s3e
−iδ

−s1c2 − c1s2s3e
iδ c1c2 − s1s2s3e

iδ s2c3
s1s2 − c1c2s3e

iδ −c1s2 − s1c2s3e
iδ c2c3

⎞⎠⎞⎞P ′ , (3.106)

where δ = (α1 − β1) − (α2 + β2) + (β3 − γ3), P = Diag{eia, eib, eic} with
a = (α1 − β1) − (α2 + β2 − γ2) − γ3, b = −(β2 + α3) and c = −(α2 + α3),
and P ′ = Diag{eix, eiy, eiz} with x = β1 + (α2 + β2) + (α3 + γ3), y = −α1 +
(α2 + β2) + (α3 + γ3) and z = γ1. If neutrinos are Dirac particles, one can
always remove both P and P ′ such that only δ is left as the single nontrivial
CP-violating phase. If neutrinos are Majorana particles, however, there is no
freedom to rearrange the relative phases of three Majorana neutrino fields.
Hence only P itself and one common phase of P ′ are removable; namely, we
are left with three nontrivial CP-violating phases in the Majorana case (δ and
two Majorana phases in P ′). Both CP- and T-violating effects in neutrino
oscillations depend only upon the Dirac-like phase δ.

Different parametrizations of V are mathematically equivalent, so adopt-
ing any of them does not directly point to physical significance. But it is very
likely that one particular parametrization is more useful and transparent than
the others in studying the neutrino phenomenology and (or) exploring the
underlying dynamics responsible for lepton mass generation and CP viola-
tion. Here we highlight two particular parametrizations of the MNS matrix
V . The first one is the so-called “standard” parametrization advocated by
the Particle Data Group (Nakamura et al., 2010):

V =

⎛⎝⎛⎛1 0 0
0 c23 s23
0 −s23 c23

⎞⎠⎞⎞⎛⎝⎛⎛ c13 0 s13e
−iδ

0 1 0
−s13eiδ 0 c13

⎞⎠⎞⎞⎛⎝⎛⎛ c12 s12 0
−s12 c12 0

0 0 1

⎞⎠⎞⎞P ′

=

⎛⎝⎛⎛ c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13

⎞⎠⎞⎞P ′ , (3.107)

where cij ≡ cos θij and sij ≡ sin θij (for ij = 12, 13, 23) together with the
Majorana phase matrix P ′ = Diag{eiρ, eiσ, 1}. Without loss of generality, the
three mixing angles (θ12, θ13, θ23) can all be arranged to lie in the first quad-
rant. Arbitrary values between 0 and 2π are allowed for three CP-violating
phases (δ, ρ, σ). A remarkable merit of this parametrization is that its three
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mixing angles are approximately equivalent to the mixing angles of solar (θ12),
atmospheric (θ23) and CHOOZ reactor (θ13) neutrino oscillation experiments.
Another useful parametrization is the Fritzsch-Xing (FX) parametrization
proposed originally for quark mixing (Fritzsch and Xing, 1997) and later for
lepton mixing (Fritzsch and Xing, 1998b):

V =

⎛⎝⎛⎛ cl sl 0
−sl cl 0
0 0 1

⎞⎠⎞⎞⎛⎝⎛⎛e−iφ 0 0
0 c s
0 −s c

⎞⎠⎞⎞⎛⎝⎛⎛cν −sν 0
sν cν 0
0 0 1

⎞⎠⎞⎞P ′

=

⎛⎝⎛⎛slsνc+ clcνe−iφ slcνc− clsνe−iφ sls
clsνc− slcνe−iφ clcνc+ slsνe−iφ cls

−sνs −cνs c

⎞⎠⎞⎞P ′ , (3.108)

where cl,ν ≡ cos θl,ν , sl,ν ≡ sin θl,ν , c ≡ cos θ, s ≡ sin θ, and P ′ is a diagonal
phase matrix containing two nontrivial CP-violating phases. Although the
form of V in Eq. (3.108) is apparently different from that in Eq. (3.107),
their corresponding flavor mixing angles (θl, θν , θ) and (θ12, θ13, θ23) have
quite similar meanings in interpreting the experimental data on neutrino
oscillations. In the limit θl = θ13 = 0, one easily arrives at θν = θ12 and
θ = θ23. As a natural consequence of very small θl, three mixing angles of the
FX parametrization can also be related to those of solar (θν), atmospheric (θ)
and CHOOZ reactor (θl sin θ) neutrino oscillation experiments in the leading-
order approximation (Xing, 2009a). A striking merit of this parametrization
is that its six parameters have very simple renormalization-group equations
when they run from a superhigh-energy scale to the electroweak scale or vice
versa (Xing, 2006), as one will see in Section 3.6.

3.5.2 Democratic and Tri-bimaximal Mixing Patterns

Tables 3.1 and 3.2 indicate the essential feature of lepton flavor mixing: two
mixing angles are quite large (θ12 ∼ 34◦ and θ23 ∼ 45◦) while the third one
is very small (θ13 < 10◦). Such a flavor mixing pattern is far beyond the
original imagination of most people because it is rather different from the
well-known quark mixing pattern (ϑ12 ≈ 13◦, ϑ23 ≈ 2.3◦, ϑ13 ≈ 0.22◦ and
δ ≈ 69◦) described by the same parametrization of the Cabibbo-Kobayashi-
Maskawa (CKM) matrix (Cabibbo, 1963; Kobayashi and Maskawa, 1973). To
understand this difference, a number of constant lepton mixing patterns have
been proposed as the starting point of model building (Xing, 2004). Possible
flavor symmetries and their spontaneous or explicit breaking mechanisms
hidden in those constant patterns might finally help us pin down the dynamics
responsible for lepton mass generation and flavor mixing. To illustrate, let
us first comment on the “democratic” neutrino mixing pattern and then pay
more attention to the “tri-bimaximal” neutrino mixing pattern.

The “democratic” lepton flavor mixing pattern
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U0UU =

⎛⎜⎛⎛⎝⎜⎜
1√
2

1√
2

0
−1√

6
1√
6

√
2√
3

1

√√
√

3
−1√

3
1

√√
√

3

⎞⎟⎞⎞⎠⎟⎟ (3.109)

was originally obtained by Fritzsch and Xing as the leading term of the 3× 3
lepton mixing matrix from the breaking of flavor democracy or S(3)L×S(3)R
symmetry of the charged-lepton mass matrix in the basis where the Majorana
neutrino mass matrix is diagonal and possesses the S(3) symmetry (Fritzsch
and Xing, 1996). Its naive predictions θ12 = 45◦ and θ23 ≈ 54.7◦ are no more
favored today, but they may receive proper corrections from the symmetry-
breaking perturbations so as to fit current neutrino oscillation data (See, e.g.,
Fritzsch and Xing, 1998b, 2000a, 2004; Xing et al., 2010).

Today’s most popular constant pattern of neutrino mixing is the “tri-
bimaximal” mixing matrix (Harrison et al., 2002; Xing, 2002a; He and Zee,
2003):

V0VV =

⎛⎜⎛⎛⎝⎜⎜
√

2√
3

1√
3

0
−1√

6
1

√√
√

3
1√
2

1

√√
√

6
−1√

3
1

√√
√

2

⎞⎟⎞⎞⎠⎟⎟ (3.110)

which looks like a twisted form of the democratic mixing pattern with the
same entries. Its strange name comes from the fact that this flavor mixing
pattern is actually a product of the “tri-maximal” mixing matrix (Cabibbo,
1978) and a “bi-maximal” mixing matrix:

V ′
0VV =

⎛⎜⎛⎛⎝⎜⎜
1√
3

1√
3

1√
3

1√
3

ω√
3

ω2

√

√
3

1√
3

ω2

√

√
3

ω√
3

⎞⎟⎞⎞⎠⎟⎟
⎛⎝⎛⎛ 1√

2
0 −1√

2

0 1 0
1√
2

0 1√
2

⎞⎠⎞⎞ = PV0VV P
′ , (3.111)

where ω = ei2π/3 denotes the complex cube-root of unity (i.e., ω3 = 1), and
P = Diag{1, ω, ω2} and P ′ = Diag{1, 1, i} are two diagonal phase matrices.
V0VV or V ′

0VV predicts θ12 = arctan(1/
√

2) ≈ 35.3◦, θ13 = 0◦ and θ23 = 45◦,
consistent quite well with current neutrino oscillation data. Because the en-
tries of U0UU or V0VV are all formed from small integers (0, 1, 2 and 3) and their
square roots, it is often suggestive of certain discrete flavor symmetries in
the language of group theories. That is why the democratic or tri-bimaximal
neutrino mixing pattern can serve as a good starting point of model building
based on a variety of flavor symmetries, such as Z2, Z3Z , S3, S4S , A4, D4, D5,
Q4, Q6, Δ(27) and Σ(81) (Ma, 2007; King and Luhn, 2009). In particular, a
lot of interest has been paid to the derivation of V0VV with the help of the non-
Abelian discrete A4 symmetry (see, e.g., Ma, 2004; Altarelli and Feruglio,
2005; Zee, 2006; He et al., 2006) or the Friedberg-Lee symmetry (Friedberg
and Lee, 2006, 2008, 2010; Xing et al., 2006; Xing, 2007; Chan et al., 2009).

Note that the democratic mixing matrix U0UU and the tri-bimaximal mixing
matrix V0VV are related with each other via the following transformation:
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V0VV =

⎛⎝⎛⎛1 0 0
0 cos θ0 − sin θ0
0 sin θ0 cos θ0

⎞⎠⎞⎞U0UU

⎛⎝⎛⎛cos θ0 − sin θ0 0
sin θ0 cos θ0 0

0 0 1

⎞⎠⎞⎞ , (3.112)

where θ0 = arctan(
√

2 − 1)2 ≈ 9.7◦. This angle is actually a measure of the
difference between the mixing angles of U0UU and V0VV (namely, 45◦ − 35.3◦ =
54.7◦ − 45◦ = 9.7◦). In this sense, we argue that it is worthwhile to explore
possible flavor symmetries behind both V0VV and U0UU so as to build realistic
models for neutrino mass generation and lepton flavor mixing.

Note also that it is possible to construct different but viable neutrino
mixing patterns with a few small integers and their square roots. Here we give
an interesting example in terms of only two small integers 1 and 2 together
with their square roots and the imaginary unit i (Xing, 2008c):

V =
1
2

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
1 + 1√

2
1 1 − 1√

2
−1√

2

[
1 − i
(
1 − 1√

2

)]
1 − i 1√

2
1√
2

[
1 + i
(
1 + 1√

2

)]
−1√

2

[
1 + i
(
1 − 1√

2

)]
1 + i 1√

2
1√
2

[
1 − i
(
1 + 1√

2

)]
⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ . (3.113)

We refer to this ansatz as the “tetra-maximal” mixing pattern because it
can be expressed as a product of four rotation matrices whose mixing angles
are all π/4 in the complex plane. It predicts θ12 = arctan(2 −

√
2) ≈ 30.4◦,

θ13 = arcsin[(
√

2 − 1)/(2
√

2)] ≈ 8.4◦, θ23 = 45◦ and δ = 90◦ in the standard
parametrization. These results are certainly compatible with current neutrino
oscillation data and will soon be tested in the upcoming and more accurate
neutrino oscillation experiments.

Let us remark that a specific constant mixing pattern should be regarded
as the leading-order approximation of the “true” lepton flavor mixing ma-
trix, whose mixing angles should in general depend on both the ratios of
charged-lepton masses and those of neutrino masses. We may at least make
the following naive speculation about how to phenomenologically understand
the observed pattern of lepton flavor mixing (Xing, 2004):

• Large values of θ12 and θ23 could arise from a weak hierarchy or a near
degeneracy of the neutrino mass spectrum, because the strong hierarchy
of charged-lepton masses implies that me/mμ ≈ 4.7×10−3 and mμ/mτ ≈
5.9 × 10−2 at the electroweak scale are unlikely to contribute to θ12 and
θ23 in a dominant way.

• Special values of θ12 and θ23 might stem from an underlying flavor sym-
metry of the charged-lepton mass matrix or the neutrino mass matrix.
Then the contributions of lepton mass ratios to flavor mixing angles, due
to flavor symmetry breaking, are expected to serve as the perturbative
corrections to U0UU or V0VV , or another constant flavor mixing pattern.

• Vanishing or small θ13 could be a natural consequence of the explicit
textures of lepton mass matrices. It might also be related to the flavor
symmetry which gives rise to sizable θ12 and θ23 (e.g., in U0UU or V0VV ).
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• Small corrections to a constant flavor mixing pattern may also result from
the renormalization-group running effects of leptons and quarks, e.g., from
a superhigh-energy scale to low energies or vice versa.

We admit that there are too many possibilities of linking the observed pattern
of lepton flavor mixing to a certain flavor symmetry, and none of them is
unique from the theoretical point of view. In this sense flavor symmetries
might not be a perfect guiding principle of model building.

3.5.3 Rephasing Invariants and Unitarity Triangles

In the basis where the flavor eigenstates of charged leptons are identified
with their mass eigenstates, the MNS matrix V relates the neutrino mass
eigenstates (ν1, ν2, ν3) to the neutrino flavor eigenstates (νe, νμ, ντ ):⎛⎝⎛⎛νe

νμ

ντ

⎞⎠⎞⎞ =

⎛⎝⎛⎛VeVV 1 VeVV 2 VeVV 3

VμVV 1 VμVV 2 VμVV 3

VτVV 1 VτVV 2 VτVV 3

⎞⎠⎞⎞⎛⎝⎛⎛ν1ν2
ν3

⎞⎠⎞⎞ . (3.114)

The unitarity of V represents two sets of normalization and orthogonality
conditions: ∑

i

(
VαiVV V ∗

βiVV
)

= δαβ ,
∑
α

(
VαiVV V ∗

αjVV
)

= δij , (3.115)

where Greek and Latin subscripts run over (e, μ, τ ) and (1, 2, 3), respectively.
In the complex plane the six orthogonality relations in Eq. (3.115) define six
triangles (�e,�μ,�τ ) and (�1,�2,�3) shown in Fig. 3.10, the so-called
unitarity triangles. These six triangles have eighteen different sides and nine
different inner (or outer) angles. But the unitarity of V requires that all six
triangles have the same area amounting to J /2, where J is the Jarlskog
invariant of CP violation (Jarlskog, 1985; Wu, 1986) defined through

Im
(
VαiVV VβjVV V ∗

αjVV V ∗
βiVV
)

= J
∑

γ

εαβγ

∑
k

εijk . (3.116)

One has J = c12s12c
2
13s13c23s23 sin δ in the standard parametrization of V

and J = clslcνsνcs
2 sinφ in the FX parametrization of V . No matter whether

neutrinos are Dirac or Majorana particles, the strength of CP or T violation
in neutrino oscillations depends only upon J .

To show why the areas of six unitarity triangles are identical with one
another, let us take triangles �τ and �3 for example. They correspond to
the orthogonality relations

VeVV 1V
∗
μVV 1 + VeVV 2V

∗
μVV 2 + VeVV 3V

∗
μVV 3 = 0 ,

VeVV 1V
∗
eVV 2 + VμVV 1V

∗
μVV 2 + VτVV 1V

∗
τVV 2 = 0 . (3.117)

Multiplying these two equations by VμVV 2V
∗
eVV 2 and VμVV 2V

∗
μVV 1 respectively, we arrive

at two rescaled triangles which share the side
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Fig. 3.10 Unitarity triangles of the 3× 3 MNS matrix in the complex plane. Each
triangle is named by the index that does not manifest in its three sides

VeVV 1VμVV 2V
∗
eVV 2V

∗
μVV 1 = −|VeVV 2VμVV 2|2 − VeVV 3VμVV 2V

∗
eVV 2V

∗
μVV 3

= −|VμVV 1VμVV 2|2 − VμVV 2VτVV 1V
∗
μVV 1V

∗
τVV 2 . (3.118)

This result is apparently consistent with the definition of J in Eq. (3.116); i.e.,
Im(VeVV 1VμVV 2V

∗
eVV 2V

∗
μVV 1) = J and Im(VeVV 3VμVV 2V

∗
eVV 2V

∗
μVV 3) = Im(VμVV 2VτVV 1V

∗
μVV 1V

∗
τVV 2) = −J .

The latter simultaneously implies that the areas of �τ and �3 are equal to
J /2. One may analogously prove that all the six unitarity triangles have the
same area J /2. If CP or T were an exact symmetry, J = 0 would hold and
those unitarity triangles would collapse into lines in the complex plane. Note
that the shape and area of each unitarity triangle are irrelevant to the nature
of neutrinos; i.e., they are the same for Dirac and Majorana neutrinos.

Because of V ∗
eVV 1VμVV 1+V

∗
eVV 2VμVV 2 = −V ∗

eVV 3VμVV 3 or equivalently |VeVV 1V
∗
μVV 1+VeVV 2V

∗
μVV 2|2 =

|VeVV 3V
∗
μVV 3|2, it is easy to obtain

2Re
(
VeVV 1VμVV 2V

∗
eVV 2V

∗
μVV 1

)
= |VeVV 3|2|VμVV 3|2 − |VeVV 1|2|VμVV 1|2 − |VeVV 2|2|VμVV 2|2 . (3.119)

Combining VeVV 1VμVV 2V
∗
eVV 2V

∗
μVV 1 = Re(VeVV 1VμVV 2V

∗
eVV 2V

∗
μVV 1)+ iJ with Eq. (3.119) leads us

to the result

J 2 = |VeVV 1|2|VμVV 2|2|VeVV 2|2|VμVV 1|2 −
1
4
(
|VeVV 3|2|VμVV 3|2 − |VeVV 1|2|VμVV 1|2 − |VeVV 2|2|VμVV 2|2

)2
= |VeVV 1|2|VμVV 2|2|VeVV 2|2|VμVV 1|2 −

1
4
(
1 + |VeVV 1|2|VμVV 2|2 + |VeVV 2|2|VμVV 1|2

−|VeVV 1|2 − |VμVV 2|2 − |VeVV 2|2 − |VμVV 1|2
)2
. (3.120)



3.5 Lepton Flavor Mixing and CP Violation 105

As a straightforward generalization of Eq. (3.120), J 2 can be expressed in
terms of the moduli of any four independent matrix elements of V (Sasaki,
1986; Hamzaoui, 1988; Fritzsch and Xing, 2000b):

J 2 = |VαiVV |2|VβjVV |2|VαjVV |2|VβiVV |2 − 1
4
(
1 + |VαiVV |2|VβjVV |2 + |VαjVV |2|VβiVV |2

−|VαiVV |2 − |VβjVV |2 − |VαjVV |2 − |VβiVV |2
)2
, (3.121)

in which α = β running over (e, μ, τ) and i = j running over (1, 2, 3). The
implication of this result is very obvious: the information about leptonic
CP violation can in principle be extracted from the measured moduli of the
neutrino mixing matrix elements.

As a consequence of the unitarity of V , two interesting relations can be
derived from the normalization conditions in Eq. (3.115):

|VeVV 2|2 − |VμVV 1|2 = |VμVV 3|2 − |VτVV 2|2 = |VτVV 1|2 − |VeVV 3|2 ≡ ΔL ,

|VeVV 2|2 − |VμVV 3|2 = |VμVV 1|2 − |VτVV 2|2 = |VτVV 3|2 − |VeVV 1|2 ≡ ΔR . (3.122)

The off-diagonal asymmetries ΔL and ΔR characterize the geometrical struc-
ture of V about its VeVV 1-VμVV 2-VτVV 3 and VeVV 3-VμVV 2-VτVV 1 axes, respectively (Xing,
2002b). For instance, ΔL = 1/6 and ΔR = −1/6 hold for the tri-bimaximal
neutrino mixing pattern V0VV . If ΔL = 0 (or ΔR = 0) held, V would be sym-
metric about the VeVV 1-VμVV 2-VτVV 3 (or VeVV 3-VμVV 2-VτVV 1) axis. Geometrically this would
correspond to the congruence between two unitarity triangles; i.e.,

ΔL = 0 =⇒ �== e
∼= �1 , �μ

∼= �2 , �τ
∼= �3 ;

ΔR = 0 =⇒ �== e
∼= �3 , �μ

∼= �2 , �τ
∼= �1 . (3.123)

Indeed the counterpart of ΔL in the quark sector is only of O(10−5) (Xing,
1996a, 1996b); i.e., the CKM matrix is almost symmetric about its VudVV -VcsVV -VtbVV
axis. An exactly symmetric flavor mixing matrix might hint at an underlying
flavor symmetry, from which some deeper understanding of the fermion mass
texture could be achieved.

3.5.4 Flavor Problems in Particle Physics

In the subatomic world the fundamental building blocks of matter have twelve
flavors: six quarks and six leptons (and their antiparticles). Table 3.6 is a
brief list of some important discoveries in flavor physics, which can partly give
people a ball-park feeling of a century of developments in particle physics. The
SM of electromagnetic and weak interactions contain thirteen free parameters
in its lepton and quark sectors: three charged-lepton masses, six quark masses,
three quark flavor mixing angles and one CP-violating phase. If three known
neutrinos are massive Majorana particles, one has to introduce nine free
parameters to describe their flavor properties: three neutrino masses, three
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lepton flavor mixing angles and three CP-violating phases. Thus an effective
theory of electroweak interactions at low energies totally consists of twenty-
two flavor parameters which can only be determined from experiments. Why
is the number of degrees of freedom so big in the flavor sector? What is the
fundamental physics behind these parameters? Such puzzles constitute the
flavor problems in modern particle physics.

Table 3.6 Some important discoveries in the developments of flavor physics

Discoveries of lepton flavors, quark flavors and CP violation
1897 electron (Thomson, 1897)
1919 proton (up and down quarks) (Rutherford, 1919)
1932 neutron (up and down quarks) (Chadwick, 1932)
1933 positron (Anderson, 1933)
1937 muon (Neddermeyer and Anderson, 1937)
1947 Kaon (strange quark) (Rochester and Butler, 1947)
1956 electron antineutrino (Cowan et al., 1956)
1962 muon neutrino (Danby et al., 1962)
1964 CP violation in s-quark decays (Christenson et al., 1964)
1974 charm quark (Aubert et al., 1974; Abrams et al., 1974)
1975 tau (Perl et al., 1975)
1977 bottom quark (Herb et al., 1977)
1995 top quark (Abe et al., 1995; Abachi et al., 1995)
2000 tau neutrino (Kodama et al., 2000)
2001 CP violation in b-quark decays (Aubert et al., 2001; Abe et al., 2001)

Fig. 3.11 is a schematic plot for the mass spectra of six quarks and six
leptons at the electroweak scale (Li and Xing, 2010), where we have used the
allowed ranges of neutrino masses with a normal hierarchy (Gonzalez-Garcia
et al., 2010) and the central values of charged-lepton and quark masses (Xing
et al., 2008). One can see that the span between m1 and mt is at least twelve
orders of magnitude. Furthermore, the “desert” between the heaviest neutrino
ν3 and the lightest charged fermion e− spans at least six orders of magnitude.
Why do twelve fermions have such a strange mass pattern or such hierarchy
and desert puzzles? The answer to this fundamental question remains open.
As shown in Table 3.1, current neutrino oscillation data only tell usm1 < m2.
It remains unknown whether m3 is larger than m2 (normal hierarchy) or
smaller than m1 (inverted hierarchy). The possibility m1 ≈ m2 ≈ m3 (near
degeneracy) cannot be excluded at present. In contrast, three families of
charged fermions have strong mass hierarchies (Xing et al., 2008):
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Fig. 3.11 A schematic illustration of the flavor “hierarchy” and “desert” problems
in the SM fermion mass spectrum at the electroweak scale (Li and Xing, 2010)

me

mμ

∼ mu

mc

∼ mc

mt

∼ λ4 ,

mμ

mτ

∼ md

ms

∼ ms

mb

∼ λ2 , (3.124)

where λ ≡ sin θC ≈ 0.22 with θC being the Cabibbo angle of quark flavor
mixing (Cabibbo, 1963). In the standard parametrization of the CKM matrix,
three quark mixing angles exhibit an impressive hierarchy:

ϑ12 ∼ λ , ϑ23 ∼ λ2 , ϑ13 ∼ λ4 . (3.125)

These two kinds of hierarchies might intrinsically be related to each other,
because the flavor mixing angles actually measure a mismatch between the
mass and flavor eigenstates of up- and down-type quarks. For example, the
relations ϑ12 ≈

√
md/ms , ϑ23 ≈

√
md/mb and ϑ13 ≈

√
mu/mt are com-

patible with Eqs. (3.124) and (3.125). They can be derived from a specific
pattern of up- and down-type quark mass matrices with five texture zeros
(Chkareuli and Froggatt, 1999). On the other hand, it seems quite difficult to
find a simple way of linking two large lepton flavor mixing angles θ12 ∼ π/6
and θ23 ∼ π/4 to small me/mμ and mμ/mτ . One might ascribe the largeness
of θ12 and θ23 to a very weak hierarchy of three neutrino masses and the
smallness of θ13 to the strong mass hierarchy in the charged-lepton sector
(Fritzsch and Xing, 2006, 2009). There are of course many possibilities of
model building to understand the observed lepton flavor mixing pattern, but
none of them has experimentally and theoretically been justified.

Among a number of concrete flavor puzzles that are currently facing us,
the following three are particularly intriguing.

• The pole masses of three charged leptons satisfy the equality (Koide, 1983)

me +mμ +mτ(√
me + √

mμ + √
mτ

)2 =
2
3

(3.126)
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to an amazingly good degree of accuracy — its error bar is only of O(10−5)
(Xing and Zhang, 2006).

• There are two quark-lepton “complementarity” relations in flavor mixing:

θ12 + ϑ12 ≈ θ23 + ϑ23 ≈ π

4
, (3.127)

which are compatible with the present experimental data (Xing, 2005).
• Two unitarity triangles of the CKM matrix, defined by the orthogonality

conditions VudVV V ∗
ubVV +VcdVV V ∗

cbVV +VtdVV V ∗
tbVV = 0 and VtbVV V ∗

ubVV +VtsVV V ∗
usVV +VtdVV V ∗

udVV = 0,
are almost the right triangles. Namely, the common inner angle of these
two triangles satisfies (Xing, 2009a)

α ≡ arg
(
−VudVV V ∗

ubVV

VtdVV V ∗
tbVV

)
≈ π

2
, (3.128)

indicated by current experimental data on quark mixing and CP violation.

Such special numerical relations might just be accidental. One or two of them
might also be possible to result from a certain (underlying) flavor symmetry.

3.6 Running Behaviors of Neutrino Mass Parameters

The spirit of seesaw mechanisms (to be described in Chapter 4) is to attribute
the small masses of three known neutrinos to the existence of some heavy
degrees of freedom, such as the SU(2)L gauge-singlet fermions, the SU(2)L
gauge-triplet scalars or the SU(2)L gauge-triplet fermions. All of them point
to the unique dimension-5 Weinberg operator in an effective theory after the
corresponding heavy particles are integrated out (Weinberg, 1979):

Ld=5

Λ
=

1
2
καβ�αLH̃H̃

T �cβL + h.c. , (3.129)

where Λ is the cutoff scale, �L denotes the left-handed lepton doublet, H̃ ≡
iσ2H

∗ with H being the SM Higgs doublet, and κ stands for the effective
neutrino coupling matrix. After spontaneous gauge symmetry breaking, H̃
gains its vacuum expectation value 〈H̃〉 = v/

√
2 with v ≈ 246 GeV. We are

then left with the effective Majorana mass matrix MνMM = κv2/2 for three light
neutrinos from Eq. (3.129). If the dimension-5 Weinberg operator is obtained
in the framework of the minimal supersymmetric standard model (MSSM),
one will be left with MνMM = κ(v sinβ)2/2, where tanβ denotes the ratio of the
vacuum expectation values of two MSSM Higgs doublets.

Eq. (3.129) or its supersymmetric counterpart can provide a simple but
generic way of generating tiny neutrino masses. There are a number of in-
teresting possibilities of building renormalizable gauge models to realize the
effective Weinberg mass operator, either radiatively or at the tree level. The
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latter case is just associated with the well-known seesaw mechanisms to be
discussed in Section 4.1. Here we assume that Ld=5/Λ arises from an un-
derlying seesaw model, whose lightest heavy particle has a mass of O(Λ).
In other words, Λ characterizes the seesaw scale. Above Λ there may exist
one or more energy thresholds corresponding to the masses of heavier seesaw
particles (King and Singh, 2000; Antusch et al., 2002a; Mei, 2005; Antusch et
al., 2005; Chao and Zhang, 2007; Schmidt, 2007; Chakrabortty et al., 2009).
Below Λ the energy dependence of the effective neutrino coupling matrix κ is
described by its renormalization-group equation (RGE). The evolution of κ
from Λ down to the electroweak scale is formally independent of any details
of the relevant seesaw model from which κ is derived.

3.6.1 One-loop Renormalization-group Equations

At the one-loop level κ obeys the RGE (Chankowski and Pluciennik, 1993;
Babu et al., 1993; Antusch et al., 2001; 2002b)

16π2 dκ
dt

= ακκ+ Cκ

[
(YlYY Y

†
lYY )κ+ κ(YlYY Y

†
lYY )T
]
, (3.130)

where t ≡ ln(μ/Λ) with μ being an arbitrary renormalization scale between
the electroweak scale and the seesaw scale, and YlYY is the charged-lepton
Yukawa coupling matrix. The RGE of YlYY and those of YuYY (up-type quarks)
and YdYY (down-type quarks) are given by

16π2 dYlYY

dt
=
[
αl + C l

lC (YlYY Y
†
lYY )
]
YlYY ,

16π2 dYuYY

dt
=
[
αu + Cu

uCC (YuYY Y †
uYY ) + Cd

uCC (YdYY Y †
dYY )
]
YuYY ,

16π2 dYdYY

dt
=
[
αd + Cu

dC (YuYY Y †
uYY ) + Cd

dC (YdYY Y †
dYY )
]
YdYY . (3.131)

In the framework of the SM we have

Cκ = Cd
uCC = Cu

dC = −Cl
lC = −Cu

uCC = −Cd
dC = −3

2
, (3.132)

and

ακ = −3g2
2 + λ+ 2Tr

[
3(YuYY Y †

uYY ) + 3(YdYY Y †
dYY ) + (YlYY Y

†
lYY )
]
,

αl = −9
4
g2
1 − 9

4
g2
2 + Tr

[
3(YuYY Y †

uYY ) + 3(YdYY Y †
dYY ) + (YlYY Y

†
lYY )
]
,

αu = −17
20
g2
1 − 9

4
g2
2 − 8g2

3 + Tr
[
3(YuYY Y †

uYY ) + 3(YdYY Y †
dYY ) + (YlYY Y

†
lYY )
]
,

αd = −1
4
g2
1 − 9

4
g2
2 − 8g2

3 + Tr
[
3(YuYY Y †

uYY ) + 3(YdYY Y †
dYY ) + (YlYY Y

†
lYY )
]

; (3.133)

and in the framework of the MSSM we have
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Cκ = Cd
uCC = Cu

dC =
C l

lC

3
=
Cu

uCC

3
=
Cd

dC

3
= 1 , (3.134)

and

ακ = −6
5
g2
1 − 6g2

2 + 6Tr(YuYY Y †
uYY ) ,

αl = −9
5
g2
1 − 3g2

2 + Tr
[
3(YdYY Y †

dYY ) + (YlYY Y
†
lYY )
]
,

αu = −13
15
g2
1 − 3g2

2 − 16
3
g2
3 + 3Tr(YuYY Y †

uYY ) ,

αd = − 7
15
g2
1 − 3g2

2 − 16
3
g2
3 + Tr

[
3(YdYY Y †

dYY ) + (YlYY Y
†
lYY )
]
. (3.135)

Here g1, g2 and g3 are the gauge couplings and satisfy their RGEs

16π2 dgi

dt
= big

3
i , (3.136)

where (b1, b2, b3) = (41/10,−19/6,−7) in the SM or (33/5, 1,−3) in the
MSSM. In addition, λ is the Higgs self-coupling parameter of the SM and
obeys the RGE (Antusch et al., 2003)

16π2 dλ
dt

= 6λ2 − 3λ
(

3
5
g2
1 + 3g2

2

)
+

3
2

(
3
5
g2
1 + g2

2

)2

+ 3g4
2

+4λTr
[
3(YuYY Y †

uYY ) + 3(YdYY Y †
dYY ) + (YlYY Y

†
lYY )
]

−8Tr
[
3(YuYY Y †

uYY )2 + 3(YdYY Y †
dYY )2 + (YlYY Y

†
lYY )2
]
. (3.137)

The relation between λ and the Higgs mass MhM is given by λ = M2
hM /(2v2),

where v ≈ 246 GeV is the vacuum expectation value of the Higgs field.
Although massive neutrinos are most likely to be Majorana particles, the

possibility that they could be Dirac particles cannot be ruled out at present.
A combination of the Yukawa interactions of Dirac neutrinos in Eq. (3.10)
and those of charged fermions in Eq. (3.47) allows one to derive their RGEs
(Cheng et al., 1974; Machacek and Vaughn, 1984). At the one-loop level we
have the RGEs of Dirac fermions:

16π2 dYνYY

dt
=
[
αν + Cν

ν (YνYY Y †
νYY ) + Cl

ν(YlYY Y
†
lYY )
]
YνYY ,

16π2 dYlYY

dt
=
[
αl + Cν

lC (YνYY Y †
νYY ) + Cl

lC (YlYY Y
†
lYY )
]
YlYY ,

16π2 dYuYY

dt
=
[
αu + Cu

uCC (YuYY Y †
uYY ) + Cd

uCC (YdYY Y †
dYY )
]
YuYY ,

16π2 dYdYY

dt
=
[
αd + Cu

dC (YuYY Y †
uYY ) + Cd

dC (YdYY Y †
dYY )
]
YdYY . (3.138)

In the framework of the SM
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Cν
ν = Cl

lC = Cu
uCC = Cd

dC = +
3
2
,

Cl
ν = Cν

lC = Cd
uCC = Cu

dC = −3
2
, (3.139)

and

αν = − 9
20
g2
1 − 9

4
g2
2 + TSMTT ,

αl = −9
4
g2
1 − 9

4
g2
2 + TSMTT ,

αu = −17
20
g2
1 − 9

4
g2
2 − 8g2

3 + TSMTT ,

αd = −1
4
g2
1 − 9

4
g2
2 − 8g2

3 + TSMTT , (3.140)

in which TSMTT = Tr
[
3(YuYY Y †

uYY ) + 3(YdYY Y †
dYY ) + (YνYY Y †

νYY ) + (YlYY Y
†
lYY )
]

(Lindner et al.,
2005); and in the framework of the MSSM

Cν
ν = Cl

lC = Cu
uCC = Cd

dC = +3 ,
Cl

ν = Cν
lC = Cd

uCC = Cu
dC = +1 , (3.141)

and

αν = −3
5
g2
1 − 3g2

2 + Tr
[
3(YuYY Y †

uYY ) + (YνYY Y †
νYY )
]
,

αl = −9
5
g2
1 − 3g2

2 + Tr
[
(YνYY Y †

νYY ) + 3(YlYY Y
†
lYY )
]
,

αu = −13
15
g2
1 − 3g2

2 − 16
3
g2
3 + Tr

[
3(YuYY Y †

uYY ) + (YνYY Y †
νYY )
]
,

αd = − 7
15
g2
1 − 3g2

2 − 16
3
g2
3 + Tr

[
3(YdYY Y †

dYY ) + (YlYY Y
†
lYY )
]
. (3.142)

The RGEs of three gauge couplings g1, g2 and g3 remain to be those given
in Eq. (3.136).

The above RGEs allow us to evaluate the running behavior of κ or YνYY ,
together with those of YlYY , YuYY and YdYY , from the seesaw scale to the electroweak
scale or vice versa. We shall examine the evolution of neutrino masses, lepton
flavor mixing angles and CP-violating phases in the subsequent sections.

3.6.2 Evolution of Majorana Neutrino Mass Parameters

Without loss of generality, we choose the flavor basis where YlYY is diagonal:
YlYY = Dl ≡ Diag{ye, yμ, yτ} with yα being the eigenvalues of YlYY . In this case
the effective Majorana neutrino coupling matrix κ can be diagonalized by
the MNS matrix V ; i.e., V †κV ∗ = κ̂ ≡ Diag{κ1, κ2, κ3} with κi being the
eigenvalues of κ. Then
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dκ
dt

=
d
dt
(
V κ̂V̂ T

)
= V̇ κ̂V̂ T + V ˙̂κV̂ T + V κ̂V̇ T

=
1

16π2

[
ακV κ̂V̂ T + Cκ

(
D2

l V κ̂V̂ T + V κ̂V̂ TD2
l

)]
, (3.143)

with the help of Eq. (3.130). After a definition of the Hermitian matrix S ≡
V †D2

l V and the anti-Hermitian matrix T ≡ V †V̇ , Eq. (3.143) leads us to

˙̂κ =
1

16π2
[ακκ̂+ Cκ (Sκ̂+ κ̂Ŝ ∗)] − T κ̂+ κ̂T̂ ∗ . (3.144)

Because κ̂ is by definition diagonal and real, the left- and right-hand sides of
Eq. (3.144) must be diagonal and real. We can therefore arrive at

κ̇i =
1

16π2
(ακ + 2CκReSii)κi , (3.145)

together with ImTiiTT = ReTiiTT = ImSii = 0 (for i = 1, 2, 3). Since the off-
diagonal parts of Eq. (3.144) are vanishing, we have

TijTT κj − κiT
∗
ijTT =

Cκ

16π2

(
Sijκj + κiS

∗
ij

)
(3.146)

with i = j. Therefore,

ReTijTT = − Cκ

16π2
·
κi + κj

κi − κj

ReSij ,

ImTijTT = − Cκ

16π2
·
κi − κj

κi + κj

ImSij . (3.147)

Due to V̇ = V T , Eq. (3.147) actually governs the evolution of V with energies.
We proceed to define V ≡ PUP ′, in which P ≡ Diag{eiφe , eiφμ , eiφτ }, P ′ ≡

Diag{eiρ, eiσ, 1}, and U is the CKM-like matrix containing three neutrino
mixing angles and one CP-violating phase. Although P does not have any
physical meaning, its phases have their own RGEs (Casas et al., 2000). In
contrast, P ′ serves for the Majorana phase matrix. We find

T ′ ≡ P ′TP ′† = P ′V †V̇ P ′† = Ṗ ′P ′† + U†U̇ + U†P †ṖU , (3.148)

from which we can obtain six independent constraint equations:

T ′
11TT = T11TT = iρ̇+

∑
α

[
U∗

αU 1

(
U̇αU 1 + iUαU 1φ̇α

)]
,

T ′
22TT = T22TT = iσ̇ +

∑
α

[
U∗

αU 2

(
U̇αU 2 + iUαU 2φ̇α

)]
,

T ′
33TT = T33TT =

∑
α

[
U∗

αU 3

(
U̇αU 3 + iUαU 3φ̇α

)]
;
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T ′
12TT = T12TT ei(ρ−σ) =

∑
α

[
U∗

αU 1

(
U̇αU 2 + iUαU 2φ̇α

)]
,

T ′
13TT = T13TT eiρ =

∑
α

[
U∗

αU 1

(
U̇αU 3 + iUαU 3φ̇α

)]
,

T ′
23TT = T23TT eiσ =

∑
α

[
U∗

αU 2

(
U̇αU 3 + iUαU 3φ̇α

)]
, (3.149)

where α runs over e, μ and τ . Note that TiiTT = 0 holds and TijTT is given by
Eq. (3.147). In view of ye � yμ � yτ , we take D2

l ≈ Diag{0, 0, y2
τ} as an

excellent approximation. Then Sij , TijTT and T ′
ijTT can all be expressed in terms

of y2
τ and the parameters of U and P ′. After a straightforward calculation,

we obtain the explicit expressions of Eqs. (3.145) and (3.149) as follows:

κ̇i =
κi

16π2

(
ακ + 2Cκy

2
τ |UτiUU |2

)
, (3.150)

and∑
α

[
U∗

αU 1

(
iU̇αUU 1 − UαU 1φ̇α

)]
= ρ̇ ,∑

α

[
U∗

αU 2

(
iU̇αUU 2 − UαU 2φ̇α

)]
= σ̇ ,∑

α

[
U∗

αU 3

(
iU̇αUU 3 − UαU 3φ̇α

)]
= 0 ,

∑
α

[
U∗

αU 1

(
U̇αUU 2 + iUαU 2φ̇α

)]
= −Cκy

2
τ

16π2
ei(ρ−σ)

[
ζ−1
12 Re
(
U∗

τUU 1UτUU 2e
i(σ−ρ)
)

+iζ12Im
(
U∗

τUU 1UτUU 2e
i(σ−ρ)
)]

,∑
α

[
U∗

αU 1

(
U̇αUU 3 + iUαU 3φ̇α

)]
= −Cκy

2
τ

16π2
eiρ
[
ζ−1
13 Re
(
U∗

τUU 1UτUU 3e
−iρ
)

+iζ13Im
(
U∗

τUU 1UτUU 3e
−iρ
)]
,∑

α

[
U∗

αU 2

(
U̇αUU 3 + iUαU 3φ̇α

)]
= −Cκy

2
τ

16π2
eiσ
[
ζ−1
23 Re
(
U∗

τUU 2UτUU 3e
−iσ
)

+iζ23Im
(
U∗

τUU 2UτUU 3e
−iσ
)]
, (3.151)

where ζijζζ ≡ (κi − κj)/(κi + κj) with i = j. One can see that those y2
τ -

associated terms only consist of the matrix elements UτiUU (for i = 1, 2, 3). If
a parametrization of U assures UτiUU to be as simple as possible, the resultant
RGEs of neutrino mixing angles and CP-violating phases will be very concise.
We find that the FX parametrization advocated in Eq. (3.108) with

U =

⎛⎝⎛⎛slsνc+ clcνe−iφ slcνc− clsνe−iφ sls
clsνc− slcνe−iφ clcνc+ slsνe−iφ cls

−sνs −cνs c

⎞⎠⎞⎞ (3.152)
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accords with the above observation, while the “standard” parametrization in
Eq. (3.107) does not. That is why the RGEs of neutrino mixing angles and
CP-violating phases in the standard parametrization are rather complicated
(Casas et al., 2000; Antusch et al., 2003; Mei, 2005; Luo et al., 2005).

Here we take the FX form of U to derive the RGEs of neutrino mass
and mixing parameters (Xing, 2006). Combining Eqs. (3.150), (3.151) and
(3.152), we arrive at

κ̇1 =
κ1

16π2

(
ακ + 2Cκy

2
τs

2
νs

2
)
,

κ̇2 =
κ2

16π2

(
ακ + 2Cκy

2
τc

2
νs

2
)
,

κ̇3 =
κ3

16π2

(
ακ + 2Cκy

2
τc

2
)
, (3.153)

where ακ ≈ −3g2
2 + 6y2

t + λ (SM) or ακ ≈ −1.2g2
1 − 6g2

2 + 6y2
t (MSSM); and

θ̇l =
Cκy

2
τ

16π2
cνsνc
[(
ζ−1
13 cρc(ρ−φ) + ζ13sρs(ρ−φ)

)
−
(
ζ−1
23 cσc(σ−φ) + ζ23sσs(σ−φ)

)]
,

θ̇ν =
Cκy

2
τ

16π2
cνsν

[
s2
(
ζ−1
12 c

2
(σ−ρ) + ζ12s

2
(σ−ρ)

)
+ c2
(
ζ−1
13 c

2
ρ + ζ13s

2
ρ

)
−c2
(
ζ−1
23 c

2
σ + ζ23s

2
σ

)]
,

θ̇ =
Cκy

2
τ

16π2
cs
[
s2ν
(
ζ−1
13 c

2
ρ + ζ13s

2
ρ

)
+ c2ν
(
ζ−1
23 c

2
σ + ζ23s

2
σ

)]
; (3.154)

as well as

ρ̇ =
Cκy

2
τ

16π2

[
ζ̂12c

2
νs

2c(σ−ρ)s(σ−ρ) + ζ̂13
(
s2νs

2 − c2
)
cρsρ + ζ̂23c

2
νs

2cσsσ

]
,

σ̇ =
Cκy

2
τ

16π2

[
ζ̂12s

2
νs

2c(σ−ρ)s(σ−ρ) + ζ̂13s
2
νs

2cρsρ + ζ̂23
(
c2νs

2 − c2
)
cσsσ

]
,

φ̇ =
Cκy

2
τ

16π2

[(
c2l − s2l

)
c−1
l s−1

l cνsνc
(
ζ−1
13 cρs(ρ−φ) − ζ13sρc(ρ−φ)

−ζ−1
23 cσs(σ−φ) + ζ23sσc(σ−φ)

)
+ ζ̂12s

2c(σ−ρ)s(σ−ρ)

+ζ̂13
(
s2ν − c2νc

2
)
cρsρ + ζ̂23

(
c2ν − s2νc

2
)
cσsσ

]
, (3.155)

where ζ̂ijζζ ≡ ζ−1
ijζζ −ζijζζ = 4κiκj/

(
κ2

i − κ2
j

)
, ca ≡ cos a and sa ≡ sin a (for a = ρ,

σ, σ−ρ, ρ−φ or σ−φ). As a byproduct, the RGEs of three unphysical phases
φα are listed below:

φ̇e = +
Cκy

2
τ

16π2

[
cls

−1
l cνsνc

(
ζ−1
13 cρs(ρ−φ) − ζ13sρc(ρ−φ) − ζ−1

23 cσs(σ−φ)

+ζ23sσc(σ−φ)

)
+ c2
(
ζ̂13s

2
νcρsρ + ζ̂23c

2
νcσsσ

)]
,
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φ̇μ = −Cκy
2
τ

16π2

[
c−1
l slcνsνc

(
ζ−1
13 cρs(ρ−φ) − ζ13sρc(ρ−φ) − ζ−1

23 cσs(σ−φ)

+ζ23sσc(σ−φ)

)
− c2
(
ζ̂13s

2
νcρsρ + ζ̂23c

2
νcσsσ

)]
,

φ̇τ = −Cκy
2
τ

16π2

[
s2
(
ζ̂13s

2
νcρsρ + ζ̂23c

2
νcσsσ

)]
. (3.156)

It is easy to check that the relationship φ̇ = ρ̇ + σ̇ + φ̇e + φ̇μ + φ̇τ holds.
That is why φα should not be ignored in deriving the RGEs of those phys-
ical parameters, although these three phases can finally be rotated away by
rephasing the charged-lepton fields.

Some discussions on the basic features of RGEs of three neutrino masses,
three flavor mixing angles and three CP-violating phases are in order.

(a) The running behaviors of three neutrino massesmi (or equivalently κi)
are essentially identical and determined by ακ, unless tanβ is large enough
in the MSSM to make the y2

τ -associated term competitive with the ακ term.
In our phase convention, κ̇i or ṁi (for i = 1, 2, 3) are independent of the
CP-violating phase φ.

(b) Among three neutrino mixing angles, only the derivative of θν contains
a term proportional to ζ−1

12 . Note that ζ−1
ijζζ = (mi +mj)

2/Δm2
ij with Δm2

ij ≡
m2

i −m2
j holds. Current solar and atmospheric neutrino oscillation data yield

Δm2
21 ≈ 7.7 × 10−5 eV2 and

∣∣∣∣Δm2
32

∣∣∣∣ ≈ ∣∣∣∣Δm2
31

∣∣∣∣ ≈ 2.4 × 10−3 eV2. So θν is in
general more sensitive to radiative corrections than θl and θ. The evolution of
θν can be suppressed through the fine-tuning of (σ−ρ). The smallest neutrino
mixing angle θl may get radiative corrections even if its initial value is zero,
and thus it can be radiatively generated from other neutrino mixing angles
and CP-violating phases (Antusch et al., 2003; Mei and Xing, 2004; Luo et
al., 2005; Luo and Xing, 2006a).

(c) The running behavior of φ is quite different from those of ρ and σ,
because it includes a peculiar term proportional to s−1

l . This term, which
dominates φ̇ when θl is sufficiently small, becomes divergent in the limit
θl → 0. Indeed, φ is not well-defined if θl is exactly vanishing. But both θl

and φ can be radiatively generated. We may require that φ̇ remain finite
when θl approaches zero, implying that the following necessary condition can
be extracted from the expression of φ̇ in Eq. (3.155):

ζ−1
13 cρs(ρ−φ) − ζ13sρc(ρ−φ) − ζ−1

23 cσs(σ−φ) + ζ23sσc(σ−φ) = 0 . (3.157)

It turns out that

tanφ =
ζ̂13 sin 2ρ− ζ̂23 sin 2σ(

ζ−1
13 + ζ13 + ζ̂13 cos 2ρ

)
−
(
ζ−1
23 + ζ23 + ζ̂23 cos 2σ

) (3.158)

holds. Note that the initial value of θl, if it is exactly zero or extremely small,
may immediately drive φ to its quasi-fixed point (Luo and Xing, 2006b). In
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this interesting case Eq. (3.158) can be used to understand the relationship
between φ and two Majorana phases ρ and σ at the quasi-fixed point.

(d) The running behaviors of ρ and σ are relatively mild in comparison
with that of φ. A remarkable feature of ρ̇ and σ̇ is that they will vanish, if
both ρ and σ are initially vanishing. This observation indicates that ρ and σ
cannot simultaneously be generated from φ via the one-loop RGEs.

(e) The unphysical phases φμ and φτ only have relatively mild running
effects, while the running behavior of φe may be violent for sufficiently small
θl. A quasi-fixed point of φe is also expected in the limit θl → 0 and under
the circumstance given by Eq. (3.157) or Eq. (3.158).

3.6.3 Evolution of Dirac Neutrino Mass Parameters

The Yukawa coupling matrix of Dirac neutrinos YνYY obeys the RGE given in
Eq. (3.138). Because neutrino masses are extremely smaller than charged-
lepton masses, the (YνYY Y †

νYY ) term can be safely neglected from Eq. (3.138). We
are then left with

16π2 dYνYY

dt
=
[
αν + Cl

ν(YlYY Y
†
lYY )
]
YνYY ,

16π2 dY †
νYY

dt
= Y †

νYY
[
αν + Cl

ν(YlYY Y
†
lYY )
]
. (3.159)

Defining the Hermitian quantity κ′ ≡ YνYY Y †
νYY , we obtain

16π2 dκ′

dt
= 2ανκ

′ + Cκ

[
(YlYY Y

†
lYY )κ′ + κ′(YlYY Y

†
lYY )
]
, (3.160)

where αν ≈ −0.45g2
1−2.25g2

2 +3y2
t (SM) or αν ≈ −0.6g2

1−3g2
2 +3y2

t (MSSM),
and Cκ = Cl

ν . This RGE is rather similar to the one given in Eq. (3.130) for
Majorana neutrinos. Without loss of generality, we choose the flavor basis
where YlYY = Dl ≡ Diag{ye, yμ, yτ} holds. In this basis κ′ can be diagonalized
by the unitary transformation V †κ′V = κ̂′ ≡ Diag{y2

1 , y
2
2 , y

2
3} with V being

the MNS matrix and yi being the eigenvalues of YνYY . Let us denote V ≡ PUP ′,
in which P = Diag{eiφe , eiφμ , eiφτ }, P ′ ≡ Diag{eiρ, eiσ, 1}, and U is the CKM-
like matrix containing three neutrino mixing angles and one CP-violating
phase. Note that P does not take part in the RGEs because it can be removed
from Eq. (3.160) in the chosen basis. The phases in P ′ are also unphysical, but
they have their own RGEs. Following a straightforward procedure analogous
to the one from Eq. (3.143) to Eq. (3.151) in Section 3.6.2, one may easily
figure out the constraint equations for κ̂′, U , P ′ and their derivatives. In
the τ -dominance approximation (i.e., D2

l ≈ Diag{0, 0, y2
τ}), we obtain (Xing,

2006)
ẏi =

yi

16π2

(
αν + Cκy

2
τ |UτiUU |2

)
, (3.161)

and
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α

(
U∗

αU 1U̇αU 2

)
+ i
(
ρU˙ ∗

eU 1UeUU 2 + σ̇U˙ ∗
μU 1UμU 2

)
= −Cκy

2
τ

16π2
ξ12U

∗
τUU 1UτUU 2 ,

∑
α

(
U∗

αU 1U̇αU 3

)
+ i
(
ρU˙ ∗

eU 1UeUU 3 + σ̇U˙ ∗
μU 1UμU 3

)
= −Cκy

2
τ

16π2
ξ13U

∗
τUU 1UτUU 3 ,

∑
α

(
U∗

αU 2U̇αU 3

)
+ i
(
ρU˙ ∗

eU 2UeUU 3 + σ̇U˙ ∗
μU 2UμU 3

)
= −Cκy

2
τ

16π2
ξ23U

∗
τUU 2UτUU 3 , (3.162)

where α runs over e, μ and τ , and ξij ≡
(
y2

i + y2
j

)
/
(
y2

i − y2
j

)
with i = j.

Given the FX form of U in Eq. (3.152), the Yukawa coupling eigenvalues
of three Dirac neutrinos satisfy the following one-loop RGEs:

ẏ1 =
y1

16π2

(
αν + Cκy

2
τs

2
νs

2
)
,

ẏ2 =
y2

16π2

(
αν + Cκy

2
τ c

2
νs

2
)
,

ẏ3 =
y3

16π2

(
αν + 2Cκy

2
τ c

2
)
. (3.163)

The RGEs of three neutrino mixing angles and one (physical) CP-violating
phase are given by

θ̇l = +
Cκy

2
τ

16π2
cνsνccφ (ξ13 − ξ23) ,

θ̇ν = +
Cκy

2
τ

16π2
cνsν
[
s2ξ12 + c2 (ξ13 − ξ23)

]
,

θ̇ = +
Cκy

2
τ

16π2
cs
(
s2νξ13 + c2νξ23

)
,

φ̇ = −Cκy
2
τ

16π2

(
c2l − s2l

)
c−1
l s−1

l cνsνcsφ (ξ13 − ξ23) , (3.164)

where cφ ≡ cosφ and sφ ≡ sinφ. The RGEs of unphysical ρ and σ read

ρ̇ = −Cκy
2
τ

16π2
cls

−1
l cνsνcsφ (ξ13 − ξ23) ,

σ̇ = +
Cκy

2
τ

16π2
c−1
l slcνsνcsφ (ξ13 − ξ23) . (3.165)

It is obvious that φ̇ = ρ̇+ σ̇ holds. These RGEs are much more concise than
those obtained in the standard parametrization of U (Lindner et al., 2005).
Some qualitative discussions about the main features of Eqs. (3.163), (3.164)
and (3.165) are in order.

(a) Like the Majorana case, the running behaviors of three Dirac neutrino
masses mi (or equivalently yi) are nearly identical and determined by αν ,
unless tanβ is sufficiently large in the MSSM. It is also worth mentioning
that ẏi or ṁi (for i = 1, 2, 3) are independent of both the CP-violating phase
φ and the smallest mixing angle θl in the chosen parametrization of U .
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(b) θ̇ν consists of a term proportional to ξ12 = −(m2
1 +m2

2)/Δm
2
21. Hence

θν is in general more sensitive to radiative corrections than θl and θ, whose
derivatives depend on ξ13 = −(m2

1+m2
3)/Δm

2
31 and ξ23 = −(m2

2+m2
3)/Δm

2
32.

Given θν and θ at an energy scale, θl can be radiatively generated at another
energy scale. In this case, however, it is impossible to simultaneously generate
the CP-violating phase φ. The reason is simply that φ can always be rotated
away when θl is vanishing, and the proportionality relationship between φ̇
and sinφ forbids φ to be generated even when θl becomes non-vanishing.

(c) Different from the Majorana case, there is no nontrivial quasi-fixed
point in the RGE of φ for Dirac neutrinos. If φ̇ is required to keep finite when
θl approaches zero, then φ itself must approach zero or π. On the other hand,
θ̇l ∝ cosφ implies that the evolution of θl has a turning point characterized by
φ = π/2 (i.e., θ̇l flips its sign at this point). Hence two interesting conclusions
can be drawn: first, θl can never cross zero if θl = 0 and sin φ = 0 hold at a
certain energy scale; second, CP will always be a good symmetry if θl = 0 or
sinφ = 0 holds at a certain energy scale.

(d) The running behavior of ρ is quite similar to that of φ, simply because
φ̇ = ρ̇

(
1 − tan2 θl

)
holds. In addition, σ̇ = −ρ̇ tan2 θl implies that σ only gets

some mild radiative corrections.
As defined in Eq. (3.116), the Jarlskog parameter J is a rephasing invari-

ant of the MNS matrix V and measures the strength of CP and T violation in
neutrino oscillations. One has J = clslcνsνcs

2 sinφ in the FX parametriza-
tion, no matter whether three neutrinos are Dirac or Majorana particles. We
obtain the one-loop RGE

J̇DJJ =
Cκy

2
τ

16π2
JDJJ
[(
c2ν − s2ν

)
s2ξ12 +

(
c2 − s2νs

2
)
ξ13 +
(
c2 − c2νs

2
)
ξ23
]

(3.166)

for Dirac neutrinos. So JDJJ = 0 will be a stable result independent of the
renormalization scales, provided θl or sinφ initially vanishes at a given scale.
In comparison, we have

J̇MJJ =
Cκy

2
τ

16π2

{
JMJJ
[(
c2ν − s2ν

)
s2
(
ζ−1
12 c

2
(σ−ρ) + ζ12s

2
(σ−ρ)

)
+
(
c2 − s2νs

2
) (
ζ−1
13 c

2
ρ + ζ13s

2
ρ

)
+
(
c2 − c2νs

2
) (
ζ−1
23 c

2
σ + ζ23s

2
σ

)]
+cνsνcs

2
(
C12ζ̂12 + C13ζ̂13 + C23CC ζ̂23

)}
(3.167)

for Majorana neutrinos, where

C12 = clsls
2cφc(σ−ρ)s(σ−ρ) ,

C13 =
[
clslcφ

(
s2ν − c2νc

2
)

+
(
c2l − s2l

)
cνsνc
]
cρsρ ,

C23CC =
[
clslcφ

(
c2ν − s2νc

2
)
−
(
c2l − s2l

)
cνsνc
]
cσsσ . (3.168)

This result shows that JMJJ can be radiatively generated from two nontrivial
Majorana phases ρ and σ, even if it is initially vanishing at a given scale.
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Taking ρ = σ = 0, we arrive at C12 = C13 = C23CC = 0 as well as ρ̇ = σ̇ = 0.
But it is impossible to obtain the equality J̇MJJ (ρ = σ = 0) = J̇DJJ , because
ζ−1
12 = ξ12, ζ

−1
13 = ξ13 and ζ−1

23 = ξ23 (or equivalently m1m2 = m1m3 =
m2m3 = 0) cannot simultaneously hold. This observation demonstrates that
the running behavior of JMJJ is essentially different from that of JDJJ even if
one switches off two Majorana phases (Xing and Zhang, 2007).

So far a lot of numerical exercises have been done to illustrate the running
behaviors of neutrino mass and mixing parameters from the seesaw scale to
the electroweak scale, or vice versa. Some particular attention has been paid
to the possibility of generating the smallest neutrino mixing angle θ13 (or θl)
via the effect of its RGE evolution, and to the radiative corrections to a few
typical neutrino mixing patterns including the “tri-bimaximal” and “demo-
cratic” patterns (see, e.g., Antusch et al., 2002c; Antusch and Ratz, 2002; Mei
and Xing, 2004; Plentinger and Rodejohann, 2005; Mei and Xing, 2005; Luo
and Xing, 2006a; Lin et al., 2010). To achieve appreciable running effects,
however, one usually has to make at least one of the following assumptions:
(a) three neutrino masses are nearly degenerate to enhance the magnitudes of
ζ−1
ijζζ or ξij , (b) the value of tanβ is sufficiently large to enhance the magnitude

of y2
τ = m2

τ (1 + tan2 β)/v2 in the MSSM case, and (c) significant threshold
effects of heavy particles above the seesaw scale of Majorana neutrinos. We
do not elaborate those numerical results in this book.

Let us make two final remarks. First, the chosen flavor basis (i.e., YlYY = Dl)
is stable against radiative corrections. This point can be seen from Eq. (3.131)
or from Eq. (3.138) in the neglect of the (YνYY Y †

νYY ) term:

16π2 dDl

dt
=
(
αl + Cl

lC D2
l

)
Dl , (3.169)

whose left- and right-hand sides are both diagonal. Hence Dl itself keeps di-
agonal between the seesaw scale and the electroweak scale, although its three
eigenvalues get modified at different energy scales. IfDl were unstable against
quantum corrections, the RGEs of neutrino mass and mixing parameters ob-
tained above would no more make sense. Second, the running behaviors of
leptons are more or less related to those of quarks because their RGEs are
essentially entangled with each other. Even though three light neutrinos im-
pose little influence on the evolution of nine charged fermions, the opposite
is not true. That is why one has to use a full set of RGEs of lepton Yukawa
couplings, quark Yukawa couplings and gauge couplings to do a complete
numerical analysis of the evolution of neutrino masses, flavor mixing angles
and CP-violating phases with energy scales.
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4

Seesaw Mechanisms of Neutrino Masses

The origin of nonzero but tiny neutrino masses has been a big puzzle in par-
ticle physics. Among various scenarios of neutrino mass generation which are
surviving today, the seesaw mechanisms are most popular for model building.
In this chapter we shall first outline a few possible ways to go beyond the
standard model (SM) and generate finite neutrino masses, and then focus on
several typical seesaw mechanisms and discuss how to get a balance between
their theoretical naturalness and experimental testability. Possible collider
signatures of TeV seesaw mechanisms and their consequences on non-unitary
neutrino mixing and CP violation will also be discussed.

4.1 How to Generate Tiny Neutrino Masses

Neutrinos are massless in the SM, just because the structure of the SM itself
is too simple to accommodate massive neutrinos.

• Two fundamentals of the SM are the SU(2)L × U(1)Y gauge symmetry
and the Lorentz invariance. Both of them are mandatory to guarantee
that the SM is a consistent quantum field theory.

• The particle content of the SM is economical. There are no right-handed
neutrinos, so a Dirac neutrino mass term is not allowed. There is only one
Higgs doublet, so a gauge-invariant Majorana mass term is forbidden.

• The SM is a renormalizable theory, in which there does not exist a
dimension-5 operator that may give each neutrino a Majorana mass.

In other words, the SM accidently possesses the B−L symmetry which as-
sures three neutrinos to be exactly massless. Unlike the masslessness of the
photon, which is naturally guaranteed by the electromagnetic U(1)Q gauge
symmetry, the masslessness of three neutrinos in the SM is not an immedi-
ate consequence of any fundamental law or symmetry principle. But today’s
neutrino experiments have convincingly indicated the existence of neutrino
oscillations (Nakamura et al., 2010). This quantum phenomenon can appear
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if and only if neutrinos are massive and lepton flavors are mixed, and thus it is
a kind of new physics beyond the SM. To generate nonzero but tiny neutrino
masses, one or more of the above-mentioned constraints on the SM must be
abandoned or relaxed. It is certainly intolerable to abandon the gauge sym-
metry and Lorentz invariance; otherwise, one would be led astray. Given the
framework of the SM as a consistent field theory, its particle content can be
modified and (or) its renormalizability can be abandoned to accommodate
massive neutrinos. There are several ways to this goal. For simplicity, we
roughly classify the viable ideas about neutrino mass generation into non-
seesaw mechanisms and seesaw mechanisms.

4.1.1 Non-seesaw Mechanisms

Among many non-seesaw mechanisms of neutrino masses proposed in the
literature, three of them are particularly interesting and have attracted a lot
of attention in recent years.

(1) Non-renormalizable neutrino mass operators. In 1979, Steven Wein-
berg extended the SM by introducing some higher-dimension operators in
terms of the fields of the SM itself (Weinberg, 1979):

Leff = LSM +
Ld=5

Λ
+

Ld=6

Λ2
+ · · · , (4.1)

where Λ denotes the cutoff scale of this effective theory. Within such a frame-
work, the lowest-dimension operator that violates the lepton number (L) is
the unique dimension-5 operator HHLL/Λ. After spontaneous gauge sym-
metry breaking, this Weinberg operator yields mi ∼ 〈H〉2/Λ for neutrino
masses, which can be sufficiently small (� 1 eV) if Λ is not far away from the
scales of possible grand unified theories (i.e., Λ � 1013 GeV for 〈H〉 ∼ 102

GeV). In this sense, people argue that neutrino masses can serve as a low-
energy window onto new physics at superhigh-energy scales.

(2) Pure Dirac neutrino masses with B−L symmetry. Given three right-
handed neutrinos, the gauge-invariant and lepton-number-conserving mass
terms of charged leptons and neutrinos are

−Llepton = �LYlYY HER + �LYνYY H̃NRNN + h.c. , (4.2)

where H̃ ≡ iσ2H
∗ is defined and �L denotes the left-handed lepton doublet.

After spontaneous gauge symmetry breaking, we arrive at the charged-lepton
mass matrixMlM = YlYY v/

√
2 and the Dirac neutrino mass matrixMνMM = YνYY v/

√
2

with v 
 246 GeV. In this case, the smallness of three neutrino massesmi (for
i = 1, 2, 3) is attributed to the smallness of three eigenvalues of YνYY (denoted
as yi for i = 1, 2, 3). Then we encounter a transparent hierarchy problem:
yi/ye = mi/me � 0.5 eV/0.5 MeV ∼ 10−6. Why is yi so small? There is no
explanation at all in this Dirac-mass picture.
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A speculative way out is to invoke extra dimensions; namely, the smallness
of Dirac neutrino masses is ascribed to the assumption that three right-
handed neutrinos have access to one or more extra spatial dimensions (Dienes
et al., 1999; Arkani-Hamed et al., 2002). The idea is simply to confine the SM
particles onto a brane and to allow NRNN to travel in the bulk. For example,
the wave function of NRNN spreads out over the extra dimension y, giving rise
to a suppressed Yukawa interaction at y = 0 (i.e., the location of the brane):[

�LYνYY H̃NRNN
]

y=0
∼ 1√

L

[
�LYνYY H̃NRNN

]
y=L

. (4.3)

The magnitude of 1/
√
L is measured by Λ/ΛPlanck and can naturally be

small, because the fundamental scale Λ of a full theory with extra dimensions
may be much lower than the Planck mass scale ΛPlanck of the effective four-
dimensional theory (e.g., Λ ∼ 1 TeV and ΛPlanck ∼ 1019 GeV).

(3) Radiative generation of tiny neutrino masses. In a seminal paper pub-
lished in 1972, Weinberg pointed out that “in theories with spontaneously
broken gauge symmetries, various masses or mass differences may vanish in
zeroth order as a consequence of the representation content of the fields ap-
pearing in the Lagrangian. These masses or mass differences can then be
calculated as finite higher-order effects.” (Weinberg, 1972). Such a mecha-
nism may allow us to slightly go beyond the SM and radiatively generate
tiny neutrino masses. A typical example is the well-known Zee model (Zee,
1980),

−Llepton = �LYlYY HER + �LYSYY S−iσ2�
c
L + Φ̃TFS+iσ2H̃ + h.c. , (4.4)

where S+ and S− are charged SU(2)L singlet scalars, Φ denotes a new SU(2)L
doublet scalar which has the same quantum number as the SM Higgs doublet
H, YSYY is an antisymmetric matrix, and F represents a coupling constant and
has the dimension of mass. Without loss of generality, we choose the basis
of MlM = YlYY 〈H〉 = Diag{me,mμ, mτ}. In this model neutrinos are massless at
the tree level, but their masses can be generated via the one-loop corrections.
Given MSM � MhM ∼ MΦMM ∼ F and 〈Φ〉 ∼ 〈H〉, the elements of the effective
mass matrix of three light Majorana neutrinos turns out to be

(MνMM )αβ ∼ MhM

16π2
·
m2

α −m2
β

M2
SM

(YSYY )αβ , (4.5)

where α and β run over e, μ and τ . The smallness of MνMM is therefore ascribed
to the smallness of YSYY and (m2

α − m2
β)/M2

SM . Although the original version
of the Zee model is disfavored by current experimental data on neutrino
oscillations, its extensions or variations at the one-loop or two-loop level can
survive (Babu, 1988; Ma, 1998).
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4.1.2 Seesaw Mechanisms

Without loss of the gauge symmetry and Lorentz invariance, the essential
spirit of seesaw mechanisms is to add a few new particles into the SM and
allowB−L violation — tiny masses of three known neutrinos are attributed to
the existence of heavy degrees of freedom and lepton number violation. There
are three typical seesaw mechanisms on the market, and their properties have
been extensively studied.

(1) Type-I seesaw — three heavy right-handed neutrinos are added into
the SM and the lepton number is violated by their Majorana mass term
(Fritzsch et al., 1975; Minkowski, 1977; Yanagida, 1979; Gell-Mann et al.,
1979; Glashow, 1980; Mohapatra and Senjanovic, 1980):

−Llepton = �LYlYY HER + �LYνYY H̃NRNN +
1
2
N c

RNN MRMM NRNN + h.c. , (4.6)

where MRMM is the symmetric Majorana mass matrix.
(2) Type-II seesaw — one heavy Higgs triplet is added into the SM and

the lepton number is violated by its interactions with both the lepton doublet
and the Higgs doublet (Konetschny and Kummer, 1977, Magg and Wetterich,
1980; Schechter and Valle, 1980; Cheng and Li, 1980; Lazarides et al., 1981;
Mohapatra and Senjanovic, 1981):

−Llepton = �LYlYY HER +
1
2
�LYΔY Δiσ2�

c
L − λΔMΔM HT iσ2ΔH + h.c. , (4.7)

where

Δ ≡
(

Δ− −
√

2 Δ0
√

2 Δ−− −Δ−

)
(4.8)

denotes the SU(2)L Higgs triplet.
(3) Type-III seesaw — three heavy triplet fermions are added into the

SM and the lepton number is violated by their Majorana mass term (Foot et
al., 1989; Ma, 1998):

−Llepton = �LYlYY HER + �L
√

2YΣYY ΣcH̃ +
1
2
Tr
(
ΣMΣM Σc

)
+ h.c. , (4.9)

where

Σ =
(
Σ0/

√
2 Σ+

Σ− −Σ0/
√

2

)
(4.10)

denotes the SU(2)L fermion triplet.
Of course, there are a number of variations or combinations of these three

typical seesaw mechanisms in the literature. Some of them will be introduced
in Sections 4.3 and 4.4. For each of the above seesaw pictures, one may get the
unique dimension-5 Weinberg operator of neutrino masses after integrating
out the corresponding heavy degrees of freedom:
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Ld=5

Λ
=

⎧⎪⎧⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪

1
2
(
YνYY M−1

RMM Y T
νYY
)
αβ
�αLH̃H̃

T �cβL + h.c. (Type I) ,

− λΔ

MΔM
(YΔY )αβ �αLH̃H̃

T �cβL + h.c. (Type II) ,

1
2
(
YΣYY M−1

ΣMM Y T
ΣYY
)
αβ
�αLH̃H̃

T �cβL + h.c. (Type III) .

(4.11)

After spontaneous gauge symmetry breaking, H̃ achieves its vacuum expecta-
tion value 〈H̃〉 = v/

√
2 with v 
 246 GeV. Then we are left with the effective

Majorana neutrino mass term for three light neutrinos,

−Lmass =
1
2
νLMνMM νc

L + h.c. , (4.12)

where the symmetric Majorana mass matrix MνMM is given by

MνMM =

⎧⎪⎧⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪

−1
2
YνYY

v2

MRMM
Y T

νYY (Type I) ,

λΔYΔY
v2

MΔM
(Type II) ,

−1
2
YΣYY

v2

MΣM
Y T

ΣYY (Type III) .

(4.13)

It becomes obvious that the smallness of MνMM can be attributed to the large-
ness of MRMM , MΔM or MΣM in the seesaw mechanism.

4.1.3 The Weinberg Operator

Now let us derive the dimension-5 Weinberg operator of neutrino masses
Ld=5/Λ given in Eq. (4.11). The cutoff scale Λ is roughly characterized by
the masses of heavy particles in a seesaw mechanism, and thus it is naturally
expected to be much higher than the electroweak scale. At low energies one
may integrate out the heavy degrees of freedom and obtain an effective field
theory, which only contains the light degrees of freedom, to describe the finite
masses of three known neutrinos.

Without loss of generality, we illustrate the approach by considering a
field theory consisting of two real scalars φ(x) and Φ(x), whose masses are
denoted respectively by mφ and MΦMM . We assume mφ � MΦMM in this theory.
Its Lagrangian can be schematically written as

Lfull[φ;Φ] = Lfree[φ] + Lfree[Φ] + Lint[φ,Φ] , (4.14)

where Lfree denotes the kinetic and mass terms, and Lint represents the in-
teraction term. At an energy scale far below MΦMM , it should be good enough
to describe physical phenomena by means of an effective theory which only
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involves the field φ. The action of this effective theory can accordingly be
derived as follows (Weinberg, 1980; Bilenky and Santamaria, 1994):

exp{iSeffS } = exp
{

i
∫

Leff [φ(x)]d4x

}
=
∫

[DΦ][DΦ†] exp
{

i
∫

Lfull[φ(x);Φ(x)]
}

= exp
{

i
∫

[Lfull[φ(x);Φ(x) = 0] + O[φ(x)]] d4x

}
, (4.15)

in which the effective operator arising from the path-integration is denoted
as O[φ(x)]. This operator only depends on the field φ(x) and may not nec-
essarily be of dimension-four. The effective Lagrangian at low energies is
therefore a sum of the Lagrangian without the heavy degrees of freedom and
the operator obtained from integrating out the heavy degrees of freedom;
i.e., Leff [φ(x)] = Lfull[φ(x);Φ(x) = 0] + O[φ(x)]. Taking the type-I seesaw
mechanism for example, we shall subsequently derive the Weinberg operator
by integrating out the heavy Majorana neutrinos.

The type-I seesaw model is a simple extension of the SM with three heavy
Majorana neutrinos. The full Lagrangian of this model reads

L = LSM +NRNN i/∂N// RNN −
[
1
2
N c

RNN MRMM NRNN + �LYνYY H̃NRNN + h.c.
]
, (4.16)

where LSM stands for the SM Lagrangian. The Majorana mass matrix MRMM
is symmetric and can be diagonalized by a unitary matrix U via the trans-
formation U†MRMM U∗ = M̂ = Diag {M1,M2MM ,M3MM }. In the mass basis of heavy
Majorana neutrinos, the Lagrangian involving the heavy degrees of freedom
can be rewritten as

LN =
1
2
NiNN i/∂N// iNN − 1

2
MiMM NiNN NiNN −

[
�αL(ỸνYY )αiH̃NiNN + h.c.

]
, (4.17)

where N̂RNN ≡ UTNRNN , ỸνYY ≡ YνYY U∗ and N ≡ N̂RNN + N̂ c
RNN have been defined, and

the relevant family indices have been omitted. Because[
�LỸνYY H̃N

]T
= NỸ T

νYY H̃T �cL ,
[
NỸ †

νYY H̃†�L
]T

= �cLỸ
∗
νYY H̃∗N , (4.18)

where �cL ≡ C�L
T

similar to the definitions made in Eq. (3.6), we have

�αL(ỸνYY )αiH̃NiNN + h.c. =
1
2

[
N
(
Ỹ T

νYY H̃T �cL + Ỹ †
νYY H̃†�L

)
+
(
�LỸνYY H̃ + �cLỸ

∗
νYY H̃∗
)
N
]
, (4.19)

which will be useful in the integration over the heavy Majorana fields. Sub-
stituting Eq. (4.19) into Eq. (4.17), we immediately arrive at
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LN =
1
2
NKN − 1

2
Nχ− 1

2
χN , (4.20)

where K ≡ i/∂// − M̂ , χ ≡ χ†γ0 and χ ≡ Ỹ T
νYY H̃T �cL + Ỹ †

νYY H̃†�L have been
defined. We proceed to apply the formulism in Eqs. (4.14) and (4.15) to the
full Lagrangian of the type-I seesaw model in Eq. (4.16), so as to obtain the
effective Lagrangian of three light neutrinos at low energies. First of all, we
integrate LN in Eq. (4.20) over the heavy Majorana neutrino fields; viz.,∫

[DN ][DN ] exp
{

i
∫

1
2
[
NKN −Nχ− χN

]
d4x

}
, (4.21)

which is typically Gaussian. In general, the Gaussian integrals can be ex-
pressed in the following way (Weinberg, 1995):

I =
∫ +∞

−∞

∫∫ ∏
r

dξre
−Q(ξ) , (4.22)

in which

Q(ξ) ≡ 1
2

∑
r,s

KrsK ξrξs +
∑

r

Lrξr +M . (4.23)

Note that K is a nonsingular, positive-definite and symmetric matrix, and
the variables ξr are real. Hence K can be diagonalized via the orthogo-
nal transformation S TKS = κ, or equivalently SrpSS SsqSS KrsK = κpδpqδ with
S T S = S S T = 1. Given the definition ξ̃r ≡ SsrSS ξs, Eq. (4.23) becomes

Q(ξ̃) =
1
2

∑
r

κr ξ̃
2
r +
∑

r

(LS )r ξ̃r +M , (4.24)

and the integration in Eq. (4.22) turns out to be

I = e−M
∏
r

∫ +∞

−∞

∫∫
dξ̃r exp

{
−1

2
κr ξ̃

2
r − (LS )r ξ̃r

}

= e−M
∏
r

(
1

2πκr

)1/2

exp
{

1
2
κ−1

r (LS )2r

}
= (2πDetK)−1/2 exp

{
1
2
LK−1LT −M

}
, (4.25)

where DetK is the determinant of K. It is instructive to rewrite the result

in Eq. (4.25) by evaluating the extremum of Q(ξ) through
∂Q(ξ)
∂ξr

= 0. Af-

ter a straightforward calculation, we find the extremum at ξ̂ = −K−1LT .
Therefore,
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I = (2πDetK)−1/2 exp
{

1
2
LK−1LT −M

}
= (2πDetK)−1/2 exp

{
−Q(ξ̂)

}
. (4.26)

This result can be generalized to the complex variables and to a field theory
with infinite dimensions. The important point indicated by Eq. (4.26) is that
the integral can be obtained by solving the equation of motion, if the variables
ξr are replaced by the relevant fields. For the complex scalar fields, we have
the functional integration∫

[Dφ][Dφ†] exp
{

i
∫
φ†(x)K(x, y)φ(y) − i

∫ [
J†(z)φ(z) + h.c.

]}
= (DetK)−1 exp

{
−i
∫

d4xd4yJ†(x)K−1(x, y)J(y)
}

; (4.27)

and for the fermion fields, we have∫
[Dψ][Dψ] exp

{
i
∫
ψ(x)K(x, y)ψ(y) − i

∫ [
J(z)ψ(z) + h.c.

]}
= DetK exp

{
−i
∫

d4xd4yJ(x)K−1(x, y)J(y)
}
. (4.28)

Note that the integration over the spacetime arguments in the first line of
Eq. (4.27) or Eq. (4.28) is implied. Note also that the factors appearing in the
bosonic and fermionic integrations (i.e., (DetK)−1 and DetK) are different.
Now we apply the result in Eq. (4.28) to Eq. (4.21):∫

[DN ][DN ] exp
{

i
∫

1
2
[
NKN −Nχ− χN

]
d4x

}
= DetK exp

{
− i

2

∫
χK−1χd4x

}
= exp

{
i
2

∫
d4x
(
�LỸνYY H̃ + �cLỸ

∗
νYY H̃∗
)
M̂−1
(
Ỹ T

νYY H̃T �cL + Ỹ †
νYY H̃†�L

)}
, (4.29)

where the field-independent factor DetK contributes a constant to the action
and thus can be omitted, and the operator (i/∂//− M̂)−1 has been expanded in
powers of M̂−1. In the leading-order approximation we can therefore arrive
at the Weinberg operator in the type-I seesaw model:

Ld=5

Λ
=

1
2
�LH̃ỸνYY M̂−1Ỹ T

νYY H̃T �cL + h.c.

=
1
2
�LH̃YνYY U∗M̂−1U†Y T

νYY H̃T �cL + h.c.

=
1
2
(
YνYY M−1

RMM Y T
νYY
)
αβ
�αLH̃H̃

T �cβL + h.c. , (4.30)
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where ỸνYY = YνYY U∗ and MRMM = UM̂UT have been used. This result is valid
in any flavor basis of heavy Majorana neutrinos. After spontaneous gauge
symmetry breaking, the Weinberg operator gives rise to the effective neutrino
mass term in Eq. (4.12) with MνMM = −MDMM M−1

RMM MT
DMM and MDMM = YνYY v/

√
2 . The

dimension-5 operators in the type-II and type-III seesaw models, which have
been summarized in Eq. (4.11), can be derived in an analogous way.

4.2 On the Scales of Seesaw Mechanisms

As we have seen, the key point of a seesaw mechanism is to ascribe the
smallness of neutrino masses to the existence of some new degrees of freedom
heavier than the Fermi scale v 
 246 GeV. The energy scale where a see-
saw mechanism works is crucial, as it is relevant to whether this mechanism
is theoretically natural and experimentally testable (Xing, 2009). Between
Fermi and Planck scales, there might exist two other fundamental scales: one
is the scale of a grand unified theory (GUT) at which strong, weak and elec-
tromagnetic forces can be unified, and the other is the TeV scale at which
the unnatural gauge hierarchy problem of the SM can be solved or at least
softened by a kind of new physics.

4.2.1 Seesaw-induced Hierarchy Problem

Many theorists argue that the conventional seesaw scenarios are natural be-
cause their scales (i.e., the masses of heavy degrees of freedom) are close to
the GUT scale. This argument is reasonable on the one hand, but it reflects
the drawbacks of the conventional seesaw models on the other hand. In other
words, the conventional seesaw models have no direct experimental testabil-
ity and involve a potential hierarchy problem. The latter is usually spoke
of when two largely different energy scales exist in a model, but there is no
symmetry to stabilize the low-scale physics suffering from large corrections
coming from the high-scale physics.

Such a seesaw-induced fine-tuning problem means that the SM Higgs
mass MhM is very sensitive to quantum corrections from the heavy degrees of
freedom in a seesaw mechanism. For example (Vissani, 1998; Casas et al.,
2004; Abada et al., 2007),

δM2
hM =

⎧⎪⎧⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪

− y2
i

8π2

(
Λ2 + M2

iMM ln
M2

iMM

Λ2

)
(Type I)

3

16π2

[
λ3

(
Λ2 + M2

ΔM ln
M2

ΔM

Λ2

)
+ 4λ2

ΔM2
ΔM ln

M2
ΔM

Λ2

]
(Type II)

− 3y2
i

8π2

(
Λ2 + M2

iMM ln
M2

iMM

Λ2

)
(Type III)

(4.31)

in three typical seesaw scenarios, where Λ is the regulator cutoff, yi and
MiMM (for i = 1, 2, 3) stand respectively for the eigenvalues of YνYY (or YΣYY ) and
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MRMM (or MΣM ), and the contributions proportional to v2 and M2
hM have been

omitted. Eq. (4.31) shows a quadratic sensitivity to the new scale which
is characteristic of the seesaw model, implying that a high degree of fine-
tuning would be necessary to accommodate the experimental data on MhM
if the seesaw scale is much larger than v (or the Yukawa couplings are not
extremely fine-tuned in type-I and type-III seesaws) (Abada et al., 2007).

Taking the type-I seesaw scenario for illustration, we assume Λ ∼MiMM and
require |δM2

hM | � 0.1 TeV2. Then Eq. (4.31) leads us to the rough estimate

MiMM ∼
[
(2πv)2|δM2

hM |
mi

]1/3

� 107GeV
[
0.2 eV
mi

]1/3 [ |δM2
hM |

0.1 TeV2

]1/3

. (4.32)

This naive result indicates that a hierarchy problem will arise if MiMM � 107

GeV in the type-I seesaw scheme. Because of mi ∼ y2
i v

2/(2MiMM ), the bound
MiMM � 107 GeV implies yi ∼

√
2miMiM /v � 2.6 × 10−4 for mi ∼ 0.2 eV. Such

a small magnitude of yi seems to be a bit unnatural in the sense that the
conventional seesaw idea attributes the smallness of mi to the largeness of
MiMM other than the smallness of yi.

There are two possible ways out of this impasse: one is to appeal for the
supersymmetry, and the other is to lower the seesaw scale. In the following
discussions we shall focus on whether a seesaw mechanism at low energies is
theoretically natural and interesting.

4.2.2 Seesaw-induced Naturalness Problem

In reality, there is no direct evidence for a high or extremely high seesaw
scale. So eV-, keV-, MeV- and GeV-scale seesaw mechanisms are all possible,
at least in principle; and they are technically natural in the sense that their
lepton-number-violating mass terms are naturally small according to Gerar-
dus ’t Hooft’s naturalness criterion (’t Hooft, 1980) — “At any energy scale
μ, a set of parameters αi(μ) describing a system can be small, if and only
if, in the limit αi(μ) → 0 for each of these parameters, the system exhibits
an enhanced symmetry.” But there are several potential problems associated
with the seesaw ideas at a very low energy scale (de Gouvea et al., 2007):
(a) a low-scale seesaw picture does not give any obvious connection to a the-
oretically well-justified fundamental physical scale (such as the Fermi scale,
the TeV scale, the GUT scale or the Planck scale); (b) the neutrino Yukawa
couplings in a low-scale seesaw model turn out to be tiny, giving no actual
explanation of why the masses of three known neutrinos are so small; and (c)
in general, a very low seesaw scale does not allow the “canonical” thermal
leptogenesis mechanism (Fukugita and Yanagida, 1986) to work, although
there might be an exotic way out.

It is therefore more natural to consider the possibility of realizing a seesaw
mechanism above the electroweak scale but far below Λ ∼ 107 GeV. That
is just the TeV energy region which is being explored by the Large Hadron
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Collider (LHC). There are several reasons for possible existence of new physics
at the TeV scale. This kind of new physics should be able to stabilize the
Higgs-boson mass and hence the electroweak scale; in other words, it should
be able to solve or soften the unnatural gauge hierarchy problem. It has also
been argued that the weakly-interacting particle candidates for dark matter
should weigh about one TeV or less (Dimopoulos, 1990). If the TeV scale
is really a fundamental scale, we shall be reasonably motivated to speculate
that possible new physics existing at the TeV scale and responsible for the
electroweak symmetry breaking might also be responsible for the origin of
neutrino masses (Xing, 2008a). It is interesting and meaningful in this sense
to investigate and balance the naturalness and testability of TeV seesaw
mechanisms at the energy frontier set by the LHC.

As a big bonus of the conventional (type-I) seesaw mechanism, the ther-
mal leptogenesis mechanism (Fukugita and Yanagida, 1986) provides us with
an elegant dynamic picture to interpret the cosmological matter-antimatter
asymmetry characterized by the observed ratio of the baryon number den-
sity to the photon number density, ηB ≡ nB/nγ = (6.1 ± 0.2) × 1010. When
heavy Majorana neutrino masses are down to the TeV scale, the Yukawa
couplings should be reduced by more than six orders of magnitude so as to
generate tiny neutrino masses via the type-I seesaw mechanism and satisfy
the out-of-equilibrium condition, but the CP-violating asymmetries of heavy
Majorana neutrino decays can still be enhanced by the resonant effects in
order to account for ηB. This “resonant leptogenesis” scenario might work
in a specific TeV seesaw model (Pilaftsis and Underwood, 2004, 2005; Xing
and Zhou, 2007), but its naturalness is certainly questionable. Other see-
saw mechanisms might have similar problems at the TeV scale to realize the
successful baryogenesis via leptogenesis.

Is there a TeV Noah’s Ark which can naturally and simultaneously accom-
modate the seesaw idea, the leptogenesis picture and the collider signatures?
We are most likely not so lucky and should not be too ambitious at present.

4.3 Seesaw Mechanisms at the TeV Scale

The neutrino mass terms in three typical seesaw mechanisms have been given
in Section 4.1.2. Without loss of generality, we choose the basis in which
the mass eigenstates of three charged leptons are identified with their flavor
eigenstates. Let us discuss a few typical TeV seesaw mechanisms.

4.3.1 Type-I Seesaw Mechanism

Given MDMM = YνYY v/
√

2 , the approximate type-I seesaw formula in Eq. (4.13)
can be rewritten as MνMM = −MDMM M−1

RMM MT
DMM . Note that the 3 × 3 light neutrino

mixing matrix V is not exactly unitary in this seesaw scheme, as one can see
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more clearly in Section 4.5, and its deviation from unitarity is of O(M2
DMM /M2

RMM ).
We consider two interesting possibilities:

• MDMM ∼ O(102) GeV and MRMM ∼ O(1015) GeV to get MνMM ∼ O(10−2) eV. In
this conventional and natural case, MDMM /MRMM ∼ O(10−13) holds. Hence the
non-unitarity of V is only at the O(10−26) level, too small to be observed.

• MDMM ∼ O(102) GeV and MRMM ∼ O(103) GeV to get MνMM ∼ O(10−2) eV.
In this unnatural case, a significant “structural cancellation” has to be
imposed on the textures of MDMM and MRMM . Because of MDMM /MRMM ∼ O(0.1),
the non-unitarity of V can reach the percent level and may lead to some
observable effects at low energies.

Now we discuss how to realize the above “structural cancellation” for the
type-I seesaw mechanism at the TeV scale. For the sake of simplicity, we take
the basis of MRMM = Diag{M1,M2MM ,M3MM } for three heavy Majorana neutrinos
(N1NN ,N2NN ,N3NN ). It is well known that MνMM vanishes if

MDMM = m

⎛⎝⎛⎛ y1 y2 y3
αy1 αy2 αy3
βy1 βy2 βy3

⎞⎠⎞⎞ and
3∑

i=1

y2
i

MiMM
= 0 (4.33)

simultaneously hold (Kersten and Smirnov, 2007). Tiny neutrino masses can
be generated from tiny corrections to the texture of MDMM in Eq. (4.33). For
example, M ′

DMM = MDMM − εXD with MDMM given above and ε being a small dimen-
sionless parameter (i.e., |ε| � 1) yields

M ′
νMM = −M ′

DMM M−1
RMM M ′T

DMM 
 ε
(
MDMM M−1

RMM XT
D +XDM

−1
RMM MT

DMM
)
, (4.34)

from which M ′
νMM ∼ O(10−2) eV can be obtained by adjusting the size of ε.

A lot of attention has recently been paid to a viable type-I seesaw model
and its collider signatures at the TeV scale (Xing, 2008a; 2009). At least the
following lessons can be learnt:

• Two necessary conditions must be satisfied in order to test a type-I seesaw
model at the LHC: (a)MiMM are of O(1) TeV or smaller; and (b) the strength
of light-heavy neutrino mixing (i.e., MDMM /MRMM ) is large enough. Otherwise,
it would be impossible to produce and detect NiNN at the LHC.

• The collider signatures of NiNN are essentially decoupled from the mass and
mixing parameters of three light neutrinos νi. For instance, the small
parameter ε in Eq. (4.34) has nothing to do with the ratio MDMM /MRMM .

• The non-unitarity of V might lead to some observable effects in long-
baseline neutrino oscillations and some other lepton-flavor-violating or
lepton-number-violating processes, if MDMM /MRMM is of O(0.1). More discus-
sions will be given in Section 4.5.

• The clean LHC signatures of heavy Majorana neutrinos are the ΔL = 2
like-sign dilepton events (Keung and Senjanovic, 1983), such as pp →
W ∗±W ∗± → μ±μ±jj (a collider analogue to the neutrinoless double-
beta decay) and pp → W ∗± → μ±NiNN → μ±μ±jj (a dominant channel
due to the resonant production of NiNN ).
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Some instructive and comprehensive analyses of possible LHC events for a
single heavy Majorana neutrino have recently been done (Han and Zhang,
2006; del Aguila and Aguilar-Saavedra, 2009a; Atre et al., 2009), but they
only serve for illustration because such a simplified type-I seesaw scenario is
actually unrealistic.

4.3.2 Type-II Seesaw Mechanism

The type-II seesaw formula MνMM = YΔY vΔ = λΔYΔY v2/MΔM has already been
given in Eq. (4.13). Note that the third term in Eq. (4.7) violates both L
and B−L, so the smallness of λΔ is naturally allowed according to ’t Hooft’s
naturalness criterion; i.e., setting λΔ = 0 will increase the symmetry of Llepton

(’t Hooft, 1980). Given MΔM ∼ O(1) TeV, for example, this seesaw mechanism
works to generate MνMM ∼ O(10−2) eV provided λΔYΔY ∼ O(10−12) holds. Note
also that the neutrino mixing matrix V is exactly unitary in the type-II seesaw
mechanism, simply because the heavy degrees of freedom do not mix with
the light ones.

There are totally seven physical Higgs bosons in the type-II seesaw
scheme: doubly-charged H++ and H−−, singly-charged H+ and H−, neutral
A0 (CP-odd), and neutral h and H0 (CP-even), where h is the SM-like Higgs
boson. Except for M2

hM , we get a quasi-degenerate mass spectrum for other
scalars (Fileviez Pérez et al., 2008; del Aguila and Aguilar-Saavedra, 2009a):
M2

HM ±± = M2
ΔM ≈M2

HM 0 ≈M2
HM ± ≈M2

AM 0 . As a consequence, the decay channels
H±± → W±H± and H±± → H±H± are kinematically forbidden. The pro-
duction of H±± at the LHC is mainly through qq̄ → γ∗, Z∗ → H++H−− and
qq̄′ → W ∗ → H±±H∓ processes, which do not depend on the small Yukawa
couplings and thus may not be suppressed.

The typical collider signatures in this seesaw scenario are the lepton-
number-violating H±± → l±α l

±
β decays as well as H+ → l+α ν and H− → l−α ν

decays (for α, β = e, μ, τ). Their branching ratios

B(H±± → l±α l
±
β ) =

|(MνMM )αβ |2∑
ρ,σ

|(MνMM )ρσ|2
(
2 − δαβ

)
,

B(H+ → l+α ν) =

∑
β

|(MνMM )αβ |2∑
ρ,σ

|(MνMM )ρσ|2
(4.35)

are closely related to the masses, flavor mixing angles and CP-violating phases
of three light neutrinos, becauseMνMM = V M̂νMM V T with M̂νMM = Diag{m1,m2,m3}
holds. Some detailed analyses of such decay modes together with the LHC
signatures of H±± and H± bosons have been done in the literature (see, for
example, Fileviez Pérez et al., 2008).
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It is worth pointing out that the following dimension-6 operator can easily
be derived from the type-II seesaw mechanism:

Ld=6

Λ2
= −

(YΔY )αβ (YΔY )†ρσ

4M2
ΔM

(
�αLγ

μ�σL

) (
�βLγμ�ρL

)
, (4.36)

which has two immediate low-energy effects: the non-standard interactions of
neutrinos and the lepton-flavor-violating interactions of charged leptons. An
analysis of such effects provides us with some preliminary information (Malin-
sky et al., 2009): (a) the magnitudes of non-standard interactions of neutrinos
and the widths of lepton-flavor-violating tree-level decays of charged leptons
are dependent on the neutrino masses mi and flavor mixing parameters of
V ; (b) for a long-baseline neutrino oscillation experiment, the neutrino beam
encounters the Earth matter and the electron-type non-standard interaction
contributes to the matter potential; and (c) at a neutrino factory, the lepton-
flavor-violating processes μ− → e−νeνμ and μ+ → e+νeνμ could cause some
wrong-sign muons at a near detector. Current experimental constraints tell us
that such low-energy effects are very small, but they might be experimentally
accessible in the future precision measurements.

4.3.3 Type-(I+II) Seesaw Mechanism

The type-(I+II) seesaw mechanism can be achieved by combining the neu-
trino mass terms in Eqs. (4.6) and (4.7). After spontaneous gauge symmetry
breaking, we are left with the overall neutrino mass term

−Lmass =
1
2

(νL N
c
RNN )
(
MLMM MDMM
MT

DMM MRMM

)(
νc
L

NRNN

)
+ h.c. , (4.37)

where MDMM = YνYY v/
√

2 and MLMM = YΔY vΔ with 〈H〉 ≡ v/
√

2 and 〈Δ〉 ≡ vΔ

corresponding to the vacuum expectation values of the neutral components
of the Higgs doublet H and the Higgs triplet Δ. This mass term is equivalent
to the one given in Eq. (3.30). The 6 × 6 neutrino mass matrix in Eq. (4.37)
is symmetric and can be diagonalized by the unitary transformation(

V R
S U

)†(
MLMM MDMM
MT

DMM MRMM

)(
V R
S U

)∗
=

(
M̂νMM 0
0 M̂NM

)
, (4.38)

where M̂νMM = Diag{m1,m2,m3} and M̂NM = Diag{M1,M2MM ,M3MM }. Needless to
say, V †V +S†S = V V † +RR† = 1 holds as a consequence of the unitarity of
the above transformation. Hence V , the flavor mixing matrix of three light
Majorana neutrinos, must be non-unitary if R and S are nonzero.

In the leading-order approximation, the type-(I+II) seesaw formula reads

MνMM = MLMM −MDMM M−1
RMM MT

DMM . (4.39)
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Hence type-I and type-II seesaws can be regarded as two extreme cases of the
type-(I+II) seesaw. Note that the two mass terms in Eq. (4.39) are possibly
comparable in magnitude. If both of them are small, their contributions toMνMM
may have significant interference effects which make it practically impossible
to distinguish between type-II and type-(I+II) seesaws (Ren and Xing, 2008);
but if both of them are large, their contributions to MνMM must be destructive.
The latter case unnaturally requires a significant cancellation between two
big quantities in order to obtain a small quantity (Chao et al., 2008a), but it
is interesting in the sense that it might give rise to some observable collider
signatures of heavy Majorana neutrinos.

Let us briefly describe a particular type-(I+II) seesaw model and comment
on its possible LHC signatures. First, we assume that both MiMM and MΔM are
of O(1) TeV. Then the production of H±± and H± bosons at the LHC
is guaranteed, and their lepton-number-violating signatures will probe the
Higgs triplet sector of the type-(I+II) seesaw mechanism. On the other hand,
O(MDMM /MRMM ) � O(0.1) is possible as a result of O(MRMM ) ∼ O(1) TeV and
O(MDMM ) � O(v), such that appreciable signatures of NiNN can be achieved at the
LHC. Second, the small mass scale of MνMM implies that the relation O(MLMM ) ∼
O(MDMM M−1

RMM MT
DMM ) must hold. In other words, it is the significant but incomplete

cancellation between MLMM and MDMM M−1
RMM MT

DMM terms that results in the non-
vanishing but tiny masses for three light neutrinos. We admit that dangerous
radiative corrections to two mass terms of MνMM require a delicate fine-tuning
of the cancellation at the loop level (Chao et al., 2008b). But this scenario
allows us to reconstructMLMM via the excellent approximationMLMM = V M̂νMM V T +
RM̂NM RT ≈ RM̂NM RT , such that the elements of YΔY read

(YΔY )αβ =
(MLMM )αβ

vΔ

≈
3∑

i=1

RαiRβiMiMM

vΔ

, (4.40)

where α and β run over e, μ and τ . This result implies that the leptonic
decays of H±± and H± bosons depend on both R and MiMM , which determine
the production and decays of NiNN . Thus we have established an interesting
correlation between the singly- or doubly-charged Higgs bosons and the heavy
Majorana neutrinos. If the correlative signatures of H±, H±± and NiNN can be
observed at the LHC, they will serve for a direct experimental test of this
type-(I+II) seesaw model.

To illustrate, here we focus on the minimal type-(I+II) seesaw model with
a single heavy Majorana neutrino, where R can be parametrized in terms of
three rotation angles θi4 and three phase angles δi4 (for i = 1, 2, 3) (Xing,
2008b). In this case we have

ω1 ≡
σ(pp→ μ+μ+W−X)|N1

σ(pp→ μ+μ+H−X)|H++

≈ σN

σH

· s
2
14 + s224 + s234

4
,

ω2 ≡
σ(pp→ μ+μ+W−X)|N1

σ(pp→ μ+μ+H−−X)|H++

≈ σN

σpair

· s
2
14 + s224 + s234

4
(4.41)
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Fig. 4.1 An illustration of the correlative signatures of N1 and H±± at the LHC
with an integrated luminosity of 300 fb−1 (Chao et al., 2008b. With permission
from the Elsevier)

for si4 ≡ sin θi4 � O(0.1), where σN ≡ σ(pp → l+αN1NN X)/|Rα1|2, σH ≡
σ(pp → H++H−X) and σpair ≡ σ(pp → H++H−−X) are three reduced
cross sections (Chao et al., 2008b). Fig. 4.1 shows a numerical illustration of
ω1 and ω2 changing with M1 at the LHC with an integrated luminosity of
300 fb−1, and it may give one a ball-park feeling of possible collider signatures
of N1NN and H±± and their correlation.

If an additional heavy Majorana neutrino with a nearly equal mass is
introduced into the above scenario, the collider signatures can be resonantly
enhanced due to the constructive interference between the contributions
from two heavy Majorana neutrinos (Chao et al., 2010). If two heavy Majo-
rana neutrinos with nearly degenerate masses form a pseudo-Dirac particle,
however, the lepton-number-violating signatures will be highly suppressed
and the trilepton signatures arising from the processes pp → l+α l

+
β l

−
γ ν and

pp → l−α l
−
β l

+
γ ν (for α, β, γ = e, μ, τ) should be most promising. This case

has been discussed in the minimal type-I seesaw model with a softly-broken
global U(1) symmetry (Zhang and Zhou, 2010).

4.3.4 Type-III Seesaw Mechanism

The lepton mass terms in the type-III seesaw scheme have already been given
in Eq. (4.9). After spontaneous gauge symmetry breaking, we are left with

−Lmass =
1
2

(νL Σ0)
(

0 MDMM
MT

DMM MΣM

)(
νc
L

Σ0c

)
+ h.c. ,
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−L′
mass = (eL ΨLΨΨ )

(
MlM

√
2MDMM

0 MΣM

)(
ER

ΨRΨΨ

)
+ h.c. , (4.42)

respectively, for neutral and charged fermions, where MlM = YlYY v/
√

2 , MDMM =
YΣYY v/

√
2 , and Ψ = Σ− + Σ+c. The symmetric 6 × 6 neutrino mass matrix

can be diagonalized by the following unitary transformation:(
V R
S U

)†( 0 MDMM
MT

DMM MΣM

)(
V R
S U

)∗
=

(
M̂νMM 0
0 M̂ΣM

)
, (4.43)

in which M̂νMM = Diag{m1,m2,m3} and M̂ΣM = Diag{M1,M2MM ,M3MM }. In the
leading-order approximation, this diagonalization yields the type-III seesaw
formula MνMM = −MDMM M−1

ΣM MT
DMM , which is equivalent to the one derived from

the effective dimension-5 operator in Eq. (4.13). Let us use one sentence to
comment on the similarities and differences between type-I and type-III see-
saw mechanisms (Abada et al., 2007): the non-unitarity of the 3× 3 neutrino
mixing matrix V has appeared in both cases, although the modified couplings
between the Z0 boson and three light neutrinos differ and the non-unitary
flavor mixing is also present in the couplings between the Z0 boson and three
charged leptons in the type-III seesaw scenario.

At the LHC, the typical lepton-number-violating signatures of the type-
III seesaw mechanism can be pp → Σ+Σ0 → l+α l

+
β + Z0W−(→ 4j) and

pp → Σ−Σ0 → l−α l
−
β + Z0W+(→ 4j) processes. A detailed analysis of such

collider signatures have been done in the literature (Franceschini et al., 2008;
del Aguila and Aguilar-Saavedra, 2009a). As for the low-energy phenomenol-
ogy, a consequence of this seesaw scenario is the non-unitarity of the 3 × 3
flavor mixing matrix Ṽ (≈ V ) in both charged- and neutral-current inter-
actions (Abada et al., 2007). Current experimental bounds on the deviation
of Ṽ Ṽ † from the identity matrix are at the 0.1% level, much stronger than
those obtained in the type-I seesaw scheme, just because the flavor-changing
processes with charged leptons are allowed at the tree level in the type-III
seesaw mechanism.

It is worth mentioning that an interesting type-(I+III) seesaw model has
recently been proposed (Bajc and Senjanovic, 2007), and its phenomenolog-
ical and cosmological consequences together with its possible collider signa-
tures have also been explored (Bajc et al., 2007; Arhrib et al., 2010).

4.3.5 Inverse Seesaw Mechanism

Given the naturalness and testability as two prerequisites, the so-called in-
verse or double seesaw mechanism (Wyler and Wolfenstein, 1983; Mohapatra
and Valle, 1986; Ma, 1987) is another interesting possibility of generating tiny
neutrino masses at the TeV scale. The idea of this seesaw picture is to add
three heavy right-handed neutrinos NRNN , three SM gauge-singlet neutrinos SR
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and one Higgs singlet Φ into the SM, such that the gauge-invariant lepton
mass terms can be written as

−Llepton = �LYlYY HER + �LYνYY H̃NRNN +Nc
RNN YSYY ΦSR +

1
2
Sc

RMμM SR +h.c. , (4.44)

where MμM is naturally small according to ’t Hooft’s naturalness criterion
(’t Hooft, 1980), because its corresponding mass term violates the lepton
number. After spontaneous gauge symmetry breaking, the overall neutrino
mass term turns out to be

−Lmass =
1
2

(νL N
c
RNN Sc

R)

⎛⎝⎛⎛ 0 MDMM 0
MT

DMM 0 MSM
0 MT

SM MμM

⎞⎠⎞⎞⎛⎝⎛⎛ νc
L

NRNN
SR

⎞⎠⎞⎞ , (4.45)

where MDMM = YνYY 〈H〉 and MSM = YSYY 〈Φ〉. A diagonalization of the symmetric
9×9 matrix in Eq. (4.45) leads us to the effective light neutrino mass matrix

MνMM = MDMM
(
MT

SM
)−1

MμM (MSM )−1
MT

DMM (4.46)

in the leading-order approximation (Chan et al., 2009). Hence the smallness of
MνMM is attributed to both the smallness ofMμM itself and the doubly-suppressed
MDMM /MSM term for MDMM � MSM . For example, MμM ∼ O(1) keV and MDMM /MSM ∼
O(10−2) naturally yield a sub-eV MνMM . One has MνMM = 0 in the limit MμM → 0,
reflecting the restoration of the slightly-broken lepton number. The heavy
sector consists of three pairs of pseudo-Dirac neutrinos, whose CP-conjugated
Majorana components have a tiny mass splitting characterized by O(MμM ).

4.4 Multiple Seesaw Mechanisms

We have mentioned that a test of the type-I seesaw mechanism at the TeV
scale necessitates an appreciable magnitude of MDMM /MRMM so as to make it pos-
sible to produce and detect heavy Majorana neutrinos at the LHC. This
prerequisite unavoidably requires a terrible fine-tuning of MDMM and MRMM , be-
cause one has to imposeMRMM ∼ 1 TeV, MDMM /MRMM ∼ 10−3 to 10−1 and MνMM ∼ 0.1
eV simultaneously on the seesaw relation MνMM = −MDMM M−1

RMM MT
DMM (Xing, 2009).

It is therefore desirable to invoke new ideas to resolve this unnaturalness
problem built in the TeV seesaw mechanism.

A multiple seesaw mechanism at the TeV scale may satisfy both natu-
ralness and testability requirements (Xing and Zhou, 2009; Liao, 2010a). To
illustrate, we assume that the small mass scale of three light neutrinos arises
from a naive seesaw relation m ∼ (λΛEW)n+1/Λn

SS, where λ is a dimension-
less Yukawa coupling coefficient and n is an arbitrary integer larger than one.
Without any terrible fine-tuning, the seesaw scale can be estimated from

ΛSS ∼ λ
n+1

n

[
ΛEW

100 GeV

]n+1
n
[
0.1 eV
m

] 1
n

10
2(n+6)

n GeV . (4.47)
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Fig. 4.2 A numerical illustration of the seesaw scale ΛSS changing with n and λ
as specified in Eq. (4.47). Here the horizontal line stands for the TeV scale

A numerical change of ΛSS with n and λ is shown in Fig. 4.2, where ΛSS ∼ 1
TeV may naturally result from n � 2 and λ � 10−3. Hence the multiple
seesaw idea is expected to work at the TeV scale and provide us with a novel
approach to bridge the gap between theoretical naturalness and experimental
testability of the canonical seesaw mechanism.

The simplest way to build a multiple seesaw model at the TeV scale is to
extend the canonical seesaw mechanism by introducing a number of gauge-
singlet fermions Si

nR and scalars Φn (for i = 1, 2, 3 and n = 1, 2, · · · ). We
find that a proper implementation of the global U(1)×Z2N symmetry leads
us to two classes of multiple seesaw mechanisms with the nearest-neighbor-
interaction pattern — an interesting form of the overall 3 (n+ 2)× 3 (n+ 2)
neutrino mass matrix in which every 3× 3 sub-matrix only interacts with its
nearest neighbor. The first class contains an even number of Si

nR and Φn and
corresponds to an appealing extension of the canonical seesaw mechanism,
while the second class has an odd number of Si

nR and Φn and is actually a
straightforward extension of the inverse seesaw mechanism.

4.4.1 Two Classes of Multiple Seesaw Mechanisms

The spirit of multiple seesaw mechanisms is to make a harmless extension
of the SM by adding three right-handed neutrinos N i

RNN together with some
gauge-singlet fermions Si

nR and scalars Φn (for i = 1, 2, 3 and n = 1, 2, · · · ).
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Allowing for lepton number violation to a certain extent, we can write the
gauge-invariant Lagrangian for neutrino masses as (Xing and Zhou, 2009)

−Lν = �LYνYY H̃NRNN +N c
RNN YSYY 1

S1RΦ1 +
n∑

i=2

Sc
(i−1)RYSYY i

SiRΦi

+
1
2
Sc

nRMμM SnR + h.c. , (4.48)

where YνYY and YSYY i
(for i = 1, 2, · · · , n) are the 3×3 Yukawa coupling matrices,

and MμM is a symmetric Majorana mass matrix. After spontaneous gauge
symmetry breaking, we arrive at the overall 3 (n+ 2) × 3 (n+ 2) neutrino
mass matrix M in the flavor basis defined by (νL, N

c
RNN ,Sc

1R, · · · , Sc
nR) and

their charge-conjugate states:

M =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

0 MDMM 0 0 0 · · · 0
MT

DMM 0 MSM
1

0 0 · · · 0
0 MT

SM
1

0 MSM
2

0 · · · 0

0 0 MT
SM

2
0

. . . . . .
...

0 0 0
. . . . . . MSM

n−1
0

...
...

...
. . . MT

SM
n−1

0 MSM
n

0 0 0 · · · 0 MT
SM

n
MμM

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
, (4.49)

where MDMM ≡ YνYY 〈H〉 and MSM
i

= YSYY i
〈Φi〉 (for i = 1, 2, · · · , n) are the 3 × 3

mass matrices. Setting NRNN = S0R for simplicity, one can observe that the
ii

Yukawa interactions between SiR and SjS R exist if and only if their subscripts
satisfy the selection rule |i − j| = 1 (for i, j = 0, 1, 2, · · · , n). Note that
M manifests a very suggestive nearest-neighbor-interaction (NNI) pattern,
which has attracted a lot of attention in the quark sector to understand the
observed hierarchies of quark masses and flavor mixing angles (Fritzsch, 1978,
1979; Branco et al., 1989). Such a special structure of M may arise from
a proper implementation of the global U(1) × Z2N symmetry. The unique
generator of the cyclic group Z2N is " = eiπ/N , which produces all the group
elements Z2N = {1, ","2, "3, · · · ,"2N−1}. By definition, a field Ψ with the
charge q transforms as Ψ → eiπq/NΨ under Z2N (for q = 0, 1, 2, · · · , 2N − 1).
Hence we assign the U(1) and Z2N charges of the relevant fields in Lν as
below:

(1) The global U(1) symmetry can be identified with the lepton number
L, namely L(�L) = L(ER) = +1, where ER represents the charged-
lepton singlets in the SM. We arrange the lepton numbers of gauge-singlet
fermions and scalars to be L(NRNN ) = +1, L(SkR) = (−1)k and L(Φk) = 0
(for k = 1, 2, · · · , n). It turns out that only the Majorana mass term
Sc

nRMμM SnR in Lν explicitly violates the U(1) symmetry. After this as-
signment, other lepton-number-violating mass terms (e.g., N c

RNN MRMM NRNN in
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the canonical seesaw mechanism) may also appear in the Lagrangian, but
they can be eliminated by invoking the discrete Z2N symmetry.

(2) We assign the Z2N charge of SnR as q(SnR) = N . Then it is easy
to verify that the Majorana mass term Sc

nRMμM SnR is invariant under
the Z2N transformation. If all the other gauge-singlet fermions SkR (for
k = 1, 2, · · · , n − 1) take any charges in {1, 2, · · · , 2N − 1} other than
N , their corresponding Majorana mass terms are accordingly forbid-
den. Given q(�L) = q(ER) = q(NRNN ) = 1, both the charges of SkR (for
k = 1, 2, · · · , n − 1) and those of Φi (for i = 1, 2, · · · , n) can be properly
chosen so as to achieve the NNI form of Lν as shown in Eq. (4.48). But
the solution to this kind of charge assignment may not be unique, be-
cause for a given value of n one can always take N � n to fulfill all the
above-mentioned requirements. Simple examples (with n = 1, 2, 3) will be
presented below.

This multiple seesaw picture should be the simplest extension of the canoni-
cal seesaw mechanism, since it does not invoke the help of either additional
SU(2)L fermion doublets (Dudas and Savoy, 2002) or a new isospin 3/2 Higgs
multiplet (Babu et al., 2009; Liao, 2010b). In addition, the inverse seesaw
scenario is merely the simplest example in one class of the multiple seesaw
mechanisms under discussion (with an odd number of Si

nR or Φn).
Now let us diagonalize M in Eq. (4.49) to achieve the effective mass

matrix of three light neutrinos MνMM . Note that M can be rewritten as

M =
(

0 M̃DMM

M̃T
DMM M̃μM

)
, (4.50)

where M̃DMM = (MDMM 0) denotes a 3× 3 (n+ 1) matrix and M̃μM is a symmetric
3 (n+ 1)× 3 (n+ 1) matrix. Taking O(M̃μM ) � O(M̃DMM ), one can easily obtain
MνMM = −M̃DMM M̃−1

μM M̃T
DMM for three light Majorana neutrinos in the leading-order

approximation. As the elements in the fourth to 3n-th columns of M̃DMM are
exactly zero, only the 3×3 top left block of M̃−1

μM is relevant to the calculation
of MνMM . Without loss of generality, the inverse of M̃μM can be figured out by
assuming all the non-zero 3 × 3 sub-matrices of M to be of rank three. We
find two types of solutions, depending on whether n is even or odd, and thus
arrive at two classes of multiple seesaw mechanisms:

Class A of multiple seesaw mechanisms — they contain an even number of
gauge-singlet fermions Si

nR and scalars Φn (i.e., n = 2k with k = 0, 1, 2, · · · )
and correspond to a novel extension of the canonical seesaw picture. The
effective mass matrix of three light Majorana neutrinos is given by

MνMM = −MDMM

[
k∏

i=1

(
MT

SM
2i−1

)−1

MSM
2i

]
M−1

μM

[
k∏

i=1

(
MT

SM
2i−1

)−1

MSM
2i

]T

MT
DMM (4.51)

in the leading-order approximation. The k = 0 case is obviously equivalent to
the canonical seesaw mechanism (i.e., MνMM = −MDMM M−1

RMM MT
DMM by setting S0R =
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×

× ×× ×
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Fig. 4.3 The origin of light Majorana neutrino masses in multiple seesaw mecha-
nisms: (a) the minimal extension of the canonical seesaw mechanism (with n = 2);
and (b) the minimal extension of the inverse seesaw mechanism (with n = 3)

NRNN and MμM = MRMM ). If MSM
2i

∼ MDMM ∼ O(ΛEW) and MSM
2i−1

∼ MμM ∼ O(ΛSS)

hold (for i = 1, 2, · · · , k), then Eq. (4.51) leads to MνMM ∼ Λ
2(k+1)
EW /Λ2k+1

SS ,
which can effectively lower the conventional seesaw scale ΛSS ∼ 1014 GeV
down to the TeV scale as illustrated in Fig. 4.2.

Taking n = 2 (i.e., k = 1) for example, we simply arrive at

MνMM = −MDMM
(
MT

SM
1

)−1

MSM
2
M−1

μM MT
SM

2

(
MSM

1

)−1

MT
DMM . (4.52)

This effective multiple seesaw mass term is illustrated in Fig. 4.3(a). The NNI
pattern of M with n = 2 can be obtained by imposing the global U(1) × Z6

symmetry on Lν , where the proper charge assignment is listed in Table 4.1.

Table 4.1 The charges of relevant fermion and scalar fields under the U(1) × Z6

symmetry in the multiple seesaw mechanism with n = 2

�L H ER NRNN S1R S2R Φ1 Φ2

L +1 0 +1 +1 −1 +1 0 0
q +1 0 +1 +1 +2 +3 +3 +1

Class B of multiple seesaw mechanisms — they contain an odd number
of gauge-singlet fermions Si

nR and scalars Φn (i.e., n = 2k + 1 with k =
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0, 1, 2, · · · ) and correspond to an interesting extension of the inverse seesaw
picture. The effective mass matrix of three light Majorana neutrinos reads

MνMM = MDMM

[
k∏

i=1

(
MT

SM
2i−1

)−1

MSM
2i

](
MT

SM
2k+1

)−1

×MμM
(
MSM

2k+1

)−1
[

k∏
i=1

(
MT

SM
2i−1

)−1

MSM
2i

]T
MT

DMM (4.53)

in the leading-order approximation. The k = 0 case just corresponds to
the inverse seesaw scenario with a rather low mass scale of MμM : MνMM =
MDMM (MT

SM
1
)−1MμM (MSM

1
)−1MT

DMM . Note that the NNI pattern of M in the double
seesaw mechanism is guaranteed by an implementation of the global U(1)×Z4

symmetry with the following charge assignment: L(�L) = L(ER) = L(NRNN ) =
+1, L(S1R) = −1, L(H) = L(Φ1) = 0, q(�L) = q(ER) = q(NRNN ) = q(Φ1) =
+1, q(H) = 0 and q(S1R) = +2.

IfMSM
2i
∼MDMM ∼ O(ΛEW) andMSM

2i−1
∼ O(ΛSS) hold (for i = 1, 2, · · · , k),

the mass scale of MμM is in general unnecessary to be as small as that given
by the inverse seesaw mechanism. To be more specific, let us consider the
minimal extension of the inverse seesaw picture by taking n = 3. In this case,
we impose the U(1)×Z10 symmetry on Lν with a proper charge assignment
listed in Table 4.2 to assure the NNI form of M. The corresponding formula
of MνMM is

MνMM = MDMM
(
MT

SM
1

)−1

MSM
2

(
MT

SM
3

)−1

MμM
(
MSM

3

)−1

MT
SM

2

(
MSM

1

)−1

MT
DMM . (4.54)

This effective multiple seesaw mass term is illustrated in Fig. 4.3(b). It be-
comes obvious that the proportionality of MνMM to MμM in Eq. (4.54) is doubly
suppressed not only by the ratio MDMM /MSM

1
∼ ΛEW/ΛSS but also by the ra-

tio MSM
2
/MSM

3
∼ ΛEW/ΛSS, and thus MνMM ∼ 0.1 eV can naturally result from

YνYY ∼ YSYY 1
∼ YSYY 2

∼ YSYY 3
∼ O(1) and MμM ∼ 1 keV at ΛSS ∼ 1 TeV.

Table 4.2 The charges of relevant fermion and scalar fields under the U(1) × Z10

symmetry in the multiple seesaw mechanism with n = 3

�L H ER NRNN S1R S2R S3R Φ1 Φ2 Φ3

L +1 0 +1 +1 −1 +1 −1 0 0 0
q +1 0 +1 +1 +2 +3 +5 +7 +5 +2

4.4.2 Charged-current Interactions

The strength of charged-current interactions is important for both production
and detection of light and heavy Majorana neutrinos in a realistic experiment
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(e.g., at the LHC and in neutrino oscillations). To define the neutrino mass
eigenstates, we diagonalize the overall mass matrix M in Eq. (4.50) by means
of the following unitary transformation:(

V R̃

S̃ Ũ

)†(
0 M̃DMM

M̃T
DMM M̃μM

)(
V R̃

S̃ Ũ

)∗
=

(
M̂νMM 0
0 M̂NM +S

)
, (4.55)

where M̂νMM ≡ Diag{m1,m2,m3} contains the masses of three light Majorana
neutrinos (ν1, ν2, ν3), and M̂NM +S denotes a diagonal matrix whose eigenval-
ues are the masses of 3 (n+ 1) heavy Majorana neutrinos (N̂ , Ŝ1, · · · , Ŝn;
and each of them consists of three components). The SM charged-current
interactions of νe, νμ and ντ can therefore be expressed as

Lcc =
g√
2

(
e μ τ
)
L
γμ

⎡⎢⎡⎡⎢⎢⎢⎢⎢⎢⎣⎢⎢V
⎛⎝⎛⎛ν1ν2
ν3

⎞⎠⎞⎞
L

+ R̃

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎝⎜⎜
N̂

Ŝ1
...
Ŝn

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎠⎟⎟
L

⎤⎥⎤⎤⎥⎥⎥⎥⎥⎥⎦⎥⎥W−
μW + h.c. (4.56)

in the basis where the mass eigenstates of three charged leptons are identified
with their flavor eigenstates. Note that V is the 3×3 neutrino mixing matrix
responsible for neutrino oscillations, while the 3×3 (n+ 1) matrix R̃ governs
the strength of charged-current interactions of heavy Majorana neutrinos.
Note also that both V V † + R̃R̃† = 1 and V M̂νMM V T + R̃M̂NM +SR̃

T = 0 hold,
and thus V must be non-unitary. It is R̃ that measures the deviation of V
from unitarity in neutrino oscillations and determines the collider signatures
of heavy Majorana neutrinos at the LHC.

The multiple seesaw idea may lead to rich phenomenology at both the TeV
scale and lower energies. For simplicity, here we only mention a few aspects
of the phenomenological consequences of multiple seesaw mechanisms.

• Non-unitary neutrino mixing and CP violation. Since V is non-unitary,
it generally involves a number of new flavor mixing angles and new CP-
violating phases (Xing, 2008b). Novel CP-violating effects in the medium-
baseline νμ → ντ and νμ → ντ oscillations may therefore show up and
provide a promising signature of the unitarity violation of V , which could
be measured at a neutrino factory (Fernandez-Martinez et al., 2007).

• Collider signatures of heavy Majorana neutrinos. Given M̃DMM ∼ O(ΛEW)
and M̃μM ∼ O(ΛSS) ∼ O(1) TeV, it is easy to obtain R̃ ≈ M̃DMM M̃−1

μM Ũ ∼
O(0.1), which actually saturates the present experimental upper bound
on |R̃| (Antusch et al., 2006). For Class A of multiple seesaw mecha-
nisms, their clear LHC signatures are expected to be the like-sign dilepton
events arising from the lepton-number-violating processes pp → l±α l

±
β X

(for α, β = e, μ, τ) mediated by heavy Majorana neutrinos (Atre et al.,
2009). For Class B of multiple seesaw mechanisms with MμM � ΛEW, the
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mass spectrum of heavy Majorana neutrinos generally exhibits a pair-
ing phenomenon in which the nearest-neighbor Majorana neutrinos have
nearly degenerate masses and can be combined to form pseudo-Dirac par-
ticles. This feature has already been observed in the inverse seesaw model
(Mohapatra and Valle, 1986). Therefore, the discriminating collider signa-
tures at the LHC are expected to be the trilepton events coming from the
pp → l±α l

±
β l

∓
γ X processes (for α, β, γ = e, μ, τ) (del Aguila and Aguilar-

Saavedra, 2009b).
• Possible candidates for dark matter. One or more of the heavy Majo-

rana neutrinos and gauge-singlet scalars in our multiple seesaw mecha-
nisms could be arranged to have a sufficiently long lifetime. Such weakly-
interacting and massive particles might therefore be a plausible candidate
for cold dark matter (Ponton and Randall, 2009).

One may explore more low-energy effects of multiple seesaw mechanisms, such
as their contributions to the lepton-flavor-violating processes μ→ eγ and so
on. It should also be interesting to explore possible baryogenesis via leptoge-
nesis (Fukugita and Yanagida, 1986), based on a multiple seesaw picture, to
interpret the cosmological matter-antimatter asymmetry.

As a flexible and testable TeV seesaw scheme, the multiple seesaw mech-
anisms can also provide us with plenty of room for model building. But the
latter requires further inputs or assumptions. Here we present a simple but
instructive example, in which all the textures of 3×3 sub-matrices in the over-
all neutrino mass matrix M are symmetric and have the well-known Fritzsch
pattern (Fritzsch, 1978),

MaM =

⎛⎝⎛⎛ 0 xa 0
xa 0 ya

0 ya za

⎞⎠⎞⎞ (4.57)

with a = D, S1, · · · , Sn or μ, for illustration. Choosing the Fritzsch texture
makes sense because it coincides with the NNI form of M itself. We make an
additional assumption that the ratio xa/ya is a constant independent of the
subscript a. Then it is easy to show that the effective mass matrix of three
light Majorana neutrinos MνMM has the same Fritzsch texture in the leading-
order approximation:

(MνMM )12 = −x
2
D

xμ

[
k∏

i=1

x2
S2i

x2
S2i−1

]
,

(MνMM )23 = −y
2
D

yμ

[
k∏

i=1

y2
S2i

y2
S2i−1

]
,

(MνMM )33 = −z
2
D

zμ

[
k∏

i=1

z2
S2i

z2
S2i−1

]
, (4.58)
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and (MνMM )11 = (MνMM )13 = (MνMM )22 = 0 derived from Eq. (4.51) for Class A of
multiple seesaw mechanisms (with n = 2k for k = 0, 1, 2, · · · ); and

(MνMM )12 =
x2

D

x2
S2k+1

[
k∏

i=1

x2
S2i

x2
S2i−1

]
xμ ,

(MνMM )23 =
y2
D

y2
S2k+1

[
k∏

i=1

y2
S2i

y2
S2i−1

]
yμ ,

(MνMM )33 =
z2
D

z2
S2k+1

[
k∏

i=1

z2
S2i

z2
S2i−1

]
zμ , (4.59)

and (MνMM )11 = (MνMM )13 = (MνMM )22 = 0 derived from Eq. (4.53) for Class B
of multiple seesaw mechanisms (with n = 2k + 1 for k = 0, 1, 2, · · · ). This
seesaw-invariant property ofMνMM is interesting since it exactly reflects how two
classes of multiple seesaw mechanisms work for every element of MνMM . Note
that it is possible to interpret current experimental data on small neutrino
masses and large flavor mixing angles by taking both the texture of the light
neutrino mass matrix MνMM and that of the charged-lepton mass matrix MlM to
be of the Fritzsch form (Xing, 2002; Xing and Zhou, 2004; Zhou and Xing,
2005). Hence the above examples are phenomenologically viable. Once the
texture of MνMM is fully reconstructed from more accurate neutrino oscillation
data, one may then consider to quantitatively explore the textures of those
3 × 3 sub-matrices of M in such a multiple seesaw model.

To conclude, new ideas are eagerly wanted in the LHC era to achieve a
proper balance between theoretical naturalness and experimental testability
of the elegant seesaw pictures, which ascribe the small masses of three known
neutrinos to the existence of some heavy degrees of freedom. We have ex-
tended the canonical and inverse seesaw scenarios and proposed two classes
of multiple seesaw mechanisms at the TeV scale by introducing an arbitrary
number of gauge-singlet fermions and scalars into the SM and by imple-
menting the global U(1) × Z2N symmetry in the neutrino sector. These new
TeV-scale seesaw mechanisms are expected to lead to rich phenomenology at
low energies and open some new prospects for understanding the origin of
tiny neutrino masses and lepton number violation.

4.5 Non-unitary Neutrino Mixing and CP Violation

It is worth remarking that the charged-current interactions of light and heavy
Majorana neutrinos are not completely independent of each other in type-I,
type-(I+II), type-III or multiple seesaw mechanisms. This point can clearly
be seen from Eq. (4.56), in which V V † + R̃R̃† = 1 holds. Regardless of the
details of each seesaw scheme, one may approximately parametrize the 3× 3
mixing matrix of three light Majorana neutrinos as
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V ≈ (1 − ξ)V0VV with ξ =
1
2
R̃R̃† , (4.60)

where V0VV is a unitary matrix and ξ measures the deviation of V from V0VV . In
view of current experimental data on the invisible width of the Z0 boson,
universality tests of electroweak interactions, rare leptonic decays and neu-
trino oscillations, one may find the following constraints on the elements of
ξ at the 90% confidence level (Antusch et al., 2006):

|ξ| =

⎡⎣|ξee| < 5.5 × 10−3 |ξeμ| < 3.5 × 10−5 |ξeτ | < 8.0 × 10−3

|ξμe| < 3.5 × 10−5 |ξμμ| < 5.0 × 10−3 |ξμτ | < 5.0 × 10−3

|ξτe| < 8.0 × 10−3 |ξτμ| < 5.0 × 10−3 |ξττ | < 5.0 × 10−3

⎤⎦ . (4.61)

This result implies that the unitarity of V has been tested at the percent level
and possible non-unitarity of V can at most reach the same level 1. Note that
the phases of ξ are entirely unrestricted, and thus new CP-violating effects
of O(10−2) or smaller may be induced by the non-unitarity of V and are
likely to show up in neutrino oscillations (Fernandez-Martinez et al., 2007;
Xing, 2008b; Luo, 2008; Goswami and Ota, 2008; Altarelli and Meloni, 2009;
Antusch et al., 2009; Malinsky et al., 2009).

4.5.1 Jarlskog Invariants of CP Violation

The strength of CP violation in neutrino oscillations is characterized by the
Jarlskog invariants (Jarlskog, 1985; Wu, 1986)

J ij
αβJ ≡ Im

(
VαiVV VβjVV V ∗

αjVV V ∗
βiVV
)
, (4.62)

where Greek and Latin indices run over (e, μ, τ) and (1, 2, 3), respectively.
Without loss of generality, the unitary matrix V0VV in Eq. (4.60) can be
parametrized as a product of three rotation matrices in the complex plane:

V0VV =

⎛⎝⎛⎛1 0 0
0 c23 ŝ∗23
0 −ŝ23 c23

⎞⎠⎞⎞⎛⎝⎛⎛ c13 0 ∗̂
13

0 1 0
−ŝ13 0 c13

⎞⎠⎞⎞⎛⎝⎛⎛ c12 ŝ∗12 0
−ŝ12 c12 0

0 0 1

⎞⎠⎞⎞

=

⎛⎝⎛⎛ c12c13 ŝ∗12c13 ŝ∗13
−ŝ12c23 − c12ŝ13ŝ

∗
23 c12c23 − ŝ∗12ŝ13ŝ

∗
23 c13ŝ

∗
23

ŝ12ŝ23 − c12ŝ13c23 −c12ŝ23 − ŝ∗12ŝ13c23 c13c23

⎞⎠⎞⎞ , (4.63)

where cij ≡ cos θij , sij ≡ sin θij and îj ≡ sije
iδij with θij and δij being the

rotation and phase angles, respectively. After a proper phase rearrangement,
1When the type-III seesaw mechanism is concerned, the experimental bounds

on the elements of ξ are slightly stronger than those given above for type-I, type-
(I+II) or multiple seesaw mechanisms (Abada et al., 2007). The reason is simply
that in the type-III seesaw case the flavor-changing processes with charged leptons
are allowed at the tree level and can get stringent experimental constraints.
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Eq. (4.63) is actually the standard parametrization advocated by the Particle
Data Group (Fritzsch and Xing, 2001; Nakamura et al., 2010). The universal
Jarlskog invariant of V0VV reads J0JJ = c12s12c

2
13s13c23s23 sin(δ13−δ12−δ23) in the

above parametrization. Combining Eqs. (4.60) and (4.63), one may calculate
J ij

αβJ defined in Eq. (4.62). Since both s13 and ξαβ are small quantities, we
neglect the terms of O(s213), O(|ξαβ|2) and O(s13|ξαβ|) in the calculation.
Then it is straightforward to obtain

J12
eμJJ = J0JJ − c12s12c23

(
1 + c223

)
|ξeμ| sin(δ12 + δeμ)

+ c12s12c
2
23s23|ξeτ | sin(δ12 + δ23 + δeτ ) ,

J23
eμJJ = J0JJ + c12s12c23s

2
23|ξeμ| sin(δ12 + δeμ)

+ c12s12c
2
23s23|ξeτ | sin(δ12 + δ23 + δeτ ) ,

J12
μτJ = J0JJ − c12s12c23s

2
23|ξeμ| sin(δ12 + δeμ)

− c12s12c
2
23s23|ξeτ | sin(δ12 + δ23 + δeτ ) ,

J23
μτJ = J12

μτJ − 2c212c23s23|ξμτ | sin(δ23 + δμτ ) ,

J31
μτJ = J12

μτJ + 2s212c23s23|ξμτ | sin(δ23 + δμτ ) ,

J12
τeJJ = J0JJ + c12s12c23s

2
23|ξeμ| sin(δ12 + δeμ)

− c12s12s23
(
1 + s223

)
|ξeτ | sin(δ12 + δ23 + δeτ ) , (4.64)

together with the equality J23
τeJJ = J31

τeJJ = J31
eμJJ = J23

eμJ as good approximations.
This equality holds simply because the relevant Jarlskog invariants involve
the smallest matrix element VeVV 3 ∼ s13 (Malinsky et al., 2009).

Eq. (4.64) shows that the deviation of J ij
αβJ from J0JJ is governed by the

magnitude of |ξαβ | and may reach the O(10−3) level. Hence the non-unitary
CP-violating effects are possible to be comparable with or even larger than
the unitary CP-violating effect characterized by J0JJ itself, in particular when
θ13 is very small. In the θ13 → 0 limit we have J0JJ → 0 but J ij

αβJ = 0. It is
therefore important to detect CP violation in the future precision neutrino
oscillation experiments, so as to probe possible non-unitarity of V as one
striking consequence of the TeV-scale seesaw mechanisms.

4.5.2 Mixing Angles and CP-violating Phases

Although the parametrization of V in Eq. (4.60) is valid for an arbitrary
number of heavy Majorana neutrinos, its unitarity-conserving part (V0VV ) and
unitarity-violating part (ξ) consist of two sets of different parameters (i.e., θij

and δij versus ξαβ). Here we concentrate on the type-I and type-(I+II) seesaw
mechanisms with three heavy Majorana neutrinos and propose a “standard”
parametrization of V in terms of only rotation angles and phase angles (Xing,
2008b). This parametrization is phenomenologically useful because it may
reveal the correlation between the charged-current interactions of light and
heavy Majorana neutrinos in a much more transparent manner.
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When only three heavy Majorana neutrinos are concerned, the standard
charged-current interactions of νi and NiNN in Eq. (4.56) are simplified to

Lcc =
g√
2
(e μ τ)L γ

μ

⎡⎣V
⎛⎝⎛⎛ν1ν2
ν3

⎞⎠⎞⎞
L

+R

⎛⎝⎛⎛N1NN
N2NN
N3NN

⎞⎠⎞⎞
L

⎤⎦W−
μW + h.c. , (4.65)

where V V † + RR† = 1 holds. Note that V and R belong to the same 6 × 6
unitary matrix, which can be parametrized in terms of 15 rotation angles θij

and 15 phase angles δij (for 1 � i < j � 6). Then the common parameters of
V and R characterize their correlation. Let us define the 2-dimensional (1,2),
(1,3) and (2,3) rotation matrices in a 6-dimensional complex space:

O12 =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
c12 ŝ∗12 0 0 0 0
−ŝ12 c12 0 0 0 0

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ ,

O13 =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
c13 0 ∗̂

13 0 0 0
0 1 0 0 0 0

−ŝ13 0 c13 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ ,

O23 =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
1 0 0 0 0 0
0 c23 ŝ∗23 0 0 0
0 −ŝ23 c23 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ , (4.66)

where cij , sij and îj are defined in the same way as done in Eq. (4.63). Other
2-dimensional rotation matrices Oij (for 1 � i < j � 6) can analogously be
defined (Harari and Leuer, 1980; Fritzsch and Plankl, 1987). We parametrize
the 6 × 6 unitary transformation as(

A R
B U

)
⊗
(
V0VV 0
0 1

)
= [O56O46O36O26O16O45O35O25O15O34O24O14]

⊗ [O23O13O12] , (4.67)

where the explicit form of V0VV has been presented in Eq. (4.63). Comparing
Eq. (4.67) with Eq. (4.38) or Eq. (4.55), we immediately get V = AV0VV . It
is obvious that V → V0VV in the limit of A → 1 (or equivalently, R → 0).
Thus A signifies the non-unitarity of V . After a lengthy but straightforward
calculation, we obtain the expressions of A and R as follows:
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A =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

c14c15c16 0 0

−c14c15ŝ16ŝ∗26
−c14ŝ15ŝ∗25c26
−ŝ14ŝ∗24c25c26

c24c25c26 0

−c14c15ŝ16c26ŝ∗36
+c14ŝ15ŝ

∗
25ŝ26ŝ

∗
36

−c14ŝ15c25ŝ∗35c36
+ 1̂4ŝ

∗
24c25ŝ26ŝ

∗
36

+ 1̂4ŝ
∗
24ŝ25ŝ

∗
35c36

−ŝ14c24ŝ∗34c35c36

−c24c25ŝ26ŝ∗36
−c24ŝ25ŝ∗35c36
−ŝ24ŝ∗34c35c36

c34c35c36

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
,

R =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

ŝ∗14c15c16 ŝ∗15c16 ŝ∗16

−ŝ∗14c15ŝ16ŝ∗26
−ŝ∗14ŝ15ŝ∗25c26
+c14ŝ

∗
24c25c26

−ŝ∗15ŝ16ŝ∗26
+c15ŝ

∗
25c26

c16ŝ
∗
26

−ŝ∗14c15ŝ16c26ŝ∗36
+ ∗̂

14ŝ15ŝ
∗
25ŝ26ŝ

∗
36

−ŝ∗14ŝ15c25ŝ∗35c36
−c14ŝ∗24c25ŝ26ŝ∗36
−c14ŝ∗24ŝ25ŝ∗35c36
+c14c24ŝ∗34c35c36

−ŝ∗15ŝ16c26ŝ∗36
−c15ŝ∗25ŝ26ŝ∗36
+c15c25ŝ

∗
35c36

c16c26ŝ
∗
36

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
. (4.68)

One can see that A and R involve the same parameters: 9 rotation angles and
9 phase angles, which signify non-unitary neutrino mixing and CP violation.
Nontrivial A is therefore the bridge between V = AV0VV and R.

Note that the triangular form of A is a salient feature of our parametriza-
tion. Some interesting consequences of V = AV0VV can immediately be drawn
from Eqs. (4.63) and (4.68).

• VeVV 3 = c14c15c16ŝ
∗
13 holds. Given θ13 = 0 for V0VV , which might result from

certain flavor symmetries, VeVV 3 turns out to vanish.
• The ratio |VeVV 2/VeVV 1| = tan θ12 is completely irrelevant to the parameters of

A or R. This result implies that the extraction of θ12 from solar neutrino
oscillation data should be independent of the non-unitarity of V .

• |VeVV 1|2 + |VeVV 2|2 + |VeVV 3|2 = c214c
2
15c

2
16 holds. Hence non-vanishing θ14, θ15

and θ16 violate the normalization condition of three matrix elements in
the first row of V .

• 〈m〉ee = c214c
2
15c

2
16|m1(c12c13)

2 + m2(
∗̂
12c13)

2 + m3(
∗̂
13)

2| holds for the
effective mass term of the neutrinoless double-beta decay.

• 〈m〉e = c14c15c16
√
m2

1c
2
12c

2
13 +m2

2s
2
12c

2
13 +m2

3s
2
13 holds for the effective

mass term of the tritium beta decay.

If θ14, θ15 and θ16 are small, their effects on 〈m〉e and 〈m〉ee will be negligible.
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In view of the fact that the non-unitarity of V must be small effects
(at most at the percent level), we expect sij � O(0.1) (for i = 1, 2, 3 and
j = 4, 5, 6) to hold. Then we obtain (Xing, 2008b)

A = 1−

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

1
2

6∑
i=4

s21i 0 0

6∑
i=4

ŝ1iŝ
∗
2i

1
2

6∑
i=4

s22i 0

6∑
i=4

ŝ1iŝ
∗
3i

6∑
i=4

ŝ2iŝ
∗
3i

1
2

6∑
i=4

s23i

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
+ O(s4ij) ,

R = 0 +

⎛⎝⎛⎛ŝ∗14 ŝ∗15 ŝ∗16ŝ∗24 ŝ
∗
25 ŝ

∗
26

ŝ∗34 ŝ
∗
35 ŝ

∗
36

⎞⎠⎞⎞+ O(s3ij) (4.69)

as two excellent approximations. A striking consequence of the non-unitarity
of V is the loss of universality for the Jarlskog invariants of CP violation, as
we have shown in Section 4.5.1. Taking account of ξ = RR†/2, we arrive at

ξee =
1
2

6∑
i=4

s21i , ξμμ =
1
2

6∑
i=4

s22i , ξττ =
1
2

6∑
i=4

s23i ;

ξeμ =
1
2

6∑
i=4

s1is2i sin (δ2i − δ1i) ,

ξeτ =
1
2

6∑
i=4

s1is3i sin (δ3i − δ1i) ,

ξμτ =
1
2

6∑
i=4

s2is3i sin (δ3i − δ2i) . (4.70)

The deviation of the Jarlskog invariants J ij
αβJ from J0JJ can also be given in

terms of those non-unitary neutrino mixing angles and CP-violating phases.
Finally, it worth mentioning that one may simplify the above results to

some extent when discussing either the minimal type-I seesaw mechanism
with two heavy Majorana neutrinos (Frampton et al., 2002; Guo et al., 2007)
or the minimal type-(I+II) seesaw mechanism with only one heavy Majorana
neutrino (Gu et al., 2006; Chan et al., 2007).
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ments in Gauge Theories, edited by ’t Hooft, G., et al. (Plenum Press, New
York), p. 135.

Vissani, F., 1998, Phys. Rev. D 57, 7027.
Weinberg, S., 1972, Phys. Rev. Lett. 29, 388.
Weinberg, S., 1979, Phys. Rev. Lett. 43, 1566.
Weinberg, S., 1980, Phys. Lett. B 91, 51.
Weinberg, S., 1995, The Quantum Theory of Fields (Cambridge University

Press).
Wu, D. D., 1986, Phys. Rev. D 33, 860.
Wyler, D., and Wolfenstein, L., 1983, Nucl. Phys. B 218, 205.
Xing, Z. Z., 2002, Phys. Lett. B 550, 178.
Xing, Z. Z., 2004, Int. J. Mod. Phys. A 19, 1.
Xing, Z. Z., 2008a, Int. J. Mod. Phys. A 23, 4255.
Xing, Z. Z., 2008b, Phys. Lett. B 660, 515.
Xing, Z. Z., 2009, Prog. Theor. Phys. Suppl. 180, 112.
Xing, Z. Z., and Zhou, S., 2004, Phys. Lett. B 593, 156.
Xing, Z. Z., and Zhou, S., 2007, Phys. Lett. B 653, 278.
Xing, Z. Z., and Zhou, S., 2009, Phys. Lett. B 679, 249.
Yanagida, T., 1979, in Proceedings of the Workshop on Unified Theory and the

Baryon Number of the Universe, edited by Sawada, O., and Sugamoto, A.
(KEK, Tsukuba), p. 95.

Zee, A., 1980, Phys. Lett. B 93, 389.
Zhang, H., and Zhou, S., 2010, Phys. Lett. B 685, 297.
Zhou, S., and Xing, Z. Z., 2005, Eur. Phys. J. C 38, 495.





5

Phenomenology of Neutrino Oscillations

So far a number of different neutrino experiments have convincingly observed
the phenomena of neutrino oscillations, indicating that neutrinos have rest
masses and lepton flavors are mixed. This is the first compelling experimen-
tal evidence for new physics beyond the standard model (SM) of elementary
particle physics. In this chapter we shall first describe the basic properties
of neutrino oscillations in vacuum and then explain the Mikheyev-Smirnov-
Wolfenstein (MSW) mechanism for neutrino flavor conversions in matter.
Section 5.2 is devoted to an analysis of quantum coherence in neutrino oscil-
lations. We shall reformulate neutrino oscillations by means of the language
of the density matrix and flavor polarization vector in Section 5.3. Some
ongoing and future accelerator- and reactor-based neutrino oscillation exper-
iments will be briefly introduced in Section 5.4.

5.1 Neutrino Oscillations and Matter Effects

Soon after the discovery of electron antineutrinos in 1956, Bruno Pontecorvo
postulated that there might exist the phenomenon of neutrino-antineutrino
oscillations by analogy with the phenomenon of K0-K

0
mixing (Pontecorvo,

1958). Shortly after the discovery of muon neutrinos in 1962, Ziro Maki,
Masami Nakagawa and Shoichi Sakata proposed that two different neutrino
flavors could mix with each other and thus the phenomenon of νe ↔ νμ or
νe ↔ νμ transitions might take place (Maki et al., 1962). Their ideas point
to the concept of neutrino (flavor) oscillations: given a beam of neutrinos
in a definite flavor state at the source, one may find them in another flavor
state at the detector which is at a certain distance from the source. This kind
of quantum phenomenon can naturally occur if three known neutrinos have
non-degenerate masses and lepton flavors are mixed. Neutrino oscillations
have been well established in the past twelve years, thanks to a number of
solar, atmospheric, reactor and accelerator neutrino experiments. Both the
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longstanding solar neutrino puzzle and the observed deficit of atmospheric
muon neutrinos are actually attributed to neutrino oscillations. In this section
we first outline the basic properties of neutrino oscillations in vacuum and
then describe the phenomenology of neutrino oscillations in matter.

5.1.1 Neutrino Oscillations in Vacuum

Three neutrinos (νe, νμ, ντ ) are defined as the flavor eigenstates, which accord
with three charged leptons (e, μ, τ), in their production processes via the weak
charged-current interactions. Since neutrinos are assumed to be massless in
the SM, their flavor and mass eigenstates coincide with each other and thus
lepton flavors are conserved. But current neutrino oscillation experiments
have demonstrated that neutrinos are massive and the SM is incomplete. Be-
yond the SM we define the mass eigenstates of three neutrinos as (ν1, ν2, ν3),
whose eigenvalues are denoted by (m1,m2,m3). In the basis where the mass
eigenstates of charged leptons are identified with their flavor eigenstates, the
phenomenon of neutrino mixing can be described by a 3 × 3 unitary matrix
V , the so-called Maki-Nakagawa-Sakata (MNS) matrix (Maki et al., 1962):⎛⎝⎛⎛νe

νμ

ντ

⎞⎠⎞⎞ =

⎛⎝⎛⎛VeVV 1 VeVV 2 VeVV 3

VμVV 1 VμVV 2 VμVV 3

VτVV 1 VτVV 2 VτVV 3

⎞⎠⎞⎞⎛⎝⎛⎛ν1ν2
ν3

⎞⎠⎞⎞ . (5.1)

Different parametrizations of V have been presented in Section 3.5.1.
Now we explain how neutrinos change their flavors when propagating

in vacuum. A freely propagating neutrino should be on the mass-shell, or
equivalently in the mass eigenstate νk(t,x) (for k = 1, 2, 3). Therefore, they
must obey the Dirac equation

(
i/∂//−mk

)
νk(t,x) = 0 and the Klein-Gordon

equation
(
∂2 +m2

k

)
νk(t,x) = 0 (in the neglect of the spinor structure of

the neutrino field which is essentially irrelevant to neutrino oscillations). For
a stationary neutrino source, which is the case for all the existing neutrino
oscillation experiments, the energy spectrum of neutrinos is fixed and one
actually measures their propagation in space rather than in time 1. To be
specific, let us assume that a neutrino beam with energy E is propagating
in the one-dimensional space x. In this case the corresponding Klein-Gordon
equation can be rewritten as

[
−(E + i∂x∂ )(E − i∂x∂ ) +m2

k

]
νk(t, x) = 0. In

view of −i∂x∂ νk(t, x) = pkνk(t, x) due to νk(t, x) ∝ e−i(Et−pkx) for free neu-
trinos, we further obtain

1For neutrinos from the conventional sources, their oscillations have been treated
in three different ways: the evolution of neutrino states in time, in space, or in
space and time. They all lead to the same oscillation probabilities in the relativistic
approximation t ≈ x, as given in Eq. (5.5). However, the scheme of evolution in
space is exclusively appropriate to understand the recent proposal of Mössbauer
neutrino oscillations (Akhmedov et al., 2008, 2009).
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i∂x∂ νk(x) =
m2

k

2E
νk(x) , (5.2)

where the approximation pk =
√
E2 −m2

k ≈ E has been made and the terms
of O(m2

k/E
2) have been omitted. Integrating Eq. (5.2), one may figure out

the evolution of the mass eigenstates: νk(x) = e−im2
kx/(2E)νk(0). Then the

evolution of the flavor eigenstates reads

να(x) =
3∑

k=1

VαkVV exp
{
−i
m2

k

2E
x

}
νk(0) . (5.3)

Note that it is more convenient to work with the neutrino wave functions
or state vectors when calculating the neutrino oscillation probabilities. The
one-neutrino state |νk〉 is generated by the Hermitian-conjugate field operator
ν†k(x) acting on the vacuum state, and likewise for the flavor states. Hence
the evolution of the state vectors is governed by

|να(x)〉 =
3∑

k=1

V ∗
αkVV exp

{
−i
m2

k

2E
x

}
|νk(0)〉 . (5.4)

For a neutrino beam in the flavor state |να〉 at the source, the probability of
observing it in the state |νβν 〉 at a distance x = L from the source is

P (να → νβν ) = |〈νβν |να(L)〉|2 =
3∑

j=1

3∑
k=1

VαjVV VβkVV V ∗
αkVV V ∗

βjVV exp

{
−i

Δm2
kj

2E
L

}

=
3∑

j=1

|VαjVV |2|VβjVV |2 + 2Re
∑
j<k

VαjVV VβkVV V ∗
αkVV V ∗

βjVV exp

{
−i

2πL

λkj

}
(5.5)

with Δm2
kj ≡ m2

k − m2
j being the neutrino mass-squared differences and

λkj ≡ 4πE/Δm2
kj being the neutrino oscillation lengths. A comparison be-

tween L and λji is sometimes helpful for a rough estimation of the oscillation
probabilities. For instance, the neutrinos from some astrophysical sources
travel a very long distance (L ∼ Mpc) before arriving at the detector on
the Earth. In this case the oscillation lengths λkj are much smaller than the
propagation distance L even for very high neutrino-beam energies E � TeV
and very small neutrino mass-squared differences |Δm2

kj | ∼ 10−5 eV2. Hence
the oscillatory terms in Eq. (5.5) should be averaged over many circles of
oscillations, so that the resultant probabilities are rather simple:

〈P (να → νβν )〉 =
3∑

i=1

|VαiVV |2|VβiVV |2. (5.6)

We see that the phenomenon of neutrino oscillations is due to the coherence
among three neutrino mass eigenstates. Eq. (5.6) is always applicable to the
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case in which quantum coherence is completely lost. More discussions about
the issues of quantum coherence and decoherence in neutrino oscillations will
be presented in Section 5.2.

The probabilities of neutrino oscillations in Eq. (5.5) can be rewritten as

P (να → νβν ) =
3∑

i=1

∣∣∣∣VαiVV V ∗
βiVV
∣∣∣∣2 + 2

3∑
i<j

Re(VαiVV VβjVV V ∗
αjVV V ∗

βiVV ) cos
Δm2

jiL

2E

+2
3∑

i<j

Im(VαiVV VβjVV V ∗
αjVV V ∗

βiVV ) sin
Δm2

jiL

2E

=

∣∣∣∣∣∣∣∣∣∣∣∣∣
3∑

i=1

VαiVV V ∗
βiVV

∣∣∣∣∣∣∣∣∣∣∣∣∣
2

− 4
3∑

i<j

Re(VαiVV VβjVV V ∗
αjVV V ∗

βiVV ) sin2
Δm2

jiL

4E

+2
3∑

i<j

Im(VαiVV VβjVV V ∗
αjVV V ∗

βiVV ) sin
Δm2

jiL

2E

= δαβ − 4
3∑

i<j

Re(VαiVV VβjVV V ∗
αjVV V ∗

βiVV ) sin2
Δm2

jiL

4E

+8J
∑

γ

εαβγ sin
Δm2

21L

4E
sin

Δm2
31L

4E
sin

Δm2
32L

4E
, (5.7)

where the Jarlskog parameter J has been defined in Eq. (3.116). The survival
probabilities of neutrino oscillations (i.e., β = α) turn out to be

P (να → να) = 1 − 4
∑
i<j

|VαjVV |2|VβiVV |2 sin2
Δm2

jiL

4E
. (5.8)

In the case of two-flavor neutrino oscillations, Eq. (5.8) is simplified to

P (να → να) = 1 − sin2 2θ sin2

(
1.27

Δm2

eV2 · L
km

· GeV
E

)
, (5.9)

where θ and Δm2 represent the neutrino mixing angle and mass-squared
difference, respectively. Current experimental data on neutrino oscillations
can all be interpreted by means of Eq. (5.9) as a good approximation, simply
because |Δm2

32| ≈ |Δm2
31| � Δm2

21 and |VeVV 3|2 � 1 hold (see Section 3.1
for details). For illustration, Table 5.1 lists six known neutrino oscillation
experiments together with their survival probabilities and neutrino mixing
angles in the two-flavor neutrino mixing scheme.

Recall that the one-particle state |νi〉 is generated by the neutrino field
operator νi(x) rather than its Hermitian conjugate. Hence one may easily
read off the probabilities of antineutrino oscillations from Eq. (5.7) through
the replacements V → V ∗ and J → −J :



5.1 Neutrino Oscillations and Matter Effects 163

Table 5.1 Survival probabilities and mixing factors of neutrino oscillations for six
known experiments in the two-flavor approximation

Experiment Survival probability Mixing factors

Solar
νe → νe

1 − sin2 2θ12 sin2 Δm22
21L

4E
sin2 2θ12 = 4|VeVV 1|2|VeVV 2|2

KamLAND
νe → νe

1 − sin2 2θ12 sin2 Δm2
21L

4E
sin2 2θ12 = 4|VeVV 1|2|VeVV 2|2

Atmospheric
νμ → νμ

1 − sin2 2θ23 sin2 Δm2
32L

4E
sin2 2θ23 = 4|VμVV 3|2

(
1 − |VμVV 3|2

)
K2K

νμ → νμ
1 − sin2 2θ23 sin2 Δm2

32L

4E
sin2 2θ23 = 4|VμVV 3|2

(
1 − |VμVV 3|2

)
MINOS
νμ → νμ

1 − sin2 2θ23 sin2 Δm2
32L

4E
sin2 2θ23 = 4|VμVV 3|2

(
1 − |VμVV 3|2

)
CHOOZ
νe → νe

1 − sin2 2θ13 sin2 Δm2
31L

4E
sin2 2θ13 = 4|VeVV 3|2

(
1 − |VeVV 3|2

)

P (να → νβ) = δαβ − 4
3∑

i<j

Re(VαiVV VβjVV V ∗
αjVV V ∗

βiVV ) sin2
Δm2

jiL

4E

−8J
∑

γ

εαβγ sin
Δm2

21L

4E
sin

Δm2
31L

4E
sin

Δm2
32L

4E
. (5.10)

On the other hand, the probabilities of νβν → να oscillations can also be read
off from Eq. (5.7) through the interchange of α and β:

P (νβν → να) = δαβ − 4
3∑

i<j

Re(VαiVV VβjVV V ∗
αjVV V ∗

βiVV ) sin2
Δm2

jiL

4E

−8J
∑

γ

εαβγ sin
Δm2

21L

4E
sin

Δm2
31L

4E
sin

Δm2
32L

4E
. (5.11)

A difference between P (να → νβ) and P (να → νβν ) signifies CP violation,
while that between P (νβν → να) and P (να → νβν ) measures T violation
(Cabibbo, 1978). They must be equal to each other (Xing, 2004),

ΔP ≡ P (να → νβν ) − P (να → νβ)
= P (να → νβν ) − P (νβν → να)

= 16J
∑

γ

εαβγ sin
Δm2

21L

4E
sin

Δm2
31L

4E
sin

Δm2
32L

4E
, (5.12)

as dictated by CPT invariance. The CPT theorem also ensures that there is
no difference between the probabilities of να → να and να → να oscillations.
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Hence it is possible to discover CP or T violation only in the “appearance”
neutrino oscillation experiments. A geometric description of CP violation in
the language of leptonic unitarity triangles has been given in Section 3.5.3.

So far we have only calculated the probabilities of neutrino-neutrino and
antineutrino-antineutrino oscillations. Here let us explain why it is extremely
difficult to realize Pontecorvo’s original idea and do a neutrino-antineutrino
oscillation experiment. We consider a beam of να antineutrinos produced
from the vertex of standard charged-current interactions α+ + W− → να.
After traveling a distance L it will be detected at a detector via the vertex
of standard charged-current interactions νβν → β− +W+. The amplitude of
να → νβν oscillations can then be written as

A(να → νβν ) = K
3∑

j=1

VαjVV VβjVV
mj

E
exp

{
−i
m2

j

2E
L

}
, (5.13)

where E is the beam energy and K denotes a kinematic factor (Schechter
and Valle, 1981; de Gouvea et al., 2003). Different from normal να → νβν or
να → νβ oscillations, the να → νβν oscillations involve a suppression factor
mj/E in their amplitude. It reflects the fact that the incoming α+ leads to
an antineutrino να in a dominantly right-handed helicity state, whereas the
standard charged-current interactions that produce the outgoing β− would
prefer the incident neutrino νβν being in a left-handed state (Kayser, 2005).
Because of mj � 1 eV and E � 1 MeV in a realistic experiment, this helicity
suppression factor (i.e., mj/E � 10−6) makes it impossible to observe the
phenomenon of neutrino-antineutrino oscillations.

5.1.2 Adiabatic Neutrino Oscillations in Matter

In 1978, Lincoln Wolfenstein pointed out that the coherent forward scat-
tering of neutrinos off matter could significantly change the neutrino flavor
content (Wolfenstein, 1978, 1979). It was later on realized that the effective
neutrino mixing factor sin2 2θm in matter could even be maximal no matter
how small its counterpart sin2 2θ in vacuum was, provided the resonance con-
dition was satisfied (Barger et al., 1980). In 1985, Stanislav Mikheyev and
Alexei Smirnov found that the adiabatic evolution of massive neutrinos in
matter could provide an elegant solution to the longstanding solar neutrino
puzzle (i.e., the observed flux of solar νe neutrinos was much lower than the
one predicted by the standard solar model) (Mikheyev and Smirnov, 1985).
Today we know that the MSW matter effects on neutrino flavor conversions
are also important in the long-baseline neutrino oscillation experiments and
crucial for the supernova neutrino detection.

As discussed in Section 2.3, the coherent forward scattering of neutrinos in
ordinary matter can be described by the neutrino refractive index, or equiva-
lently the effective potential V =

√
2 GFne with ne being the number density
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of electrons. In the two-flavor mixing scheme the state vector of the neutrino
system can be written as |Ψ(t)〉 = ae(t)|νe〉+ aμ(t)|νμ〉, so the corresponding
Schrödinger-like equation reads

i
d
dt

(
ae(t)
aμ(t)

)
=

1
2E

[
U

(
m2

1 0
0 m2

2

)
U† +
(
A 0
0 0

)](
ae(t)
aμ(t)

)
, (5.14)

where A ≡ 2
√

2GFneE arises from the effective potential V, and U is the 2×2
neutrino mixing matrix linking the flavor eigenstates to the mass eigenstates:(

|νe〉
|νμ〉

)
=
(

cos θ sin θ
− sin θ cos θ

)(
|ν1〉
|ν2〉

)
(5.15)

with θ being the mixing angle in vacuum. Let us recast the effective Hamil-
tonian in Eq. (5.14) into a more instructive form:

Hm =
1

4E

[
(Σ + A)1 +

(
A− Δm2 cos 2θ Δm2 sin 2θ

Δm2 sin 2θ −A+ Δm2 cos 2θ

)]
, (5.16)

where Δm2 ≡ m2
2 −m2

1 and Σ ≡ m2
1 +m2

2 with mi (for i = 1, 2) being the
neutrino mass eigenvalues. Note that the (Σ+A) term, which is proportional
to the identity matrix and thus irrelevant to the neutrino flavor conversion,
can actually be neglected in calculating the physical quantities of matter
effects. For simplicity, we first consider the case of ne = constant; namely, the
matter density is independent of time and space. Analogous to the treatment
of neutrino oscillations in vacuum, the effective Hamiltonian Hm should be
diagonalized so as to figure out both the effective neutrino masses and the
effective neutrino mixing angle in matter:

m̃2
1 =

1
2

[
Σ + A−

√
(A− Δm2 cos 2θ)2 + (Δm2 sin 2θ)2

]
,

m̃2
2 =

1
2

[
Σ + A+

√
(A− Δm2 cos 2θ)2 + (Δm2 sin 2θ)2

]
; (5.17)

and

tan 2θm =
Δm2 sin 2θ

Δm2 cos 2θ − A
. (5.18)

Note that only Δm̃2 ≡ m̃2
2 − m̃2

1, which is independent of (Σ+A), affects the
probabilities of neutrino oscillations in matter:

P̃ (νe → νμ) = P̃ (νμ → νe) = sin2 2θm sin2

(
1.27

Δm̃2L

E

)
,

P̃ (νe → νe) = P̃ (νμ → νμ) = 1 − sin2 2θm sin2

(
1.27

Δm̃2L

E

)
, (5.19)

where Δm̃2, L and E are in units of eV2, km and GeV, respectively. Note also
that there exist two equivalent parameter-space conventions in vacuum: (1)
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0 � θ � π/4 together with positive or negative Δm2; (2) 0 � θ � π/2 together
with positive Δm2. We shall take the second one, as commonly taken in the
literature, because it is also consistent with Δm2

21 > 0 extracted from current
experimental data on solar neutrino oscillations. Then Eq. (5.18) leads us
to θm → θ when the matter effect is negligible (i.e., A → 0), or θm → π/2
when the matter effect is overwhelming (i.e., A→ ∞). If the matter density
happens to satisfy A = Δm2 cos 2θ, one will simply arrive at θm = π/4 from
Eq. (5.18). This resonant effect is particularly striking because it gives rise
to sin2 2θm = 1 in matter even for a very small value of sin2 2θ in vacuum
(Barger et al., 1980).

A more interesting and realistic case is the slowly-varying matter density;
i.e., the electron density under consideration is time-dependent. For a spe-
cific neutrino source, such as the Sun, the time dependence of ne should be
understood as the distance dependence of ne in the assumption that solar
neutrinos are relativistic. Note that the instantaneous neutrino mass eigen-
states in matter are linked to the neutrino flavor eigenstates as follows:(

|νe〉
|νμ〉

)
= UmUU

(
|ν̃1〉
|ν̃2〉

)
≡
(

cos θm sin θm
− sin θm cos θm

)(
|ν̃1〉
|ν̃2〉

)
, (5.20)

where UmUU denotes the effective 2 × 2 neutrino mixing matrix in matter, and
its mixing angle θm varies with time. Expressing the state vector in the in-
stantaneous mass basis as |Ψ(t)〉 = a1(t)|ν̃1〉+a2(t)|ν̃2〉 and in the flavor basis
as |Ψ(t)〉 = ae(t)|νe〉 + aμ(t)|νμ〉, we are then able to establish the following
relationship: (

ae(t)
aμ(t)

)
=
(

cos θm sin θm
− sin θm cos θm

)(
a1(t)
a2(t)

)
. (5.21)

On the other hand, the Schrödinger-like equation in Eq. (5.14) can be put
into a simpler form:

i
d
dt

(
ae(t)
aμ(t)

)
=

1
2E

[
UmUU

(
m̃2

1 0
0 m̃2

2

)
U†

mUU

](
ae(t)
aμ(t)

)
. (5.22)

With the help of Eq. (5.21), one may convert Eq. (5.22) into

i
d
dt

(
a1(t)
a2(t)

)
=

1
4E

(
−Δm̃2 −i4Eθ̇m(t)

i4Eθ̇m(t) Δm̃2

)(
a1(t)
a2(t)

)
(5.23)

in the instantaneous mass basis, where θ̇m(t) ≡ dθm(t)
dt

is defined, and

Δm̃2 ≡ m̃2
2 − m̃2

1 depends on t too. The evolution equations of two instan-
taneous mass eigenstates are therefore entangled with each other, unless the
adiabatic condition |θ̇m(t)| � |Δm̃2|/(4E) is satisfied. In such an adiabatic
approximation we simply neglect the off-diagonal terms and then integrate
Eq. (5.23). The solutions are



5.1 Neutrino Oscillations and Matter Effects 167

a1(t) = a1(t0) exp

{
+i
∫ t

t

∫∫
0

∫∫
Δm̃2(t′)

4E
dt′
}
,

a2(t) = a2(t0) exp

{
−i
∫ t

t

∫∫
0

∫∫
Δm̃2(t′)

4E
dt′
}
, (5.24)

where Δm̃2(t) =
√

[A(t) − Δm2 cos 2θ]2 + (Δm2 sin 2θ)2 is time-dependent
because of A(t) = 2

√
2 GFEne(t). As a result, the amplitude for the final

state to be electron (muon) neutrinos is given by

ae(t) = cos θm(t) a1(t) + sin θm(t) a2(t) ,
aμ(t) = cos θm(t) a2(t) − sin θm(t) a1(t) . (5.25)

If there are only the electron neutrinos at t = t0, then we have ae(t0) = 1
and aμ(t0) = 0, leading to a1(t0) = cos θm(t0) and a2(t0) = sin θm(t0). These
initial conditions allow us to work out the survival probability of electron
neutrinos as follows:

P (νe → νe) =
1
2

[1 + cos 2θm(t) cos 2θm(t0)]

+
1
2

sin 2θm(t) sin 2θm(t0) cos

[∫ t

t

∫∫
0

∫∫
Δm̃2(t′)

2E
dt′
]
. (5.26)

If neutrinos are produced in a very dense medium, where ne(t0) → ∞ is a
good approximation, the initial neutrino mixing angle should be θm(t0) =
π/2. Because the detection of neutrinos is usually performed by means of an
underground detector below the Earth’s surface, the final neutrino mixing
angle should take its value in vacuum: θm(t) = θ. Furthermore, only the
probability averaged over the energy spectrum and detection time is relevant
for a realistic experiment. Hence one should drop the last term in Eq. (5.26)
and then arrive at the averaged probability

〈P (νe → νe)〉 =
1
2

(1 − cos 2θ) = sin2 θ . (5.27)

This result can be intuitively understood. The electron neutrino νe is ini-
tially produced almost in the mass eigenstate ν̃2 because of θm(t0) = π/2
arising from the high matter density. As the matter density decreases in an
extremely slow way and the adiabatic condition is satisfied, the evolution of
the neutrino state will keep in the same mass eigenstate. So we end up with
the mass eigenstate ν2 in vacuum, implying that the probability of finding it
as the electron neutrino is just sin2 θ. The key point here is the validity of
the adiabatic condition |θ̇m(t)| � |Δm̃2|/(4E). Taking account of Eq. (5.18)
together with the expression of Δm̃2 given below Eq. (5.24), we obtain

θ̇m(t) =
Δm2 sin 2θ
2 (Δm̃2)2

Ȧ(t) =
√

2 GF

Δm2E sin 2θ
(Δm̃2)2

ṅe(t) . (5.28)
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The adiabatic condition can then be written as (Kuo and Pantaleone, 1989a)

√
2 GF

∣∣∣∣∣∣∣∣∣∣dne(t)
dt

∣∣∣∣∣∣∣∣∣∣� 4π2λ

λ3
m sin 2θ

, (5.29)

where λm ≡ 4πE/Δm̃2 and λ ≡ 4πE/Δm2 are the neutrino oscillation lengths
in matter and in vacuum, respectively. Note that the mass-squared difference
Δm̃2 reaches its minimum at the resonant point A = Δm2 cos 2θ, at which
the oscillation length λm becomes maximal, so the adiabatic condition might
probably be violated at this point. On the resonance one may define the
adiabaticity parameter (Kuo and Pantaleone, 1989a)

γ ≡ 1
4E

[∣∣∣∣∣∣∣∣∣∣ Δm̃2

θ̇m(t)

∣∣∣∣∣∣∣∣∣∣]
t=tr

=
Δm2 sin2 2θ
2E cos 2θ

[
1

ne(t)

∣∣∣∣∣∣∣∣∣∣dne(t)
dt

∣∣∣∣∣∣∣∣∣∣]−1

t=tr

, (5.30)

where tr is the resonant point; i.e., A(tr) = Δm2 cos 2θ. The adiabatic condi-
tion given in Eq. (5.29) can now be expressed as γ � 1. When the adiabaticity
parameter γ is of O(1), the off-diagonal matrix elements in Eq. (5.23) will no
longer be negligible. In this non-adiabatic case a transition between the in-
stantaneous mass eigenstates |ν̃1〉 and ν̃2〉 must take place, so the oscillation
probabilities will inevitably receive very significant corrections.

5.1.3 Non-adiabatic Neutrino Oscillations in Matter

As we have shown above, the electron neutrino νe produced in an extremely
dense medium stays in the instantaneous mass eigenstate ν̃2. It remains in
this state if the adiabatic condition γ � 1 is fulfilled. If this condition is
violated, however, the neutrino state after crossing the resonant point should
be a linear combination of ν̃1 and ν̃2. In such a case one has to deal with
the transition between the instantaneous mass eigenstates. This is typically
one of the level-crossing problems (Landau, 1932; Stückelberg, 1932; Zener,
1932) and has been extensively discussed in connection with solar neutrino
oscillations (Bethe, 1986; Barger et al., 1986; Parke, 1986; Rosen and Gelb,
1986; Haxton, 1986, 1987; Nötzold, 1987; Toshev, 1987; Kim et al., 1987; Dar
et al., 1987; Petcov, 1988; Kuo and Pantaleone, 1989a, 1989b; Bruggen et al.,
1995; Friedland, 2001; Kachelrieß and Tomàs, 2001).

Here let us consider a monotonically decreasing matter density profile.
The electron neutrinos are produced at t = t0 in the highest density region,
and then they pass through the resonant point around t = tr and come
to the vacuum at t = tf . In a region far above (t = t− � tr) or below
(t = t+ � tr) the resonant point, the adiabatic approximation should be
valid. In between these two adiabatic regions one may introduce the following
transition probability between the instantaneous mass eigenstates (Kuo and
Pantaleone, 1989a, 1989b):

PcPP ≡
∣∣∣∣〈ν̃1(t+)|ν̃2(t−)〉

∣∣∣∣2 . (5.31)
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The survival probabilities for the eigenstates |ν̃i〉 after crossing the resonant
region are 1 − PcPP . As a result, one obtains the averaged survival probability
of electron neutrinos (Parke, 1986):

〈P (νe → νe)〉 =
(
cos2 θm(t0) sin2 θm(t0)

)(1 − PcPP PcPP
PcPP 1 − PcPP

)(
cos2 θm(tf )
sin2 θm(tf )

)
=

1
2
[
1 + (1 − 2PcPP ) cos 2θm(t0) cos 2θm(tf )

]
. (5.32)

This result can reproduce Eq. (5.27) in the adiabatic limit with PcPP = 0, if
the initial and final neutrino mixing angles are identified as θm(t0) = π/2
and θm(tf ) = θ. Note that we have used the classical probabilities for finding
the electron neutrinos in the mass eigenstates, or vice versa, in the adiabatic
regions. The reason is simply that a finite change of the matter density occurs
in the distance much longer than the neutrino oscillation length.

In order to calculate the probability PcPP , one may solve the coupled first-
order differential equations in Eq. (5.14) with a given time-dependent matter
density profile. The strategy is to convert the equation array into one second-
order differential equation of the amplitude ae(t). For some special matter
density profiles, such as the exponential and linear functions, the exact solu-
tions can be obtained (Kuo and Pantaleone, 1989b). Then one should expand
the solutions around the production and detection points, and average them
over the phase factor. A different method based on the integration in the
complex-time plane was pointed out by Lev Landau, who suggested that
one could find the approximate solutions to such differential equations in
the quasi-classical limit (Landau, 1932; Dykhne, 1962; Landau and Lifshitz,
1977). Note that the level-crossing point should be at Δm̃2 = 0, where the
mass eigenvalues m̃2

1 and m̃2
2 are exactly equal. This is possible only if the

following condition is satisfied:

A(t) = Δm2 (cos 2θ ± i sin 2θ) = Δm2e±2iθ . (5.33)

The time variables corresponding to these two possibilities are denoted as t+c
and t−c , which are located respectively in the upper and lower half-planes of
the complex time. Eq. (5.33) indicates that the levels never cross for the real
time, and the level-crossing problem in question is definitely of the quantum
nature. After extending the Hamiltonian to the complex-time plane analyt-
ically, one may choose a continuous path in the upper or lower half-plane.
This path, which connects the real-time points (t−, t+) and circles around
the singular point t+c or t−c , can be chosen far away from t±c such that the
adiabatic condition is always valid along it. It has been generally proved that
the adiabatic evolution along the path in the complex-time plane determines
the non-adiabatic transition probability along the real-time axis (Hwang and
Pechukas, 1977). For non-adiabatic neutrino oscillations in matter, one has
(Kuo and Pantanleone, 1989a)
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PcPP = exp

{
−Im

[∫ t±c

t

∫∫
r

Δm̃2(t′)
E

dt′
]}

, (5.34)

where t+c and t−c correspond to the increasing and decreasing density profiles,
respectively. Given a linear matter density profile, the well-known Landau-
Zener formula PLZ

cPP = exp{−πγ/ππ 2} with γ being the adiabaticity parameter
defined in Eq. (5.30) can be obtained (Parke, 1986).

To explain the complex integration in Eq. (5.34), let us examine the ana-
lytical properties of the integrand in the neighborhood of the singular points
t±c . Here the relevant function is the effective mass-squared difference Δm̃2(t)
given below Eq. (5.24). Redefining Δm̃2(t) ≡

√
f(t) , we have

f(t) = [A(t) − Δm2 cos 2θ]2 + (Δm2 sin 2θ)2 . (5.35)

Combining Eq. (5.35) with Eq. (5.33), we find that f(t±c ) = 0 holds. But
the first derivative of f(t) is in general nonzero at the crossing point; i.e.,
ḟ(t±c ) = 0. With the help of the Taylor expansion of f(t) with respect to t±c ,
one can obtain (Davis and Pechukas, 1976)

Δm̃2(t) =
√
ḟ(t±c )
√
t− t±c

[
1 + β(t)(t− t±c )

]
, (5.36)

where β(t) is analytic and single-valued around t±c . Because of the square-
root function, it is straightforward to observe that t±c are actually the branch
points of Δm̃2(t). Along the circle around t±c , the function Δm̃2(t) will change
its sign, implying an exchange of the mass eigenvalues m̃2

1 and m̃2
2. To be

explicit, we consider a circle around t±c and parametrize it as t − t±c = ρeiφ.
It then follows from Eq. (5.36) that Δm̃2(ρ, φ) = −Δm̃2(ρ, φ + 2π). Hence
the square-root branch points are essential for the level crossing, and the
integration path along the branch cut from tr to t+c (or t−c ) should be chosen
to keep the imaginary part in Eq. (5.34) positive.

The matter density profile of the Sun, which can significantly affect the
behaviors of solar neutrino oscillations, is expected to be exponential: ne(t) =
n0 exp(−t/rs) with 0.23 R� < r < R�, where n0 is a normalization constant,
R� denotes the radius of the Sun, and rs = 0.092 R� represents the scale
height (Pizzochero, 1987; Bahcall, 1989). In this case the zero points of f(t)
can be explicitly determined from Eq. (5.33):

t±c = −rs ln

(
Δm2

2
√

2 GFEn0

)
∓ 2irs(θ + kπ) , (5.37)

where k is an arbitrary integer (Pizzochero, 1987) 2. Then the non-adiabatic
transition probability is given by

2If there exist several level-crossing points in the complex-time plane, one should
choose the one nearest to the real-time axis (Landau and Lifshitz, 1977).
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lnPcPP = − 1
E

Im
∫ tr+2iθrs

t

∫∫
r

√s
[A(t′) − Δm2 cos 2θ]2 + (Δm2 sin 2θ)2 dt′ . (5.38)

The above integration can be simplified by changing the variable in this way:
t′ = tr + iy and x = −Δm2 exp(−iy/rs)/(2E). The final result is found to be
(Pizzochero, 1987; Kuo and Pantaleone, 1989a)

PcPP = exp
[
−π

2
γ
(
1 − tan2 θ

)]
, (5.39)

where γ = rsΔm
2 sin2 2θ/(2E cos 2θ) is derived from Eq. (5.30) by taking

the exponential density profile ne(t) = n0 exp(−t/rs). Note that Eq. (5.39)
reduces to the standard Landau-Zener formula in the θ → 0 limit, because the
corresponding resonance is so narrow that the linear and exponential profiles
are essentially identical. The analytical results of the transition probability
PcPP for a variety of interesting matter density profiles can be found in the
literature (Kuo and Pantaleone, 1989a).

5.1.4 The 3 × 3 Neutrino Mixing Matrix in Matter

Now we concentrate on terrestrial matter effects on long-baseline neutrino
oscillations. For simplicity, we assume a constant matter density profile (i.e.,
ne = constant). This assumption is reasonably good for most of the ongoing
or proposed long-baseline neutrino oscillation experiments. Note, however,
that the changes of ne should be carefully taken into account when a neutrino
beam travels through the Earth’s core (Mocioiu and Shrock, 2000; Akhmedov
et al., 2008; Liao, 2008).

In matter we define the effective neutrino masses as m̃i (for i = 1, 2, 3) and
the effective 3 × 3 neutrino mixing matrix as Ṽ . The effective Hamiltonians
responsible for the propagations of neutrinos in vacuum and in matter are

Hv =
1

2E
V

⎛⎝⎛⎛m2
1 0 0

0 m2
2 0

0 0 m2
3

⎞⎠⎞⎞V † ,

Hm =
1

2E
Ṽ

⎛⎝⎛⎛m̃2
1 0 0

0 m̃2
2 0

0 0 m̃2
3

⎞⎠⎞⎞ Ṽ † =
1

2E
V

⎛⎝⎛⎛m2
1 0 0

0 m2
2 0

0 0 m2
3

⎞⎠⎞⎞V † +

⎛⎝⎛⎛a 0 0
0 0 0
0 0 0

⎞⎠⎞⎞ . (5.40)

where E is the neutrino beam energy, and a =
√

2GFne stands for the ter-
restrial matter effect. Analogous to Eq. (5.7), the probabilities of neutrino
oscillations in matter are given by

P̃ (να → νβν ) = δαβ − 4
3∑

i<j

Re(ṼαiVV ṼβjVV Ṽ ∗
αjVV Ṽ ∗

βiVV ) sin2
Δm̃2

jiL

4E

+8J̃
∑

γ

εαβγ sin
Δm̃2

21L

4E
sin

Δm̃2
31L

4E
sin

Δm̃2
32L

4E
, (5.41)
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where Δm̃2
ji ≡ m̃2

j − m̃2
i are the effective neutrino mass-squared differences,

and J̃ is the effective Jarlskog parameter defined through

Im(ṼαiVV ṼβjVV Ṽ ∗
αjVV Ṽ ∗

βiVV ) = J̃
∑

γ

εαβγ

∑
k

εijk . (5.42)

To reveal the behaviors of neutrino oscillations in matter, one needs to work
out the relations between (m̃2

i , Ṽ , J̃ ) and (m2
i , V,J ). This can be done by

comparing between Hm and Hv in Eq. (5.40). A straightforward calculation
yields (Barger et al., 1980; Zaglauer and Schwarzer, 1988; Xing, 2000)

m̃2
1 = m2

1 +
1
3
x− 1

3

√
x2 − 3y

[
z +
√

3 (1 − z2)
]
,

m̃2
2 = m2

1 +
1
3
x− 1

3

√
x2 − 3y

[
z −
√

3 (1 − z2)
]
,

m̃2
3 = m2

1 +
1
3
x+

2
3
z
√
x2 − 3y , (5.43)

where

x = Δm2
21 + Δm2

31 +A ,

y = Δm2
21Δm

2
31 +A

[
Δm2

21

(
1 − |VeVV 2|2

)
+ Δm2

31

(
1 − |VeVV 3|2

)]
,

z = cos

[
1
3

arccos
2x3 − 9xy + 27AΔm2

21Δm
2
31|VeVV 1|2

2 (x2 − 3y)3/2

]
(5.44)

with A = 2aE = 2
√

2GFEne and Δm2
ji ≡ m2

j −m2
i . It is easy to observe the

following sum rule:
3∑

i=1

m̃2
i =

3∑
i=1

m2
i + A . (5.45)

On the other hand, the matrix elements of Ṽ and V are related to each other
through (Xing, 2000)

ṼαiVV =
NiNN

Di
VαiVV +

A

Di
VeiVV
[(
m̃2

i −m2
j

)
V ∗

ekVV VαkVV +
(
m̃2

i −m2
k

)
V ∗

ejVV VαjVV
]
, (5.46)

where the Greek subscript α runs over (e, μ, τ), the Latin subscripts i = j = k
run over (1, 2, 3), and

NiNN =
(
m̃2

i −m2
j

) (
m̃2

i −m2
k

)
−A
[(
m̃2

i −m2
j

)
|VekVV |2 +

(
m̃2

i −m2
k

)
|VejVV |2
]
,

D2
i = N2

iNN +A2|VeiVV |2
[(
m̃2

i −m2
j

)2 |VekVV |2 +
(
m̃2

i −m2
k

)2 |VejVV |2
]
. (5.47)

Of course, A = 0 immediately leads to m̃2
i = m2

i and ṼαiVV = VαiVV . The above
exact formulas clearly show how the neutrino mixing matrix and neutrino
masses get corrected in the presence of terrestrial matter effects.
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The relationship between J̃ and J can be established by means of a much
more interesting sum rule (Xing, 2001a, 2001b):

3∑
i=1

m̃2
i ṼαiVV Ṽ ∗

βiVV =
3∑

i=1

m2
iVαiVV V ∗

βiVV , (5.48)

which can be derived from the equality between the off-diagonal elements
of Hm and Hv in Eq. (5.40). For α = e, μ and τ , three equalities can be
obtained from Eq. (5.48) and their product is also an equality. Therefore,

3∑
i=1

3∑
j=1

3∑
k=1

m̃2
i m̃

2
jm̃

2
k Im(ṼeiVV ṼμjVV ṼτkVV Ṽ ∗

ekVV Ṽ ∗
μiVV Ṽ ∗

τjVV )

=
3∑

i=1

3∑
j=1

3∑
k=1

m2
im

2
jm

2
k Im(VeiVV VμjVV VτkVV V ∗

ekVV V ∗
μiVV V ∗

τjVV ) . (5.49)

This relation can be simplified by using the definitions of J and J̃ together
with the unitarity conditions of V and Ṽ . After a straightforward algebraic
exercise, we are left with (Xing, 2001a, 2001b)

J̃Δm̃2
21Δm̃

2
31Δm̃

2
32 = JΔm2

21Δm
2
31Δm

2
32 . (5.50)

The same result can also be obtained in different ways (Naumov, 1992; Har-
rison and Scott, 2000). We observe that J̃ = J holds if A = 0, and J̃ = 0
holds if J = 0. In other words, CP or T violation in neutrino oscillations in
matter is governed by J via J̃ .

In many cases it is more convenient to parametrize Ṽ in terms of the
effective neutrino mixing angles and CP-violating phases. Analogous to the
standard parametrization of V in vacuum, as given in Eq. (3.107),

Ṽ =

⎛⎝⎛⎛1 0 0
0 2̃3 s̃23
0 −s̃23 c̃23

⎞⎠⎞⎞P
⎛⎝⎛⎛ c̃13 0 1̃3

0 1 0
−s̃13 0 1̃3

⎞⎠⎞⎞P †

⎛⎝⎛⎛ c̃12 s̃12 0
−s̃12 c̃12 0

0 0 1

⎞⎠⎞⎞P ′

=

⎛⎜⎛⎛⎝⎜⎜ c̃12c̃13 s̃12c̃13 s̃13e
−iδ̃

−s̃12c̃23 − c̃12s̃23s̃13e
iδ̃ c̃12c̃23 − s̃12s̃23s̃13e

iδ̃ s̃23c̃13
s̃12s̃23 − c̃12c̃23s̃13e

iδ̃ −c̃12s̃23 − s̃12c̃23s̃13e
iδ̃ c̃23c̃13

⎞⎟⎞⎞⎠⎟⎟P ′ , (5.51)

where ĩj ≡ cos θ̃ij and ĩj ≡ sin θ̃ij (for ij = 12, 13, 23) together with the
phase matrices P = Diag{1, 1, eiδ̃} and P ′ = Diag{eiρ, eiσ, 1}. Since P ′ itself
plays no role in neutrino oscillations, its two Majorana phases ρ and σ are
completely insensitive to matter effects. Substituting Eqs. (3.107) and (5.51)
into Eqs. (5.46) and (5.47), one may get the relations between (θ̃12, θ̃13, θ̃23, δ̃)
and (θ12, θ13, θ23, δ). But the exact analytical results are not simple (Zaglauer
and Schwarzer, 1988; Xing, 2001c; Freund, 2001). For example 3,

3Here we only present the next-to-leading order expression for tan θ̃23/ tan θ23,
because the exact result is too complicated to be instructive.
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tan θ̃12
tan θ12

=
D1

D2

· N2NN + A
[(
m̃2

2 −m2
1

)
s213 +
(
m̃2

2 −m2
3

)
c212c

2
13

]
N1NN + A [(m̃2

1 −m2
2) s

2
13 + (m̃2

1 −m2
3) s

2
12c

2
13]

,

tan θ̃23
tan θ23

= 1 +
AΔm2

21s12c12s13 cos δ
s23c23 {N3NN −A [(m̃2

3 −m2
1) s

2
12 + (m̃2

3 −m2
2) c

2
12] s

2
13}

,

sin θ̃13
sin θ13

=
N3NN

D3

+
A

D3

[(
m̃2

3 −m2
1

)
s212 +
(
m̃2

3 −m2
2

)
c212
]
c213 , (5.52)

where Di and NiNN can be read off from Eq. (5.47). In addition, one may relate
sin δ̃ to sin δ by using Eq. (5.50) together with J̃ = c̃12s̃12c̃

2
13s̃13c̃23s̃23 sin δ̃

and the similar expression of J . Note, however, that both the (2,3) rotation
matrix in Eq. (5.51) and the phase matrix P commute with the matter-
induced matrix in Eq. (5.40). This observation allows one to derive an exact
relationship between (θ̃23, δ̃) and (θ23, δ) (Toshev, 1991):

sin 2θ̃23 sin δ̃ = sin 2θ23 sin δ . (5.53)

So δ̃ ≈ δ holds as a result of θ̃23 ≈ θ23 in the leading-order approximation.
Hence both θ23 and δ are essentially insensitive to matter effects.

The results obtained above are only valid for neutrinos propagating in
matter. For the case of antineutrinos propagating in matter, the correspond-
ing expressions can be easily obtained through the replacements δ =⇒ −== δ
(or J =⇒ −J== ) and A =⇒ −== A. Such formulas should be very useful for the
purpose of recasting the fundamental parameters of lepton flavor mixing from
the matter-corrected ones, which can be extracted from a variety of long- and
medium-baseline neutrino oscillation experiments in the near future.

5.1.5 Leptonic Unitarity Triangles in Matter

We proceed to explore some more properties of lepton flavor mixing and
CP violation in matter. For simplicity, we are again subject to a constant
matter density profile. The effective Hamiltonians Hv and Hm in Eq. (5.40)
are related to each other via

Hm = Hv +

⎛⎝⎛⎛a 0 0
0 0 0
0 0 0

⎞⎠⎞⎞ , (5.54)

where a = A/(2E) =
√

2GFne. This equality actually allows us to obtain a
sum rule which is more general than the one given in Eq. (5.48):

3∑
i=1

m̃2
i ṼαiVV Ṽ ∗

βiVV =
3∑

i=1

m2
iVαiVV V ∗

βiVV + Aδαeδeβ . (5.55)

On the other hand,
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HmH†
m = HvH†

v + Hv

⎛⎝⎛⎛a 0 0
0 0 0
0 0 0

⎞⎠⎞⎞+

⎛⎝⎛⎛a 0 0
0 0 0
0 0 0

⎞⎠⎞⎞H†
v +

⎛⎝⎛⎛a2 0 0
0 0 0
0 0 0

⎞⎠⎞⎞ , (5.56)

which leads us to a new sum rule (Xing and Zhang, 2005)

3∑
i=1

m̃4
i ṼαiVV Ṽ ∗

βiVV =
3∑

i=1

[
m4

i + Am2
i (δαe + δeβ)

]
VαiVV V ∗

βiVV +A2δαeδeβ . (5.57)

Eqs. (5.55) and (5.57), together with the unitarity conditions

3∑
i=1

ṼαiVV Ṽ ∗
βiVV =

3∑
i=1

VαiVV V ∗
βiVV = δαβ , (5.58)

constitute a full set of linear equations of ṼαiVV Ṽ ∗
βiVV (for i = 1, 2, 3). One may

make use of these equations to derive the concrete expressions of ṼαiVV Ṽ ∗
βiVV in

terms of m2
i , m̃

2
i and VαiVV V ∗

βiVV .
Let us first calculate the moduli of ṼαiVV by using Eqs. (5.55), (5.57) and

(5.58). Those equations are rewritten, in the α = β case, as follows:

X̃

⎛⎝⎛⎛|ṼαVV 1|2
|ṼαVV 2|2
|ṼαVV 3|2

⎞⎠⎞⎞ = (X + 2AδαeY )

⎛⎝⎛⎛|VαVV 1|2
|VαVV 2|2
|VαVV 3|2

⎞⎠⎞⎞+

⎛⎝⎛⎛ 0
A
A2

⎞⎠⎞⎞ δαe , (5.59)

where

X =

⎛⎝⎛⎛ 1 1 1
m2

1 m
2
2 m

2
3

m4
1 m

4
2 m

4
3

⎞⎠⎞⎞ , Y =

⎛⎝⎛⎛ 0 0 0
0 0 0
m2

1 m
2
2 m

2
3

⎞⎠⎞⎞ ,

X̃ =

⎛⎝⎛⎛ 1 1 1
m̃2

1 m̃
2
2 m̃

2
3

m̃4
1 m̃

4
2 m̃

4
3

⎞⎠⎞⎞ . (5.60)

With the help of Eq. (5.45), we solve Eq. (5.59) and obtain the following
exact results (Xing and Zhang, 2005):

|ṼeVV 1|2 =
Δ̂21Δ̂31

Δ̃21Δ̃31

|VeVV 1|2 +
Δ̂11Δ̂31

Δ̃21Δ̃31

|VeVV 2|2 +
Δ̂11Δ̂21

Δ̃21Δ̃31

|VeVV 3|2 ,

|ṼeVV 2|2 =
Δ̂22Δ̂32

Δ̃12Δ̃32

|VeVV 1|2 +
Δ̂12Δ̂32

Δ̃12Δ̃32

|VeVV 2|2 +
Δ̂12Δ̂22

Δ̃12Δ̃32

|VeVV 3|2 ,

|ṼeVV 3|2 =
Δ̂23Δ̂33

Δ̃13Δ̃23

|VeVV 1|2 +
Δ̂13Δ̂33

Δ̃13Δ̃23

|VeVV 2|2 +
Δ̂13Δ̂23

Δ̃13Δ̃23

|VeVV 3|2 ; (5.61)

and
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|ṼμVV 1|2 =
Δ̂12Δ̂13

Δ̃12Δ̃13

|VμVV 1|2 +
Δ̂22Δ̂23

Δ̃12Δ̃13

|VμVV 2|2 +
Δ̂32Δ̂33

Δ̃12Δ̃13

|VμVV 3|2 ,

|ṼμVV 2|2 =
Δ̂11Δ̂13

Δ̃21Δ̃23

|VμVV 1|2 +
Δ̂21Δ̂23

Δ̃21Δ̃23

|VμVV 2|2 +
Δ̂31Δ̂33

Δ̃21Δ̃23

|VμVV 3|2 ,

|ṼμVV 3|2 =
Δ̂11Δ̂12

Δ̃31Δ̃32

|VμVV 1|2 +
Δ̂21Δ̂22

Δ̃31Δ̃32

|VμVV 2|2 +
Δ̂31Δ̂32

Δ̃31Δ̃32

|VμVV 3|2 ; (5.62)

and

|ṼτVV 1|2 =
Δ̂12Δ̂13

Δ̃12Δ̃13

|VτVV 1|2 +
Δ̂22Δ̂23

Δ̃12Δ̃13

|VτVV 2|2 +
Δ̂32Δ̂33

Δ̃12Δ̃13

|VτVV 3|2 ,

|ṼτVV 2|2 =
Δ̂11Δ̂13

Δ̃21Δ̃23

|VτVV 1|2 +
Δ̂21Δ̂23

Δ̃21Δ̃23

|VτVV 2|2 +
Δ̂31Δ̂33

Δ̃21Δ̃23

|VτVV 3|2 ,

|ṼτVV 3|2 =
Δ̂11Δ̂12

Δ̃31Δ̃32

|VτVV 1|2 +
Δ̂21Δ̂22

Δ̃31Δ̃32

|VτVV 2|2 +
Δ̂31Δ̂32

Δ̃31Δ̃32

|VτVV 3|2 , (5.63)

where Δ̂ji ≡ m2
j − m̃2

i and Δ̃ji ≡ Δm̃2
ji = m̃2

j − m̃2
i have been defined. Note

that Δ̂ji = Δ̂jj + Δ̃ji holds, and both Δ̂jj and Δ̃ji can be directly read off
from Eq. (5.43). Of course, we have |ṼαiVV |2 = |VαiVV |2 in the A→ 0 limit.

We continue to calculate ṼαiVV Ṽ ∗
βiVV in terms of VαiVV V ∗

βiVV (for α = β). The latter
can form three unitarity triangles, which are named as �e for (α, β) = (μ, τ),
�μ for (α, β) = (τ, e) and �τ for (α, β) = (e, μ) in Fig. 3.10, in the complex
plane in vacuum. Their effective counterparts in matter are then referred to
as �̃e, �̃μ and �̃τ . Taking account of Eqs. (5.55), (5.57) and (5.58), one may
easily write down a full set of equations of ṼαiVV Ṽ ∗

βiVV (for α = β):

X̃

⎛⎜⎛⎛⎝⎜⎜ṼαVV 1Ṽ
∗
βVV 1

ṼαVV 2Ṽ
∗
βVV 2

ṼαVV 3Ṽ
∗
βVV 3

⎞⎟⎞⎞⎠⎟⎟ =
[
X + A

(
δαe + δeβ

)
Y
]⎛⎝⎛⎛VαVV 1V

∗
βVV 1

VαVV 2V
∗
βVV 2

VαVV 3V
∗
βVV 3

⎞⎠⎞⎞ , (5.64)

where X̃, X and Y have been given in Eq. (5.60). The solutions to Eq. (5.64)
are (Xing and Zhang, 2005; Zhang and Xing, 2005)

ṼμVV 1Ṽ
∗
τVV 1 =

(Δ̂21 +A)Δ31

Δ̃21Δ̃31

VμVV 1V
∗
τVV 1 +

(Δ̂11 + A)Δ32

Δ̃21Δ̃31

VμVV 2V
∗
τVV 2 ,

ṼμVV 2Ṽ
∗
τVV 2 =

(Δ̂32 +A)Δ21

Δ̃32Δ̃21

VμVV 2V
∗
τVV 2 +

(Δ̂22 + A)Δ31

Δ̃32Δ̃21

VμVV 3V
∗
τVV 3 ,

ṼμVV 3Ṽ
∗
τVV 3 =

(Δ̂13 +A)Δ23

Δ̃13Δ̃23

VμVV 3V
∗
τVV 3 +

(Δ̂33 + A)Δ21

Δ̃13Δ̃23

VμVV 1V
∗
τVV 1 , (5.65)

for the effective triangle �̃e; and
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ṼτVV 1Ṽ
∗
eVV 1 =

Δ̂21Δ31

Δ̃21Δ̃31

VτVV 1V
∗
eVV 1 +

Δ̂11Δ32

Δ̃21Δ̃31

VτVV 2V
∗
eVV 2 ,

ṼτVV 2Ṽ
∗
eVV 2 =

Δ̂32Δ21

Δ̃32Δ̃21

VτVV 2V
∗
eVV 2 +

Δ̂22Δ31

Δ̃32Δ̃21

VτVV 3V
∗
eVV 3 ,

ṼτVV 3Ṽ
∗
eVV 3 =

Δ̂13Δ23

Δ̃13Δ̃23

VτVV 3V
∗
eVV 3 +

Δ̂33Δ21

Δ̃13Δ̃23

VτVV 1V
∗
eVV 1 , (5.66)

for the effective triangle �̃μ; and

ṼeVV 1Ṽ
∗
μVV 1 =

Δ̂21Δ31

Δ̃21Δ̃31

VeVV 1V
∗
μVV 1 +

Δ̂11Δ32

Δ̃21Δ̃31

VeVV 2V
∗
μVV 2 ,

ṼeVV 2Ṽ
∗
μVV 2 =

Δ̂32Δ21

Δ̃32Δ̃21

VeVV 2V
∗
μVV 2 +

Δ̂22Δ31

Δ̃32Δ̃21

VeVV 3V
∗
μVV 3 ,

ṼeVV 3Ṽ
∗
μVV 3 =

Δ̂13Δ23

Δ̃13Δ̃23

VeVV 3V
∗
μVV 3 +

Δ̂33Δ21

Δ̃13Δ̃23

VeVV 1V
∗
μVV 1 , (5.67)

for the effective triangle �̃τ , where Δji ≡ Δm2
ji = m2

j −m2
i has been defined.

One may use the sides of �̃α (for α = e, μ, τ) to calculate the effective
Jarlskog invariant J̃ and then obtain the relationship between J̃ and J as
given in Eq. (5.50). The areas of �̃e, �̃μ and �̃τ are all equal to J̃ /2.

We remark that the results obtained above are only valid for neutrinos
propagating in matter. As for antineutrinos propagating in matter, the rele-
vant formulas can be directly written out through the replacements V =⇒== V ∗

(or J =⇒ −J== ) and A =⇒ −== A. For a neutrino oscillation experiment with
L � 1000 km, the dependence of terrestrial matter effects on the neutrino
beam energy is approximately A ≈ 2.28 × 10−4 eV2E/[GeV] (Mocioiu and
Shrock, 2000). Typically taking Δ21 ≈ 8 × 10−5 eV2, Δ32 ≈ 2.3 × 10−3 eV2,
θ12 ≈ 33◦, θ13 ≈ 3◦, θ23 ≈ 45◦ and δ ≈ 90◦ in vacuum, we show the numerical
dependence of J̃ /J on E in Fig. 5.1 for both neutrinos and antineutrinos.
We see that J̃ is in most cases smaller than J . This unfortunate feature
makes it hard to directly measure leptonic CP or T violation in any realistic
long-baseline neutrino oscillation experiments. If the neutrino beam energy
is small (e.g., E ∼ 1 GeV or smaller), the matter-induced suppression of J̃
is not significant. In this case a study of CP violation and unitarity triangles
in a medium-baseline neutrino oscillation experiment might be more feasible
(Minakata and Nunokawa, 2000; Xing, 2001a).

5.2 Neutrino Oscillations and Quantum Coherence

Although the phenomenology of neutrino oscillations has been established,
a number of basic issues associated with the theory of neutrino oscillations
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Fig. 5.1 Terrestrial matter effects on the Jarlskog invariant of CP violation for
neutrinos (ν with +A and V ) and antineutrinos (ν with −A and V ∗) in a realistic
long-baseline oscillation experiment (Zhang and Xing, 2005. With permission from
Springer Science+Business Media)

are still under debate. In this section we introduce the wave-packet approach
for describing neutrino oscillations and analyze the conditions of quantum
coherence under which neutrino oscillations can take place.

5.2.1 A Paradox of Neutrino Oscillations

The treatment of neutrino oscillations in Section 5.1 is actually oversimple,
although it can lead to the correct results. Now let us clarify the same energy
or same momentum assumption for neutrino mass eigenstates composing a
given neutrino flavor state, because it has often been used in the calculation
of neutrino oscillation probabilities.

If the same energy E is assumed for three neutrino mass eigenstates, they
must possess different momenta pk =

√
E2 −m2

k (for k = 1, 2, 3) which can
approximate to pk = E − m2

k/(2E) in the relativistic limit. Then a given
neutrino flavor state propagates in the one-dimensional space x as follows:

|να(x)〉 =
3∑

k=1

V ∗
αkVV eipkx|νk〉 . (5.68)

One may obtain the amplitude of να → νβν oscillations by projecting this
state onto |νβν 〉 at the detector with x = L. The oscillation probabilities are

P (να → νβν ) =
3∑

j=1

3∑
k=1

VαjVV VβkVV V ∗
αkVV V ∗

βjVV ei(pk−pj)L



5.2 Neutrino Oscillations and Quantum Coherence 179

=
3∑

j=1

3∑
k=1

VαjVV VβkVV V ∗
αkVV V ∗

βjVV exp

{
−i

Δm2
kj

2E
L

}
. (5.69)

This result is the same as the one given in Eq. (5.5). If the same momentum p
is assumed for three neutrino mass eigenstates, nevertheless, they must have
different energies Ek =

√
p
√√

2 +m2
k (for k = 1, 2, 3) which can approximate to

Ek = p+m2
k/(2p) in the relativistic limit. In this case a given neutrino flavor

state evolves only in time,

|να(t)〉 =
3∑

k=1

V ∗
αkVV e−iEkt|νk〉 , (5.70)

and the probabilities of να → νβν oscillations turn out to be

P (να → νβν ) =
3∑

j=1

3∑
k=1

VαjVV VβkVV V ∗
αkVV V ∗

βjVV e−i(Ek−Ej)t

=
3∑

j=1

3∑
k=1

VαjVV VβkVV V ∗
αkVV V ∗

βjVV exp

{
−i

Δm2
kj

2p
t

}
. (5.71)

Taking account of p ≈ E � mk and t ≈ L in the natural unit system,
we find that the results obtain in Eqs. (5.69) and (5.71) are identical. An
immediate question is why these two totally different assumptions lead to the
same result. In fact, these two assumptions contradict each other and neither
of them is correct. One may consider the decay mode π+ → μ+ + νμ and
analyze its kinematics in the rest frame of the pion to demonstrate that the
same energy or momentum assumption must be wrong. Suppose a neutrino
mass eigenstate |νk〉 with the eigenvalue mk is produced in this decay, then
its momentum and energy are given by

p2k =

(
m2

π −m2
μ −m2

k

)2 − 4m2
km

2
μ

4m2
π

,

E2
k =

(
m2

π −m2
μ +m2

k

)2
4m2

π

, (5.72)

which satisfy E2
k = p2k +m2

k. It is straightforward to verify that neither the
energies nor the momenta are equal for three neutrino mass eigenstates with
non-degenerate masses.

The above paradox originates from the naive treatment of neutrino mass
eigenstates as the plane waves. The reason is simply that particles are all
generated via the production processes occurring in a finite space volume
and a finite time interval, which exclude the plane-wave description. As a
matter of fact, particles in the production, propagation and detection are the
wave packets. In the wave-packet language the momenta of three neutrino
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mass eigenstates are continuously distributed and highly peaked around the
averaged values, so are the corresponding energies. After the elapsed time t
and at the distance L from the source, the phase difference between the mass
eigenstates |νk〉 and |νjν 〉 reads (Akhmedov and Smirnov, 2009)

Δφkj =
(
Ek − EjE

)
t−
(
pk − pj

)
L , (5.73)

where EjE =
√
p
√√

2
j +m2

j and Ek =
√
p
√√

2
k +m2

k hold. Expanding the energy
difference in Eq. (5.73) in terms of the neutrino momentum and mass-squared
differences, we have

ΔEkj ≡ Ek − EjE = vgΔpΔ kj +
Δm2

kj

2E
, (5.74)

where vg is the average group velocity, E ≡ (Ek +EjE )/2 denotes the average
energy, and ΔpΔ kj ≡ pk−pj represents the momentum difference. Substituting
Eq. (5.74) into Eq. (5.73), we obtain the phase difference

Δφkj =
Δm2

kj

2E
t− (L− vgt)ΔpΔ kj . (5.75)

Alternatively, one may expand the momentum difference in Eq. (5.73) in
terms of the energy and mass-squared differences:

ΔpΔ kj =
1
vg

ΔEkj −
Δm2

kj

2p
, (5.76)

where p ≡ (pk + pj)/2 is the average momentum. Inserting Eq. (5.76) into
Eq. (5.73), one arrives at the phase difference

Δφkj =
Δm2

kj

2p
L− 1

vg

(L− vgt)ΔEkj . (5.77)

It becomes evident that the phase difference in Eq. (5.75) can reduce to the
conventional result Δφkj = Δm2

kjt/(2E) in Eq. (5.71) in the same momentum
assumption. Likewise, Δφkj in Eq. (5.77) can reproduce the one in Eq. (5.69)
in the same energy assumption. These two assumptions are unnecessary be-
cause the phase differences in Eq. (5.75) and (5.77) turn into the conventional
ones if the condition L = vgt is fulfilled (Akhmedov and Smirnov, 2009). The
interpretation of this condition is as follows: the center of the wave packet
should be located around the detector at the distance L; namely, |L − vgt|
should be smaller than the effective width of the wave packet σx, which de-
pends on the production and detection of neutrinos. Beyond this range (i.e.,
|L−vgt| � σx) the neutrino wave functions will be highly suppressed, causing
the oscillatory terms in P (να → νβν ) to disappear. One may therefore draw
two conclusions: (1) the same energy and same momentum assumptions are
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unnecessary; (2) the conventional formulas of neutrino oscillation probabili-
ties are valid for relativistic neutrinos if the loss of quantum coherence, due
to either the wave-packet separation or the localization of the source and
detector, is negligible (Cohen et al., 2009; Akhmedov and Smirnov, 2009).

Before discussing the quantum coherence in neutrino oscillations, we
briefly review the interference phenomena and the concept of coherence in
optics (Bonn and Wolf, 1980). In the famous Young’s double-slit experiment,
the light from a monochromatic source passes through two neighboring slits
and finally arrives at the screen. It turns out that the light intensity on the
screen varies between the minimum and maximum from point to point. The
interference occurs due to the phase difference which develops for the two
light beams from the slits with different optical paths. This is an elegant
experiment to demonstrate the wave nature of light. However, any realis-
tic light source is not exactly monochromatic. For instance, the excited gas
can emit light whose spectrum consists of bright sharp lines. If one of these
lines is input into the Michelson interferometer, one may observe the circular
fringes. It has been found that the visibility of the fringes decreases as the
optical path difference between two interfering beams increases. Suppose the
real light is actually composed of wave trains, whose frequencies vary in the
range of Δν around the average value ν0. It can be shown that the duration of
the wave trains Δt and the frequency range Δν fulfill the reciprocity relation
ΔtΔν � 1/(4π), which is rather analogous to the Heisenberg uncertainty
relation in quantum mechanics. Let us define the coherence length as (Bonn
and Wolf, 1980)

lcoh ≡ cΔt ∼ c

Δν
=
λ

2

Δλ
, (5.78)

where c is the speed of light in vacuum and λ is the average wave length.
Hence the circular fringes disappear if the difference of the optical paths
becomes much larger than the coherence length.

The quantum coherence in neutrino oscillations seems more complicated
than the classical coherence in optics. It is still being debated that under
which conditions the coherence of neutrino mass eigenstates is lost, for ex-
ample, in the analysis of the GSI anomaly (Ivanov el al., 2008; Giunti, 2008;
Lipkin, 2008) or the Mössbauer neutrino oscillations (Akhmedov et al., 2009;
Bilenky et al., 2009). But it becomes clear that the wave-packet approach
is helpful and probably unavoidable in solving such problems (Kayser, 1981;
Kiers et al., 1996; Grimus and Stockinger, 1996; Campagne, 1997; Grimus et
al., 1998; Shtanov, 1998; Giunti, 2004) and other paradoxes (Akhmedov and
Smirnov, 2009). A formal treatment of neutrino oscillations has also been
performed in the framework of quantum field theories (Cardall and Chung,
1999; Ioannisian and Pilaftsis, 1999; Cardall, 2000; Beuthe, 2002; Giunti,
2002; Blasone et al., 2002).
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5.2.2 The Wave-packet Approach

Now we use the wave-packet language to describe neutrino oscillations. Let
us suppose that neutrinos are initially produced via the weak charged-current
interactions at the source. After propagating a distance L during the time
T , they arrive at the detector and are detected via the weak charged-current
interactions. Analogous to the spectral line of the real light, the neutrino mass
eigenstates should be represented by the wave packets. For simplicity, we only
consider the one-dimensional space x in the direction from the source to the
detector. Since both the production and detection of neutrinos are localized
in a finite space-time volume, we expect that a neutrino flavor eigenstate is a
linear superposition of the wave packets of neutrino mass eigenstates. More
explicitly, a neutrino flavor state at any time t can be written as (Giunti and
Kim, 1998; Giunti et al., 1993, 1998)

|να(t)〉 =
3∑

k=1

V ∗
αkVV

∫
dp gd s

k(p) e−iEk(p)t|νk(p)〉 , (5.79)

where Ek(p) =
√
p
√√

2 +m2
k is the neutrino energy for each momentum mode

in the wave packet. The distribution function in the momentum space can be
taken to be Gaussian:

gs
k(p) =

[
1

2π(σs
p)2

]1/4

exp
[
−(p− pk)2

4(σs
p)2

]
, (5.80)

where pk is the average momentum for the mass eigenstate |νk〉, and σs
p is the

momentum width of the wave packet. The superscript “s” reminds us of the
wave packet at the source. Note that the neutrino mass eigenstates can have
different average momenta pk and energies Ek ≡ Ek(pk) in this wave-packet
formulation. In the coordinate space |νk(p)〉 = eipx|νk〉 holds, and thus the
neutrino wave function of the initial state reads

|να(x, t)〉 =
[

1
2π(σs

x)2

]1/4 3∑
k=1

V ∗
αkVV exp

[
i (pkx− Ekt) −

(x− vkt)
2

4(σs
x)2

]
|νk〉 (5.81)

with σs
x being the wave-packet width in the coordinate space. σs

x and σs
p

are associated with each other via the uncertainty relation σs
xσ

s
p = 1/2. In

addition, the group velocity of the wave packet is defined as

vk ≡ dEk(p)
dpd

∣∣∣∣∣∣∣∣∣∣
p=pk

=
pk

Ek

. (5.82)

So Ek(p) ≈ Ek +vk(p− pk) holds if the distribution function gs
k(p) is sharply

peaked at p = pk (i.e., σs
p � E2

k/mk is satisfied). The neutrino flavor state
|νβν 〉 at the detector is also a superposition of the wave packets of neutrino
mass eigenstates:
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|νβν 〉 =
3∑

j=1

V ∗
βjVV

∫
dp gd d

j (p)|νjν (p)〉 . (5.83)

Here the distribution function gd
j (p) can also be taken to be Gaussian, and it

corresponds to the wave-packet width σd
p at the detector. Note that the flavor

state |νβν 〉 is to be experimentally identified at the detector, so we ignore its
evolution in time. The corresponding wave function in the coordinate space
can be figured out in a similar way:

|νβν (x− L)〉 =
[

1
2π(σd

x)2

]1/4 3∑
j=1

V ∗
αjVV exp

[
ipi j(x− L) − (x− L)2

4(σd
x)2

]
|νjν 〉 , (5.84)

where L is the distance between the source and detector, and σd
x = 1/(2σd

p)
denotes the wave-packet width in the coordinate space. The amplitude of
να → νβν transition is then given by the integration of 〈νβν (x − L)|να(x, T )〉
over the coordinate x. We obtain

Aαβ(L, T ) =

√
2σs

xσ
d
x

σ2
x

3∑
j=1

V ∗
αjVV VβjVV exp

[
i
(
pjL−EjE T

)
−

(L− vjT )2

4σ2
x

]
(5.85)

with σ2
x = (σs

x)2+(σd
x)2. The oscillation probability PαβP (L, T ) = |Aαβ(L, T )|2

turns out to be

PαβPP (L, T ) ∝
3∑

j=1

3∑
k=1

VαjVV VβkVV V ∗
αkVV V ∗

βjVV exp
{
i
[
(pk − pj)L− (Ek − EjE )T

]
− 1

4σ2
x

[
(L− vkT )2 + (L− vjT )2

]}
. (5.86)

However, the arrival time of neutrinos at the detector has never been mea-
sured in current neutrino oscillation experiments. So one should average the
oscillation probability over T . The integration over T is Gaussian too, and it
can be performed by finding the minimum of the argument of the exponential
function. The minimum is achieved at the point

T =
(vk + vj)L
v2

k + v2
j

−
2i(Ek − EjE )σ2

x

v2
k + v2

j

. (5.87)

Substituting Eq. (5.87) into Eq. (5.86) and imposing the normalization con-
dition PαePP (L) + PαμPP (L) + PατPP (L) = 1, we can get the oscillation probability
(Giunti and Kim, 1998; Giunti, 2002; Giunti and Kim, 2007)

PαβPP (L) =
3∑

j=1

|VαjVV |2|VβjVV |2 + 2Re
∑
j<k

VαjVV VβkVV V ∗
αkVV V ∗

βjVV exp

⎡⎣−i
2πL

λkj

−
(

L

Lcoh
kj

)2
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−2π2(1 − ξ)

(
σx

λkj

)2
⎤⎦ , (5.88)

where ξ is defined via EjE = E + ξm2
j/(2E) with E being the average energy

of neutrinos in the production process (when m2
j → 0), λkj ≡ 4πE/Δm2

kj

denote the neutrino oscillation lengths, and Lcoh
kj ≡ 4

√
2 σxE

2/|Δm2
kj | stand

for the coherence lengths. Comparing between Eq. (5.88) and Eq. (5.5), we
observe that there are two additional terms in the exponential in the wave-
packet approach. When the conditions σx � λkj and L� Lcoh

kj are satisfied,
however, Eq. (5.88) can reproduce Eq. (5.5). Let us give some comments on
the physical implications of these two extra terms (Giunti and Kim, 2007).

(1) The coherence of neutrino mass eigenstates is determined by the sizes
of L/Lcoh

kj and σx/λkj . All the current neutrino oscillation experiments satisfy
the conditions σx � λkj and L � Lcoh

kj , so the plane-wave treatment of
neutrino oscillations is accurate enough and can lead to the correct result.

(2) If L � Lcoh
kj holds, the separation between different neutrino wave

packets is larger than the effective wave-packet width σx. In this case the
interference among neutrino mass eigenstates disappears and the oscillatory
terms in Eq. (5.88) are exponentially suppressed, so the probabilities of neu-
trino oscillations are just given by the first term in Eq. (5.88). A similar result
has been obtained in Eq. (5.6), where the probabilities are averaged over the
neutrino energy spectrum and propagation distances.

(3) If σx � λkj is satisfied, we have σs
x � λkj or σd

x � λkj or both.
In each case neutrino oscillations have already taken place within the source
or the detector. As a result, the oscillatory phenomena cannot be observed
because of the exponential suppression.

(4) It has been pointed out that the detection may restore the coherence
of neutrino mass eigenstates (Kiers et al., 1996). This observation comes from
the last term in the exponential in Eq. (5.88). Suppose the energy resolution
becomes more accurate, then the momentum uncertainty σd

p becomes smaller.
In this case σx gets larger, so does the coherence lengths Lcoh

kj ∝ σx. It is in
practice difficult to observe such a restoration of coherence because of an
average over the energy resolution and detection position.

5.2.3 Coherence of Cosmic Neutrinos

If neutrino mass eigenstates are incoherent at the detector, or if the detection
of neutrinos has to average the oscillation probabilities over the neutrino en-
ergy spectra and propagation distances, the neutrino flavor conversion is just
described by the classical probabilities as given in Eq. (5.6). The detection of
neutrino oscillations depends both on the coherence of neutrinos and on the
experimental setup. Concerning the first condition, one ought to carefully ex-
amine the production processes and properties of neutrino sources, and then
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determine the widths of neutrino wave packets. The experimental setup for
neutrino detection is also important. As we have mentioned, the arrival time
of neutrinos at the detector is not measured in current neutrino oscillation
experiments. If the energy resolution is so accurate that the neutrino mass
eigenstate arriving at the detector can be determined, one will be unable to
observe neutrino oscillations (Kayser, 1981). In the following let us exam-
ine the coherence of neutrinos from various sources. Such an analysis is very
crucial in the discussion of ultrahigh-energy cosmic neutrino oscillations.

In the coordinate space the wave-packet width of neutrinos is σx, which
is related to the momentum width σp through the uncertainty relation σx ∼
σ−1

p . On the other hand, the group velocity of the wave packet corresponding
to the neutrino mass eigenstate |νk〉 is given by vk = pk/Ek. Thus a difference
between two group velocities of neutrino mass eigenstates reads

Δvkj =
pk

Ek

−
pj

EjE
=

Δm2
jk

2E2
, (5.89)

where Δmjk ≡ m2
j −m2

k and E ≡ (Ek + EjE )/2. For simplicity, we only con-
centrate on the order-of-magnitude estimation by considering two neutrino
flavors and omitting all the subscripts. Then Eq. (5.89) can be written as
Δv = Δm2/(2E2). After a propagation distance L, the separation between
two wave packets is

dL =
L

v
Δv =

Δm2

2E2
L , (5.90)

where v is the average group velocity. If this separation significantly exceeds
the wave-packet width (i.e., dL � σx), there will be no overlap between the
wave packets of two neutrino mass eigenstates, implying that the coherence
will be lost. With the help of Eq. (5.90), one may convert the condition
dL � σx into the following form:

L� 2E2σx

Δm2
∼ Lcoh , (5.91)

where the coherence length is defined as Lcoh ≡ 4πE2σx/Δm
2. Note that the

coherence lengths defined in Eq. (5.88) are subject to the case of Gaussian
wave packets. The condition for the coherence loss in Eq. (5.91) is consistent
with the discussions below Eq. (5.88), where L � Lcoh leads to a high sup-
pression of the oscillatory terms. For simplicity, we ignore the spread of the
wave packet caused by the presence of different momentum modes. Note also
that the wave-packet width σx in question is actually σs

x, the width associated
with the production mechanism at the source. Although the coherence may
be restored at the detector with an excellent energy resolution, an average
over the location of the source erases the oscillations. Hence we focus on the
production of neutrinos and the wave-packet width at the source.
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Let us consider muon neutrinos and antineutrinos from π+ → μ++νμ and
π− → μ− + νμ decays, which might be the dominant production mechanism
of cosmic neutrinos at a variety of astrophysical sources. In the rest frame of
the pion, the neutrino energy has been given in Eq. (5.72). Neglecting small
neutrino masses, one may obtain E0

ν = (m2
π − m2

μ)/(2mπ). In such decay
modes the wave-packet width of the final-state particle can be estimated
from the lifetime of the decaying particle (Nussinov, 1976; Kayser, 1981).
For the neutrinos emitted from π± decays in the forward direction, we have
(Farzan and Smirnov, 2008)

σπ
x =

τπττ

γ
≈ E0

ν

Eν

τπττ ∼
(m2

π −m2
μ)

2mπEν

τπττ , (5.92)

where τπττ = 2.6× 10−8 s is the lifetime of the pion at rest, Eν is the neutrino
energy in the observer’s frame, and γ denotes the Lorentz boost factor for
a transformation from the rest frame of the decaying pion to the observer’s
frame. One may follow a similar way to estimate the wave-packet width σμ

x

for the neutrinos emitted from μ± decays: μ+ → e+ + νμ + νe and μ− →
e− + νμ + νe. Compared with the width in Eq. (5.92), σμ

x is enhanced by a
factor τμτ /τπττ ∼ 102, where τμτ = 2.2 × 10−6 s is the lifetime of the muon at
rest. The ratio of the wave-packet separation to the wave-packet width turns
out to be (Farzan and Smirnov, 2008)

dL

σπ
x

=
Δm2mπL

(m2
π −m2

μ)Eντπττ
, (5.93)

which can be further expressed as

dL

σπ
x

∼ 0.1 × Δm2

8 × 10−5 eV2 · L

100 Mpc
· 10 TeV

Eν

· 2.6 × 10−8 s
τπττ

. (5.94)

Given the cosmic neutrinos with energies E ∼ 10 TeV and from certain
astrophysical sources at the distances L ∼ 100 Mpc, the quantum coherence
is maintained because the condition dL ∼ σπ

x holds as shown in Eq. (5.94).
This is always the case for the neutrinos from μ± decays, whose wave-packet
width σμ

x is much larger than σπ
x . Although the coherence is not lost, the

oscillatory pattern of ultrahigh-energy cosmic neutrinos from a very distant
astrophysical source must disappear. The reason is simply that the distance
L between the source and the detector is much longer than the neutrino
oscillation length λkj , so the probabilities of neutrino oscillations have to be
averaged over many circles of oscillations and finally take the classical form
as given in Eq. (5.6).

However, the simple picture of free particle decays cannot be realized in
most astrophysical environments. In a realistic case the pions and muons must
interact with the ambient matter, such as photons. The wave-packet widths
are then determined by the distance or the time between two successive colli-
sions. Furthermore, it is found that the magnetic fields can significantly affect
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the wave-packet widths of neutrinos (Farzan and Smirnov, 2008). The size
of a wave packet is in principle possible to be measured by using the time
information for a non-stationary beam (Stodolsky, 1998).

5.3 Density Matrix Formulation

In this section we introduce an instructive and useful language, the density
matrix and flavor polarization vector, to describe neutrino oscillations. In
particular, the phenomenon of two-flavor neutrino oscillations can be visu-
alized as the motion of a magnetic moment precessing about an external
magnetic field. The terms of neutrino masses and matter effects correspond
to different kinds of external magnetic fields in this formulation, in which the
decoherence effects arising from the interactions of neutrinos with media can
be easily incorporated.

Let us start with a brief review of the density matrix formalism in quan-
tum mechanics. One may in general encounter two types of physical systems:
(1) its state is perfectly known from the wave function Ψ(t); (2) it is the
subsystem of a larger one, and in principle does not have a wave function
(Landau and Lifshitz, 1977). In the first case we can expand the state vector
|Ψ(t)〉 in terms of a complete series of eigenvectors of the Hamiltonian:

|Ψ(t)〉 =
∑

n

CnCC (t)|n〉 , (5.95)

where the eigenstates |n〉 are orthogonal, and the coefficients CnCC (t) satisfy
the normalization condition |C1(t)|2 + · · · + |CnCC (t)|2 = 1. The expectation
value of an operator Ô reads

〈Ô〉 = 〈Ψ(t)|Ô|Ψ(t)〉 =
∑
m

∑
n

CnCC (t)C∗
mCC (t)〈m|Ô|n〉 , (5.96)

where 〈m|Ô|n〉 ≡ Ômn is the matrix element of the operator. The evolution
of this system is governed by the Schrödinger equation

i
∂

∂t
|Ψ(t)〉 = H|Ψ(t)〉 . (5.97)

Now we define the density operator as follows:

ρ(t) ≡ |Ψ(t)〉〈Ψ(t)| =
∑
m

∑
n

CnCC (t)C∗
mCC (t)|n〉〈m| . (5.98)

It is easy to verify that the density matrix ρ is Hermitian, and its elements
are given as ρnm = CnCC (t)C∗

mCC (t). Combining Eqs. (5.96) and (5.98), we obtain

〈Ô〉 =
∑
m

∑
n

ρnmÔmn = Tr
[
ρÔ
]
. (5.99)
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Furthermore, the evolution equation of the density operator can be derived
from the Schrödinger equation

i
∂ρ

∂t
=
[
i
∂

∂t
|Ψ(t)〉
]
〈Ψ(t)| + |Ψ(t)〉

[
i
∂

∂t
〈Ψ(t)|
]

= [H, ρ] . (5.100)

Hence the density matrix description is equivalent to the wave function lan-
guage for a system with pure states. Two basic properties of ρ are Tr[ρ] = 1
and ρ2 = ρ. For an ensemble with mixed states, the probability for it to be
in the state Ψ i(t) is PiPP and the corresponding density operator is defined by

ρ ≡
∑

i

PiPP |Ψ i(t)〉〈Ψ i(t)| =
∑

i

∑
m

∑
n

PiPP C
i
nCC Ci∗

mCC |n〉〈m| . (5.101)

In this case the density matrix satisfies Tr[ρ2] < 1. An application of the
density matrix formulation to neutrino oscillations will be discussed in the
two- and three-flavor mixing schemes, respectively.

5.3.1 Two-flavor Neutrino Oscillations

With the help of the density matrix formulation, the phenomenon of two-
flavor neutrino oscillations can be understood in a pictorial way which is
very analogous to the magnetic moment precessing in a magnetic field. Let
us first consider the propagation of a stationary neutrino beam in vacuum.
The flavor eigenstates |νe〉 and |νμ〉 are related to the mass eigenstates |ν1〉
and |ν2〉 via the following unitary transformation:(

|νe〉
|νμ〉

)
= U

(
|ν1〉
|ν2〉

)
≡
(

cos θ sin θ
− sin θ cos θ

)(
|ν1〉
|ν2〉

)
. (5.102)

Since two free neutrinos propagate in their mass eigenstates |νi〉 with definite
masses mi (for i = 1, 2), the evolution equation of |νi(t)〉 can simply be
derived from Eq. (5.97):

i
d
dt

(
|ν1(t)〉
|ν2(t)〉

)
=

1
2E

(
m2

1 0
0 m2

2

)(
|ν1(t)〉
|ν2(t)〉

)
, (5.103)

where the excellent approximation Ei ≈ p + m2
i /(2p) due to p ≈ E � mi

has been taken for relativistic neutrinos. Multiplying the left- and right-hand
sides of Eq. (5.103) by U , we obtain

i
d
dt

(
|νe(t)〉
|νμ(t)〉

)
=

1
2E

U

(
m2

1 0
0 m2

2

)
U†
(
|νe(t)〉
|νμ(t)〉

)
. (5.104)

Then the effective Hamiltonian in the flavor basis can be written as

Hv =
1

2E
U

(
m2

1 0
0 m2

2

)
U† =

m2
1 +m2

2

4E
1 +

Δm2

4E

(
− cos 2θ sin 2θ
sin 2θ cos 2θ

)
(5.105)
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with Δm2 ≡ m2
2−m2

1. Without loss of generality, we take Δm2 > 0 and allow
θ to vary in the range 0 � θ � π/2.

Note that the term proportional to the identity matrix in Hv can always
be omitted, because it does not affect flavor conversions. After discarding this
term, we may further expand Hv in terms of the Pauli matrices:

Hv =
ωp

2
B · σ , (5.106)

where ωp ≡ Δm2/(2E), B ≡ (sin 2θ, 0,− cos 2θ) and σ ≡ (σx, σy, σz). Given
the state vector |Ψ(t)〉 = ae(t)|νe〉 + aμ(t)|νμ〉, the density matrix defined in
Eq. (5.98) turns out to be

ρ =
(
|ae|2 aea

∗
μ

aμa
∗
e |aμ|2

μμ

)
. (5.107)

The diagonal elements |ae|2 and |aμ|2 give the probabilities for the system to
be in the flavor states |νe〉 and |νμ〉, respectively. The off-diagonal elements
encode the information on quantum coherence between two flavor states.
Because an arbitrary 2×2 Hermitian matrix can always be expanded in terms
of the identity matrix and three Pauli matrices, we rewrite the expression of
ρ in Eq. (5.107) as (Fano, 1957)

ρ =
1
2

(1 + P · σ) , (5.108)

where P is the so-called flavor polarization vector. Now that the diagonal
elements of ρ give the probabilities, the physical meaning of P is then trans-
parent: its z-component PzPP is related to the probabilities through 4

|ae|2 =
1
2

(1 + PzPP ) , |aμ|2 =
1
2

(1 − PzPP ) . (5.109)

Prepared with the new formulation of Hv in Eq. (5.106) and ρ in Eq. (5.108),
we recast the evolution equation in Eq. (5.100) into a more suggestive form:

iρ̇(t) = [Hv, ρ(t)] =
ωp

4

∑
j

∑
k

[
σj , σk

]
BjPkPP (t) = i

ωp

2
[B× P(t)] · σ , (5.110)

where the commutation relation [σj , σk] = 2iσl (for j, k, l to run over 1, 2, 3
cyclically) has been used. Then Eqs. (5.108) and (5.110) lead us to the desired
form of the evolution equation of P(t) (Fano, 1957; Raffelt, 1996):

d
dt

P(t) = ωpB× P(t) . (5.111)

4We have defined P = (PxPP , PyPP , PzPP ) and σ = (σx, σy, σz). Sometimes it is more
convenient to denote the Pauli matrices as (σ1, σ2, σ3). These two notations are
equivalent and will be alternatively used in this section.
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Hence neutrino oscillations can be described by the evolution of the flavor
polarization vector. To make the physical meaning of P(t) clearer, we assume
the initial state of a neutrino beam to be purely composed of electron neutri-
nos; namely, ae(0) = 1 and aμ(0) = 0. Eqs. (5.107) and (5.108) allow one to
determine the initial value of the polarization vector: P(0) = (0, 0, 1). If the
polarization vector points upward (downward), the state is purely an electron
(muon) neutrino. On the other hand, Eq. (5.111) means that the length of
P(t) keeps unchanged in the evolution; i.e., |P(t)|2 = 1. To solve Eq. (5.111),
we write out the evolution equation for each component of P(t):

d
dt

(PxPP , PyPP , PzPP ) = ωp(PyPP cos 2θ,−PzPP sin 2θ − PxPP cos 2θ, PyPP sin 2θ) . (5.112)

Given the initial conditions P(0) = (0, 0, 1) and Ṗ(0) = (0,−ωp sin 2θ, 0), the
above equation can be exactly solved. For example, we obtain

PzPP (t) = 1 − 2 sin2 2θ sin2
ωpt

2
(5.113)

for the z-component. This result, together with Eq. (5.109), leads to the
survival probability of the electron neutrinos:

P (νe → νe) = |ae(t)|2 = 1 − sin2 2θ sin2
ωpt

2
. (5.114)

Taking t = L in the natural unit system, we see that Eq. (5.114) is consistent
with Eq. (5.9). The evolution of the polarization vector is shown in Fig. 5.2.
At the beginning P is located along the z-axis with P(0) = (0, 0, 1). Then
it rotates about the axis in the direction of B = (sin 2θ, 0,− cos 2θ), and its
angular velocity is simply ωp. The projection of P(t) on the z-axis gives rise
to the survival probability, as indicated in Eqs. (5.113) and (5.114).

So far we have dealt with the case of Δm2 > 0 and 0 � θ � π/4 (the
the normal neutrino mass hierarchy). Note that the case of Δm2 < 0 and
0 � θ � π/4 (the inverted neutrino mass hierarchy) is equivalent to the case of
Δm2 > 0 and π/4 � θ � π/2. For the latter case, one may define θ′ ≡ π/2−θ
and replace θ with π/2 − θ′ in the effective Hamiltonian. As a consequence,
the direction of the magnetic field becomes B = (sin 2θ′, 0, cos 2θ′) which is
now lying in the first quadrant of the (x, z) plane. The survival probability
in Eq. (5.114) keeps unchanged, as it should be. All the above discussions are
applicable for antineutrino-antineutrino oscillations.

We proceed to include the matter effects in the density matrix formu-
lation. The Schrödinger-like equation for neutrinos propagating in ordinary
matter has been given in Section 5.1. The matter effects can be described
by the effective potential V =

√
2GFne, which linearly contributes to the

effective Hamiltonian Hm in matter:

Hm −Hv =
√

2 GFne

(
1 0
0 0

)
=
GFne√

2
1 +

GFne√
2

(
1 0
0 −1

)
. (5.115)
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Fig. 5.2 The evolution of the polarization vector P(t) in the flavor space, where
P(0) = (0, 0, 1) is the initial condition and the magnetic field is in the direction of
B = (sin 2θ, 0,− cos 2θ) with θ being the neutrino mixing angle in vacuum

The first term on the right-hand side of Eq. (5.115) can be omitted because
it is irrelevant to neutrino flavor conversions. Then we rewrite the above
equation in terms of the Pauli matrices as

Hm −Hv =
λ

2
L · σ , (5.116)

where λ ≡
√

2GFne, and L = (0, 0, 1) is the unit vector along the positive z-
axis. In a way similar to the derivation of Eq. (5.111), the evolution equation
of the polarization vector in matter is found to be

d
dt

P(t) =
(
ωpB + λL

)
× P(t) . (5.117)

We see that matter effects are equivalent to a new magnetic field in the
direction of the z-axis. If the matter density is a constant, the behavior of
neutrino flavor conversions turns out to be very similar to that in vacuum.
In this case the matter-corrected neutrino mixing angle and frequency are
denoted as θm and ωm

p , respectively. They are related to their counterparts
in vacuum through ωpB + λL ≡ ωm

p Bm with Bm ≡ (sin 2θm, 0,− cos 2θm). A
straightforward calculation yields

ωm
p =
√
ω
√√

2
p + λ2 − 2λωp cos 2θ , tan 2θm =

ωp sin 2θ
ωp cos 2θ − λ

. (5.118)

Note that ωm
p can be defined as ωm

p ≡ Δm̃2/(2E) with Δm̃2 being the effec-
tive neutrino mass-squared difference in matter. Note also that Eq. (5.117)
can be rewritten as Ṗ(t) = ωm

p Bm ×P(t). If the matter density is extremely
small (i.e., λ → 0), one may easily reproduce neutrino oscillations in vac-
uum from Eqs. (5.117) and (5.118). In the λ → +∞ limit we can obtain
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Fig. 5.3 The visualization of two-flavor neutrino oscillations in matter: (a) at
the beginning the matter density is very large and P(0) = (0, 0, 1) holds, so
the polarization vector P(t) rotates around the effective magnetic field Bm =
(sin 2θm, 0,− cos 2θm); (b) as the matter density decreases, P(t) turns to rotate
around the new magnetic field Bm; (c) after the matter density approaches zero,
Bm approaches B and P(t) rotates around B but spins down

tan 2θm → 0−, or equivalently θm → π/2, from Eq. (5.118). This limit im-
plies that the heavier mass eigenstate ν̃2 dominates in the electron flavor
state νe. In the cos 2θ > 0 case, which corresponds to the normal neutrino
mass hierarchy, one has θm = π/4 if the resonant condition λ = ωp cos 2θ is
satisfied. In the cos 2θ < 0 case, which is equivalent to the inverted neutrino
mass hierarchy, there is no resonance associated with tan 2θm. Hence we an-
ticipate that matter effects should be helpful in fixing the mass ordering of
neutrinos. This is actually the case in solar neutrino oscillation experiments.

In many astrophysical environments the matter densities are not constant.
For simplicity, we consider a slowly-varying matter density profile which finds
proper applications both in the Sun and in some supernovae. Such a density
profile allows us to make the adiabatic approximation. In this approximation
the effective magnetic field Bm changes its direction very slowly, as compared
with the rotation of P(t) around Bm. Fig. 5.3 illustrates three typical stages
of this process, which actually takes place for neutrinos propagating in the
Sun. The situation is quite different from the case of a constant matter den-
sity profile, because the initial neutrino flavor can be significantly changed
and this change is represented by the polarization vector pointing to the
negative z-axis as shown in Fig. 5.3(c). One may exactly solve PzPP from the
evolution equation in Eq. (5.117), but its solution involves a time-dependent
coefficient λ(t). An intuitive interpretation of matter effects is as follows. If
the matter density and the corresponding magnetic field change slowly in
comparison with the rotation of the polarization vector, then the latter has
enough time to catch up with the magnetic field and keeps the open angle
intact. Initially, the polarization vector P is almost aligned with Bm because
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of the high matter density at the production point. It will be aligned with
B after the matter density decreases to zero. So PzPP = − cos 2θ holds and the
survival probability is the same as that given in Eq. (5.27). The non-adiabatic
case, which has been discussed in Section 5.1.3, can also be treated in this
geometrical representation (Kim et al., 1988).

5.3.2 Three-flavor Neutrino Oscillations

One may generalize the above density matrix formulation to describe three-
flavor neutrino oscillations. In this more realistic case the neutrino flavor
eigenstates (νe, νμ, ντ ) are linked to their mass eigenstates (ν1, ν2, ν3) via a
3 × 3 unitary matrix V , which has been parametrized in Eq. (3.107). The
Majorana phases of V are irrelevant to neutrino oscillations and thus can be
omitted in our discussions. Then we have⎛⎝⎛⎛νe

νμ

ντ

⎞⎠⎞⎞ =

⎛⎝⎛⎛1 0 0
0 c23 s23
0 −s23 c23

⎞⎠⎞⎞⎛⎝⎛⎛ c13 0 s13e
−iδ

0 1 0
−s13eiδ 0 c13

⎞⎠⎞⎞⎛⎝⎛⎛ c12 s12 0
−s12 c12 0

0 0 1

⎞⎠⎞⎞⎛⎝⎛⎛ν1ν2
ν3

⎞⎠⎞⎞ . (5.119)

Since the CP-violating phase δ is entirely unrestricted, we may tentatively
switch it off. Furthermore, we define a convenient flavor basis:⎛⎝⎛⎛νe

νx

νy

⎞⎠⎞⎞ =

⎛⎝⎛⎛1 0 0
0 c23 −s23
0 s23 c23

⎞⎠⎞⎞⎛⎝⎛⎛νe

νμ

ντ

⎞⎠⎞⎞ . (5.120)

This basis is also convenient for discussing three-flavor neutrino oscillations
in matter, because muon and tau neutrinos have the same interactions with
ordinary matter. In this basis we can write the effective Hamiltonian Hv as

ωL
p

⎛⎝⎛⎛ s212c
2
13 s12c12c13 −s212c13s13

s12c12c13 c212 −s12c12s13
−s212s13c13 −s12c12s13 s212s

2
13

⎞⎠⎞⎞+ ωH
p

⎛⎝⎛⎛ s213 0 c13s13
0 0 0

c13s13 0 c213

⎞⎠⎞⎞ , (5.121)

where ωH
p ≡ Δm2

31/(2p) and ωL
p ≡ Δm2

21/(2p) are the high- and low-level
oscillation frequencies, respectively. Current experimental data yield Δm2

31 ≈
2.4 × 10−3 eV2 and Δm2

21 ≈ 7.9 × 10−5 eV2, and thus ωH
p � ωL

p for a given
momentum mode. In other words, the term associated with ωH

p is expected to
be dominant in Eq. (5.121). In this case the three-flavor neutrino oscillations
can approximate to the two-flavor neutrino oscillations with the high-level
frequency ωH

p and the mixing angle θ13. Such an approximation has been
extensively adopted in the study of flavor conversions of supernova neutrinos
(Hannestad et al., 2006; Duan et al., 2006; Fogli et al., 2007).

In the case of three-flavor neutrino mixing we have to deal with some 3×3
Hermitian matrices, such as the density matrix and the effective Hamiltonian.
It is well known that an arbitrary 3 × 3 Hermitian matrix can be expanded
in terms of the identity matrix and eight Gell-Mann matrices:
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Λ0 =

⎛⎝⎛⎛1 0 0
0 1 0
0 0 1

⎞⎠⎞⎞ , Λ1 =

⎛⎝⎛⎛0 1 0
1 0 0
0 0 0

⎞⎠⎞⎞ , Λ2 =

⎛⎝⎛⎛0 −i 0
i 0 0
0 0 0

⎞⎠⎞⎞ ,

Λ3 =

⎛⎝⎛⎛1 0 0
0 −1 0
0 0 0

⎞⎠⎞⎞ , Λ4 =

⎛⎝⎛⎛0 0 1
0 0 0
1 0 0

⎞⎠⎞⎞ , Λ5 =

⎛⎝⎛⎛0 0 −i
0 0 0
i 0 0

⎞⎠⎞⎞ ,

Λ6 =

⎛⎝⎛⎛0 0 0
0 0 1
0 1 0

⎞⎠⎞⎞ , Λ7 =

⎛⎝⎛⎛0 0 0
0 0 −i
0 i 0

⎞⎠⎞⎞ , Λ8 =
1√
3

⎛⎝⎛⎛1 0 0
0 1 0
0 0 −2

⎞⎠⎞⎞ , (5.122)

where the normalization of the Gell-Mann matrices is taken to be Tr [ΛaΛb] =
2δab (for a, b = 1, 2, · · · , 8). Note that the Gell-Mann matrices satisfy the
SU(3) Lie algebra; i.e., [Λa, Λb] =

∑
c

ifabcff Λc. Here the structure constants

fabcff are antisymmetric with respect to any two indices, and those nonzero
ones are given by

f123
2

= f147 = f165 = f246ff = f257ff = f345ff = f376ff =
f458ff√

3
=
f678ff√

3
= 1 . (5.123)

An arbitrary 3 × 3 Hermitian matrix M can then be expanded as

M =
1
3
M0MM Λ0 +

1
2
M · Λ ≡ 1

3
M0MM Λ0 +

1
2

8∑
a=1

MaM Λa , (5.124)

where M0MM = Tr [MΛ0] and MaM = Tr [MΛa] (for a = 1, 2, · · · , 8). Now we
work in an eight-dimensional vector space spanned by eight unit vectors ea,
so any vector M can be represented by its components MaM (i.e., M = M1e1+
· · · +M8MM e8). By means of this language, we have

Hv = ωp

(
1
3
B0Λ0 +

1
2
B · Λ
)
, (5.125)

where ωp ≡ |Δm2
31|/(2p) > 0; and the “magnetic field B” is given by

B = 2εs12c12c13e1 +
[
s213 − ε(c212 − s212c

2
13)
]
e2 + 2(1 − εs212)s13c13e4

−2εs12c12s13e6 +
1

2
√

3

[
(ε− 2)(3c213 − 1) + 3εs213(2c

2
13 − 1)

]
e8 (5.126)

with ε ≡ Δm2
21/Δm

2
31. One has ε > 0 for Δm2

31 > 0 and ε < 0 for Δm2
31 <

0. In the latter case an overall minus sign should be introduced into the
expression of B. The three-flavor density matrix ρ can be written as

ρ(t) =
1
3
Λ0 +

1
2
P(t) · Λ , (5.127)

where Tr[ρ] = 1 holds as the normalization condition. Eqs. (5.125) and (5.127)
allow one to work out the evolution equation of the polarization vector P(t):
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d
dt

P(t) = ωpB × P(t) ≡ ωp

8∑
a=1

8∑
b=1

fabcff BaPbPP (t)ec , (5.128)

which is a direct generalization of Eq. (5.111) to the three-flavor case. In
order to understand the physical meaning of P(t), we consider a beam of να

neutrinos in the pure flavor state propagating in vacuum. The state vector
of this system can be written as |Ψ(t)〉 = ae(t)|νe〉 + aμ(t)|νμ〉 + aτ (t)|ντ 〉,
and the density matrix is defined as ρ(t) = |Ψ(t)〉〈Ψ(t)|. The diagonal matrix
elements of ρ(t) are given by ρββ = |aβ|2 (for β = e, μ, τ). They are just the
probabilities of να → νβν oscillations. More explicitly, we obtain

P (να → νe) =
1
3

+
1
2

(
P3PP +

1√
3
P8PP

)
,

P (να → νμ) =
1
3
− 1

2

(
P3PP − 1√

3
P8PP

)
,

P (να → ντ ) =
1
3
− 1√

3
P8PP . (5.129)

Note that different initial flavors correspond to different initial conditions of
the polarization vector. If the initial state is an electron neutrino, for instance,
the nonzero components of P(0) will be P3PP (0) = 1 and P8PP (0) = 1/

√
3. We

remark that Eq. (5.129) has been written in the (νe, νμ, ντ ) basis, but the
relations obtained therein are actually independent of the flavor bases. The
point is that the equation of motion in Eq. (5.128) should be solved with the
corresponding magnetic field B in a specific basis. A pictorial presentation of
the evolution of P(t) can be done in the eight-dimensional space, but it is too
complicated to be intuitive and instructive. Nonetheless, it is straightforward
to include matter effects into this picture and calculate the probabilities of
neutrino oscillations by solving the evolution equation of the polarization
vector. The density matrix formulation has been used to analyze the three-
flavor conversions of supernova neutrinos (Duan et al., 2008; Dasgupta and
Dighe, 2008; Dasgupta et al., 2008; Fogli et al., 2009).

5.3.3 Non-linear Evolution Equations

The density matrix formulation of neutrino oscillations is extremely useful
in some astrophysical and cosmological circumstances, such as in the core-
collapse supernovae or in the early Universe, where neutrinos oscillate and
frequently interact with the ambient particles. But it is improper to treat
neutrinos as a beam of particles in these cases, as we have mentioned in
Chapter 2. For instance, neutrinos from the core of a supernova have to
traverse a region where the number densities of neutrinos and antineutrinos
are much higher than the number density of electrons. Hence two crucial
points should be noted: (1) one has to take account of the neutrino-neutrino
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coherent scattering effects, which may dominate over the usual MSW matter
effects on neutrino flavor conversions; (2) there is no distinction between the
test and background neutrinos, since both of them contribute to the total flux
of supernova neutrinos which will be experimentally detected. A reasonable
way out is to consider the number densities of neutrinos for different flavors in
a thermal ensemble. Such a picture is particularly suitable for the description
of neutrinos in the early Universe (Dolgov, 2002).

For unmixed neutrinos and antineutrinos, it is sufficient to consider the
evolution of their occupation numbers fpff and fp for each momentum mode
p. As shown in Chapter 2, the occupation number of a scalar boson φ is given
by the ensemble average of the corresponding occupation number operator
a†pap; i.e., fpff = 〈a†pap〉, where a†p and ap are the creation and annihilation
operators respectively. For mixed neutrinos and antineutrinos, their flavors
should be taken into account. In an analogous way one may define the density
matrices (Sigl and Raffelt, 1993)

〈b†j(p)bi(q)〉 = (2π)3δ3(p− q)
(
ρp
)
ij
,

〈d†i (p)dj(q)〉 = (2π)3δ3(p− q)
(
ρp
)
ij
, (5.130)

where b†i and bi (or d†i and di) denote the creation and annihilation operators
of neutrinos νi (or antineutrinos νi). The diagonal matrix elements of ρp are
just the occupation number densities f i

pff for neutrinos νi, and the neutrino
number density nνi

is given by the integration of f i
pff over the momentum

space. Likewise for the case of antineutrinos νi. Note that the family indices
on the left-hand sides of two identities in Eq. (5.130) are in the opposite
order, which ensures the transformation in the flavor space to be the same
for ρp and ρp. This point can be understood by noting that bi(p) and d†i (p)
are present in the quantization of the neutrino field νi(x), on which the flavor
transformation is acting. On the other hand, we remark that Eq. (5.130) is
defined for the neutrino mass eigenstates, because the neutrino flavor states
have no definite masses and a construction of the Fock space for them is
problematic (Giunti et al., 1992).

For free neutrinos, the time evolution of their creation and annihilation
operators is simple: bk(p, t) = bk(p, 0)e−iEkt and dk(p, t) = dk(p, 0)e−iEkt,
where Ek =

√
|p|2 +m2

k is the neutrino energy. Hence the free Hamiltonian
operator can be written as

Ĥ0 =
∫

d3p
(2π)3

3∑
k=1

[
b†k(p)bk(p) + d†k(p)dk(p)

]
Ek . (5.131)

Let us define the operators (Sigl and Raffelt, 1993)

Djk(p, t) ≡ b†k(p, t)bj(p, t) , Djk(p, t) ≡ d†j(p, t)dk(p, t) . (5.132)
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As a result, the density matrices can be expressed as 〈Djk(p, t)〉 = ρp and
〈Djk(p, t)〉 = ρp, where Eq. (5.130) has been used and the factor (2π)3δ3(0)
has been consistently set to unity. Now we look at the time evolution of the
density matrices. The evolution of the operators defined in Eq. (5.132) is
determined by the Heisenberg equations

Ḋjk(p, t) = i
[
Ĥ,Djk(p, t)

]
, Ḋjk(p, t) = i

[
Ĥ,Djk(p, t)

]
, (5.133)

where Ĥ = Ĥ0 + Ĥint is the total Hamiltonian operator. The evolution equa-
tions of ρp and ρp can be obtained by taking the expectation values on both
sides of Eq. (5.133). These equations will be closed if their right-hand sides
can be reduced to ρp and ρp themselves. In the absence of any interactions
(i.e., Ĥ = Ĥ0), we substitute the Hamiltonian operator in Eq. (5.131) into
Eq. (5.133) and then calculate its first identity as follows:

Ḋjk(p, t) = i
∫

d3q
(2π)3

3∑
l=1

El

[
b†l (q)bl(q), b†k(p, t)bj(p, t)

]
= i
(
Ek −EjE

)
Djk(p, t) , (5.134)

where the anti-commutation relations {bj(p, t), b†k(q, t)} = (2π)3δ3(p − q)
and {bj(p, t), bk(q, t)} = {b†j(p, t), b†k(q, t)} = 0 have been used. Given the
relations bk(p, t) = bk(p, 0)e−iEkt and dk(p, t) = dk(p, 0)e−iEkt, it is easy to
obtain the result in Eq. (5.134). This treatment is instructive for dealing with
the case where Ĥint is present. Taking the expectation values on both sides
of Eq. (5.134), we get the equation of motion

ρ̇jk(p, t) = i
(
Ek − EjE

)
ρjk(p, t) (5.135)

for the density matrices of neutrinos. In a similar way we can obtain

ρ̇jk(p, t) = i
(
EjE − Ek

)
ρjk(p, t) (5.136)

for the density matrices of antineutrinos. Let us translate the above results
from the mass basis into the flavor basis, where it is more convenient to
account for neutrino interactions. Because of να = VαVV 1ν1 + VαVV 2ν2 + VαVV 3ν3
(for α = e, μ, τ), the elements of the density matrices ρp(t) and ρp(t) turn
out to be

ραβ(p, t) =
∑

j

∑
k

VαjVV ρjk(p, t)V ∗
βkVV ,

ραβ(p, t) =
∑

j

∑
k

VαjVV ρjk(p, t)V ∗
βkVV . (5.137)

In the flavor basis we make use of Eq. (5.135) to derive the equation of motion
for the density matrix elements ραβ(p, t):
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ρ̇αβ = i
∑

j

∑
k

[
VαjVV ρjkEkV

∗
βkVV − VαjVV EjE ρjkV

∗
βkVV
]

= i
∑

j

∑
k

∑
l

∑
γ

[
(VαjVV ρjlV

∗
γlVV )(VγkVV EkV

∗
βkVV ) − (VαjVV EjE V ∗

γjVV )(VγlVV ρlkV
∗
βkVV )
]

= i
∑

γ

[
ραγΩ

0
γβ −Ω0

αγργβ

]
= −i
[
Ω0, ρ
]
αβ

, (5.138)

where

Ω0
αβ(p) ≡

[
|p|2δαβ +

3∑
i=1

VαiVV m2
iV

∗
βiVV

]1/2

≈ Eδαβ + (Hv)αβ (5.139)

in the approximation |p| ≈ E � mi, and Hv has been given in Eq. (5.40).
The approximation made in Eq. (5.139) allows us to rewrite Eq. (5.138) as 5

ρ̇p(t) = −i
[
Hv, ρp(t)

]
, (5.140)

which is formally the same as that given in Eq. (5.100). As far as antineutrinos
are concerned, one may analogously obtain

ρ̇p(t) = +i
[
Hv, ρp(t)

]
. (5.141)

Thanks to these equations of motion, a geometrical representation of neutrino
oscillations is also applicable. The difference between the density matrices
introduced in Section 5.3.2 and discussed here is that they work separately
for the one-particle state and an ensemble of neutrinos. In the two-flavor
scheme one may expand ρp, ρp and Hv in terms of the Pauli matrices as

ρp =
1
2
(
fpff + Pp · σ

)
, ρp =

1
2
(
fp + Pp · σ

)
, (5.142)

and

Hv =
1
2
(
Σ + ωpB · σ

)
. (5.143)

Of course, neutrino flavor conversions can also be described by the evolution
of the polarization vectors Pp(t) and Pp(t). The above four equations yield

Ṗp(t) = +ωpB ×Pp(t) ,

Ṗp(t) = −ωpB ×Pp(t) , (5.144)

where ωp ≡ Δm2/(2|p|) and B = (sin 2θ, 0,− cos 2θ) with θ being the neu-
trino mixing angle in vacuum. This result indicates that Pp(t) and Pp(t)
rotate around B at the same speed but in the opposite directions.

5Note that we have used ρij(p, t) and ραβ(p, t) to denote the elements of the
density matrix ρp(t) in the mass and flavor bases, respectively.
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In the presence of neutrino interactions, we take the expectation values
on both sides of Eq. (5.133) and then obtain

ρ̇p(t) = −i
[
Ω0

p, ρp(t)
]
+ i〈
[
Ĥint(t),Dp(t)

]
〉 , (5.145)

and a similar equation for ρp(t). In the assumption that neutrinos are not
correlated with the background, it is possible to decompose the expectation
value into a medium part and a neutrino part. In this case Eq. (5.145) and
its counterpart for antineutrinos can be reduced to the equations including
only ρp(t) and ρp(t). Taking account of the neutrino interactions in the SM,
one may work out the non-linear evolution equations in the leading-order
approximation (Sigl and Raffelt, 1993; Hannestad et al., 2006):

Ṗp = +
[
ωpB + λL +

√
2 GF

∫
d3q

(2π)3
(Pq − Pq)g(θpq)

]
×Pp ,

Ṗp = −
[
ωpB − λL −

√
2 GF

∫
d3q

(2π)3
(Pq − Pq)g(θpq)

]
×Pp , (5.146)

where g(θpq) ≡ 1 − cos θpq with θpq being the angle between the neutrino
momenta p and q. The ordinary matter effects are represented by the term λL
with λ =

√
2GFne. The integral terms in the brackets of Eq. (5.146) come

from the neutrino-neutrino coherent scattering, which makes the evolution
equations of the polarization vectors non-linear.

To illustrate the non-linear effects induced by the neutrino-neutrino co-
herent scattering, we consider a simple ensemble which initially contains pure
electron neutrinos and antineutrinos. Their number densities are assumed to
be equal (nνe

= nνe
), and the flavor polarization vector can be normalized

to unity. Hence Eq. (5.146) is simplified to

Ṗ =
[
+ωB + λL + μ(P −P)

]
× P ,

Ṗ =
[
−ωB + λL + μ(P −P)

]
× P , (5.147)

where μ ≡
√

2GFnνe
is the strength of neutrino-neutrino interactions. Two

additional assumptions will be made: (1) only one single momentum mode
e

is considered, so the vacuum oscillation frequency ω is universal for both
neutrinos and antineutrinos; (2) the neutrino density dominates over the
electron density nνe

� ne, so the matter-effect term in Eq. (5.147) can be
neglected. We focus on the non-linear effects governed by the equations

Ṗ =
[
+ωB + μ(P− P)

]
× P ,

Ṗ =
[
−ωB + μ(P− P)

]
× P . (5.148)

Three-flavor oscillations can well approximate to the two-flavor ones due to
the strong hierarchy |Δm2

32| ≈ |Δm2
31| � Δm2

21, as shown in Eq. (5.121). In



200 5 Phenomenology of Neutrino Oscillations

this approximation only the smallest neutrino mixing angle θ13 is relevant.
For the normal neutrino mass hierarchy, we have B = (sin 2θ13, 0,− cos 2θ13).
For the inverted neutrino mass hierarchy, θ13 is close to π/2 and thus a
tiny angle θ′13 ≡ π/2 − θ13 can be defined. In this case the z-component of
the magnetic field becomes positive, B = (sin 2θ′13, 0, cos 2θ′13). Defining the
difference between the polarization vectors as D ≡ P − P and the sum of
them as S ≡ P + P, we transform Eq. (5.148) into

Ṡ = ωB× D + μD × S , Ḋ = ωB × S . (5.149)

In view of Ḃ = 0 and B×B = 0, we further define Q = S− ωB/μ and then
rewrite Eq. (5.149) as the differential equations of Q and D:

Q̇ = μD ×Q , Ḋ = ωB× Q . (5.150)

Given the initial conditions P(0) = P(0) = (0, 0, 1), which lead to D(0) = 0
and S(0) = (0, 0, 2), Eq. (5.150) can be solved for the z-components of Q and
D. As a consequence, we find

PzPP =
Sz +Dz

2
=

1
2

(
Qz +

ω

μ
Bz +Dz

)
,

P z =
Sz −Dz

2
=

1
2

(
Qz +

ω

μ
Bz −Dz

)
. (5.151)

The numerical results for PzPP and P z in the case of the inverted neutrino
mass hierarchy are shown in Fig. 5.4, where θ′13 = 0.01 has been input.
Assuming the neutrino-neutrino interaction strength μ to be much larger
than the vacuum oscillation frequency ω, we can observe that PzPP and P z

keep their initial values (i.e., PzPP (0) = P z(0) = +1) unchanged for some
time, and then rapidly fall down to about −1. This behavior implies that the
initial electron neutrinos can almost completely transform into the muon or
tau neutrinos. For the normal neutrino mass hierarchy, PzPP and P z slightly
fluctuate around their initial values as a result of the tiny value of θ13. This
interesting evolution of PzPP and P z, which is sometimes called the “bipolar
flavor conversion”, can be understood by converting the equation of motion
in Eq. (5.150) into that for the pendulum in a vertical plane (Hannestad
et al., 2006). In the small-mixing-angle limit, the evolution associated with
the normal neutrino mass hierarchy corresponds to the pendulum swinging
around the stable point where the potential energy is minimal. As far as
the inverted neutrino mass hierarchy is concerned, however, the pendulum is
initially placed at the highest point which is unstable. Hence it is ready to fall
down to the lowest point, causing the complete neutrino flavor conversion.

In a realistic case for supernova neutrino oscillations, one should carefully
take into account the neutrino energy spectra, the asymmetry between the
number densities of neutrinos and antineutrinos, the matter effects and the
neutrino trajectories (Duan and Kneller, 2009). We shall discuss the flavor
conversions of supernova neutrinos in more detail in Chapter 7.
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Fig. 5.4 The evolution of PzPP and P z for the inverted neutrino mass hierarchy,
where θ′

13 = 0.01 and ω = 1 together with μ = 5 (dot-dashed line), μ = 10 (solid
line) and μ = 15 (dashed line) have been input (Hannestad et al., 2006. With
permission from the American Physical Society)

5.4 Future Long-baseline Neutrino Oscillation Facilities

Current solar, atmospheric, accelerator and reactor neutrino experiments
have provided us with very compelling evidence for neutrino oscillations,
from which Δm2

21, |Δm2
32|, θ12 and θ23 are determined to a reasonably good

degree of accuracy. The ongoing and future neutrino oscillation experiments
are expected to answer the following three questions: (a) what is the sign of
Δm2

32? (b) how small is the smallest neutrino mixing angle θ13? (c) how large
is the CP-violating phase δ? In this section we shall first give a brief overview
of the prospects of some high-intensity long-baseline neutrino oscillation ex-
periments, and then give a slightly detailed introduction about the Daya Bay
reactor antineutrino oscillation experiment in China.

5.4.1 Prospects of Accelerator Neutrino Experiments

Three types of facilities have so far been proposed to provide high-intensity
neutrino beams: the super-beam facility, the beta-beam facility and the neu-
trino factory (Gonzalez-Garcia and Maltoni, 2008; Bandyopadhyay et al.,
2009). The physics performance of each facility can be evaluated by a set of
observables, including the number of degrees of freedom which are used to
describe the experimental outputs as well as the sensitivities to θ13, δ, the
sign of Δm2

32, and a deviation of θ23 from π/4. Such precision measurements
are extremely important to pin down the hierarchy of the neutrino mass
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spectrum, the accurate pattern of the 3 × 3 neutrino mixing matrix and the
strength of leptonic CP violation in neutrino oscillations.

(1) The super-beam facilities. Conventional accelerator-based neutrino
beams are produced from the primary decays of charged pions and have been
used to do either νμ → νμ and νμ → νμ disappearance experiments, such as
the K2K and MINOS experiments (Ahn et al., 2006; Michael et al., 2006),
or νμ → ντ and νμ → ντ appearance experiments, such as the OPERA
experiment (Kodama et al., 1999). They can be optimized by designing a
high-power proton accelerator which delivers more intense proton beams to
the target, so as to produce high-intensity but low-energy νμ and νμ beams
for νμ → νe and νμ → νe appearance experiments. A super-beam is usually
referred to as a conventional neutrino beam driven by the proton driver with
a beam power in the range of 2 MW to 5 MW (Bandyopadhyay et al., 2009).

The technology required for a super-beam facility is well known. But the
sensitivity of a super-beam experiment to νμ → νe and νμ → νe oscillations
is limited by the fact that the primary π± decays, the subsequent μ± decays
and the kaon decays in the decay pipe of the facility can produce a small
fraction of νe and νe events. This intrinsic contamination increases with the
beam energy and thus has to be kept as low as possible. One may design
an appropriate beam line configuration to suppress the νe or νe background
from the kaon decays. One may also produce an off-axis neutrino beam,
which is arranged to be tilted by a few degrees with respect to the vector
pointing from the source to the far detector (McDonald, 2001), to suppress
the νe or νe background induced by π± decays. The kinematics of a two-
body pion decay assures that all the pions above a given momentum produce
neutrinos of almost the same energy at a given angle θ = 0 with respect to
the axis. So the off-axis technique can yield a low-energy neutrino beam with
a small energy spread, which has several advantages over the broad-band on-
axis neutrino beam. For example, the off-axis neutrino beam allows energy
cuts to be applied to reduce backgrounds and allows the L/E parameter of
an experiment to be tuned to the oscillation maximum, although its flux is
much smaller than the on-axis neutrino flux.

The ongoing T2K experiment is just an off-axis experiment (Itow et al.,
2001). Its facility consists of a conventional neutrino beam driven by the
protons of 30 GeV from the J-PARC proton synchrotron at a beam power
of 0.75 MW, two near detectors (one on-axis and the other off-axis) located
280 m away from the neutrino source, and the far detector which is just the
Super-Kamiokande (SK) neutrino detector. Its main goal is to observe the
appearance of νe events in an almost pure νμ neutrino beam after traveling a
distance of 295 km from the J-PARC accelerator center to the SK detector.
The off-axis beam angle of this experiment has been chosen to maximize the
sensitivity to θ13. An upgrade to the power of the J-PARC proton synchrotron
is under consideration in order to provide a 50 GeV proton beam at the power
of 4 MW. In this case the construction of a Mton-scale water Cherenkov
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detector (the so-called Hyper-Kamiokande detector) at a distance of about
1000 km away from the J-PARC accelerator center would allow one to do a
high-intensity off-axis long-baseline neutrino oscillation experiment, which is
expected to be sensitive to both the sign of Δm2

32 and the CP-violating phase
δ (Ishitsuka et al., 2005; Kajita et al., 2007; Hagiwara et al., 2007).

The NOνA facility, which is now under construction, will also do an off-
axis neutrino experiment optimized for searching for νμ → νe oscillations with
a sensitivity ten times better than the ongoing MINOS experiment (Ayres
et al., 2005). It employs an upgraded version of the already existing NuMI
beamline at a power of 0.7 MW in the Fermilab. The neutrino beam energy
is about 2 GeV, and the baseline length is in the range of 700 km to 900
km (from the Fermilab to northern Minnesota) with a far detector sited 12
km (equivalent to θ ∼ 0.85◦) off-axis. Both the near and far detectors are
the “totally active” liquid scintillator detectors. Given a 15-kton far detector
and a 5-year run, the NOνA experiment is likely to achieve a sensitivity to
sin2 2θ13 comparable to that of the T2K experiment. In particular, the long
baseline of the NOνA experiment will allow one to probe the sign of Δm2

32

with the help of terrestrial matter effects.
T2K and NOνA belong to the first-generation super-beam experiments.

The second-generation ones, such as T2HK and CERN-SPL, are under con-
sideration (Gonzalez-Garcia and Maltoni, 2008; Bandyopadhyay et al., 2009).

(2) The beta-beam facilities. A beta-beam is produced from the boosted
radioactive-ion decays and thus is a pure νe or νe beam (Zucchelli, 2002). It
can be used to do either νe → νe and νe → νe disappearance experiments
or νe → νμ (or ντ ) and νe → νμ (or ντ ) appearance experiments. There are
three variables that determine the properties of a beta-beam facility (Bandy-
opadhyay et al., 2009): the type of ions to be used (especially the endpoint
kinetic energy of the electron in the beta decay, E0); the relativistic γ fac-
tor (equal to energy divided by mass) of the ion; and the baseline length L.
Once these parameters are fixed, the neutrino flux can be precisely calculated
because the kinematics of the beta decay is well known (Burguet-Castell et
al., 2004). To set up a proper beta-beam, the isotope should be sufficiently
long-lived to avoid strong losses in the acceleration phase, but it must decay
fast enough to produce an intensive neutrino beam. Two ion species, whose
lifetimes are both around 1 s, have been identified as the optimal candidates
(Zucchelli, 2002): 6He with E0 = 3506.7 keV for generating νe events and
18Ne with E0 = 3423.7 keV for producing νe events. Some other ions with
larger E0, which are able to produce more energetic neutrino beams at the
same γ/L, have also been considered (Donini and Fernandez-Martinez, 2006;
Rubbia et al., 2006).

On the other hand, an optimization of the γ factor and the baseline length
L should take account of several physics requirements (Bandyopadhyay et
al., 2009): (a) the value of L/〈Eν〉 should satisfy sin2(1.27Δm2

32L/Eν) ∼ 1
(the first oscillation maximum) such that the oscillation signatures can be as



204 5 Phenomenology of Neutrino Oscillations

large as possible; (b) the neutrino beam energy Eν should be above the muon
production threshold such that the νμ or νμ appearance can be searched for
in the far detector; (c) Eν should be large enough for a measurement of the
spectral distortion to be used to resolve the intrinsic parameter degeneracy
problem; (d) L should be as long as possible to determine the sign of Δm2

32

with the help of terrestrial matter effects; and (e) the event rate should be as
large as possible — increasing the value of γ for a fixed ion flux can enhance
Eν and thus the number of events because the cross sections of neutrino-
nucleon interactions increase with Eν . All these requirements point to the
conclusion that the γ factor should be enhanced as much as possible and the
baseline length L should be tuned to sit near an oscillation peak.

The beta-beams can roughly be classified into the low- and high-energy
ones. A low-energy beta-beam with 〈Eν〉 in the sub-GeV range matches the
distance L = 130 km from CERN to the Modane laboratory in the Frejus
tunnel (Autin et al., 2003). In comparison, a high-energy beta-beam with
〈Eν〉 in the range of 1 GeV to 1.5 GeV matches the distance L ∼ 700 km be-
tween CERN and Canfranc, CERN and Gran Sasso, or Fermilab and Soudan
(Bandyopadhyay et al., 2009). A higher-energy beta-beam experiment would
require the Large Hadron Collider at CERN to accelerate the ions to produce
νe events of 〈Eν〉 ∼ 5 GeV and νe events of 〈Eν〉 ∼ 7.5 GeV together with a
very long baseline L ∼ 3000 km (Gonzalez-Garcia and Maltoni, 2008).

(3) The neutrino factory. The technology for producing an intensive muon
beam was initially explored for the purpose of building a muon collider at the
TeV energy scale. This technology is more feasible for building the neutrino
factory at much lower energies. In a neutrino factory muons are accelerated
from a high-intensity source to energies of several tens of GeV and then
injected into a storage ring with long straight sections (Geer, 1998; De Rujula
et al., 1999). Therefore, both νμ (or νμ) and νe (or νe) events can be produced
from the well-known muon decay modes μ− → e− + νe + νμ and μ+ →
e+ + νe + νμ. These neutrino beams, whose energies are up to the muon
energy itself, allow one to do the following neutrino oscillation experiments:

(1) νe → νe νe → νe Disappearance
(2) νe → νμ νe → νμ Appearance (golden channel)
(3) νe → ντ νe → ντ Appearance (silver channel)
(4) νμ → νμ νμ → νμ Disappearance
(5) νμ → νe νμ → νe Appearance (challenging)
(6) νμ → ντ νμ → ντ Appearance (interesting)

Some careful studies about the design of a neutrino factory have been carried
out in Europe, Japan and the USA (Bandyopadhyay et al., 2009). The con-
clusion is that an accelerator complex capable of providing about 1021 muon
decays per year can be built, and the optimal detector should better be able
to perform both appearance and disappearance experiments. The detection
of να (or να) neutrinos (for α = e, μ, τ) is to look for the α− (or α+) events
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produced from the charged-current interactions of να (or να) neutrinos with
the medium of the far detector.

Among twelve neutrino oscillation processes that can be measured at a
neutrino factory, the “golden” channel is the νe → νμ transition 6. Because νe

neutrinos are produced from the decays of positive muons while νμ neutrinos
produce negative muons via the charged-current interactions in the detector,
the νμ appearance can simply be detected by looking for the “wrong-sign”
muons which are unable to get contaminated in the dominant background
(i.e., “right-sign” muons). The full statistical sensitivity can therefore be ex-
ploited to probe very small values of θ13 and δ (Huber and Winter, 2003).

The so-called “silver” channel at a neutrino factory is the νe → ντ tran-
sition signified by the ντ appearance (or equivalently, the τ− events) in the
far detector. A careful comparison between the CP- or T-violating effects in
golden and silver channels would allow one to test whether leptonic CP viola-
tion arises from the unique phase δ, because the genuine CP- and T-violating
terms in these two channels should have the opposite signs (Strumia and
Vissani, 2006).

In fact, a determination of (θ13, δ) from the measurement of a single neu-
trino oscillation channel suffers from an eight-fold ambiguity; i.e., there are
in general eight different regions of the parameter space which can fit the
same experimental data in the (θ13, δ) plane (Bandyopadhyay et al., 2009).
One may speculate two possible ways to resolve this parameter degeneracy
problem: one is to measure the golden neutrino oscillation channel at differ-
ent baselines (i.e., different values of L/E); and the other is to make use of
the rich flavor content of neutrino beams by combining the measurements of
different channels at a neutrino factory.

It is very challenging to observe the νμ → νe transition, because the e−

signals associated with the νe appearance can easily get contaminated in the
far detector. In this sense it might be a bit easier, at least not hopeless, to
search for the e+ signals associated with the νe appearance arising from the
νμ → νe transition in the detector with a delicate detection technique. We
stress that the study of CP violation in νμ → ντ and νμ → ντ oscillations
at a neutrino factory is particularly interesting, since they are insensitive to
the standard CP-violating effect characterized by the phase δ but sensitive
to some new CP-violating effects induced by either the non-unitarity of the
3×3 neutrino mixing matrix or the non-standard neutrino interactions (Mel-
oni et al., 2010). In the presence of terrestrial matter effects and (or) new
physics, it is also useful to combine the measurements of both appearance
and disappearance neutrino oscillation channels so as to pin down the wanted
parameters with much smaller uncertainties or ambiguities.

6Its CP-conjugate process νe → νμ can also be regarded as a golden channel, but
one should keep in mind that the rate of μ+ signals associated with the appearance
of νμ events is about two times lower than that of μ− signals associated with the
appearance of νμ events in the far detector (Strumia and Vissani, 2006).
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A detailed description of the “standard” neutrino factory setup, together
with its physics potential, has been presented by the ISS Physics Working
Group (Bandyopadhyay et al., 2009). We hope that a neutrino factory, if it
can be built in the future, will deepen our understanding of the dynamics of
neutrino oscillations and open a promising window towards some new physics
which might be relevant to the origin of neutrino masses or to the unrevealed
interactions between neutrinos and matter.

5.4.2 Prospects of Reactor Antineutrino Experiments

It is well known that Wolfgang Pauli’s neutrino hypothesis was first verified in
1956 thanks to the Savannah River reactor antineutrino experiment (Cowan
et al., 1956). It is also known that very convincing evidence for the electron
antineutrino oscillations was first achieved in 2003 thanks to the KamLAND
reactor antineutrino experiment (Eguchi et al., 2003). These two examples
are sufficient for illustration of the importance of reactor antineutrino exper-
iments in the study of neutrino properties and neutrino interactions. Hence
one expects that a high-intensity reactor antineutrino oscillation experiment
can help pin down the smallest neutrino mixing angle θ13 in the near future.

The present upper bound on θ13 was actually obtained from the CHOOZ
reactor antineutrino experiment (Apollonio et al., 1998). A lot of attention
has recently been paid to the next generation of reactor antineutrino exper-
iments based on the observation that the performance of the CHOOZ ex-
periment can be remarkably improved if the systematics is better controlled
and the statistics is significantly enhanced (Anderson et al., 2004). Different
from the accelerator neutrino oscillation experiments, the reactor antineu-
trino oscillation experiments are free of the parameter degeneracy problem
and able to determine or constrain the magnitude of θ13 in a direct and clean
way. In the three-flavor neutrino mixing scheme, the probability of reactor
νe → νe oscillations at a baseline range of 1 km to 2 km can be simplified to
a two-flavor oscillation pattern to a good degree of accuracy:

P (νe → νe) = 1 − 4
∑
i<j

|VeiVV |2|VejVV |2 sin2

(
1.27

Δm2
jiL

E

)

≈ 1 − 4|VeVV 3|2
(
1 − |VeVV 3|2

)
sin2

(
1.27

Δm2
31L

E

)
= 1 − sin2 2θ13 sin2

(
1.27

Δm2
31L

E

)
, (5.152)

where |Δm2
32| ≈ |Δm2

31| � Δm2
21 and |VeVV 3|2 = sin2 θ13 � 1 have been used.

So far a number of projects, including Double Chooz in France (Ardellier et
al., 2006) and Daya Bay in China (Guo et al., 2007), have been proposed to
probe how small θ13 could be (Goodman, 2009).
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Fig. 5.5 The layout of the Day Bay reactor antineutrino experiment. Two pairs of
reactor cores (Daya Bay and Ling Ao) are running and the third one (Ling Ao II)
will run soon. Four detector modules are deployed at the far site, and two detector
modules are deployed at each of the two near sites (Guo et al., 2007)

Of the currently-proposed reactor antineutrino experiments, the Double
Chooz experiment has the opportunity to obtain physical results first. This
experiment employs two almost identical medium-size detectors. The near
detector is located 280 m from the Chooz nuclear cores and can be used to
control the systematics. The far detector, which is situated in the same cavern
as the CHOOZ detector (i.e., 1.05 km from the Chooz nuclear cores), will be
able to detect 5 × 105 νe events in three years of operation with a relative
systematic error of 0.6%. Hence the Double Chooz experiment is likely to
determine or limit sin2 2θ13 to the range of 0.022 to 0.030 (for |Δm2

31| varying
from 3.5× 10−3 eV2 down to 2.5× 10−3 eV2) within an unrivaled time scale
and a modest cost (Ardellier et al., 2006).

The Daya Bay experiment is the first neutrino oscillation experiment be-
ing done in China. In this experiment the electron antineutrino beam takes
its source at the Daya Bay nuclear power complex which is currently com-
posed of two pairs of reactor cores (Daya Bay and Ling Ao) separated by
about 1.1 km, as illustrated in Fig. 5.5. The complex can now generate 11.6
GW of thermal power, which will increase to 17.4 GW by early 2011 after
the third pair of reactor cores (Ling Ao II) is put into operation (Guo et al.,
2007). The location of this complex is adjacent to a mountainous terrain in
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Fig. 5.6 The expected sensitivity of the Daya Bay experiment to sin2 2θ13 at
the 90% confidence level with three years of data, in comparison with the present
CHOOZ limit on sin2 2θ13 (Wang, 2010. With permission from the American
Institute of Physics). The shaded region corresponds to the allowed interval of
Δm2 ≡ |Δm2

31| at the 90% confidence level

Shenzhen, southern China, and thus it is ideal for sitting underground de-
tectors that are well shielded from the cosmogenic contamination. The basic
layout of the Daya Bay experiment consists of three underground labora-
tories with a tetrad of far detector modules and two pairs of near detector
modules, which are linked through a few horizontal tunnels. Fig. 5.5 shows
the detector deployment at these sites. The Daya Bay near detector is 363
m from the Daya Bay reactor cores, while the Ling Ao near detector is 481
m from the Ling Ao reactor cores and 526 m from the Ling Ao II reactor
cores. They can monitor the rate and energy distribution of νe events and
reduce the systematic uncertainties in detecting sin2 2θ13. The distances of
the far detector from the Daya Bay, Ling Ao and Ling Ao II reactor cores are
1985 m, 1618 m and 1613 m, respectively. Therefore, the first νe → νe oscil-
lation maximum can be observed at the far detector to ensure the maximal
experimental sensitivity to sin2 2θ13.

The sensitivity of the Daya Bay experiment to sin2 2θ13 has been analyzed
by using the single parameter raster scan method (Guo et al., 2007). Fig. 5.6
shows the sensitivity contours in the sin2 2θ13 versus Δm2 ≡ |Δm2

31| plane for
three years of operation. One can see that the sensitivity of this experiment is
able to reach the challenging goal of sin2 2θ13 ∼ 1%, provided both systematic
and statistic uncertainties are well under control (Wang, 2006; Wang, 2010).
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The Daya Bay experiment is smoothly going on. Its civil construction
is now underway, so is the deployment of the near detectors. After the far
detector is deployed in 2011 or 2012, the Daya Bay Collaboration will start
to take data. A determination of the smallest neutrino mixing angle θ13, or
at least a stringent constraint on θ13 if it is too small to be experimentally
accessible, is highly expected from this experiment 7.

It is finally worth mentioning the RENO experiment located on the site
of the Yonggwang power plant in the southwest of Korea (Ahn et al., 2010).
This plant, which spans about 1.3 km, consists of six reactors lined up in
roughly equal distances and has a total thermal power of 16.4 GW. There
are two identical detectors in the RENO experiment: they are at about 290
m (near) and 1380 m (far), respectively, from the reactor array. The design of
the RENO detectors is quite similar to that of the Double Chooz detectors.
One expects that the RENO experiment may start data taking in the near
future and reach the sensitivity sin2 2θ13 = 0.019 after five years of running
(Mezzetto and Schwetz, 2010).
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6

Neutrinos from Stars

Stars represent an important source of astrophysical neutrinos, and the study
of stellar neutrinos is an important branch of neutrino astronomy. In this
chapter we shall first introduce the basic theory of stellar evolution and then
describe the basic properties of stellar neutrinos. To be explicit, we shall
concentrate on the neutrinos generated from thermal nuclear reactions in
the solar core. The production processes, experimental detection and flavor
conversions of solar neutrinos will be discussed in detail.

6.1 Stellar Evolution in a Nutshell

Although there does not exist a complete theory of star formation, it is com-
monly believed that stars were formed from the clouds of the primordial gases
bounded by the gravity. A star can in general be defined as an astrophysical
object bounded by the gravity of itself and radiating energy from its inter-
nal thermal nuclear reactions (Prialnik, 2000). In this section we outline the
quantities describing a star and the equations governing its evolution.

6.1.1 Distance, Luminosity and Mass

The Sun is a typical main-sequence star best known to us. Let us first sum-
marize the observational characteristics of the Sun so as to get a ballpark
feeling of the main-sequence stars, which represent a long and static period
in the evolution of stars. The average distance between the Sun and the Earth
is defined as an astronomical unit: 1 AU = 1.496 × 1013 cm. The total mass
of the Sun is M� = 1.989 × 1033 g, and its radius is R� = 6.955 × 1010 cm.
In comparison, the mass and radius of the Earth are M⊕ = 5.974 × 1027 g
and R⊕ = 6.378 × 108 cm. Note that R� (or AU) serves as a standard scale
in determining the distances of planets (or stars) from the Earth within (or
beyond) the solar system. A common method for the distance determina-
tion is the stellar parallax (Prialnik, 2000; Carroll and Ostlie, 2007). The
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parallax is one half of the angle between the lines of sight of a star from
two different positions of the observers. By a measurement of the paral-
lax p, the distance of a star from the solar system can be determined as
d = (1 AU)/ tan p ≈ (1 AU)/p, where p is assumed to be very small and its
unit is radian. In view of 1 radian = 57.2958◦ = 206265′′, one may define the
distance unit as parallax second (i.e., parsec or pc for short). Then an astro-
physical distance can be written as d = (1/p) pc with 1 pc = 3.086×1018 cm,
where the unit of p is arc second. Another conventional unit is light year (i.e.,
ly for short), defined as the distance travelled by the light in a Julian year.
Namely, 1 ly = 9.461×1017 cm and then 1 pc ≈ 3.262 ly. The stellar parallax
is always smaller than 1′′. For instance, Proxima Centauri (the nearest star
other than the Sun) has a parallax angle ∼ 0.77′′ (Carroll and Ostlie, 2007).
The Earth’s atmosphere makes a ground-based telescope difficult to reach a
precision better than 0.03′′, implying that it is impossible to measure a dis-
tance farther than 30 pc. To overcome such an obstacle, the European Space
Agency launched the satellite Hipparcos in 1989. This mission was able to
measure the parallax angles with an accuracy in the range (0.7 ∼ 0.9)×10−3

arc seconds for more than 105 stars (Perrymann et al., 1997).
The observation of a star is to measure its apparent luminosity l, which

depends on the absolute luminosity L and the distance d. The values of L
and l characterize the energies emitted from the star per second and received
by the detector per second per square centimeter, respectively. If the energy
released by a star is isotropic and not absorbed on the way to the detector, we
have l ≡ L/(4πd2) (Carroll and Ostlie, 2007). Historically, the apparent mag-
nitude m is used to describe the brightness of stars. The Greek astronomer
Hipparchus was the first to assign m = 1 to the brightest star and m = 6
to the dimmest one in the sky (Krisciunas, 2001). It was later realized that
the human eye actually responded to a difference in the logarithm of the
brightness. For instance, a difference of 5 magnitudes corresponds to a factor
of 100 in brightness; i.e., one magnitude difference is equivalent to a factor
of 1001/5 in the apparent luminosity. One may therefore obtain l ∝ 10−2m/5,
implying

l2
l1

= 102(m1−m2)/5 . (6.1)

The absolute magnitude M is defined as the apparent magnitude that a star
would have if it were located at 10 pc from the Earth. So one may express
the distance of a star in terms of its apparent and absolute magnitudes:

d = 10(m−M+5)/5 , (6.2)

where d is measured in parsecs, and m −M = 5 log[d/(10 pc)] is called the
star’s radius modulus. The absolute luminosity of the Sun is L� = 3.839 ×
1033 erg s−1. The apparent luminosity of the Sun can then be given by

l� =
L�

4π(1 AU)2
= 1.365 × 106 erg cm−2 s−1 , (6.3)
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which is known as the solar constant 1. The constant of proportionality of l ∝
10−2m/5 has been experimentally determined to be 2.52×10−5 erg cm−2 s−1

(Weinberg, 2008). Given the value of l� in Eq. (6.3), the apparent magnitude
of the Sun is found to be mSun = −26.83. In view of the Earth-Sun distance
d = 1 AU = 4.848 × 10−6 pc, we obtain the absolute magnitude of the Sun

MSunMM = mSun − 5 log
(

d

10 pc

)
= +4.74 . (6.4)

Since the absolute magnitude is defined at the fixed distance 10 pc, the ratio
of two different absolute magnitudes is the same as that of the corresponding
absolute luminosities. The absolute magnitudeM of a star is therefore related
to its absolute luminosity L as follows:

M = MSunMM − 2.5 log
(
L

L�

)
. (6.5)

It seems natural for an observer to first measure the apparent magnitude m
and then use the distance d to probe the intrinsic properties of a star, such
as M via Eq. (6.2) or L through Eq. (6.5). If a star belongs to a special class
(e.g., the pulsating variable stars), however, its L and M can be determined
in a way independent of d (Carroll and Ostlie, 2007). In this case one may
use Eq. (6.2) to work out the star’s distance.

Note that both M and L have been defined for all the wavelengths of the
light from a star. Astronomers usually introduce the color magnitudes MUMM ,
MBM and MVMM for the ultraviolet (U), blue (B) and visual (V ) wavelength
regions. The reason is simply that a measurement can only be carried out
in a finite wavelength range. For a star with known d, its absolute color
magnitude can be fixed by the radius modulus m −M = 5 log[d/(10 pc)].
The color index defined as B−V ≡MBM −MVMM is obviously independent of the
distance d. Fig. 6.1 shows the color-magnitude diagram for more than 3700
stars from the Hipparchos catalog. The main feature of this diagram is that
the stars are not uniformly distributed but concentrate on the band denoted
as the main sequence, implying that it is the longest and most static period
in the whole lifetime of stars.

On the other hand, it has been found that the spectra of starlight are
well consistent with that of the blackbody radiation. Hence the spectrum is
peaked at a wavelength λmax, corresponding to an effective temperature T
via Wien’s displacement law b = λmaxT = 0.29 cm K. The luminosity L of a
blackbody of area A and temperature T is given by L = AσSBT

4, where σSB

is the Stefan-Boltzmann constant given in Table 6.1. For a spherical star with
1Here we adopt the centimeter-gram-second (cgs) unit system instead of the In-

ternational System of units (abbreviated to SI from its French name). For example,
1 Joule = 107 erg and L� = 3.839 × 1026 W. Some frequently-used fundamental
constants in the SI units are listed in Table 6.1, and the conversion factors between
the SI and cgs unit systems are given in Table 6.2.
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Table 6.1 Fundamental physical constants in the SI units, where the figures in the
parentheses after the values denote the 1σ uncertainties in the last digits (Mohr et
al., 2007, 2008; Nakamura et al., 2010)

Quantity Symbol Value
speed of light in vacuum c 2.99 792 458 × 108 m s−1

Planck constant h 6.626 068 96(33) × 10−34 J s
reduced Planck constant � 1.054 571 628(53) × 10−34 J s
Boltzmann constant kB 1.380 6504(24) × 10−23 J K−1

Newton constant GN 6.674 28(67) × 10−11 m3 kg−1 s−2

Stefan-Boltzmann constant σSB 5.670 400(40) × 10−8 W m−2 K−4

Wien constant b 2.897 7685(51) × 10−3 m K
Avogadro constant NAN 6.022 141 79(30) × 10−23 mol−1

electron charge magnitude e 1.602 176 487(40) × 10−19 C
electron mass me 9.109 382 15(45) × 10−31 kg
proton mass mp 1.672 621 637(83) × 10−27 kg
neutron mass mn 1.674 927 211(84) × 10−27 kg
atomic mass unit mH 1.660 538 782(83) × 10−27 kg

Table 6.2 Conversion factors from the SI units to the cgs units, or vice versa
(Carroll and Ostlie, 2007. With permission from Pearson Education, Inc.)

Quantity SI unit cgs unit Conversion factor
length m cm 10−2

mass kg g 10−3

time s s 1
charge C esu 3.335 640 952 × 10−10

force N (kg m s−2) dyne (g cm s−2) 10−5

energy J (N m) erg (dyne cm) 10−7

power W (J s−1) erg s−1 10−7

pressure Pa (N m−2) dyne cm−2 10−1

radius R, one may define the effective temperature TeffTT via L = 4πR2σSBT
4
effTT ,

implying that the surface flux is given by F = L/(4πR2) = σSBT
4
effTT . Taking

the Sun for example, we can estimate the temperature at its surface:

T�TT =
(

L�
4πσSBR

2�

)1/4

≈ 5777 K . (6.6)
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Fig. 6.1 The color-magnitude diagram for the stars from the Hipparchos catalog,
where the spectral types are given at the top border (Carroll and Ostlie, 2007. With
permission from Pearson Education, Inc.)

This result means that the spectrum of sunlight is peaked at λmax ≈ 502 nm.
The color-magnitude diagram can also be represented as a relationship be-
tween TeffTT and L. The stars having the same luminosity may appear different
colors because of their different radii. Furthermore, the initial masses of stars
are crucial for their later evolution and account for the distinct branches in
Fig. 6.1. A successful theory of stellar evolution should predict the correlation
among the mass, luminosity and radius of a star.

A common method to exactly measure the masses of stars has been
lacking. The mass of the Sun can be determined from Kepler’s third law,
P 2 = 4π2d3/(GNM�), where P and d stand respectively for the period of a
planet and its average distance from the Sun. Note that a planet’s mass is
negligible as compared with the solar mass. Taking the planet as the Earth,
one can derive the solar mass by inputting the relevant properties of the Earth
and the precisely-measured Newton constant GN. Another case, in which the
stellar mass can be determined, is that the star happens to be a binary star.
Given the distance d of a binary star and its orbital plane perpendicular to
the line of sight of an observer, one may figure out the mass ratio of the
primary star to its companion star: M1/M2 = θ2/θ1, where θ1 and θ2 are
the angles spanned by the corresponding semimajor axes a1 and a2. On the
other hand, the total mass of a binary star can be extracted by using Kepler’s
third law. The realistic situation may of course be complicated by the motion
of the center of mass of a binary star (Carroll and Ostlie, 2007).
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6.1.2 Basic Equations of Stellar Evolution

A star and its dynamics can well be understood in some reasonable approxi-
mations. In fact, the spherical symmetry is quite a good approximation due
to the isotropic self-gravity of the system. It is also reasonable to assume hy-
drodynamic and thermal equilibrium, at least for the main-sequence stars. In
order to make clear these points, we estimate the timescales of some impor-
tant processes in stars. First, the typical velocity of a mass point in the gravity
of a star with mass M and radius R is the escape velocity v =

√
GNM/R.

The dynamical timescale is defined as the time during which the mass point
can travel from the surface to the center of a star at the speed v,

τdynττ ≈ R

v
=

√
R3

GNM
≈ 103

√(
R

R�

)3(M�
M

)
s . (6.7)

Note that τdynτ ≈ 103 s is much shorter than the age of the Sun, which is
about 1.5 × 1017 s. This observation implies that the star will collapse in
such a short time, if there is no pressure force to balance the gravity. If
the pressure exceeds the gravity, however, the dynamical process may be
a violent explosion. In this sense a stable star should be assumed to be in
the hydrostatic equilibrium state. Second, we introduce the gravitational (or
Kelvin-Helmholtz) timescale τgraττ . The total gravitational potential energy is
U ∼ GNM2/R, so the time for a star to radiate all this energy is given by

τgraττ ≈ U

L
=
GNM2

RL
≈ 1015

( M
M�

)2(R�
R

)(
L�
L

)
s , (6.8)

where L is the stellar luminosity. This timescale is shorter than one percent of
the age of the Sun, implying that the Sun would have burnt out if it were only
powered by the gravitational potential energy. Finally, the nuclear timescale
is set by the total mass of a star and the released energy from its nuclear
reactions. The ratio of nuclear binding energies to the rest mass of nucleons
is about ε ≈ 10−3, so the total nuclear energy is characterized by εM. The
nuclear timescale is therefore given as

τnucττ ≈ εM
L

≈ 5 × 1017

( M
M�

)(
L�
L

)
s , (6.9)

which is several times longer than the age of the Sun and exceeds that of the
Universe. Hence only the initial composition in a fraction rather than all of
the stellar mass has been changed by thermal nuclear reactions. The above
discussions indicate that the pressure, gravity and nuclear reactions are the
most important ingredients in a theory of stellar evolution. In the following
we shall present a brief summary of the fundamental principles and basic
equations of stellar evolution (Chandrasekhar, 1938; Bahcall, 1989; Prialnik,
2000; Salaris and Cassisi, 2005).
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(1) Hydrostatic equilibrium. The pressure is needed to balance the grav-
ity, and thus it makes the star in hydrostatic equilibrium. Consider a thin
spherical shell at the radius r. Its mass is given by ΔM = 4πρ(r)r2Δr, where
ρ(r) is the local matter density and Δr denotes the thickness of the shell.
The gravity between the sphere with radius r and the mass shell reads

fgraff = −GNM(r)ΔM
r2

, (6.10)

while the force caused by the pressure P (r) is fpff = 4πr2 [−P (r + Δr) + P (r)].
By requiring the balance fgraff + fpff = 0 and setting Δr → 0, one obtains

dP (r)
dr

= −GNM(r)ρ(r)
r2

, (6.11)

where the total mass M(r) contained in the sphere with radius r is given by
M(r) =

∫ r

0

∫∫
4πr′2ρ(r′)dr′. The latter can also be expressed in the differential

form as
dM(r)

dr
= 4πr2ρ(r), which is just the equation of mass continuity.

Since the right-hand side of Eq. (6.11) is always negative, the pressure should
decrease as the radius increases. A rough estimate of the pressure in the center
of the Sun leads us to

dP (r)
dr

∼ PsPP − PcPP

R�
∼ − PcPP

R�
, (6.12)

where PsPP ≈ 0 and PcPP stand respectively for the pressure at the surface and
in the center of the Sun. Comparing between Eqs. (6.11) and (6.12), we get

PcPP ∼ GN

M�ρ�
R�

∼ 2.7 × 1015 dyne cm−2 , (6.13)

where ρ� = M�/(4πR3
�/3) ∼ 1.41 g cm−3 is the average density of the

Sun. A more accurate calculation yields PcPP = 2.34 × 1017 dyne cm−2, which
should be compared with the standard atmospheric pressure 1 atm = 1.013×
106 dyne cm−2. We see that the central pressure of the Sun is very high, so
are its temperature and density to be shown below.

(2) Equation of state. There are essentially two kinds of contributions to
the pressure: one is from the ideal gas consisting of electrons and ionized
atoms, and the other is from radiation or photons. More importantly, the
pressure may come from the degenerate electrons and neutrons such as in
the white dwarfs and neutron stars. The pressure of the ideal gas is given by
PgasPP = nkBT with kB being the Boltzmann constant and n being the particle
number density. One may also express this pressure as PgasPP = ρkBT/(μmH),
where μ ≡ m/mH denotes the mean molecular weight, mH is the atomic
mass unit, and m ≡ ρ/n represents the average mass of a gas particle. The
pressure of radiation is related to the energy density through PradPP = u/3 with
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u = aT 4, where a = 4σSB/c = 7.56 × 10−15 erg cm−3 K−4 is the radiation
constant. The total pressure turns out to be

P = PgasPP + PradPP =
ρkT

μmH

+
1
3
aT 4 . (6.14)

In order to determine the mean molecular weight, one has to know the chem-
ical composition of the gas. For the ionized gas, we have

1
μmH

=
1
m

=
n

ρ
=

∑
j

NjN (1 + zjz )∑
j

NjN mj

, (6.15)

where NjN is the number of the “j” atoms, zjz denotes the number of free
electrons in the “j” atom and mj is its mass. We define the atomic number
Aj = mj/mH and the mass fraction XjX , which is the ratio of the total mass
of the “j” atoms to that of the gas. Then Eq. (6.15) can be rewritten as

1
μmH

=
∑

j

NjN (1 + zjz )
NjN mj

·
NjN mj∑

j

NjN mj

=
∑

j

NjN (1 + zjz )
NjN AjmH

XjX . (6.16)

To illustrate, we assume a completely ionized gas and denote the mass frac-
tions of hydrogen, helium and other heavier elements as X, Y and Z with
X + Y + Z = 1. So the mean molecular weight is given by

1
μ

= 2X +
3
4
Y +

〈
1 + zjz

Aj

〉
Z ≈ 2X +

3
4
Y +

1
2
Z . (6.17)

Note that 1 + zjz ≈ zjz and Aj ≈ 2zjz hold for the elements much heavier than
helium. For a neutral gas, one may set zjz = 0 in Eq. (6.16) and then obtain
μ−1 ≈ X + Y/4 + 〈A−1

j 〉Z. For young stars with the typical composition
X = 0.71, Y = 0.27 and Z = 0.02, one may get μ = 1.29 for a neutral gas or
μ = 0.61 for a completely ionized gas. Omitting the pressure of radiation, we
can estimate the temperature of the solar core by using Eq. (6.14):

TcTT ∼ μmHPcPP

ρ�kB

∼ 1.44 × 107 K , (6.18)

where Eq. (6.13) and μ = 0.61 for an ionized gas have been used. This rough
estimate is in good agreement with the result TcTT = 1.57× 107 K from a more
detailed analysis. In fact, the chemical composition in the Sun is slightly
different from X = 0.71, Y = 0.27 and Z = 0.02 because a fraction of
hydrogen has been converted into helium.
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(3) Chemical composition. Hydrogen and helium dominate the initial
chemical composition of stars, but nuclear reactions taking place in the stars
will change the element abundances. Consider a two-body nuclear reaction

I(ZiZ ,Ai) + J(ZjZ ,Aj) � K(Zk, Ak) + L(Zl, Al) , (6.19)

where ZmZ and Am (for m = i, j, k, l) denote the atomic and mass numbers
of the element I, J , K or L. To figure out the number density ni, we need
to know the cross section of this reaction σijk and the relative velocity v
between I and J . Because of ZiZ + ZjZ = Zk + Zl and Ai +Aj = Ak +Al, the
index “l” can be omitted in denoting σijk. The effective target area is niσijk,
and the number of the “J” particles crossing this area in unit time is njv.
So the number of reactions occurring in unit time and unit volume is given
by ninjσijkv or ninjRijk with Rijk = σijkv being the interaction rate. As a
result, the evolution of ni reads

ṅi = −ni

∑
j,k

njRijk +
∑
k,l

nknl

1 + δkl

Rkli , (6.20)

where the factor 1/(1+δkl) takes account of the identical particles with k = l.
For the initial states with i = j, the factor 1/2 will be cancelled because the
reaction reduces the number of the “I” particles by two units. In terms of
the mass fraction XjX of the “J” particles, Eq. (6.20) can be recast into

Ẋi

Ai

=
ρ

mH

⎡⎣−Xi

Ai

∑
j,k

XjX

Aj

Rijk +
∑
k,l

XkXl

AkAl

· Rkli

1 + δkl

⎤⎦ , (6.21)

where Rijk relies on the matter density, temperature and chemical elements.
(4) Energy conservation. For a spherical shell at the radius r with a thick-

ness dr, its local or interior luminosity is defined as dLr = 4πr2ρ(r)εdr with
ε being the coefficient of energy generation per unit time and unit mass. The
energy conservation means

dLr

dr
= 4πr2ερ(r) , (6.22)

where ε = εgra + εnuc − εν including the gravitational potential energy, the
energy released from nuclear reactions and that carried away by neutrinos.

(5) Energy transfer. There are three different ways of energy transport in
stars: radiation, convection and conduction. Radiation means that energies
produced by the gravitational potential and nuclear reactions are carried
away by photons from the core to the surface of a star. Although convection
is important in the stellar evolution, thermal radiation and conduction are
dominant in the Sun. Convection in the Sun is rather complicated and only
relevant in its outer layer with a thickness of about 0.3R� (Basu and Antia,
2008). Let us first discuss radiation. Consider a flux of photons FradFF traversing
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a slab with thickness dr. The photons will be absorbed by matter in the slab,
and its energy loss is given by dFradFF = −κγρFradFF dr, where κγ denotes the
opacity coefficient and ρ is the matter density. Note that κγ itself depends on
the matter density, chemical composition, and temperature of the slab. The
radiation flux is then given by

FradFF = F0FF e−κγρr = F0FF e−r/λγ , (6.23)

where F0FF is the initial flux and λγ ≡ (κγρ)
−1 can be regarded as the mean

free path of photons. Since dFradFF /c measures a change of the momentum of
radiation which is equivalent to a change of the pressure of radiation dPradPP ,

we have
dPradPP

dr
= −κγρFradFF /c. Given PradPP = aT 4/3, the local luminosity

Lr = 4πr2FradFF can be related to the temperature gradient as follows:

Lr = −4πr2
4acT 3

3κγρ
· dT

dr
. (6.24)

We proceed to discuss conduction, the energy transported by the particles
except photons. The energy flux of non-degenerate electrons can be written
as FeFF = neEev, where ne denotes the average number density of electrons,
Ee = 3kBT/2 is the thermal energy, and v is the average velocity of electrons.
Note that the absorption of electrons leads to a decrease of the energy flux:
dFeFF = −λ−1

e FeFF dr with λe being the mean free path of electrons. Therefore,

FeFF = −3
2
λenekBv

dT
dr

. (6.25)

This result has a form similar to that of FradFF = Lr/(4πr2) as one can see
from Eq. (6.24). Combining the radiation and conduction contributions, we
define the total energy flux as F ≡ FradFF +FeFF and rewrite the local luminosity
as Lr = 4πr2F . Then the overall energy transport can be expressed as

Lr = −4πr2
4acT 3

3κρ
· dT

dr
, (6.26)

where κ−1 ≡ κ−1
γ +κ−1

e is defined, and κe = 8acT 3/(9λenekBvρ) is the opac-
ity coefficient of electrons. Finally, we mention that convection as a mecha-
nism of the energy and chemical element transport is involved in the large-
scale motion of matter in stars (Salaris and Cassisi, 2005). Since there is no
satisfactory theory of convection at present, the convective flux is usually
calculated in some approximations (Biermann, 1951; Vitense, 1953; Böhm-
Vitense, 1958). It is expected that the convective transport is insignificant in
the stellar core where neutrinos are produced (Bahcall, 1989).

In summary, the local luminosity Lr(r), pressure P (r), temperature T (r),
density ρ(r) and chemical elements Xi (for i = 1, 2, · · · , n) of a star are
governed by a set of differential equations. Because of the equation of state,
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we are left with n + 3 independent quantities (i.e., P , T , Lr and Xi) which
are described by the following n+ 3 differential equations:

dP (r)
dr

= −GNM(r)ρ(r)
r2

,

dT (r)
dr

= − 3κρ
4acT 3(r)

· Lr(r)
4πr2

,

dLr(r)
dr

= 4π2r2ερ(r) , (6.27)

and
dXi

dt
= fiff [Xi, ρ(r), T (r)] with fiff being definable through Eq. (6.21). To

solve these equations, one has to impose the initial conditions and calculate
the energy production coefficient ε, the opacity coefficient κ and the interac-
tion rates Rijk by means of particle physics.

6.1.3 Energy Sources of Stars

The gravitational potential energy and thermal nuclear reactions are two
important energy sources of stars. First, let us present the virial theorem
and apply it to the stars in hydrostatic equilibrium. With the help of dM =

4πρr2dr, one may rewrite Eq. (6.11) as
dP
dM = −GNM/(4πr4). Then

∫ Ms

0

∫∫
4πr3

dP
dMdM = −

∫ Ms

0

∫∫
GNM
r

dM , (6.28)

where Ms is the total mass of the star. The right-hand side of Eq. (6.28)
represents the gravitational potential energy Ω, while an integration by parts
on its left-hand side leads to∫ Ms

0

∫∫
12πr2P

dr
dMdM = 3

∫ Ms

0

∫∫
P

ρ
dM , (6.29)

where we have used P = PsPP = 0 at the surface and the mass conservation
dr

dM = 1/(4πr2ρ). For an ideal gas, the internal energy per unit mass is

u = 3kBT/(2μmH) and the equation of state reads P/ρ = kBT/(μmH). So
Eqs. (6.28) and (6.29) establish a relationship between the internal energy U
and the gravitational potential energy Ω:

U ≡
∫ Ms

0

∫∫
u dM = −Ω

2
, (6.30)

known as the virial theorem. The total energy is E = U +Ω = Ω/2 < 0, as
it should be for a bound system. Consider a star without nuclear reactions

but radiating energies from its surface. Its luminosity is L = −dE
dt

. The
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virial theorem yields L ∝ −dΩ
dt

, implying that the gravitational potential
energy decreases so as to give a positive luminosity. Hence the star has to
contract when it radiates energies, and it has a negative specific heat. The
virial theorem can also be used to estimate the average temperature. Taking
account of Ω ∝ −GNM2

s/R and U = 3kBTMs/(2μmH), one may get the
average temperature T ∝ Ms/R ∝ M2/3

s ρ1/3, where the average density is
defined as ρ ∝ Ms/R

3. For two stars with the same mass, the one with a
larger matter density must have a higher average temperature.

Table 6.3 Conversion factors of five frequently-used units in the system of natural
units with � = kB = c = 1 (Raffelt, 1996, with permission from the University of
Chicago Press; Raffelt and Rodejohann, 1999)

s−1 cm−1 K eV g
s−1 1 0.334 · 10−10 0.764 × 10−11 0.658 × 10−15 1.173 × 10−48

cm−1 2.998 × 1010 1 0.2289 1.973 × 10−5 0.352 × 10−37

K 1.310 × 1011 4.369 1 0.862 × 10−4 1.537 × 10−37

eV 1.519 × 1015 0.507 × 105 1.160 × 104 1 1.783 × 10−33

g 0.852 × 1048 2.843 × 1037 0.651 × 1037 0.561 × 1033 1

Second, let us calculate the energy production from nuclear reactions. If
a sum of the masses of initial nuclei is larger than that of final nuclei in a
specific reaction (i.e.,MinitialMM > MfinalMM ), the energy released from this reaction
is then given by ΔE = MinitialMM −MfinalMM . Such a mass difference comes from
the binding energy of a nucleus. Given a nucleus X(Z,A) with mass MXM ,
for example, its binding energy is Ebind = Zmp + (A − Z)mn −MXM with
mp = 938.272 MeV and mn = 939.565 MeV being the proton and neutron
masses 2. The nucleus of 56Fe possesses the maximal binding energy per
nucleon: (EB/A)(56Fe) = 8.79 MeV. That is why the elements lighter (or
heavier) than 56Fe can produce energies via thermonuclear fusion (or nuclear
fission). Consider the energy release from the nuclear reaction in Eq. (6.19):

Qijk = MIM +MJM −MKM −MLM . (6.31)

As discussed in Section 6.1.2, the number of reactions occurring in unit time
and unit volume is ninjRijk with Rijk = σijkv being the reaction rate. With
the help of Eq. (6.21), the rate of energy production in unit mass is given as

2The natural units with � = c = kB = 1 are commonly adopted in particle
physics. In this case the units of length, mass, time and temperature can be ex-
pressed in the unit of energy (1 eV = 1.602 × 10−19 J = 1.602 × 10−12 erg). The
conversion factors of these units are listed in Table 6.3.
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εnuc =
ρ

m2
H

∑
i,j,k

1
1 + δij

·
XiXjX

AiAj

RijkQijk . (6.32)

Note that the initial nuclei have to overcome the Coulomb repulsive force
between them, in order for the nuclear reactions to take place. The ther-
mal energies of the nuclei are around keV ∼ 107 K, but the barrier at
nuclear distances is as high as several MeV. Nevertheless, these reactions
can still happen via quantum tunneling effects. George Gamow pointed out
that the penetration probability or the cross section must be proportional to
exp[−2πZiZ ZjZ e2/(�v)] (Gamow, 1928). In addition, the Maxwell-Boltzmann
distribution of the velocity is proportional to exp[−MgMM v2/(2kBT )], where the
reduced mass of the gas particle is defined asMgMM ≡MIM MJM /(MIM +MJM ). As the
velocity v increases, the first exponential function increases but the second
one decreases. Hence the product exp[−2πZiZ ZjZ e2/(�v)] exp[−MgMM v2/(2kBT )]
possesses a maximum, the so-called Gamow peak. The cross section is con-
ventionally defined as

σijk(E) =
Sij(E)
E

exp(−2πη) , (6.33)

where η ≡ ZiZ ZjZ e2/(�v). The exponential factor exp(−2πη) in Eq. (6.33)
comes from quantum tunneling and is known as the Gamow penetration fac-
tor. A dimensional analysis yields σijk(E) ∼ πλ2

de ∼ πh2/p2 ∝ E−1, where
λde = h/p is the de Broglie wavelength and E = p2/2MgMM has been used. The
astrophysical factor Sij(E) is energy-dependent and contains the informa-
tion of nuclear structure. In practice, one may extrapolate the experimental
data on Sij(E) at high energies to the low-energy regime relevant to stellar
environments. Because the typical temperature in stars is in the range of
(1 ∼ 100) keV and much smaller than nuclear masses, the velocity distribu-
tion is well described by the Maxwell-Boltzmann function:

Rijk =
2

π1/2(kBT )3/2

∫ ∞

0

∫∫
E1/2e−E/kBT vσ(v)dE , (6.34)

where the relative velocity v and the kinetic energy E satisfy E = MgMM v2/2.
A combination of Eqs. (6.33) and (6.34) leads us to (Cox and Giuli, 1968)

Rijk =

√
8

πMgMM kBT
Sij

∫ ∞

0

∫∫
e−(y+C/

√
y)dy , (6.35)

where y ≡ E/(kBT ), C = (2πMgMM )1/2ZiZ ZjZ e2/[�(kBT )1/2], and Sij is assumed
to be a constant. As a matter of fact, Sij(E) takes the value at the Gamow
peak if its energy dependence is non-negligible (Bahcall, 1989).

Astronomical observations have established that all the main-sequence
stars are predominantly composed of hydrogen. Hence the energy source of
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log(L/L�)

log(M/M�)

Fig. 6.2 The observational data on the mass-luminosity relation for the main-
sequence stars (Carroll and Ostlie, 2007. With permission from Pearson Education,
Inc.)

these stars is most likely to be the fusion of four hydrogen nuclei into one
4He nucleus. To be specific, we write out the reaction

4p4 + 2e− → 4He + 2νe +Q , (6.36)

where Q ≈ 4mp +2me −m4He ≈ 26.73 MeV is just 0.7% of the sum of initial
proton masses. If the Sun were composed entirely of hydrogen and all the
hydrogen were converted into helium via the above reaction, the time for this
process to be completed would be τ ∼ 0.7%×mp× (M�/mp)/L� ≈ 1011 yr,
where the present solar luminosity is assumed. If only 10% of the hydrogen in
the Sun is consumed, the solar lifetime will be of the right order of magnitude
τ ∼ 1010 yr, consistent with the nuclear timescale τnucττ given in Eq. (6.9).
The hydrogen burning proceeds in two different ways: the proton-proton (pp)
chain and the carbon-nitrogen-oxygen (CNO) circle, which are also the main
sources of stellar neutrinos. The advanced nuclear fusions, such as the carbon
and silicon burning, require much higher temperatures ∼ 109 K. Hence we
shall only consider the hydrogen-burning stage, which is relevant to the Sun
and thus the production of solar neutrinos (Bahcall, 1989).

6.1.4 The Mass-Luminosity Relation

The color-magnitude diagram has been shown in Fig. 6.1, from which one can
see a clear correlation between the effective temperature and luminosity. For
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the main-sequence stars, there exists an empirical mass-luminosity relation
shown in Fig. 6.2. More explicitly (Cox and Giuli, 1968; Prialnik, 2000),

L

L�
∝
( M
M�

)ν

, (6.37)

where ν = 3 ∼ 5 denotes the power index for the main-sequence stars. Given
a chemical composition similar to the Sun, it has been found that ν ≈ 3.6
holds for the stars with their masses lying in the range 20M� >M > 2M�,
ν ≈ 4.5 for 2M� > M > 0.5M� and ν ≈ 2.6 for 0.5M� > M > 0.2M�
(Salaris and Cassisi, 2005). Let us use the basic equations to understand such
an elegant relation. With the help of the condition of hydrostatic equilibrium
in Eq. (6.11), we approximately obtain P ∼ M2/R4 by equating the left-
hand side of Eq. (6.11) with P/R and taking the average density ρ ∼ M/R3.
Assuming the equation of state of the ideal gas (i.e., P ∝ ρT ), we get the
temperature T ∝ P/ρ ∼ M/R. These relations, together with Eq. (6.24),
allow us to derive an empirical mass-luminosity relation for ν = 3:

L ∝ R4

MT 4 ∝ R4

M

(M
R

)4

= M3 . (6.38)

For massive stars with M > 10M�, the mass-luminosity relation becomes
less steep. The reason for this difference is simply that the radiation pressure
is dominant in the massive stars, so the pressure is given by P ∝ T 4 and
T ∝ M1/2/R arises from P ∼ M2/R4. After inserting T ∝ M1/2/R into
Eq. (6.38), we can arrive at a linear mass-luminosity relation L ∝ M. These
simple arguments help us understand the observed correlation between stellar
masses and luminosities, at least to some extent. It is worth mentioning that
the mass-luminosity relation is not applicable to the other branches of stars
shown in Fig. 6.1. Those kinds of stars may have the cores with degenerate
electrons, and hence the above simple arguments are invalid.

6.2 Neutrinos from the Sun

Although how stars formed in the first place remains an open question, it
is believed that they originated from a gravitationally bound system of the
primordial gas. The theory of Big Bang nucleosynthesis tells us that the mass
fraction of helium in the primordial gas is about 25%, and the rest is almost
hydrogen. The bound gas contracts due to the energy loss via electromag-
netic radiation, but the temperature of this system increases because of the
negative specific heat. When the temperature is high enough to ignite hydro-
gen, the energy released from hydrogen fusion makes the gas expanding. As a
result, the gravity is balanced by the pressure force and the system achieves
hydrostatic equilibrium. This is the case for the main-sequence stars, like the
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Sun. When all the hydrogen at the stellar core is consumed, further evolution
of the star depends on its initial mass. For a mass below (2 ∼ 3)M�, the
helium as a product of hydrogen fusion accumulates at the center and there
is a hydrogen-burning shell around the dense helium core. Meanwhile, matter
around the core starts to expand and hence the temperature of the surface
decreases. In other words, the star becomes redder and is called a red giant.
The core of a red giant is so hot and dense that helium fusion becomes pos-
sible. The stage with a helium-burning core and a hydrogen-burning shell is
known as a horizontal-branch star. For a mass up to (6 ∼ 8)M�, carbon and
oxygen can be produced in the stellar core, but further fusion processes are
not allowed. Since all the fuels are burnt out, these stars with a degenerate
core will cool down by emitting neutrinos and photons until they disappear
from view. Such a star is referred to as a white dwarf. For more massive
stars with M > (6 ∼ 8)M�, nuclear fusion at the center can continue to
the formation of the most stable element — iron. When the degenerate iron
core reaches the Chandrasekhar limit and there are no more energies released
from nuclear reactions, the core becomes unstable. Further contraction allows
photons to disassociate the nuclei, and this process will consume energies and
further reduce the pressure. In addition, electrons are captured by the nuclei
and converted into electron neutrinos. The latter will escape and carry away
more energies. So the unstable core must continue to collapse. A collapsed
star and its subsequent evolution may lead to a type-II supernova. Neutrinos
emitted from the type-II supernova explosion will be discussed in Chapter 7.

We shall subsequently focus our interest on the Sun, a typical main-
sequence star, by introducing the standard solar model (SSM). We shall also
pay particular attention to the production of solar neutrinos.

6.2.1 The Standard Solar Model

The answer to why the Sun shines was first given by Hans Bethe, who worked
out the solar nuclear fusion chains in 1939 (Bethe, 1939). Neutrinos produced
from these nuclear reactions were completely ignored, because the existence
of neutrinos had not been experimentally established by that time (Bethe
and Peierls, 1934). In 1940, George Gamow and Mario Schoenberg pointed
out that neutrinos could take away a large amount of energies and should be
very important in a collapsing star (Gamow and Schoenberg, 1940, 1941).
Neutrinos were first discovered by Clyde Cowan and Frederick Reines in
1956 (Cowan et al., 1956). A theoretical calculation of solar neutrino fluxes
was carried out by John Bahcall in 1964, and a proposal for detecting solar
neutrinos was put forward by Raymond Davis in the same year (Bahcall,
1964; Davis, 1964). The SSM was originally built and continuously refined by
Bahcall and his collaborators (Bahcall et al., 1982, 2001, 2006; Bahcall and
Ulrich, 1988; Bahcall and Pinsonneault, 1995).

Let us summarize the main approximations made in the SSM, or more
generally in a theory of the main-sequence stars (Bahcall, 1989). (1) The
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Sun is spherically symmetric and its intrinsic properties only depend on its
radius. As a consequence, the rotation and magnetic fields can be neglected.
(2) Hydrostatic equilibrium is always assumed in the SSM. Any significant
deviation from hydrostatic equilibrium would have already led the Sun to
a global contraction or expansion in about one hour (i.e., the dynamical
timescale τdynτ ∼ 103 s). (3) The energy transport is induced by photons or
convection. The radiative energy transport is dominant in the solar core, while
the convective energy transport becomes important near the solar surface.
(4) The energy production is attributed to thermal nuclear reactions, and
the energy gain or loss induced by the local contraction or expansion should
be taken into account. (5) The chemical composition is changed only through
nuclear reactions, and thermal or gravitational diffusion of nuclear elements
should be included. Based on these approximations, the basic equations given
in Section 6.1 can then be applied to the Sun.

We proceed to outline the input parameters in the SSM. They include
the primordial chemical abundances, radiative opacity, equation of state and
nuclear reaction rates. The primordial chemical composition is usually given
by the helium mass fraction Y and the metal-to-hydrogen ratio Z/X . The
latter can be extracted from a measurement of the chemical abundances of
the solar surface. Note that the metal here stands for the elements heavier
than helium. Since the surface temperature is relatively low, nuclear reactions
cannot be initiated and thus the abundance at the surface can represent the
primordial one. We are able to measure the chemical abundance of the solar
surface in two different ways. The first is the mass spectroscopy of meteorites
at terrestrial laboratories. However, the volatile elements including hydrogen,
helium, carbon, nitrogen, oxygen and neon might have been depleted in the
pristine meteorites. In this case silicon is usually chosen to measure the rela-
tive abundances of other elements. Hence some prior knowledge of silicon at
the solar surface is needed to determine the chemical composition. The other
way is to analyze the solar spectrum and atomic lines. It depends on the
model of the solar atmosphere and spectrum formation. These two methods
are consistent with and complementary to each other, and the latest results
with widely-used compilations are listed in Table 6.4 (Asplund et al., 2009).
It is worth remarking that the initial chemical composition can significantly
affect the radiative opacity of the solar core, which has a great impact on the
central temperature and thus solar neutrino fluxes.

Building the SSM may begin with the so-called zero-age-main-sequence
star of 1M� (Prialnik, 2000). Since the age τ�ττ , luminosity L� and radius
R� of the Sun have been precisely measured, they must be reproduced by
the SSM. These important parameters of the Sun are listed in Table 6.5.
The density and sound velocity profiles of the Sun, from its surface to the
deep core, can be determined from the study of the solar acoustic oscillations
(i.e., the so-called helioseismology). They also provide strict constraints on
the SSM (Basu and Antia, 2008).
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Table 6.4 The latest and widely-used mass fractions of hydrogen (X), helium (Y )
and metals (Z) in the present-day solar photosphere (Asplund et al., 2009. With
permission from Annual Reviews)

References X Y Z Z/X

Anders and Grevesse, 1989 0.7314 0.2485 0.0201 0.0274
Grevesse and Noels, 1993 0.7336 0.2485 0.0179 0.0244
Grevesse and Sauval, 1998 0.7345 0.2485 0.0169 0.0231
Lodders, 2003 0.7491 0.2377 0.0133 0.0177
Asplund et al., 2005 0.7392 0.2485 0.0122 0.0165
Lodders et al., 2009 0.7390 0.2469 0.0141 0.0191
Asplund et al., 2009 0.7381 0.2485 0.0134 0.0181

Table 6.5 Some important parameters of the Sun (Bahcall, 1989. With permission
from the Cambridge University Press)

Parameter Value
Luminosity (L�) 3.86 × 1033 erg s−1

Mass (M�) 1.99 × 1033 g
Radius (R�) 6.96 × 1010 cm
Age (τ�ττ ) 4.57 × 109 yr
Central density (ρC) 148 g cm−3

Central hydrogen abundance (XC) 0.34

6.2.2 Proton-proton Chain and CNO Cycle

As shown in Eq. (6.36), the main energy source in the Sun is the nuclear fusion
reaction which converts four protons into a helium nucleus and releases the
energy Q ≈ 26.73 MeV. Two neutrinos are emitted from this reaction and
carry away only 2% of the total energy. The burning of hydrogen proceeds
via the pp chain and CNO cycle.

(1) The pp chain. The first process is p+ p→ D + e+ + νe. The positron
may immediately annihilate with an ambient electron and thus it contributes
to the energy production. The electron neutrinos produced from this reaction
are referred to as the pp neutrinos. They have a continuous energy spectrum
and a maximal energy Emax

ν = 0.420 MeV. The rate of pp reactions can be
calculated by using the standard theory of weak interactions together with
the experimental data on the proton-proton scattering and properties of the
deuteron (Bahcall et al., 1982). The second process is the electron-capture
reaction p + e− + p → D + νe, where the energy of the electron neutrino is
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Eν = 1.442 MeV. The energy spectrum of such pep neutrinos is in principle
discrete, but the broadening effects due to the thermal motion actually make
the spectrum continuous. Note that the nuclear matrix elements relevant to
the pp and pep reactions are the same, so the ratio of these two reaction
rates is independent of the SSM. The pep reaction rate can be accurately
calculated by means of the electroweak theory and with the help of the pp
reaction rate. The next step in the pp chain is the production of 3He in
the proton-capture reaction D + p → 3He + γ. This is the only reaction
for the deuteron burning in the Sun, and there are no neutrinos produced
from this process. The termination of the pp chain is mainly via the process
3He+ 3He → 4He+2p (i.e., the pp-I chain). There is also another termination
with the probability 2 × 10−7 via the reaction p + 3He → 4He + e+ +
νe, where neutrinos with energies up to Emax

ν = 18.77 MeV are generated.
Although these hep neutrinos have sufficiently high energies, their flux is
unfortunately too small to be detected. The remaining two possibilities for
the termination of the pp chain are related to the production of beryllium
7Be through 3He + 4He → 7Be + γ and its subsequent interactions: (a) the
pp-II chain characterized by 7Be + e− → 7Li + νe and 7Li + p → 2 4He
with a branching fraction 99.87%, producing 7Be neutrinos with either Eν =
0.862 MeV (with the probability 89.7%) or Eν = 0.384 MeV due to the
excited state of lithium (with the probability 10.3%); (b) the pp-III chain
characterized by 7Be+p→ 8B+γ, 8B → 8Be∗ +e+ +νe and 8Be∗ → 2 4He
with a branching fraction 0.13%, producing 8B neutrinos with a maximal
energy Emax

ν = 15 MeV. Although the reaction rate of 7Be + p → 8B + γ
is highly suppressed, it is practically easier to detect 8B neutrinos because
their energies are much higher than those of the more abundant pp, pep and
7Be neutrinos. In fact, all the solar neutrino experiments are sensitive to 8B
neutrinos.

(2) The CNO cycle. Since carbon is most abundant among the heavy
elements in stars, the CNO cycle offers another important way to realize
hydrogen fusion. More explicitly, we have 12C + p→ 13N + γ, 13N → 13C +
e+ + νe and 13C + p → 14N + γ, where electron neutrinos arise from the
β+ decays of 13N and thus are known as 13N neutrinos. The further proton-
capture process 14N + p → 15O + γ rarely occurs, but it gives birth to 15O
neutrinos and terminates one of the CNO cycles via 15O → 15N+e++νe and
15N+p→ 12C+ 4He. There exists a slim chance (∼ 0.1%) for the production
of 16O in the proton-capture reaction of 15N (i.e., 15N+p→ 16O+γ), which
initiates another CNO cycle and produces 17F neutrinos via 16O+p→ 17F+γ
and 17F → 17O + e+ + νe. This cycle is terminated by the production of
helium via 17O + p → 14N + 4He. All the CNO neutrinos result from the
β+ decays, so the corresponding neutrino energy spectra are continuous. The
experimental detection of CNO neutrinos seems very difficult because their
energies and fluxes are not sufficiently high.
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6.2.3 Solar Neutrino Fluxes

Nuclear energies and neutrinos are released from the pp chain and CNO
cycle. The energies are mostly carried away by photons, which diffuse from
the solar core until they reach the photosphere where the medium becomes
transparent. The diffusion time of photons is about 104 yr. In comparison,
neutrinos almost freely escape from the Sun after they are produced. Hence
the detection of solar neutrinos can offer direct evidence for thermonuclear
reactions in the center of the Sun. We summarize various sources of solar
neutrinos together with their average and maximal energies in Table 6.6.
Note that 7Be and pep neutrinos have discrete line spectra.

Table 6.6 Various sources of solar neutrinos together with their average energies
〈Eν〉 and maximal energies Emax

ν as compared with the average thermal energies
E (in units of MeV) (Giunti and Kim, 2007. With permission from the Oxford
University Press)

Source Reaction 〈Eν〉 Emax
ν E

pp p+ p→ D + e+ + νe 0.2668 0.423 13.0987
pep p+ e− + p→ D + νe 1.455 1.455 11.9193
hep 3He + p→ 4H + e+ + νe 9.628 18.778 3.7370
7Be 7Be + e− → 7Li + νe 0.8631 0.8631 12.6008
7Be 7Be + e− → 7Li∗ + νe 0.3855 0.3855 12.6008
8B 8B → 8Be∗ + e+ + νe 6.735 ∼ 15 6.6305
13N 13N → 13C + e+ + νe 0.7063 1.1982 3.4577
15O 15O → 15N + e+ + νe 0.9964 1.7317 21.5706
17F 17F → 17O + e+ + νe 0.9977 1.7364 2.363

Since nuclear reactions in the pp chain and CNO cycle are already known,
one may directly calculate solar neutrino fluxes for all the sources listed
in Table 6.6. The most relevant quantity for the reaction rate Rij is the
astrophysical factor Sij defined in Eq. (6.33). A neutrino flux is actually
computed by integrating the local production rate over the volume of the
Sun,

Φi =
∫ M�

0

∫∫
Ri

[
ρ(M), T (M), {XjX }

]
dM , (6.39)

where the subscript i denotes the neutrino source type, and Ri describes the
corresponding production rate per unit mass. The latter apparently depends
on the matter density, local temperature and chemical composition. Now
that both the thermal energy and neutrinos are generated from the hydrogen
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fusion reaction 4p4 + 2e− → 4He + 2νe + Q with Q = 26.73 MeV, we can
roughly estimate the total neutrino flux:

Φν ≡
∑

i

Φi ≈ 2 × L�
4π(1 AU)2

· 1
Q

≈ 6.4 × 1010 cm−2 s−1 , (6.40)

where the factor 2 takes account of the fact that two neutrinos are produced
from hydrogen fusion, and L� is the solar luminosity. A recent revision of the
abundances of heavy elements at the solar surface yields (Z/X)� = 0.0165
(Asplund et al., 2005) as compared with the previous result (Z/X)� = 0.0229
(Grevesse and Sauval, 1998). This new determination of solar metallicity is
in contradiction with the helioseismological measurements (Chaplin et al.,
2007; Basu et al., 2007). In contrast, the earlier and larger value of metallicity
agrees very well with the solar density and pressure profiles extracted from
the helioseismological observations (Serenelli et al., 2009). Two SSMs have
been constructed by using the previous (larger) and recent (smaller) results
of heavy-element abundances, so they are referred to as BPS(GS98) and
BPS(AGS05), respectively (Pena-Garay and Serenelli, 2008).

Fig. 6.3 illustrates the distribution of solar neutrino fluxes as a function
of the solar radius fraction r/R�. Note that solar neutrinos are actually
produced in the core region with r < 0.35 R�. In particular, almost all
the 8B neutrinos are produced from the core (r � 0.1R�), so their total
flux depends sensitively on the central temperature T . It has been found
that Φ8B ∝ T 18, Φ7Be ∝ T 8 and Φpp ∝ T−1.2 hold approximately. The pp
neutrinos are generated in the region from which most of the solar luminosity
arises. Hence the above temperature dependence of pp neutrinos is mainly
ascribed to the constraint coming from the solar luminosity (Bahcall, 1989).
Theoretical predictions for the energy spectra of solar neutrinos from the
SSM of BPS(GS98) 2008 are shown in Fig. 6.4. In addition, solar neutrino
fluxes predicted by the SSMs of BPS(GS98) 2008 and BPS(AGS05) 2008 are
listed in Table 6.7. A difference between the predictions of these two models
for every neutrino flux is given in the last column of Table 6.7.

6.3 Experimental Detection of Solar Neutrinos

Solar neutrinos can be detected by means of radiochemical reactions, water
Cherenkov detectors and (or) liquid scintillators. Some typical and important
experiments on solar neutrinos will be briefly introduced in this section, from
which one can see why there was the well-known solar neutrino problem.

6.3.1 Radiochemical Methods

It was Bruno Pontecorvo who first suggested detecting electron neutrinos via
the inverse beta decay (Pontecorvo, 1946; Alvarez, 1948)
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Fig. 6.3 The distribution of solar neutrino fluxes
dΦi

dx
with respect to the solar

radius fraction x ≡ r/R�, where the SSM of BPS(GS98) 2008 has been assumed
(Pena-Garay and Serenelli, 2008)

νe + 37Cl → 37Ar + e− . (6.41)

This method was later used by Davis in the pioneering Homestake solar neu-
trino experiment (Davis, 1964). The energy threshold for the Cl-Ar reaction
in Eq. (6.41) is Eth

ν = 0.814 MeV, so the Homestake experiment can only
detect those solar neutrinos with medium and high energies. This experiment
was located in the Homestake Gold Mine at Lead in South Dakota. Its de-
tector was a single horizontal steel tank and contained a volume of 615 tons
of liquid perchloroethylene C2Cl4, and hence the neutrino target was about
2.16 × 1030 atoms (130 tons) of 37Cl. The key problem of a chlorine experi-
ment is to extract and count the resultant argon atoms. First, a small amount
of isotopically pure 36Ar or 38Ar carrier gas is placed in the tank of liquid
perchloroethylene. Then the detector is exposed to solar neutrinos for about
two months. This time interval is chosen such that the number of 37Ar atoms
can nearly grow to the saturation value (i.e., the production rate is equal to
the decay rate). After the exposure, the argon atoms are extracted by purging
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where the 1σ theoretical uncertainties are given (Pena-Garay and Serenelli, 2008)

Table 6.7 Solar neutrino fluxes predicted by the SSMs of BPS(GS98) 2008 and
BPS(AGS05) 2008. Note that the fluxes are given in units of 1010 (pp), 109 (7Be),
108 (pep, 13N and 15O), 106 (8B and 17F) and 103 (hep) cm−2 s−1, respectively
(Pena-Garay and Serenelli, 2008)

Source BPS(GS98) 2008 BPS(AGS05) 2008 Difference
pp 5.97(1 ± 0.006) 6.04(1 ± 0.005) 1.2%
pep 1.41(1 ± 0.011) 1.45(1 ± 0.010) 2.8%
hep 7.90(1 ± 0.15) 8.22(1 ± 0.15) 4.1%
7Be 5.07(1 ± 0.06) 4.55(1 ± 0.06) 10%
8B 5.94(1 ± 0.11) 4.72(1 ± 0.11) 21%
13N 2.88(1 ± 0.15) 1.89(1+0.14

−0.13) 34%
15O 2.15(1+0.17

−0.16) 1.34(1+0.16
−0.15) 31%

17F 5.82(1+0.19
−0.17) 3.25(1+0.16

−0.15) 44%

with the helium gas. The recovery efficiency of 37Ar is determined by compar-
ing the measured isotopic composition of the extracted argon atoms with the
amount of isotopically pure carrier gas at the beginning of each run. Finally,
the extracted 37Ar atoms are counted by observing the 2.82 keV Auger elec-
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Fig. 6.5 The neutrino absorption cross sections on 37Cl and 71Ga as functions of the
energies of incident neutrinos (Bahcall et al., 1996; Bahcall, 1997. With permission
from the American Physical Society)

trons from the electron-capture decay of 37Ar (i.e., 37Ar + e− → 37Cl + νe).
The main background is induced by the cascades of energetic muons from
cosmic rays. The cascade particles, including pions, protons and neutrons,
may interact with 37Cl and produce 37Ar. The background is estimated to
be (0.08 ± 0.03) atoms of 37Ar per day (Bahcall, 1989).

Fig. 6.5 shows the neutrino absorption cross section on the chlorine. It is
easy to see that the chlorine experiment is most sensitive to the high-energy
part of 8B neutrinos. The solar neutrino unit (SNU) has often been used to
express the neutrino capture rate (Bahcall, 1969, 1989):

R =
∑

i

Φiσ ∼
[
1010 cm−2 s−1

]
×
[
10−46 cm2

]
= 10−36 s−1 , (6.42)

so 1 SNU corresponds to 10−36 interactions per target atom per second.
After 25 years of measurements (from March 1970 to February 1994), the
Homestake experiment reported the following average solar neutrino rate
(Cleveland et al., 1998): Rexp

Cl = 2.56 ± 0.16 (stat.) ± 0.16 (syst.) SNU =
2.56±0.23 SNU, which was only about 1/3 of the theoretical prediction made
by Bahcall (Bahcall, 1989; 1997). Current theoretical predictions are Rth

Cl =
8.46+0.87

−0.88 SNU based on the SSM of BPS(GS98) and Rth
Cl = 6.86+0.69

−0.70 SNU
according to the SSM of BPS(AGS05) (Pena-Garay and Serenelli, 2008).
Therefore, we conclude that the observed neutrino rate given above remains
about one third of the expected one.

There were three other solar neutrino experiments using the radiochemical
method: GALLEX, GNO and SAGE, which detected solar neutrinos via the
inverse beta decay of 71Ga (Kuzmin, 1966)

νe + 71Ga → 71Ge + e− , (6.43)
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where the neutrino energy threshold is Eth
ν = 0.233 MeV. Such a low value

of Eth
ν makes it possible to detect solar neutrinos almost in the whole energy

range as shown in Fig. 6.4. In particular, a measurement of pp neutrinos
from the pp chain reactions is of great importance because the pp neutrino
flux is closely related to the solar luminosity. The neutrino absorption cross
section on 71Ga is shown in Fig. 6.5 as a function of the neutrino energy
(from 0.24 MeV to 30 MeV). Let us briefly summarize the main results of
GALLEX, GNO and SAGE experiments.

(1) The GALLium EXperiment (GALLEX) was done at the Laboratori
Nazionali del Gran Sasso (LNGS) in Italy. Its detector contained 30.3 tons
of 71Ga in the form of a concentrated GaCl3-HCl solution, and was ex-
posed to solar neutrinos for a time period between three and four weeks.
The GALLEX experiment ran from May 1991 to January 1997, with a
break in 1997 (Hampel et al., 1999), and was then followed by the Gal-
lium Neutrino Observatory (GNO) experiment. The GNO experiment used
the same detector of the GALLEX experiment but improved its extrac-
tion equipment (Altmann et al., 2000, 2005). A recent reanalysis of the
data accumulated in the GALLEX experiment yields the solar neutrino rate
Rexp

Ga (GALLEX) = 73.4+7.1
−7.3 SNU (Kaether et al., 2010). The two gallium ex-

periments at LNGS totally lasted 12 years, and their joint result has been
found to be Rexp

Ga (GALLEX + GNO) = 69.3+5.5
−5.5 SNU (Altmann et al., 2005).

(2) The Soviet-American Gallium Experiment (SAGE) was located in
the Baksan Neutrino Observatory of the Russian Academy of Sciences in
the northern Caucasus mountains (Abazov et al., 1991; Abdurashitov et al.,
1994, 2002, 2006). The detection method used in the SAGE experiment is
the same as that used in the GALLEX and GNO experiments. After running
from January 1990 to December 2001, the SAGE experiment reported the
average solar neutrino rate Rexp

Ga (SAGE) = 70.8+6.5
−6.1 SNU (Abdurashitov et

al., 2002). This result is in good agreement with the one obtained from the
GALLEX and GNO experiments.

Theoretical predictions for the neutrino capture rate on 71Ga are Rth
Ga =

127.9+8.1
−8.2 SNU based on the SSM of BPS(GS98) and Rth

Ga = 120.5+6.9
−7.1 SNU

according to the SSM of BPS(AGS05) (Pena-Garay and Serenelli, 2008).
Either of them is nearly twice the result obtained from the GALLEX/GNO
or SAGE experiment. In other words, there is a discrepancy of more than 5σ
between theoretical predictions and experimental data in this respect.

6.3.2 Water Cherenkov Detectors

If the velocities of charged particles exceed the speed of light in a medium,
they can radiate photons. This phenomenon is known as Cherenkov radiation
(Landau and Lifshitz, 1984). So an important neutrino detection method is to
measure Cherenkov radiation emitted from ultra-relativistic charged leptons
which are produced from neutral- and charged-current neutrino interactions.
The Cherenkov detector allows a real-time measurement of the direction of
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charged leptons, and thus it can determine the direction of incident neutri-
nos. Since the refractive index of light in water is n ≈ 1.33, the Cherenkov
radiation forms a light cone with an open angle given by cos θ = 1/(nv).
Taking the velocity v ≈ c for ultra-relativistic charged leptons, one obtains
θ ≈ 41◦. The axis of the light cone is just the track of the running charged
lepton. A water Cherenkov detector usually consists of many photomultiplier
tubes (PMTs) used to measure Cherenkov radiation. Both the energy and
direction of incident neutrinos can in principle be reconstructed.

All the Cherenkov detectors used to detect solar neutrinos make use of
water as the medium. Let us briefly summarize the main results of a few
important solar neutrino experiments of this type.

(1) The Kamioka Nucleon Decay Experiment (Kamiokande), which orig-
inally aimed for the detection of nucleon decays, was completed in 1983. Its
detector was placed 1000 m underground in the Kamioka mine, about 200 km
west of Tokyo. It had a cylindrical water tank containing 3000 tons of pure
water. About 1000 PMTs were attached to the inner surface of the tank. In
1985, the detector was upgraded to Kamiokande-II in order to observe solar
8B neutrinos. The relevant process is the neutrino-electron elastic scattering

να + e− → να + e− , (6.44)

where α = e, μ or τ . Since the cross section for electron neutrinos is about six
times larger than those for muon and tau neutrinos, as shown in Eq. (2.79),
the reaction in Eq. (6.44) is most sensitive to electron neutrinos. The energy
threshold for recoil electrons was lowered from 7.5 MeV in Kamiokande-
II to 7.0 MeV in Kamiokande-III (Fukuda et al., 1996), implying that the
neutrino energy threshold decreased from Eν = 7.2 MeV to Eν = 6.7 MeV.
The measurements made by the Kamiokande experiment from January 1987
to February 1995 led us to the flux of 8B neutrinos Φ8B(Kamiokande) =
(2.80 ± 0.19 ± 0.33)×106 cm−2 s−1 (Fukuda et al., 1996). This result is only
about 1/2 of the 8B neutrino flux predicted by the SSM in Table 6.7.

(2) The Super-Kamiokande (SK) experiment has a 50 kiloton water
Cherenkov detector, which is also located in the Kamioka mine, about 500 m
from the cavity occupied by the Kamiokande detector. The SK detector con-
sists of a stainless steel cylindrical water tank with about 11000 PMTs in
the inner detector and about 1900 PMTs in the outer detector (Fukuda et
al., 2003). The first phase of the SK experiment started in 1996 and ended
in 2001. The energy threshold for recoil electrons is 6.5 MeV for the first 280
days and 5.0 MeV for the remaining time. The corresponding neutrino energy
thresholds are Eν = 6.2 MeV and Eν = 4.7 MeV, respectively. The detected
8B neutrino flux was Φ8B(SK) = (2.35 ± 0.02 ± 0.08)×106 cm−2 s−1 (Hosaka
et al., 2006). In particular, the angular distribution of neutrino events was
measured in the SK experiment. It provided a convincing evidence that the
observed neutrinos really came from the Sun. Although the SK experiment
searched for the time variation of solar neutrino events, the data were consis-
tent with a null day-night asymmetry and the measured seasonal variation
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was compatible with the change in the Sun-Earth distance. After an unfor-
tunate accident, the second phase of the SK experiment ran from December
2002 to October 2005 with a reduced PMT coverage and a higher energy
threshold (Cravens et al., 2008). Some efforts were made in the third phase
of this experiment, which ran from August 2006 to August 2008, to cut the
systematic errors by a factor of two, to reduce the low-energy background
and to achieve a low energy threshold Eν = 4.5 MeV (Yang et al., 2009).

(3) The Sudbury Neutrino Observatory (SNO) has a Cherenkov detector
located in the Creighton mine, near Sudbury, Ontario (Boger et al., 2000).
The detector consists of a transparent acrylic sphere filled with 1000 tons of
heavy water D2O. The Cherenkov light is detected by about 9500 inward-
looking PMTs. The SNO experiment can measure solar neutrinos via charged-
current (CC), neutral-current (NC) and elastic scattering (ES) reactions:

CC : νe + D → p+ p+ e− ,
NC : να + D → p+ n+ να ,

ES : να + e− → να + e− , (6.45)

where α = e, μ or τ . The CC reaction in the SNO experiment has a threshold
of 5.5 MeV for the recoil energy of the final-state electron, corresponding to
a neutrino energy threshold Eν = 6.9 MeV. Hence it is sensitive to solar 8B
neutrinos. The NC reaction is sensitive to all three neutrino flavors with an
energy threshold Eν = 2.224 MeV, so it is very important to measure the
total flux of 8B neutrinos via this process. The ES reaction has a neutrino
energy threshold Eν = 5.7 MeV in the SNO experiment, and thus it is only
sensitive to 8B neutrinos.

The SNO experiment underwent three phases: (a) the D2O phase ran from
November 1999 to May 2001, and the neutron produced in the NC reaction
was detected via the process n+D → 3He+ γ; (b) the NaCl phase operated
from July 2001 to August 2003, during which time about 2 tons of NaCl
were added into heavy water to enhance the neutron detection efficiency (via
n+ 35Cl → 36Cl+γ’s) and the ability to statistically separate the NC and CC
signals, leading to a significant improvement in the accuracy of the measured
νe and νx (for x = μ or τ) fluxes; (c) the final phase used 3He to capture
the neutron, yielding a proton-tritium pair and thus an electronic pulse in
the counter wire (Aharmim et al., 2008). The fluxes of solar 8B neutrinos
obtained from different reactions in the NaCl phase of the SNO experiment
are (Aharmim et al., 2005)

ΦSNO
CC =

(
1.68 +0.06

−0.06
+0.08
−0.09

)
× 106 cm−2 s−1 ,

ΦSNO
EC =

(
2.35 +0.22

−0.22
+0.15
−0.15

)
× 106 cm−2 s−1 ,

ΦSNO
NC =

(
4.94 +0.21

−0.21
+0.38
−0.34

)
× 106 cm−2 s−1 . (6.46)
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The ratio ΦSNO
CC /ΦSNO

NC = 0.340±0.023+0.029
−0.031 differs from unity by 17σ. These

results are crucial in establishing neutrino oscillations as the best solution to
the solar neutrino problem, as one can see in Section 6.4.

6.3.3 Future Solar Neutrino Experiments

We have summarized some solar neutrino experiments based on the radio-
chemical methods and Cherenkov detectors. There is another ongoing ex-
periment, Borexino, which uses the liquid scintillator detector and aims to
observe the low-energy components of solar neutrinos (Alimonti et al., 2009a,
2009b). The Borexino detector is located at the underground LNGS in cen-
tral Italy. Solar neutrinos are detected via elastic νe-e− scattering, and the
scintillator light induced by the recoil electrons is observed by the PMTs.
The Borexino Collaboration has recently reported the first result of 8B so-
lar neutrinos with an energy threshold Eν = 3 MeV (Bellini et al., 2010a):
Φ8B(Borexino) = (2.4 ± 0.4 ± 0.1) × 106 cm−2 s−1, which is in good agree-
ment with the results of the SNO and SK experiments. In addition, a direct
measurement of 7Be neutrinos (Eν = 0.862 MeV) in the Borexino experi-
ment yields the neutrino interaction rate 49 ± 3(stat.) ± 4(syst.) counts per
day per 100 tons from an analysis of the data accumulated during the period
between May 2007 and April 2008, while the prediction given by the high-
metallicity SSM is 74±4 counts per day per 100 tons (Arpesella et al., 2008).
The observation of such low-energy neutrinos is very important in testing
nuclear reactions in the Sun and matter effects on solar neutrinos with dif-
ferent energies. It is worth mentioning that the Borexino Collaboration has
also observed geoneutrinos — the electron antineutrinos produced in the beta
decays of radioactive isotopes in the Earth (Bellini et al., 2010b).

The future solar neutrino experiments will extensively make use of the
scintillator detectors, and nearly all of them have other scientific purposes
such as a search for dark matter, neutrinoless double-beta decays and proton
decays (Klein, 2008). The main goal is to measure low-energy pp, pep, 7Be and
CNO neutrinos by lowering the relevant backgrounds. The Borexino experi-
ment has made an important step forward in measuring 7Be neutrinos, which
are crucial for understanding neutrino oscillations in matter and physics in
the solar core. The KamLAND experiment plans to reduce its backgrounds
by means of scintillator purification, such that 7Be neutrinos can be observed
via the elastic neutrino-electron scattering reaction. The SNO+ experiment
is also based on the scintillator detector and the elastic νe-e

− scattering pro-
cess, and it will be sensitive to pep and CNO neutrinos. The proposed LENS
experiment uses the indium-doped scintillator and thus is sensitive to the
charged-current interaction νe + 115In → e− + 115Sn + 2γ. The full LENS
detector is expected to measure the energy spectrum of pp neutrinos and to
detect the signals of 7Be, CNO and pep neutrinos (Raghavan, 2002). The
CLEAN and XMASS experiments use the liquid neon and xenon, respec-
tively, to observe the scintillator light in order to detect dark matter. The
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low-energy thresholds of these experiments allow a measurement of solar pp
neutrinos (McKinsey and Coakley, 2005).

6.4 Solar Neutrino Oscillations

It has been seen that all the solar neutrino experiments pointed to a very
significant discrepancy between the measured neutrino flux and the expected
one from the SSM. This is the well-known solar neutrino problem (Davis,
1994). In this section we first describe this problem and then show that its
best solution comes from neutrino oscillations together with the Mikheyev-
Smirnov-Wolfenstein (MSW) matter effects (Wolfenstein, 1978; Mikheyev
and Smirnov, 1985, 1986). It is also possible to place strict constraints on
the lifetimes and electromagnetic properties of neutrinos from solar neutrino
oscillation experiments.

6.4.1 The Solar Neutrino Problem

Fig. 6.6 offers a comparison between the rates of solar neutrinos predicted
by the SSM of BPS(GS98) 2008 3 and measured in the solar neutrino ex-
periments (Pena-Garay and Serenelli, 2008). To examine whether the solar
neutrino problem is real or not, one should first of all make the theoretical
uncertainties of the SSM itself as small as possible. Note that the SSM is
constructed based on some important input parameters (e.g., the chemical
composition, radiative opacity and nuclear reaction rates) which may affect
its predictions for solar neutrino fluxes (Bahcall, 1989). Some comments on
these parameters are in order (Pena-Garay and Serenelli, 2008).

(1) The abundances of heavy elements have a great impact on the calcula-
tions of the CNO neutrino fluxes. Hence the solar composition dominates the
uncertainties in the fluxes of 13N (13%), 15O (12%) and 17F (17%) neutrinos
(as one can see in Table 6.7), but it is not dominant for other neutrinos.

(2) For 8B and 7Be neutrinos, the main uncertainties (6.8% and 3.2%)
come from the opacity, which is closely related to solar metallicity (especially
the abundance of iron). The reason is that the fluxes of 8B and 7Be neutrinos
are highly sensitive to the temperature, determined mainly by the opacity.

(3) The astrophysical S factors cause some subleading uncertainties in
evaluating the solar neutrino fluxes. For example, S33 and S34 corresponding
to 3He + 3He → 4He + 2p and 3He + 4He → 7Be + γ reactions give rise
to 2.5% and 2.8% uncertainties for 7Be neutrinos; and the factor S17 from
the reaction 7Be + p → 8B + γ induces a 3.8% uncertainty. Thermal and
gravitational diffusion effects may lead to comparable uncertainties.

3Useful numerical tables and plots based on the SSM can be found from the
website http://www.mpa-garching.mpg.de/∼aldos/.



242 6 Neutrinos from Stars

Fig. 6.6 The rates of solar neutrinos from theoretical predictions and experimental
data (Pena-Garay and Serenelli, 2008)

It is obvious that the uncertainties given in Table 6.7 and Fig. 6.6 can-
not accommodate the remarkable discrepancy between theoretical predictions
and experimental results. In particular, the NC events (sensitive to all three
neutrino flavors) measured in the SNO experiment show that the total flux
of 8B neutrinos is consistent with that predicted by the SSM. So the solar
neutrino problem should be resolved by reexamining the basic properties of
neutrinos themselves instead of modifying the SSM. The most convincing
solution to this problem turns out to be neutrino oscillations. On the other
hand, solar neutrino oscillation experiments are now able to make important
contributions to the theory of stars (Serenelli, 2010; Basu and Antia, 2008).

6.4.2 The MSW Matter Effects

The experimental results illustrated in Fig. 6.6 indicate that the fluxes of
solar electron neutrinos must have changed during their journey from the
solar core to the detector, and a proper solution to the observed deficit must
have an energy-dependent feature. The standard solution to this problem is
the oscillation of solar neutrinos, a pure quantum phenomenon which allows
electron neutrinos to transform into muon and (or) tau neutrinos when they
travel from the solar core to the Earth. Let us explain the key points by taking
the two-flavor νe ↔ νμ oscillations for example. The survival probability of
initial electron neutrinos is given by

P (νe → νe) = 1 − sin2 2θ sin2

(
Δm2L

4E

)
, (6.47)
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where θ is the neutrino mixing angle in vacuum, and Δm2 ≡ m2
2−m2

1 denotes
the mass-squared difference between two neutrino mass eigenstates ν1 and ν2.
Since the energy spectrum of solar neutrinos is continuous, the probability
P (νe → νe) should be averaged over the spectrum. This treatment leads
us to the averaged probability 〈P (νe → νe)〉 = 1 − 0.5 sin2 2θ (Gribov and
Pontecorvo, 1969). Hence the minimal value of this survival probability is
1/2 when θ = π/4 holds. Considering the SNO measurements of solar 8B
neutrinos (i.e., the measured neutrino flux is only about one third of the
total neutrino flux), one immediately observes that the above treatment is
not applicable. A correct interpretation of all the solar neutrino experiments
has to take into account the matter effects on neutrino oscillations.

Neutrino oscillations in matter have been described in Chapter 5. Here
we apply the main results to the case of solar neutrino oscillations. First, we
estimate the effective potential relevant to νe → νμ oscillations in the solar
core, where the matter density is about ρC = 150 g cm−3 and the electron
number density is ne = 100 NAN cm−3 with NAN = 6.022 × 1023 being the
Avogadro constant (Bahcall, 1989). So the effective potential reads

V =
√

2 GFne ≈ 7.6 × 10−12 eV . (6.48)

For the electron neutrinos with a typical energy E ∼ 10 MeV, the reso-
nance condition A = 2VE = Δm2 cos 2θ can be satisfied if Δm2 cos 2θ =
1.5 × 10−4 eV2 holds. In fact, the electron number density of the Sun de-
creases from its core to its surface. One has an approximate exponential law
ne(r) = n0e

−r/r0 , where n0 = 245 NAN cm−3 and r0 = 0.1R� in the range
of 0.1 < r/R� < 0.9. Therefore, whether the neutrinos can encounter the
resonance point depends on their energy and mixing parameters (Mikheyev
and Smirnov, 1985; Kuo and Pantaleone, 1989).

Next, we assume tan2 θ ∼ 0.5 and Δm2 ∼ 8 × 10−5 eV2. In this case one
can see that the resonance energy at the solar core is given by

Eres =
Δm2 cos 2θ

2V ≈ 1.75 MeV , (6.49)

where the value of V obtained in Eq. (6.48) has been input. This estimate
implies that matter effects are insignificant for those solar neutrinos with
energies below Eres; in other words, such low-energy neutrinos mainly undergo
vacuum oscillations. The Borexino experiment has measured the flux of 7Be
neutrinos, whose energies are well below the resonance energy Eres. So it
is more appropriate to use νe → νe oscillations in vacuum to interpret the
experimental data of 7Be neutrinos (i.e., the observed neutrino flux is about
0.6 of the expected one, as shown in Fig. 6.6). Given 〈P (νe → νe)〉 = 1 −
0.5 sin2 2θ ≈ 0.6, a straightforward calculation leads us to θ ≈ 32◦, which is
consistent with the values extracted from other solar neutrino oscillation data.
If the energies of solar neutrinos are above Eres, the resonant flavor conversion
may take place at r = rres, where the resonance condition A = Δm2 cos 2θ is
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satisfied. In this case the adiabaticity parameter defined in Eq. (5.30) can be
estimated as follows:

γ ≡ Δm2 sin2 2θ
2E cos 2θ

[
1

ne(r)

∣∣∣∣∣∣∣∣∣∣dne(r)
dr

∣∣∣∣∣∣∣∣∣∣]−1

r=rres

∼
(

2 MeV
E

)
× 105 , (6.50)

where tan2 θ ∼ 0.5 and Δm2 ∼ 8 × 10−5 eV2 have been input. This result
implies that the resonance point is adiabatically crossed. Hence the averaged
survival probability is determined by Eq. (5.32) with the vanishing Laudau-
Zener probability PcPP = 0:

〈P (νe → νe)〉 =
1
2

[1 + cos 2θm(ri) cos 2θ] , (6.51)

where θm(ri) is the effective neutrino mixing angle in matter at the neutrino
production point ri. For 8B neutrinos with energies far above Eres, one has
A � Δm2 cos 2θ and thus θm(ri) ≈ π/2 as indicated by Eq. (5.18). We are
simply left with 〈P (νe → νe)〉 ≈ sin2 θ ∼ 1/3 (for tan2 θ ∼ 0.5), which is just
the observed rate of 8B neutrinos in the SNO experiment.

Now that matter effects depend on both the neutrino energies and fla-
vor mixing parameters, a full determination of the solar neutrino mixing
angle and mass-squared difference requires a global analysis of all the avail-
able experimental data on solar neutrino oscillations (with different energy
thresholds). The earlier data from chlorine, gallium, Kamiokande and SK
experiments indicated four possible regions in the (tan2 θ,Δm2) parameter
space, but only the large-mixing-angle MSW solution was singled out by the
SNO experiment and confirmed by the KamLAND experiment (Eguchi et
al., 2003). In the three-flavor framework it is possible to determine or con-
strain three neutrino mixing angles (θ12, θ13 and θ23) and two mass-squared
differences (Δm2

21 and Δm2
32) from a global analysis of current data on solar,

atmospheric, reactor and accelerator neutrino oscillations (Gonzalez-Garcia
and Maltoni, 2008). A brief summary of the present values of these five pa-
rameters has been given in Tables 3.1 and 3.2.

6.4.3 Constraints on Neutrino Properties

In the early days some interesting ideas other than neutrino oscillations,
such as the spin-flavor oscillation (Voloshin and Vysotskii, 1986; Voloshin et
al., 1986a, 1986b) and neutrino decays (Bahcall et al., 1972; Acker et al.,
1991; Acker and Pakvasa, 1994), were proposed to solve the solar neutrino
problem. Today we believe that the spin-flavor oscillation or neutrino decays
can at most belong to the subleading effects as compared with solar neutrino
oscillations. One may constrain the magnetic dipole moments or lifetimes of
neutrinos by using more accurate solar neutrino oscillation data.
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If neutrinos have finite magnetic dipole moments, their spins may be
flipped in strong magnetic fields. As a consequence, the left-handed neu-
trino νL with negative helicity can be converted into the right-handed neu-
trino νR with positive helicity. The latter does not take part in the standard
weak interactions and thus escapes the experimental detection. Hence it was
proposed that the solar neutrino deficit could be ascribed to the spin pro-
cession effects (Cisneros, 1971; Pulido, 1992). But the conversion rate for
νL → νR in the solar core was highly suppressed by matter effects (Voloshin
and Vysotskii, 1986; Voloshin et al., 1986a, 1986b). It was later realized that
the spin-flavor oscillation ναL → νβν R might be resonantly enhanced in the
Sun if neutrinos had finite transition dipole moments (Akhmedov, 1988; Lim
and Marciano, 1988). If neutrinos are Majorana particles, the solar neutrino
fluxes are likely to contain electron antineutrinos which may result from the
spin-flavor oscillation νe → νμ and the standard oscillation νμ → νe. By
measuring the antineutrino component of a solar neutrino flux via the in-
verse beta reaction νe + p → n + e+, the Kamiokande experiment has set
some restrictive limits on the solar νe flux (Barbieri et al., 1991). More re-
cently, the KamLAND experiment yields Φνe

< 3.7× 102 cm−2 s−1 for solar
electron antineutrinos at the 90% confidence level (Eguchi et al., 2004). In the
case of random magnetic fields inside the Sun, the above constraint on Φνe

can be translated into a limit on the magnetic dipole moment of neutrinos:
μν < a few × 10−12 μB (Miranda et al., 2004).

If neutrinos are unstable, a heavier neutrino may decay into the light-
est one plus a photon or an invisible new particle. In this case the neu-
trino flux with an energy E over a distance L will be diminished by a factor
exp(−t/τlabττ ) = exp[−(L/E)(mi/τiττ )], where mi and τiττ are the mass and life-
time of the neutrino mass eigenstate νi in the rest frame (Beacom and Bell,
2002). Since radiative neutrino decays and their experimental constraints
have been discussed in Chapter 3, here we only consider the νi → νjν + φ
decay with φ being the Majoron (Chikashige et al., 1981; Gelmini and Ron-
cadelli, 1981). Then the relevant mass eigenstate of solar neutrinos is ν2 and
τ2ττ /m2 > 10−4 s eV−1 can be extracted from the experimental data (Beacom
and Bell, 2002; Joshipura et al., 2002; Bandyopadhyay et al., 2003). For in-
visible neutrino decays, the best direct limit is τ1/m1 > 105 s eV−1 obtained
from the Supernova 1987A explosion. The future refinement of the SSM itself
and the precision measurement of solar neutrinos will definitely improve the
constraints on the intrinsic properties of neutrinos.
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7

Neutrinos from Supernovae

The discovery of neutrinos emitted from the Supernova 1987A (SN 1987A)
explosion is an outstanding milestone in both neutrino physics and neutrino
astronomy. On the one hand, this fortunate observation of supernova neutri-
nos provides a strong support for the modern theory of supernova explosions.
On the other hand, it implies that there exists another class of astrophysi-
cal neutrino sources or astrophysical laboratories. A part of this chapter is
to introduce the standard picture of core-collapse supernovae and production
mechanisms of supernova neutrinos. After a brief account of the experimental
detection of the neutrino burst from the SN 1987A, we shall explore its impli-
cations on neutrino masses and neutrino lifetimes. The flavor conversions of
supernova neutrinos, including the effects of collective neutrino oscillations,
will be discussed in detail.

7.1 Stellar Core Collapses and Supernova Neutrinos

The evolution and fate of stars depend crucially on their initial masses. The
reason is simply that the self-gravity of stars should be balanced by the pres-
sure force to maintain hydrostatic equilibrium. For main-sequence stars, ther-
mal nuclear reactions serve as the energy source and offer the desired pressure
force. In this section we shall consider the thermal pressure from degenerate
electrons or neutrons. This is the case for white dwarfs and neutron stars,
which have burnt out nuclear fuels at the final stage of stellar evolution. After
discussing the electron degeneracy pressure, we shall show that the degen-
erate stellar core becomes unstable and collapses when its mass exceeds the
Chandrasekhar limit MCh ∼ 1.4M� (Chandrasekhar, 1931a, 1931b, 1935).
We shall pay particular attention to the core-collapse supernovae which first
experience the collapse and then rebounce, ejecting the stellar mantle and
envelope and leaving neutron stars or black holes at the center. The role
played by neutrinos in the core-collapse supernovae, together with possible
mechanisms of supernova explosions, will also be discussed.

Z.-Z. Xing et al., Neutrinos in Particle Physics, Astronomy and Cosmology
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7.1.1 Degenerate Stars

For a massive star with M � 8M�, nuclear fusion reactions in the core
will continue until the iron-group nuclei (e.g., 56Fe and 56Ni) are abundantly
produced. At this moment the massive star takes on the onion-like structure
with an iron core surrounded by the shells of silicon, sulfur, oxygen, neon,
carbon and helium from inner layers to outer layers. Since iron is the most
tightly bound nucleus, no fusion reactions can take place. So the thermal
pressure from fusion reactions is not available and the core will contract under
its self-gravity. This contraction ceases if the iron core becomes degenerate
and the degeneracy pressure of electrons is high enough to support the weight
of the core. White dwarfs result from the stars that are not sufficiently massive
to ignite carbon and oxygen in the core, and the gravity is balanced by
the pressure from degenerate electrons (Liebert, 1980; Chandrasekhar, 1984;
Koester and Chanmugan, 1990; Hansen and Liebert, 2003).

Now let us consider a degenerate gas of electrons at the temperature of
absolute zero (i.e., T = 0). Due to the Pauli exclusion principle, all the states
with momenta ranging from zero to the Fermi momentum pF are occupied.
Since the density of quantum states in the momentum space is d3p/(2π)3,
the total number of electrons in these states reads

NeN = 2V
∫ pF

0

∫∫
4πpπ 2dpd
(2π)3

=
V p3F
3π2

, (7.1)

where the factor 2 takes account of the spin states and V is the volume of
the system. Hence pF is determined by the number density of electrons ne ≡
NeN /V ; i.e., pF = (3π2ne)1/3. The corresponding Fermi energy εF ≡ p2F/(2me)
for non-relativistic electrons is given by εF = (3π2ne)

2/3/(2me). Multiplying
the integrand in Eq. (7.1) by p2/(2me) and performing the integration over
the momentum, we can obtain the total energy E of this system. The latter
is related to the pressure as follows (Landau and Lifshitz, 1980):

P =
2E
3V

=
(3π2)2/3

5me

n5/3
e . (7.2)

This equation of state is also valid for nonzero temperatures, but the condition
for strong degeneracy T � εF should be satisfied. As the gas of degenerate
electrons is compressed, the density increases, so does the mean energy. In
this case one should consider the relativistic effects if εF becomes much larger
than me. The Fermi energy of relativistic electrons is given as εF = pF =
(3π2ne)

1/3. Multiplying the integrand in Eq. (7.1) by ε = p and integrating
over the momentum, we arrive at (Landau and Lifshitz, 1980)

P =
E

3V
=

(3π)2/3

4
n4/3

e . (7.3)

The system consisting of only degenerate electrons is actually unstable, so the
positively charged nuclei must be present to balance the negative charges of
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electrons. However, the degeneracy pressure from electrons is dominant over
the thermal pressure of the nuclei. The latter is henceforth assumed to have
no impact on the equation of state of the whole system. The number density
of electrons is given by ne = ρ/(μ̃emH), where μ̃e and mH stand respectively
for the mean molecular weight per electron and the atomic mass unit. With
the help of Eqs. (7.2) and (7.3), we may rewrite the equation of state as

P = KiK ργ (for i = 1, 2) , (7.4)

in which K1 = (3π2)2/3/[5me(μ̃emH)5/3] with γ = 5/3 for non-relativistic
electrons, and K2 = (3π2)2/3/[4(μ̃emH)4/3] with γ = 4/3 for extremely rel-
ativistic electrons. One always has μ̃e ≈ 2 for heavy nuclei, and thus the
corresponding K1 and K2 are independent of the density. Note that Eq. (7.4)
is just the equation of state for the polytropic process with the index n de-
fined by γ = 1+1/n. So one may solve Eq. (6.12) for hydrostatic equilibrium
with the help of Eqs. (6.13) and (7.4). The resultant second-order differential
equation for the density is (Prialnik, 2000)

(n+ 1)K
4πGNn

· 1
r2

· d
dr

[
r2

ρ(n−1)/n
· dρ
dr

]
= −ρ , (7.5)

where K = K1 for n = 3/2 and K = K2 for n = 3. The density distribution
ρ(r) for 0 � r � R should fulfill the initial conditions ρ(R) = 0 (with R

being the radius of the star) and
dρ
dr

= 0 at the center. These conditions

follow from the equation of state and the pressure profile with P (R) = 0 and
dP
dr

= 0 at r = 0. After a change of variables ρ = ρcΘ
n and r = αξ, where

α ≡ {(n + 1)K/4πGNρ
(n−1)/n
c }1/2 and ρc is the central density, we obtain

the Lane-Emden equation of index n (Chandrasekhar, 1938; Prialnik, 2000):

1
ξ2

· d
dξ

(
ξ2

dΘ
dξ

)
= −Θn (7.6)

with the corresponding initial conditions Θ = 1 and
dΘ
dξ

= 0 at ξ = 0.

In general, Eq. (7.6) can be numerically solved. It has been found that Θ
decreases monotonically to zero at a finite ξ = ξR for n < 5 (Shapiro and
Teukolsky, 1983). Note that Θ(ξR) = 0 corresponds to ρ = 0 at the surface
of the star. Hence the radius and the mass of the star are given by (Shapiro
and Teukolsky, 1983)

R = αξR = ρ(1−n)/2n
c ξR

[
(n+ 1)K

4πGN

]1/2

, (7.7)

and
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M =
∫ R

0

∫∫
4πr2ρ(r)dr = 4πρ(3−n)/2n

c ξ2R

[
(n+ 1)K

4πGN

]3/2 ∣∣∣∣∣∣∣∣∣∣dΘdξ
∣∣∣∣∣∣∣∣∣∣
ξ=ξR

, (7.8)

where Eq. (7.6) has been used to evaluate the integration. Eliminating ρc in
Eqs. (7.7) and (7.8), we get an interesting mass-radius relation

M ∝ R(3−n)/(1−n) , (7.9)

implying that M ∝ R−3 for n = 3/2. More interestingly, the mass M is
independent of R and ρc for n = 3. In this case a mass limit must exist
as ρc → ∞ and R → 0. Substituting n = 3, K = K2, ξR ≈ 6.897 and∣∣∣∣∣∣∣∣∣∣dΘdξ
∣∣∣∣∣∣∣∣∣∣
ξ=ξR

= 0.0424 into Eq. (7.8), one gets the Chandrasekhar mass limit

MCh ≈ 5.7μ̃−2
e M� ≈ 1.4M� for μ̃e = 2 (Chandrasekhar, 1931a, 1931b,

1935). The existence of such a mass limit can be understood in an intuitive
way, which was first presented by Lev Landau (Landau, 1932; Shapiro and
Teukolsky, 1983). For a star with the total baryon number NbNN , its gravita-
tional potential energy is given by Eg ∝ −GNNbNN R−1. On the other hand,

the Fermi energy of relativistic degenerate electrons is EF ∝ N
1/3
bNN R−1. If NbNN

is very large (i.e., the star is very massive), the total energy E = Eg + EF

can be negative and thus decrease without bound as the radius R decreases.
As a result, a limit of NbNN or M = NbNN mp exists for E = 0 (i.e., the balance
between the gravity and the degeneracy pressure of electrons).

7.1.2 Core-collapse Supernovae

Supernovae are exploding stars that emit a large amount of thermal energy in
a relatively short time (e.g., from one year to several days) and overshine all
the other stars in the host galaxies. They are in general classified as type-I and
type-II supernovae, which can be further divided into subclasses (e.g., type-Ia,
b, c) according to the existence of hydrogen, helium or silicon spectral lines
(Bethe, 1990). Although the explosion mechanism for type-Ia supernovae
remains an open question, it is commonly assumed that the energy from
nuclear fusion reactions accounts for the explosion. In this case neutrinos
are not as important as in the core-collapse type-Ib, type-Ic and type-II
supernovae, where the explosion is powered by the gravitational potential
energy and nearly all the energy is released in the form of neutrinos. We shall
concentrate on type-II supernovae in the following.

As mentioned before, a massive star (M � 8 M�) will develop a degener-
ate iron core at the final stage of its evolution. Moreover, the silicon-burning
shell will continuously contribute mass to the core and eventually lead to an
excess over the Chandrasekhar mass limit and thus the gravitational collapse.
Two other microscopic processes at this moment make the situation worse.
As the iron core contracts, the temperature will slightly increase. Hence the
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photodissociation of heavy nuclei (e.g., γ+ 56Fe → 13 4He+4 n− 124 MeV)
becomes more efficient. This endothermic reaction consumes thermal ener-
gies and thus reduces the thermal pressure. On the other hand, the de-
generate electrons will be captured by heavy nuclei or free nucleons via
e− +A(Z,N) → A(Z− 1, N +1)+ νe. Since neutrinos are weakly interacting
with matter, they will escape from the core immediately after production and
take away enormous thermal energies. Furthermore, the number of electrons
has been diminished such that the degeneracy pressure is accordingly re-
duced. Both the photodissociation of nuclei and the electron-capture process
can further reduce the thermal pressure and aggravate the collapse (Bethe,
1990; Janka, et al., 2007).

The collapse is obviously determined by the gravity and hydrodynamics.
Interestingly, it has been discovered that the inner part of the iron core col-
lapses in a homologous way; i.e., the distribution of temperature and density
is similar and only scales with respect to time (Goldreich and Weber, 1980).
For the inner core, the velocity of infalling matter is proportional to the ra-
dius but smaller than the velocity of sound, while the outer core falls inward
supersonically (Yahil and Lattimer, 1982; Yahil, 1983). The critical (or sonic)
point can be taken as the position where the infall velocity equals the sound
velocity. Thus the inner core is in good contact with itself, whereas the outer
one is not. As the core collapses, the matter density in the center reaches
and exceeds the nuclear density ρ0 ∼ 3× 1014 g cm−3. The nuclear matter is
less compressible and the pressure builds up gradually, so the gravitational
collapse of the inner core will be hindered. However, the freely-falling outer
part cannot immediately feel the pressure, so the matter still falls inward. If
the infall velocity ultimately goes to zero, the pressure wave will become a
shock at the large radius just beyond the sonic point (Cooperstein and Baron,
1990; Bethe, 1990). It is expected that such a shock wave will traverse the
whole star and be able to expel the mantle and envelope, giving rise to a
supernova (Colgate and Johnson, 1960). Meanwhile, a neutron star or black
hole remains at the center. But most of the detailed numerical simulations
have not confirmed this prompt-shock explosion picture. When the shock
wave propagates outward, it will disassociate heavy nuclei into nucleons at
the energy expense of 9 MeV per nucleon. It turns out that the shock wave
stalls typically at a radius about 400 km. Whether the prompt shock can
succeed or not depends sensitively on the pre-supernova evolution, such as
the equation of state and the mass of the core (Baron et al., 1985a, 1985b).
Usually the prompt shock will fail if the mass of the iron core is greater than
1.25M� (Arnett, 1983; Hillebrandt, 1982a, 1982b, 1984; Cooperstein et al.,
1984; Baron and Cooperstein, 1990).

Because of the failure of the prompt-shock model, the neutrino transport
model was proposed (Colgate and White, 1966) and the delayed-shock model
was developed (Bowers and Wilson, 1982a, 1982b; Wilson, 1985; Bethe and
Wilson, 1985). Neutrinos play a crucial role in this mechanism. When the
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matter density of the inner core increases to about 1012 g cm−3, electron
neutrinos (with energies around 10 MeV) resulting from the electron-capture
processes will be trapped due to coherent scattering of neutrinos on heavy
nuclei via the neutral-current interactions. The trapped electron neutrinos
form a degenerate Fermi sea through the beta equilibrium reaction e− + p↔
n+ νe. Hence the gravitational potential energy during the collapse has been
converted into the chemical potentials of electrons and neutrinos. Neutrinos
diffuse out of the core and heat the materials in the region below the stalled
shock, and ultimately revive the shock and lead to a successful explosion
(Colgate and White, 1966; Bethe and Wilson, 1985). A simulation including
the neutrino transport actually demonstrates that a proper fraction of the
neutrino energy could successfully revive the stalled shock (Janka and Müller,
1993). However, it is still unclear how neutrinos deposit the right amount of
energies and whether the convection and rotation effects are inevitable for a
successful explosion (Janka et al., 2007).

7.1.3 Supernova Neutrinos

As pointed out by George Gamow and Mario Schoenberg, neutrinos may
play a crucial role in a collapsing star (Gamow and Schoenberg, 1940, 1941).
In the supernova context neutrinos can be trapped in the core via coherent
neutrino-nucleon scattering (Freedman, 1974; Mazurek, 1975; Sato, 1975).
The interactions of neutrinos with the background nucleons and electrons
have been systematically studied (Tubbs and Schramm, 1975; Lamb and
Pethick, 1976; Bethe et al., 1979). The mean free path of neutrinos for elastic
scattering is given by (Bethe et al., 1979)

λν = 1.0 × 108 cm
(

ρ

1012 g cm−3

)(
MeV
Eν

)2 [(
N2

6A

)
Xh +Xn

]−1

, (7.10)

where ρ is the matter density, Eν denotes the neutrino energy, Xh and Xn

represent the mass fractions of heavy nuclei and nucleons, N and A are the
numbers of neutrons and nucleons in an average nucleus. We have taken
sin2 θw = 1/4 in obtaining Eq. (7.10). The contribution from neutral-current
interactions of neutrinos with protons, which is proportional to (1−4 sin2 θw),
is therefore vanishing. TakingXh ≈ 1 and Xn ≈ 0 during the infall phase, one
obtains λν ≈ 2 km for Eν = 10 MeV, ρ = 1012 g cm−3, N ≈ 50 and N/A =
0.6 (Bethe, 1990). The radius of the core corresponding to ρ = 1012 g cm−3

is about R = 30 km, and hence neutrinos are essentially trapped in the core
and can only get out of it by diffusion (Cooperstein, 1988a, 1988b).

After being trapped, the electron neutrinos come into chemical equilib-
rium with the degenerate electrons and nucleons through the beta process
e− + p ↔ νe + n. Therefore, a degenerate Fermi sea of neutrinos builds up,
and the corresponding chemical potential is determined by μνe

= μe− μ̂ with
μ̂ ≡ μn − μp ≈ 100 MeV. The chemical potential of degenerate electrons
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Fig. 7.1 Luminosities of neutrinos να and antineutrinos να (for α = e, μ, τ) versus
the time after the core bounce. Four stages of the delayed-explosion scenario are
shown (Raffelt, 1996. With permission from the University of Chicago Press): (1)
the collapse and bounce; (2) the shock propagation and prompt neutrino burst;
(3) the matter accretion and mantle cooling while the shock stalls; (4) the Kelvin-
Helmholtz cooling of the neutron star after explosion

is μe ≈ 111 MeV(ρ13YeYY )1/3, where ρ13 denotes the matter density in units
of 1013 g cm−3 and YeYY is the number fraction of electrons. For the nuclear
density ρ0 = 3 × 1014 g cm−3 and a typical electron fraction YeYY = 0.4, we
have μe ≈ 250 MeV and μνe

≈ 150 MeV (Bethe, 1990). Hence the gravi-
tational potential energy released during the collapse has been largely con-
verted into the chemical potentials of degenerate electrons and neutrinos.
Shortly after the bounce, the shock wave disassociates the infalling heavy
nuclei into free nucleons, on which the electron-capture rate is much larger.
On the other hand, the matter density in the region just below the shock
wave has been dramatically reduced, allowing the electron neutrinos to freely
escape. This is the so-called prompt neutronization or deleptonization burst
of neutrinos. The electron capture and the neutrino burst lead to a moderate
reduction of the lepton number in the iron core. As a consequence, the neutri-
nos of all flavors can now be produced via the electron-positron annihilation
e+ + e− → να + να, the plasmon decays γ∗ → να + να and the nucleonic
bremsstrahlung N+N → N+N+να +να (Suzuki, 1991, 1993). For illustra-
tion, the neutrino luminosity from the standard delayed-explosion scenario is
shown in Fig. 7.1, where one can see the highly-peaked neutrino burst and
the approximate equilibration of neutrino luminosities at later times. Note
that the neutrino luminosities are dependent on the time.

Similar to electron neutrinos, muon and tau neutrinos are also trapped
and keep in local thermal equilibrium with electrons and nucleons. They dif-
fuse outward to their respective neutrino spheres, from which they may freely
escape. Hence the energy spectra of neutrinos can be well described by the
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Fermi-Dirac distribution functions with temperatures at the neutrino spheres.
Since muon and tau neutrinos only undergo the neutral-current interactions,
the corresponding neutrino spheres are located much deeper in the core than
that of electron neutrinos. So one obtains the inequality of neutrino average
energies 〈Eνe

〉 < 〈Eνx
〉 (for νx = νμ, νμ, ντ , ντ ). It is worth mentioning that

the interaction rate of electron antineutrinos (νe + p → e+ + n) is smaller
than that of electron neutrinos (νe +n→ e− +p) because of the neutron-rich
core. Therefore, the average energy of νe should be larger than that of νe but
smaller than that of other kinds of neutrinos; i.e., 〈Eνe

〉 < 〈Eνe
〉 < 〈Eνx

〉.
Their typical values are obtained from a numerical simulation (Raffelt, 1996):

〈Eν〉 =

⎧⎨⎧⎧⎩⎨⎨10 ∼ 12 MeV νe ,
14 ∼ 18 MeV νe ,
18 ∼ 24 MeV νx ,

(7.11)

where νx denotes νμ,τ and νμ,τ . Fig. 7.1 shows that the luminosities of three
different neutrino flavors are approximately equilibrated, so the neutrino
number fluxes should satisfy FνFF e

> FνFF e
> FνFF x

, where 〈Eνe
〉 < 〈Eνe

〉 < 〈Eνx
〉

has been taken into account. The detailed flavor-dependent fluxes and energy
spectra can only be achieved by doing specific numerical simulations (Raffelt,
2001; Keil et al., 2003).

To estimate the total neutrino energy, we calculate the gravitational en-
ergy released from the collapse of an iron core with mass Mc ∼ 1.4M� and
radius Rc ∼ 103 km into the neutron star with the same mass but a much
smaller radius RNS ∼ 10 km. The gravitational binding energy of the neutron
star turns out to be (Raffelt, 1996)

Eb =
3GNM2

c

5RNS

≈ 3 × 1053

( Mc

1.4 M�

)2 (10 km
RNS

)
erg . (7.12)

Assuming the energy equilibration among all kinds of neutrinos, we can then
obtain the total neutrino energy Eν = Eb/6 ≈ 5× 1052 erg for each neutrino
or antineutrino species.

7.2 Lessons from the Supernova 1987A

On 24 February 1987, Ian Shelton and Oscar Duhalde at the Las Campanas
Observatory in Chile saw a new star in the Large Magellanic Cloud (Shel-
ton et al., 1987). They actually discovered the first supernova since 1604,
and it was visible even by the naked eye. This observation was confirmed by
some other astronomers at slightly later times. More importantly, the neutri-
nos emitted from the SN 1987A were detected. In this section we shall first
summarize the experimental detection of supernova neutrinos and show that
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the observations are essentially compatible with theoretical predictions. Then
the lessons that we have learnt from the SN 1987A observations, in particular
some constraints on the intrinsic properties of neutrinos, will be discussed.
We shall briefly comment on the relic neutrinos from old supernovae (i.e., the
diffuse supernova neutrino background) and the future experiments aiming
to observe supernova neutrinos.

7.2.1 Discoveries of the Neutrino Burst

Neutrinos emitted from the SN 1987A explosion were independently discov-
ered by two laboratories, Kamiokande-II in Japan (Hirata et al., 1987, 1988)
and Irvine-Michigan-Brookhaven (IMB) in Ohio, USA (Bionta et al., 1987;
Bratton et al., 1988). The Kamiokande experiment was intended to detect
proton decays, and it was upgraded in 1985 to Kamiokande-II so as to ob-
serve solar 8B neutrinos. The IMB experiment was originally designed to
detect proton decays, too. Both of them utilized water Cherenkov detec-
tors. As discussed above, neutrinos of all flavors are emitted from a super-
nova explosion. The dominant signals come from the charged-current process
νe +p→ n+e+ of electron antineutrinos. In comparison, the charged-current
process νe + 16O → e− + 16F of electron neutrinos and the elastic neutrino-
electron scattering να + e− → να + e− contribute at a subdominant level.

The Kamiokande-II detector’s energy threshold for νe is about 8 MeV.
It recorded the first supernova neutrino event at 7 : 35 : 35 UT (Universal
Time) on 23 February 1987. In total 12 neutrino events were observed, and
the signals lasted about 12 seconds. The probability for these events to be
caused by statistical fluctuations or cosmic muon backgrounds was found to
be extremely small (Hirata et al., 1987). The output of νe with an average
energy around 15 MeV is 8 × 1052 erg, well consistent with the theoretical
prediction Eν = Eb/6 ≈ 5 × 1052 erg. The neutrino signals were first regis-
tered by the IMB detector at 7 : 35 : 41.37 UT on the same day, and they
lasted about 6 seconds. With a high energy threshold of 20 MeV, the IMB
experiment totally recorded 8 neutrino events (Bionta et al., 1987).

The registration time and energies of supernova neutrino events in the
Kamiokande-II and IMB experiments are summarized in Tables 7.1 and 7.2.
They are compatible with the standard delayed-explosion scenario. First,
the duration of neutrino signals was measured to be several seconds, just
as expected for the neutrino-cooling time of neutron stars. Second, the total
energy taken away by neutrinos from the supernova is essentially equal to the
gravitational binding energy given in Eq. (7.12). So 99% of the gravitational
binding energy stores in the form of neutrinos, 1% is used for the explosion,
and only 0.01% is emitted in the form of photons.

Table 7.1 shows that there were 9 neutrino events within 2 seconds, but
the last 3 events arrived about 7 seconds later. However, the IMB detec-
tor recorded two neutrino events during this time interval. This discrepancy
seems to be a statistical accident, which was observed with an appreciable
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Table 7.1 The measured properties of twelve neutrino events in the Kamiokande-
II experiment (Hirata et al., 1987. With permission from the American Physical
Society). Note that the energy and angular distributions refer to the recoil electrons
or positrons. The registration time for the first supernova neutrino event is 7 : 35 :
35 UT

Event number Time (seconds) Energy (MeV) Angle (degrees)
1 0 20.0 ± 2.9 18 ± 18
2 0.107 13.5 ± 3.2 15 ± 27
3 0.303 7.5 ± 2.0 108 ± 32
4 0.324 9.2 ± 2.7 70 ± 30
5 0.507 12.8 ± 2.9 135 ± 23
6 0.686 6.3 ± 1.7 68 ± 77
7 1.541 35.4 ± 8.0 32 ± 16
8 1.728 21.0 ± 4.2 30 ± 18
9 1.915 19.8 ± 3.2 38 ± 22
10 9.219 8.6 ± 2.7 122 ± 30
11 10.433 13.0 ± 2.6 49 ± 26
12 12.439 8.9 ± 1.9 91 ± 39

Table 7.2 The measured properties of eight neutrino events in the IMB experiment
(Bionta et al., 1987. With permission from the American Physical Society). Note
that the registration time of neutrino events is given in the Universal Time (UT),
the uncertainties of the energy and angular distributions are ±15% and ±15◦,
respectively

Event number Time (UT) Energy (MeV) Angle (degrees)
1 7 : 35 : 41.37 38 74
2 7 : 35 : 41.79 37 52
3 7 : 35 : 42.02 40 56
4 7 : 35 : 42.52 35 63
5 7 : 35 : 42.94 29 40
6 7 : 35 : 44.06 37 52
7 7 : 35 : 46.38 20 39
8 7 : 35 : 46.96 24 102

frequency in numerical simulations (Bahcall et al., 1988). Two other experi-
ments, Baksan (Alexeyev et al., 1988) and Mont Blanc (Aglietta et al., 1987),
reported the supernova neutrino signals too. The Baksan scintillation tele-
scope in the North Caucasus observed 5 neutrino events within 9.1 seconds at
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7 : 36 : 11.8 UT on 23 February 1987, but it recorded the first event 25 seconds
later than the IMB detector did. The Baksan Collaboration later found that
the registration time of the first neutrino event should be 7 : 36 : 11.8+2

−54 UT,
essentially compatible with that reported by the Kamiokande-II and IMB ex-
periments (Suzuki, 2008). The Mont Blanc Neutrino Observatory reported
the neutrino burst of 5 pulses at 2 : 52 : 36 UT on 23 February 1987, about
4.5 hours earlier than the Kamiokande-II detector did. This result has been
controversial, and it should have nothing to do with the SN 1987A (de Rujula,
1987; Arnett et al., 1989).

Because of the poor statistics (i.e., totally 20 events obtained from the
Kamiokande-II and IMB experiments), it is impossible to determine the en-
ergy spectra of supernova neutrinos. Future high-statistics observations of the
neutrino burst from a galactic supernova will definitely help us understand
the explosion mechanism and probe the intrinsic properties of neutrinos.

7.2.2 Constraints on Neutrino Properties

A measurement of the neutrino burst from the SN 1987A provides a strong
support for the standard picture of core-collapse supernovae. One may extract
useful information on the intrinsic properties of massive neutrinos, such as
their lifetimes, masses and magnetic moments (Bethe, 1990).

(1) Neutrino lifetimes. The SN 1987A is situated in the Large Magellanic
Cloud, whose distance from the Earth is D = 50±5 kpc = (160±16)×103 ly
(Andreani et al., 1987). If the number of supernova neutrinos or antineutrinos
is assumed not to be significantly reduced by neutrino decays, the laboratory
neutrino lifetime τ should be much longer than the propagation time (i.e.,
τ > D/c ≈ 5× 1012 s). Note that relativistic neutrinos with Eν � mν travel
almost at the speed of light. This is always the case for supernova neutrinos
with an average energy Eν ∼ 10 MeV. More accurately, the neutrino velocity
vν is given by βν ≡ vν/c ≈ 1 −m2

ν/(2E
2
ν). Hence the neutrino lifetime τ0ττ in

the rest frame should satisfy

τ0ττ = τ
√

1 − β2
ν > 5 × 105 s

( mν

1 eV

)(10 MeV
Eν

)
, (7.13)

which essentially rules out neutrino decays as a possible solution to the solar
neutrino problem (Bethe, 1990).

(2) Neutrino masses. Now that neutrinos are massive, their arrival times
must be different from the arrival time of massless neutrinos. For a distance
of 50 kpc, the time delay Δt of a massive neutrino is determined by

Δt =
D

c
− D

vν

≈ 2.5 s
( mν

10 eV

)2 (10 MeV
Eν

)2

. (7.14)

To constrain mν , one may argue that Δt should not exceed the duration of
neutrino signals observed in the Kamiokande-II and IMB experiments. Taking
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Δt < 10 s for Eν = 10 MeV, for example, we obtain mν < 20 eV. However,
the emission of supernova neutrinos is distributed in time. A more reasonable
statistical treatment yields mν < 16 eV (Spergel and Bahcall, 1988).

(3) Neutrino magnetic moments. The existence of magnetic moments may
induce the spin flip of neutrinos in the supernova via some scattering pro-
cesses (e.g., the neutrino-electron scattering). After the spin flip, the left-
handed neutrinos νL are converted into the right-handed ones νR, which have
no standard weak interactions with matter and can freely escape from the
supernova. The rapid energy loss caused by right-handed neutrinos would
significantly reduce the duration of neutrino signals and thus contradict the
relevant experimental results. Along this line, the neutrino magnetic moment
μν can be strictly constrained as μν < 10−12 μB with μB being the Bohr mag-
neton (Raffelt and Seckel, 1988; Lattimer and Cooperstein, 1988; Barbieri and
Mohapatra, 1988). It is worth mentioning that this energy-loss argument has
been widely used to constrain the properties of weakly-interacting particles,
such as sterile neutrinos and axions (Raffelt, 1990, 1996).

In addition, the observed neutrino burst from the SN 1987A can also
shed light on the neutrino mass spectrum and the flavor mixing pattern.
This aspect will be discussed in Section 7.3 and Section 7.4.

7.2.3 The Diffuse Supernova Neutrino Background

A very important lesson learnt from the SN 1987A is that the core-collapse
supernovae emit neutrinos. The flux of neutrinos and antineutrinos emitted
from all the core-collapse supernovae in the causally-reachable Universe is
called the diffuse supernova neutrino background (DSNB). The DSNB pro-
vides us with an isotropic and time-independent source of supernova neutri-
nos. A measurement of the DSNB will be complementary to that of a galactic
supernova neutrino burst (Ando and Sato, 2004; Beacom, 2010; Lunardini,
2010). The flavor-dependent flux of the DSNB at the Earth is determined by
the neutrino emission from a single supernova explosion, the cosmic super-
nova rate and neutrino oscillations. Given RSN(z) as the supernova rate per
comoving volume at the redshift z, one may write down the number density
of supernova neutrinos (e.g., νe) in the energy interval [Eν , Eν +dEν ] (Ando
and Sato, 2004):

dnν(Eν) =
[
RSN(z)(1 + z)3

] dt
dz

dz
[
dNνNN (E′

ν)
dE′

ν

dE′
ν

]
(1 + z)−3 , (7.15)

where E′
ν = (1 + z)Eν is the neutrino energy at the redshift z, which is

now measured as Eν . The factors (1 + z)±3 in Eq. (7.15) take account of the

expansion of the Universe, and
dNνNN (Eν)

dEν

stands for the number spectrum

of neutrinos from one supernova explosion. Assuming the standard ΛCDM
model with k = 0 and neglecting the tiny contribution from Ωr, we have 1

1See Section 9.1.3 for a detailed discussion.
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dz
dt

= −H0HH (1 + z)
√
Ωm(1 + z)3 +Ωv , (7.16)

where H0HH is today’s Hubble constant, Ωm ≈ 0.26 and Ωv ≈ 0.74 measure the
dominant energy budget of today’s Universe. A combination of Eqs. (7.15)
and (7.16) yields the differential number flux of the DSNB:

dφ
dEν

≡ c
dnν

dEν

=
c

H0HH

∫ zmax

0

∫∫
RSN(z)

dNνNN (E′
ν)

dE′
ν

· dz√
Ωm(1 + z)3 +Ωv

, (7.17)

where zmax = 5 denotes the time when the gravitational collapse took place
(Ando and Sato, 2004). The theoretical predictions for the DSNB flux are
complicated by the supernova rate densityRSN(z), which is determined by the
star formation rateRSF(z) and the distribution of stellar masses ψ(M). Given

the conventional Salpeter function ψ(M) =
dn
dM ∝ M−2.35 for 0.1M� �

M � 100M�, one finds (Beacom, 2010)

RSN(z) = RSF(z)

∫ 50

8

∫∫
ψ(M)dM∫ 100

0

∫∫
.1

Mψ(M)dM

 RSF(z)

142M�
, (7.18)

where M is given in units of M�. In Eq. (7.18) we have assumed that
the stars with masses between 8M� and 50M� may give rise to the core-
collapse supernovae. The model predictions are consistent with the obser-
vational data of the star formation rate, yielding RSF(0) = (0.5 ∼ 2.9) ×
10−2 M� year−1 Mpc−3 (Baldry and Glazebrook, 2003). The rate increases
for higher redshifts and the results are quite robust for 0 < z � 2, a region
which is most relevant to the DSNB. Finally, we have to know the number
spectrum of neutrinos from a typical supernova explosion. Since neither the
initial neutrino spectra nor the neutrino mixing effects are well understood,
it is convenient to take the effective Fermi-Dirac form

dNνNN

dEν

= Etot
ν

120
7π4

· E
2
ν

T 4
· 1
eEν/T + 1

, (7.19)

where Etot
ν denotes the total neutrino energy, and T = 〈Eν〉/3.15 is the

temperature at the neutrino sphere. Both Etot
ν and 〈Eν〉 can be determined

from the SN 1987A observations.
Several events of the DSNB per year are expected in the Super-Kamiokande

(SK) experiment. However, such events must have been hidden by the de-
tector backgrounds, which can be substantially reduced by adding gadolin-
ium to detect neutrons (Beacom, 2010). The SK experiment has set a limit
φ(Eν > 19.3 MeV) � 1.2 cm−2 s−1 at the 99% confidence level (Malek et
al., 2003). Fig. 7.2 shows the predicted DSNB signal at the SK detector with
a mass of 22.5 kton, together with the backgrounds from reactor and atmo-
spheric neutrinos (Beacom and Vagins, 2004). It is obvious that the discovery
prospects for the DSNB are excellent in the future.



262 7 Neutrinos from Supernovae

0 5 10 15 20 25 30 35 40
Measured Ee  [MeV]

10-2

10-1

100

101

102

103

dN
/d

E e
 [(

22
.5

 k
to

n)
 y

r M
eV

]-1

Reactor νe

Supernova νe    (DSNB)

νμ νe

Atmospheric

GADZOOKS!

Fig. 7.2 The predicted energy spectrum of the DSNB at the SK experiment,
where the backgrounds from reactor and atmospheric neutrinos have also been
shown (Beacom and Vagins, 2004. With permission from the American Physical
Society)

7.2.4 Future Supernova Neutrino Experiments

We have got only one lucky chance to observe the neutrino burst from the
supuernova explosion (i.e., the SN 1987A). A high-statistics neutrino signal
from nearby galaxies will shed light both on the mechanism of supernova
explosions and on the intrinsic properties of neutrinos. Based on the mea-
surements of supernova neutrino bursts, the observations of the DSNB will
help us understand the cosmic supernova rate and variations of the neutrino
emission from one supernova to another. Let us briefly summarize a few ex-
perimental methods which have been or will be used to observe supernova
neutrinos (Scholberg, 2007).

(1) Inverse beta decays. The inverse beta decay νe + p → e+ + n is cur-
rently the most promising process to detect supernova neutrinos. The reason
is simply that its decay rate is typically two orders of magnitude larger than
other interaction rates in any detectors with a large amount of protons. In a
water Cherenkov detector (e.g., SK and IceCube), the Cherenkov light of the
final-state positron is measured. Since the IceCube detector is intended to
detect high-energy or ultrahigh-energy neutrinos, it is unable to record the
MeV supernova neutrinos on an event-by-event basis. Such low-energy neu-
trino events can be identified with a coincident increase in single count rates
from many phototubes (Halzen et al., 1994; Ahrens et al., 2002). To reduce
the backgrounds in the SK experiment, it has been suggested to spike the
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water with gadolinium trichloride so as to enhance the neutron capture rate
(Beacom and Vagins, 2004). The inverse beta decay of supernova neutrinos
can also be observed in a scintillation detector, such as the Baksan, LVD,
KamLAND, Borexino and MiniBooNE detectors.

(2) Charged-current interactions on nuclei. The electron neutrinos from
core-collapse supernovae (e.g., the prompt νe burst) are crucial for probing
the dynamics of supernova explosions. They can be detected via the charged-
current reactions νe + A(Z,N) → A(Z + 1, N − 1) + e−, although their
cross sections are usually small. For example, νe + 16O → 16F + e− for
a water Cherenkov detector; νe + D → p + p + e− for heavy water; and
νe + 12C → 12N + e− for a scintillation detector. The proposed liquid-argon
detectors, such as ICARUS (Hargrove et al., 1996) and LANNDD (Bueno et
al., 2003), will make use of the reaction νe + 40Ar → 40K∗ + e− and observe
the photons from the deexcitation of 40K∗. Such experiments are expected to
be exclusively sensitive to supernova electron neutrinos.

(3) Elastic scattering and neutral-current interactions. In the standard
picture of core-collapse supernovae, neutrinos of all three flavors are emitted.
Flavor conversions of supernova neutrinos further guarantee the presence of
muon and tau neutrinos. The measurements of different neutrino fluxes can
therefore provide a strong support for the supernova theory and independent
evidence for neutrino oscillations. The elastic scattering να+e− → να+e− (for
α = e, μ, τ) in a water Cherenkov detector is less important than the inverse
beta decay of νe, but it can measure the direction of incident neutrinos which
points back to the location of the supernova. For a neutral-current reaction
νx +A→ νx +A∗ (for x = μ, τ), it is possible to tag the ejected nucleons or
deexcitation photons from the excited nucleus A∗. Interestingly, the detectors
intended to detect dark matter or solar neutrinos may also be sensitive to
supernova neutrinos via the coherent neutrino-nucleus scattering.

Some current and future experiments sensitive to supernova neutrinos are
listed in Table 7.3, where the neutrino events for a supernova explosion at a
distance of 8.5 kpc are roughly estimated (Scholberg, 2010). It is worth men-
tioning that gravitational waves should be produced from the core collapses.
So an analysis of the correlation between gravitational waves and neutrino
signals would be very interesting and helpful in the study of supernova physics
(Pagliaroli et al., 2009; Halzen and Raffelt, 2009).

7.3 Matter Effects on Supernova Neutrinos

The neutrino spectra of three different flavors at the neutrino spheres can be
approximately described by the Fermi-Dirac distributions with different effec-
tive temperatures. When neutrinos freely stream from the neutrino spheres to
the supernova surface, however, the oscillation effects may change the spectra.
In this section we shall discuss the ordinary matter effects on supernova neu-
trino oscillations, in particular the Mikheyev-Smirnov-Wolfenstein (MSW)
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Table 7.3 A summary of current and proposed detectors with sensitivities to super-
nova neutrinos, where the number of events is estimated for a supernova explosion
at a distance of 8.5 kpc (Scholberg, 2010. With permission from the Institute of
Physics)

Detector Type Mass (kton) Location No. of Events Status
Baksan CnH2n 0.33 Caucasus 50 Running
Super-K H2O 32 Japan 8000 Running

LVD CnH2n 1 Italy 300 Running
KamLAND CnH2n 1 Japan 300 Running
MiniBooNE CnH2n 0.7 USA 200 Running
Borexino CnH2n 0.3 Italy 100 Running
IceCube Long string 0.4/PMT South Pole N/A Running
SNO+ CnH2n 0.8 Canada 300 Near Future
HALO Pb 0.07 Canada 80 Near Future

ICARUS Ar 0.6 Italy 230 Near Future
NOνA CnH2n 15 USA 3000 Near Future

LBNE LAr Liquid Argon 5 USA 1900 Future
LBNE WC H2O 300 USA 78,000 Future
MEMPHYS H2O 440 Europe 120,000 Future

Hyper-K H2O 500 Japan 130,000 Future
LENA CnH2n 50 Europe 15,000 Future

GLACIER Ar 100 Europe 38,000 Future

resonant conversions (Wolfenstein, 1978, 1979; Mikheyev and Smirnov, 1985).
The resonances associated with high (|Δm2

31| ≈ 2.4 × 10−3 eV2) and low
(Δm2

21 ≈ 8.0 × 10−5 eV2) neutrino mass-squared differences can take place
in the mantle and envelope of a supernova. Accordingly, the initial flavor
distribution at the neutrino sphere will be significantly modified, leading to
some observable effects. In addition to the resonant conversions inside the
supernova, the matter effects inside the Earth may further reprocess the neu-
trino spectra. A measurement of the neutrino burst from a future galactic
supernova explosion could help pin down the smallest neutrino mixing angle
θ13 and the neutrino mass hierarchy (Dutta et al., 2000; Dighe and Smirnov,
2000). On the other hand, the neutrinos just above the neutrino sphere are
so dense that the coherent neutrino-neutrino scattering may dominate over
the neutrino interactions with ordinary matter. In this case the collective
neutrino flavor conversions can happen, and they may have already changed
the neutrino spectra before the ordinary matter effects do their work. This
intriguing phenomenon will be discussed in detail in Section 7.4.
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7.3.1 Neutrino Fluxes and Energy Spectra

Before discussing neutrino oscillations and matter effects, one should know
neutrino fluxes and energy spectra of different flavors. Note that the neutrino
sphere is defined for a specific energy, and neutrinos with different energies
are actually emitted from different neutrino spheres. More accurately, the
cross section of the neutrino-nucleon scattering becomes larger for neutrinos
with higher energies, so does the radius of the neutrino sphere. Since the
temperature decreases with the increasing radius in a supernova, the neutri-
nos with higher energies have lower temperatures. This observation implies
that the energy spectrum must get pinched at the high energy end. The orig-
inal neutrino flux from the supernova core can be effectively described by a
pinched Fermi-Dirac spectrum (Raffelt, 1996):

F 0
νFF α

(Eνα
, TνTT α

, ηνα
, Lνα

, d) =
Lνα

4πd2
· 1
T 4

νTT α
F3FF (ηνα

)
·

E2
να

e(Eνα
/TνTT

α
−ηνα

) + 1
, (7.20)

where Eνα
is the energy of να, TνTT α

denotes the effective temperature at the
neutrino sphere, ηνα

is the pinching parameter, Lνα
stands for the neutrino lu-

minosity, and d represents the distance to the supernova. Note that F3FF (ηνα
) ≡∫∞

0

∫∫
x3[ex−ηνα +1]−1dx is a Fermi-Dirac integral, and F3FF (0) = 7π4/120 holds.

We stress that ηνα
should not be identified with μνα

/TνTT α
in the thermal

Fermi-Dirac distribution, where μνα
is the chemical potential. Hence the re-

lation ηνα
= −ηνα

does not hold for neutrinos να and antineutrinos να. In
other words, the distribution in Eq. (7.20) is not thermal.

Numerical simulations of the neutrino transport in the supernova core
indicate that the average neutrino energies satisfy 〈Eνe

〉 = (14 ∼ 22) MeV,
〈Eνe

〉 = (0.5 ∼ 0.8)〈Eνe
〉 and 〈Eνx

〉 = (1.1 ∼ 1.6)〈Eνe
〉, where νx denotes

the non-electron flavors νμ, νμ, ντ and ντ (Keil et al., 2003). Moreover, one
obtains 0 � ηνe

� 3, 0 � ηνe
� 3 and 0 � ηνx

� 2, implying that electron
neutrinos and electron antineutrinos might have stronger pinching effects.
Given a value of ηνα

, the effective temperature TνTT α
for each neutrino flavor

can be determined by 〈Eνα
〉. The time-integrated neutrino luminosity Lνα

is
typically (1 ∼ 5) × 1052 erg, and d ∼ 10 kpc holds for a galactic supernova.
The luminosities of different neutrino flavors are expected to be equal within
a factor of two or so (Keil et al., 2003).

Note that the neutrino luminosities, temperatures and pinching parame-
ters should be time-dependent as the supernova evolves. Hence the integrated
neutrino fluxes may differ from that given by Eq. (7.20). The time-dependent
effects (e.g., the propagation of the shock wave) can be imprinted in the final
neutrino fluxes and thus observable in experiments (Fogli et al., 2005).

7.3.2 Matter Effects in the Supernova

It is well known that neutrino oscillations with the MSW matter effects
can perfectly solve the solar neutrino problem. An immediate question is
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whether matter effects play an important role in the flavor conversions of su-
pernova neutrinos. Given two independent neutrino mass-squared differences
|Δm2

31| ≈ 2.4× 10−3 eV2 and Δm2
21 ≈ 8.0× 10−5 eV2, the question becomes

whether the MSW resonance conditions for neutrino oscillations are satisfied
in the supernova environment. Considering a generic neutrino mass-squared
difference Δm2 and the flavor mixing angle θ, one finds that the matter den-
sity on the MSW resonance is given by (Kuo and Pantaleone, 1989)

ρ∗ =
mH√

2 GFYeYY
· Δm2

2E
cos 2θ , (7.21)

where mH is the atomic mass unit, YeYY denotes the electron number fraction,
and E represents the neutrino beam energy. As mentioned before, the initial
neutrino fluxes of muon and tau flavors are equal. Moreover, the weak inter-
actions of νμ and ντ neutrinos are almost indistinguishable when the energies
are about tens of MeV. Hence the oscillation between νμ and ντ is irrelevant
here, and it is convenient to work in the flavor basis (νe, ν

′
μ, ν

′
τ ) which ren-

ders the effective Hamiltonian to be diagonal in the νμ-ντ sector (Dighe and
Smirnov, 2000). In view of the smallness of the neutrino mixing angle θ13, we
may describe the system by two pairs of mixing parameters: (θ13,Δm

2
31) and

(θ12,Δm
2
21). A global analysis of current neutrino oscillation data actually

yields θ12 ≈ 34◦ and θ13 < 12◦ (Gonzalez-Garcia et al., 2010). For the high
neutrino mass-squared difference, the resonance condition is fulfilled at

ρ∗H = 3.4 × 103 g cm−3

( |Δm2
31|

2.4 × 10−3 eV2

)(
10 MeV
E

)(
0.5
YeYY

)
, (7.22)

where cos 2θ13 ≈ 1 has been taken; and for the low mass-squared difference,

ρ∗L = 42 g cm−3

(
Δm2

21

8.0 × 10−5 eV2

)(
10 MeV
E

)(
0.5
YeYY

)
, (7.23)

where cos 2θ12 ≈ 0.37 has been input. So the MSW resonances may only
occur in the outer layers of the mantle or envelope (i.e., the regions far from
the supernova core and neutrino spheres). Because of |Δm2

31| � Δm2
21, the

two resonances are well separated in space. Hence it is reasonable to treat the
whole three-flavor system as a two-flavor problem in each resonant region.

As shown in Section 5.1, the resonant flavor conversion may be either
adiabatic or non-adiabatic, or in-between, depending on the adiabaticity pa-
rameter γ. Given the density profile ρ(r) = 1013 g cm−3(10 km/r)3 ≡ Ar−3,
which is typical for a supernova during the first few seconds after bounce
(Brown et al., 1982; Bethe, 1990), the transition probability between two
mass eigenstates can be calculated by using the Landau-Zener formula

PLZPP = exp
[
−π

2
γ
]

= exp

[
−
(
E0

E

)2/3
]
, (7.24)
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where the critical energy E0 is given by (Dighe and Smirnov, 2000)

E0 =
( π

12

)3/2 Δm2 sin3 2θ
cos2 2θ

(
2
√

2 GFYeYY

mH

A

)1/2

. (7.25)

Note that Δm2 = |Δm2
31| and θ = θ13 should be taken in Eq. (7.25) for the

high-level resonance. More explicitly, we have (Lunardini and Smirnov, 2003)

EH
0 
 2.6 × 107 MeV

( |Δm2
31|

2.4 × 10−3 eV2

)
sin3 θ13 . (7.26)

It is now evident that γ ∝ (EH
0 /E)2/3 depends on θ13. For sin2 θ13 � 10−3

and E ∼ 10 MeV, one has PHPP = exp[−(EH
0 /E)2/3] ≈ 0 which implies a pure

adiabatic conversion. For sin2 θ13 � 10−5 and E ∼ 10 MeV, one has PHPP ≈ 1
which strongly violates the adiabaticity. For an intermediate value of sin2 θ13,
PHPP increases with the neutrino energy E. After substituting Δm2 = Δm2

21

and θ = θ12 into Eq. (7.25), we find that the low-level resonant conversion
is always adiabatic (i.e., EL

0 � E and thus PLPP ≈ 0). As for antineutrinos,
one may similarly evaluate the transition probabilities PH and PL if the
resonances exist. Given Δm2

31 > 0, both high- and low-level resonances occur
in the neutrino sector. For Δm2

31 < 0, the low-level resonance occurs in the
neutrino sector and the high-level one takes place in the antineutrino sector.

Because of the high matter density in a supernova, the effective neu-
trino mixing angles are suppressed and the flavor states (νe, ν

′
μ, ν

′
τ ) coincide

with the effective mass eigenstates (ν1m, ν2m, ν3m) in matter. Hence the flavor
conversions can be treated as the propagation of neutrino mass eigenstates
and the crossing among them. At the surface of a supernova one arrives at
the incoherent fluxes of neutrino mass eigenstates, which will travel to the
surface of the Earth without further flavor conversions. Let us consider the
flavor conversions in the case of either m3 > m2 > m1 (normal hierarchy)
or m2 > m1 > m3 (inverted hierarchy) for both neutrinos and antineutrinos
(Dighe and Smirnov, 2000).

(1) The normal neutrino mass hierarchy. In this case the original fluxes of
neutrino mass eigenstates are given by F 0

νFF 1m
= F 0

νFF x
= F 0

νFF 2m
and F 0

νFF 3m
= F 0

νFF e
,

where F 0
νFF x

= F 0
νFF μ

= F 0
νFF τ

holds as an excellent approximation. The probability
for ν3m to be ν1 at the surface is PHPP PLPP ; i.e., this happens through both
high- and low-level crossings. The probabilities of ν1m → ν1 and ν2m → ν1
transitions turn out to be (1− PLPP ) and PLPP (1− PHPP ), respectively. So the flux
of the mass eigenstate ν1 at the supernova surface reads

F 0
νFF 1

= PHPP PLPP F 0
νFF e

+ (1 − PHPP PLPP )F 0
νFF x
. (7.27)

One may figure out the fluxes of ν2 and ν3 in a similar way:

F 0
νFF 2

= PHPP (1 − PLPP )F 0
νFF e

+ (1 − PHPP + PHPP PLPP )F 0
νFF x
,



268 7 Neutrinos from Supernovae

F 0
νFF 3

= (1 − PHPP )F 0
νFF e

+ PHPP F 0
νFF x
. (7.28)

The flux of electron neutrinos at the Earth is then obtained by projecting
the mass eigenstates onto the flavor eigenstates. Up to a factor L−2, where
L is the distance to the Earth, we have

FE
νFF e

=
∑

i

|VeiVV |2F 0
νFF i

= pF 0
νFF e

+ (1 − p)F 0
νFF x

(7.29)

together with the survival probability

p = |VeVV 1|2PHPP PLPP + |VeVV 2|2PHPP (1 − PLPP ) + |VeVV 3|2 (1 − PHPP ) , (7.30)

where VeiVV (for i = 1, 2, 3) denotes an element of the neutrino mixing matrix V .
The total flux of νμ and ντ can be derived from the conservation of neutrino
fluxes: FE

νFF μ
+ FE

νFF τ
= (1 − p)F 0

νFF e
+ (1 + p)F 0

νFF x
. As for supernova antineutrinos,

their mass eigenstates coincide with their flavor eigenstates (i.e., ν1m = νe,
ν2m = νμ and ν3m = ντ ). As mentioned above, there is no level crossing in
the antineutrino sector for the normal mass hierarchy. Hence antineutrinos
can always keep in the mass eigenstates until they reach the Earth. It is then
straightforward to calculate the flux of electron antineutrinos at the Earth:

FE
νFF e

=
∑

i

|VeiVV |2F 0
νFF i

= pF 0
νFF e

+ (1 − p)F 0
νFF x

(7.31)

together with the survival probability p = |VeVV 1|2. The sum of νμ and ντ fluxes
can similarly be fixed by the conservation of antineutrino fluxes.

(2) The inverted neutrino mass hierarchy. In the region of high matter
densities, the neutrino mass eigenstates are identified with their flavor eigen-
states as follows: ν1m = νμ′ , ν2m = νe and ν3m = ντ ′ for neutrinos; ν1m = ντ ′ ,
ν2m = νμ′ and ν3m = νe for antineutrinos (Dighe and Smirnov, 2000). Re-
call that the high-level resonance exists in the antineutrino sector and the
low-level one occurs in the neutrino sector. In view of Eqs. (7.29) and (7.31),
we find that it is only needed to calculate the survival probabilities of elec-
tron neutrinos (p) and electron antineutrinos (p). Since the initial electron
neutrino νe is in the mass eigenstate ν2m, the probabilities of ν2m → ν1 and
ν2m → ν2 transitions are PLPP and (1 − PLPP ), respectively. So we have

p = |VeVV 1|2PLPP + |VeVV 2|2 (1 − PLPP ) . (7.32)

As for antineutrinos, νe initially coincides with ν3m. It converts into ν1 via
the high-level resonance with the probability PH, and stays in ν3 with the
probability (1−PH). The survival probability of electron antineutrinos turns
out to be

p = |VeVV 1|2PH + |VeVV 3|2
(
1 − PH

)
. (7.33)
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Eqs. (7.29) and (7.31) together with Eqs. (7.32) and (7.33) give rise to the
fluxes of electron neutrinos and electron antineutrinos at the Earth.

Finally, we summarize the matter effects on neutrino oscillations in the
supernova mantle and envelope:

p = |VeVV 2|2PHPP + |VeVV 3|2 (1 − PHPP ) , p = |VeVV 1|2 , (7.34)

for the normal neutrino mass hierarchy; and

p = |VeVV 2| , p = |VeVV 1|2PHPP + |VeVV 3|2 (1 − PHPP ) , (7.35)

for the inverted neutrino mass hierarchy. Note that we have set PLPP = 0 and
PHPP = PH. Although PHPP relies on sin2 θ13, one may simplify Eqs. (7.34) and
(7.35) in two interesting scenarios: (A) for sin2 θ13 � 10−3 and thus PHPP ≈ 0,
one arrives at p = 0 and p = sin2 θ12 for the normal mass hierarchy or
p = sin2 θ12 and p = 0 for the inverted mass hierarchy; (B) for sin2 θ13 � 10−5

and thus PHPP ≈ 1, one obtains p = sin2 θ12 and p = cos2 θ12 for both mass
hierarchies. The terms of sin2 θ13 are omitted in either scenario. We conclude
that a measurement of the supernova neutrino fluxes has the great potential
to probe the smallest neutrino mixing angle θ13 and pin down the neutrino
mass hierarchy (Lunardini and Smirnov, 2003; Raffelt, 2005).

7.3.3 Matter Effects in the Earth

We have discussed the supernova neutrino fluxes at the surface of the Earth.
Depending on the location of a supernova and the time of a day, supernova
neutrinos may traverse the Earth before arriving at the detector. Hence a
comparison between the neutrino signals in two detectors located at differ-
ent places could reveal the matter effects induced by the Earth (Dighe and
Smirnov, 2000; Dighe et al., 2003; Mirizzi et al., 2006).

If neutrinos do not cross the core of the Earth, one may assume that the
average matter density is a constant. The density profile changes abruptly
from the vacuum to the Earth. In this case one has to calculate the transition
amplitude of ν(1)

i → ν
(2)
jν , where ν(1)

i and ν(2)
jν denote the neutrino mass eigen-

states in media “1” and “2”, respectively. Since the neutrino flavor eigenstates
cross the interface continuously, the transition amplitudes are given by (Kuo
and Pantaleone, 1989)

A(ν(1)
i → ν

(2)
jν ) =

(
cos θ(2) − sin θ(2)

sin θ(2) cos θ(2)

)(
cos θ(1) sin θ(1)

− sin θ(1) cos θ(1)

)
=
(

cos
[
θ(1) − θ(2)

]
sin
[
θ(1) − θ(2)

]
− sin
[
θ(1) − θ(2)

]
cos
[
θ(1) − θ(2)

]) , (7.36)

in which the two-flavor oscillation has been assumed, θ(1) and θ(2) are the
corresponding mixing angles in media. Now we calculate the probability that
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a mass eigenstate νi entering the Earth arrives at the detector as να. First, νi

converts into the mass eigenstates ν1m and ν2m in matter with the amplitudes
given in Eq. (7.36). Second, the propagation of mass eigenstates in a constant
matter profile induces a phase difference Φm = Δm̃2L/(2E) between ν1m and
ν2m, where Δm̃2 stands for the effective neutrino mass-squared difference in
matter, L is the distance traveled by neutrinos, and E denotes the neutrino
beam energy. Finally, ν1m and ν2m reach the detector and are measured as
να with the amplitudes given by the neutrino mixing matrix. Put all these
together, we obtain the probability of νi → να as (Dighe et al., 2003)

PiαPP =
∣∣∣∣∣∣∣∣∣∣[(cos θm − sin θm

sin θm cos θm

)(
1 0
0 eiΦm

)(
cos Δθ sin Δθ
− sin Δθ cos Δθ

)]
αi

∣∣∣∣∣∣∣∣∣∣2 , (7.37)

where Δθ ≡ θm − θ with θm (or θ) being the mixing angle in matter (or
vacuum). Taking ν1 → νe for example, we explicitly get

P1PP e = cos2 θ12 − sin 2θm12 sin 2 (θm12 − θ12) sin2

(
Δm̃2

21L

4E

)
. (7.38)

In addition, we can obtain P2PP e = 1−P1PP e due to the probability conservation.
We proceed to consider the terrestrial matter effects on supernova neutrinos.
Given the fluxes of neutrino mass eigenstates F 0

νFF i
, the flux of νe at the detector

turns out to be

FD
νFF e

=
∑

i

F 0
νFF i
PiePP , (7.39)

where PiePP can be read off from Eq. (7.37). In the case of a normal neutrino
mass hierarchy, the fluxes F 0

νFF i
have been given in Eqs. (7.27) and (7.28).

These equations allow us to rewrite Eq. (7.39) as FD
νFF e

= pDF 0
νFF e

+(1−pD)F 0
νFF x

,
where the probability pD reads

pD = P1PP ePHPP PLPP + P2PP ePHPP (1 − PLPP ) + P3PP e (1 − PHPP ) . (7.40)

If there are two detectors and only one of them is shadowed by the Earth,
then the terrestrial matter effects are characterized by the difference between
FD

νFF e
and FE

νFF e
. More explicitly,

FD
νFF e

− FE
νFF e

=
(
pD − p

) (
F 0

νFF e
− F 0

νFF x

)
. (7.41)

Note that the matter effects would vanish if F 0
νFF e

= F 0
νFF x

exactly held. Since the
initial fluxes of supernova neutrinos are energy-dependent, (F 0

νFF e
− F 0

νFF x
) is in

general positive at low energies and becomes negative at higher energies. So
it may change its sign at the critical energy EC, where F 0

νFF e
(EC) = F 0

νFF x
(EC)

holds. Furthermore, Eqs. (7.30) and (7.40) lead us to
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pD − p = PHPP (1 − 2PLPP )
(
P2PP e − |VeVV 2|2

)
, (7.42)

where we have neglected the contribution from ν3 oscillations because it is
suppressed by both sin2 θ13 and sin 2(θm13−θ13). In the most general case, two
different detectors “D1” and “D2” are both shadowed by the Earth. Then we
have (Dighe and Smirnov, 2000)

FD1
νFF e

− FD2
νFF e

= PHPP (1 − 2PLPP )
(
PD1

2PP e − PD2
2PP e

) (
F 0

νFF e
− F 0

νFF x

)
, (7.43)

where PD1
2PP e and PD2

2PP e denote the probabilities of ν2 → νe for two different
detectors. Some comments on Eq. (7.43) are in order: (1) the contributions
from the initial supernova neutrino fluxes (F 0

νFF e
−F 0

νFF x
), the flavor conversions

in the supernova envelope PHPP (1 − 2PLPP ) and the propagation in the Earth
e x

(PD1
2PP e −PD2

2PP e ) are clearly factorized; (2) a difference between the initial νe and
νx fluxes is required for significant matter effects; (3) the high-level resonance
needs to be non-adiabatic (i.e., PHPP ≈ 1), otherwise the matter effects would
be suppressed by PHPP . One may analogously consider the matter effects on
electron antineutrinos and obtain the counterpart of Eq. (7.43) as follows:

FD1
νFF e

− FD2
νFF e

=
(
1 − 2PL

) (
P

D1

1e − P
D2

1e

)(
F 0

νFF e
− F 0

νFF x

)
. (7.44)

Note that the factor PH does not appear in Eq. (7.44), because the high-level
resonance is absent in the antineutrino sector. As for the inverted neutrino
mass hierarchy, a straightforward analysis yields (Dighe and Smirnov, 2000)

FD1
νFF e

− FD2
νFF e

= (1 − 2PLPP )
(
P

D1

2e − P
D2

2e

)(
F 0

νFF e
− F 0

νFF x

)
(7.45)

for neutrinos; and

FD1
νFF e

− FD2
νFF e

= PH

(
1 − 2PL

) (
PD1

1PP e − PD2
1PP e

) (
F 0

νFF e
− F 0

νFF x

)
(7.46)

for antineutrinos. In light of current neutrino oscillation data, the low-level
resonance is always adiabatic and thus PLPP = PL = 0 holds. So Eq. (7.45) is
obtainable from Eq. (7.44) with the replacements νe → νe and νx → νx; and
Eq. (7.46) can be obtained from Eq. (7.43) with the replacements νe → νe,
νx → νx and PHPP → PH. Table 7.4 summarizes the matter effects both in
the supernova envelope and in the Earth. For the latter, we only list the
channels in which the terrestrial matter effects may be significant. Note that
the shock wave will pass the dense region, where the high-level resonance
takes place, and may break the adiabaticity of the resonance. In this case the
survival probabilities have to be modified (Schirato and Fuller, 2002; Fogli
et al., 2003, 2005). The channels sensitive to the shock-wave effects are also
listed in Table 7.4.
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Table 7.4 The survival probabilities p (neutrinos) and p (antineutrinos), terres-
trial matter effects and shock-wave effects in three scenarios (Raffelt, 2005. With
permission from the Institute of Physics)

Mass hierarchy sin2 θ13 p p Earth matter Shock wave

Normal � 10−3 0 cos2 θ12 νe νe

Inverted � 10−3 sin2 θ12 0 νe νe

Any � 10−5 sin2 θ12 cos2 θ12 νe and νe –

7.4 Collective Neutrino Flavor Conversions

Soon after the discovery of the MSW matter effects on solar neutrino flavor
conversions, it was realized that the coherent forward scattering of neutrinos
on a dense neutrino background should be important in the core-collapse
supernovae and in the early Universe (Fuller et al., 1987; Nötzold and Raf-
felt, 1988). In contrast with the MSW effects in ordinary matter, the neu-
trino self-interaction potential has the off-diagonal elements in the flavor basis
(Pantaleone, 1992a, 1992b). Due to this neutrino self-interaction potential,
neutrinos might have undergone collective oscillations in the early Universe
(i.e., a large fraction of neutrinos with different energies oscillated coherently)
(Samuel, 1993, 1996; Kostelecký et al., 1993; Kostelecký and Samuel, 1993,
1994, 1995, 1996; Pantaleone, 1998; Pastor et al., 2002).

In the context of core-collapse supernovae, the synchronized and bipolar
neutrino oscillations are the main features of the collective phenomena (Duan
and Kneller, 2009; Duan et al., 2010). Such collective effects may give rise to
the almost complete flavor conversions and dramatically affect the neutrino
energy spectra. In this section we shall introduce collective neutrino oscil-
lations and try to understand the physics behind them. It should be kept
in mind that this topic is now under active studies, and it remains unclear
whether collective neutrino oscillations will be significantly changed in a real-
istic supernova environment including the non-spherical geometry, convective
effects and magnetic fields (Duan et al., 2010). Hence we shall concentrate
on the generic features of collective neutrino oscillations and some analytical
understanding of them by assuming the standard delayed-explosion scenario.

7.4.1 Equations of Motion

In Section 5.3 we have formulated neutrino oscillations in the language of
the density matrix, presented the equations of motion for the flavor polar-
ization vectors P and P, and illustrated the nonlinear behavior of flavor
conversions in the simplest case with the isotropic neutrino gases, monochro-
matic neutrino energy spectra and equal number densities of neutrinos and
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antineutrinos. To be more realistic, we introduce the so-called neutrino bulb
model which accounts for the geometry of the neutrino emission from a proto-
neutron star (Duan et al., 2006b, 2010). Fig. 7.3 shows the corresponding
geometrical layout. The test neutrinos with different emission angles ϑR may
experience different flavor conversions, because they have distinct histories
of interactions when traveling from the surface of the proto-neutron star
to point A with a radius r. The background neutrinos come from a spe-
cial part of the neutrino sphere, which is within the cone with an open angle
ϑmax = arcsin(Rν/r). Given the geometry in Fig. 7.3, the equations of motion
for the polarization vectors Pp(t) and Pp(t) in Eq. (5.146) can be rewritten
as those for Pϑ(E, t) and Pϑ(E, t), where ϑ is the polar angle of the neutrino
momentum p and E = |p| is the neutrino energy:

Ṗϑ =
[
+ωB + λL + 2

√
2πGF

∫
dcϑ′dE(Pϑ′ −Pϑ′)g(ϑ, ϑ′)

]
×Pϑ ,

Ṗϑ =
[
−ωB + λL + 2

√
2πGF

∫
dcϑ′dE(Pϑ′ −Pϑ′)g(ϑ, ϑ′)

]
×Pϑ , (7.47)

where g(ϑ, ϑ′) ≡ 1 − cϑcϑ′ , cϑ ≡ cosϑ and cϑ′ ≡ cosϑ′ with ϑ′ being the
polar angle of the momentum q of the background neutrinos. Note that ϑ′ ∈
[0, ϑmax] and thus cosϑ′ ∈ [cosϑmax, 1]. In view of Fig. 7.3, one finds

r sinϑ = Rν sinϑR , t =
√
r2 −R2

ν sin2 ϑR −Rν cosϑR , (7.48)

and thus there exists a one-to-one correspondence between (t, ϑ) and (r, ϑR).
With the help of the second expression in Eq. (7.48), we get dt = dr/ cosϑ.
So the polarization vectors can also be expressed as PϑR

(E, r) and PϑR
(E, r).

These observations imply that the evolution of the polarization vectors with
t is equivalent to that with r. The latter is more convenient to study the
flavor conversions of supernova neutrinos.

In the multi-angle calculations, the equations of motion are numerically
solved for ϑR and E (Duan et al., 2006b; Fogli et al., 2007). Since such simu-
lations are very time-consuming and too complicated to make the underlying
physics transparent, it makes sense to resort to some analytical approxima-
tions in the single-angle limit by assuming all the polarization vectors to
behave as the ones at ϑR = 0. The corresponding equations of motion can
be derived from Eq. (7.47) by setting ϑ = ϑR = 0 and discarding the angular
dependence of the polarization vectors. In this case the integration over the
polar angle ϑ′ yields a geometrical function

D(r) ≡
∫ 1

cos

∫∫
ϑmax

dcϑ′(1 − cϑ′) =
1
2

⎡⎣1 −

√
1 −
(
Rν

r

)2
⎤⎦2

. (7.49)

We have D(r) ∝ r−4 for r � Rν . In the following discussions, we shall
only consider the single-angle approximation in order to analytically reveal
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Fig. 7.3 A sketch of the neutrino emission from the neutrino sphere in the neutrino
bulb model (Duan et al., 2006b, 2010. With permission from the American Physical
Society). The test neutrinos emitted from the neutrino sphere at point D with the
emission angle ϑR arrive at point A, and the elapsed time is t = DA. The distance
from A to the center of the proto-neutron star is r = OA, and the polar angle of
the neutrino trajectory is ϑ, which also characterizes the direction of the neutrino
momentum p̂ ≡ p/|p|. The background neutrinos come from the special part of the
neutrino sphere lying in the cone with an open angle ϑmax ≡ arcsin(Rν/r), where
Rν denotes the radius of the neutrino sphere

the salient features of collective neutrino oscillations. This approximation is
reasonably good, although the multi-angle effects may cause the kinematic
decoherence among the flavor conversions of neutrinos with different emission
angles (Esteban-Pretel et al., 2007; Fogli et al., 2007).

As mentioned in Chapter 5, the three-flavor oscillations may approximate
to the two-flavor oscillations νe ↔ νx and νe ↔ νx due to |Δm2

31| � Δm2
21,

where νx (or νx) stands for the superposition of νμ and ντ (or νμ and ντ )
and the relevant mixing parameters are Δm2

31 and θ13. Some comments on
the conventions in the equations of motion are in order.

(1) Taking account of the definitions of the flavor polarization vectors in
Eq. (5.142), we have Tr

[
ρp
]

= fνff e
(p) + fνff x

(p) and P z
pPP = fνff e

(p) − fνff x
(p)

with fνff e
(p) and fνff x

(p) being the distribution functions of
e x

νe and νx, respec-
tively. Similar relations for ρp, Pp, fνff e

(p) and fνff x
(p) can be obtained for

antineutrinos. One may redefine Pp and Pp by factoring out the distribution
functions such that they only measure the flavor composition of the system:

ρp =
1
2
fνff (p)

(
1 + Pp · σ

)
, ρp =

1
2
fνff (p)

(
1 + Pp · σ

)
, (7.50)

where fνff = fνff e
+ fνff x

and fνff = fνff e
+ fνff x

. Thus we have P z = [fνff e
− fνff x

]/fνff

and P
z

= [fνff e
− fνff x

]/fνff , where the momentum dependence is implied. For
a system which initially has pure νe and νe, the polarization vectors are
therefore normalized to unity (i.e., |Pp| = |Pp| = 1). Note that different
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normalization schemes have been used in the literature (Hannestad et al.,
2006; Fogli et al., 2007; Duan et al., 2010).

(2) The neutrino-antineutrino system under discussion is often assumed
to be isotropic, so the direction of the neutrino momentum is irrelevant. In
this case the flavor polarization vectors depend on the neutrino energy E ≈
p = |p|. If the frequency ω = |Δm2

31|/(2E) is defined, then the dependence
on E can be converted into the one on ω. That is why the flavor polarization
vectors are sometimes written as Pω and Pω for each energy mode.

(3) If the strength of neutrino-neutrino interactions is defined as μ ≡√
2 GFnν with nν being the local neutrino number density, then the equations

of motion can be rewritten as

Pω = [+ωB + λL + μD] ×Pω , Pω = [−ωB + λL + μD] × Pω , (7.51)

where D ≡ P − P with P ≡
∫∞
0

∫∫
Pωdω and P ≡

∫∞
0

∫∫
Pωdω being the global

polarization vectors. Note that nν ∝ D(r)Lν/〈Eν〉, where D(r) is the geo-
metrical function given in Eq. (7.49) in the single-angle approximation, Lν

denotes the total neutrino luminosity and 〈Eν〉 is the average neutrino energy.
In the region far from the neutrino sphere we have nν(r) ∝ r−4, and the elec-
tron density is approximately ne(r) ∝ r−3. Just above the neutrino sphere,
the neutrino density is so high that the neutrino-neutrino self-interaction
becomes larger than the neutrino interaction with ordinary matter.

Numerical simulations with the general equations of motion have shown
three salient features of collective neutrino oscillations (Duan et al., 2006a,
2006b, 2010; Fogli et al., 2007): (1) synchronized oscillations — neutrinos with
different energies (and thus different intrinsic oscillation frequencies) oscillate
coherently; (2) bipolar oscillations — neutrinos and antineutrinos oscillate in
opposite directions and form two separate groups; (3) energy spectral splits
— in the final neutrino and antineutrino energy spectra, a critical energy Ec

splits the spectra sharply into parts of almost pure different flavors. These
features will be described in detail in the following subsections.

7.4.2 Synchronized Neutrino Oscillations

Let us recall the neutrino oscillations in vacuum, whose equation of motion
reads Ṗ = ωB×P with ω = Δm2/(2p). This is just the equation of motion for
the angular-momentum P precessing around the magnetic field B, and the
corresponding magnetic dipole moment is given by M = ωP. So ω = |M|/|P|
plays the role of gyromagnetic ratio and determines the rate of precession.
Next, we consider an ensemble of homogeneous and isotropic neutrino gas.
The total number of neutrinos is NνNN , and the ensemble has a large volume V .
Denoting the polarization vector of each neutrino as Pj and the corresponding
momentum as pj = |pj | (for j = 1, 2, · · · , NνNN ), one may define the total
polarization vector J = P1 +P2 + · · ·+PNν

. The equation of motion for the
individual polarization vector turns out to be (Pastor et al., 2002)
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Ṗj = ωjB × Pj +
√

2 GF

V
J ×Pj , (7.52)

where ωj ≡ Δm2/(2pj). If the vacuum oscillation term is switched off, then
Pj precesses around J. After switching on the vacuum oscillation term and
summing over the index j on both sides of Eq. (7.52), we obtain

J̇ =
Nν∑
j=1

ωjB ×Pj , (7.53)

which is not in the closed form for J. If the neutrino self-interaction dominates
over the vacuum oscillation term, then Pj rotates around J rapidly and
thus its transverse components are averaged to zero. We are finally left with
Pj = Ĵ(Pj · Ĵ) with Ĵ ≡ J/|J|. So Eq. (7.53) can be rewritten as

J̇ = B × Ĵ
Nν∑
j=1

ωj(Pj · Ĵ) ≡ ωsynB × J , (7.54)

where the gyromagnetic ratio ωsyn is given by

ωsyn =
1
|J|

Nν∑
j=1

ωj(Pj · Ĵ) . (7.55)

If all the initial neutrinos are prepared in a specific flavor state, then the
polarization vectors Pj are aligned with J and thus |J| = NνNN and Pj · Ĵ = 1,
leading to ωsyn = (ω1 + ω2 + · · · + ωNν

)/NνNN (i.e., an average value of the
vacuum oscillation frequencies). If the neutrino self-interaction is dominant
over the vacuum oscillation term, we conclude that all the polarization vectors
Pj are aligned with J which precesses around the weak magnetic field B with
the frequency ωsyn given in Eq. (7.55). For neutrino oscillations in vacuum,
a broad distribution of neutrino energies will induce the flavor decoherence
such that the oscillations will be damped. In contrast, these energy modes
will oscillate coherently with a common frequency ωsyn provided the neutrino
self-interaction is strong enough. This collective phenomenon is just the so-
called synchronized neutrino oscillations (Pastor et al., 2002).

In more realistic cases, one should take into account the effects of an-
tineutrinos. The equations of motion for both neutrinos and antineutrinos
are given by (Pastor et al., 2002)

Ṗj = +ωjB× Pj +
√

2 GF

V

(
J− J
)
× Pj ,

Ṗk = −ωkB× Pk +
√

2 GF

V

(
J− J
)
× Pk , (7.56)

where the total polarization vector J is the sum of Pk (for k = 1, 2, · · · , NνNN )
with NνNN being the number of antineutrinos in the ensemble. Analogous to
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the case with only neutrinos, both Pj and Pk will be aligned with the global
vector I ≡ J − J which precesses around the weak magnetic field B. The
relevant equation of motion is İ = ωsynB × I, where

ωsyn =
1
|I|

⎡⎣Nν∑
j=1

ωj

(
Pj · Î
)

+
Nν∑
k=1

ωk

(
Pk · Î
)⎤⎦ (7.57)

with Î ≡ I/|I|. Therefore, the neutrino-antineutrino system behaves in a way
similar to the pure neutrino system. Note that a large asymmetry between
neutrinos and antineutrinos is required to assure the synchronized oscilla-
tions, otherwise I = J − J would vanish and the neutrino self-interaction
would be absent. In a supernova environment, however, the synchronized
neutrino oscillations are suppressed by either the high matter density or the
large neutrino fluxes themselves (Duan et al., 2007).

7.4.3 Bipolar Flavor Conversions

The bipolar flavor conversions may take place when the strength of neutrino-
neutrino interactions μ ≡

√
2GFnν is comparable with the vacuum oscillation

frequency ω ≡ Δm2/(2p). If μ � ω holds, the synchronized oscillations will
occur, as discussed in the previous subsection. Let us first of all explain
the bipolar system, which has already been introduced in Section 5.3. The
simplest bipolar system initially consists of pure νe and νe with equal densities
and energies. The corresponding equations of motion for P and P are given in
Eq. (5.148), or equivalently for D ≡ P−P and Q ≡ S−ωB/μ with S ≡ P+P
given in Eq. (5.150). The numerical result for the survival probability in the
case of the inverted neutrino mass hierarchy has been shown in Fig. 5.4,
where one can observe the complete flavor conversions of both neutrinos and
antineutrinos. In the case of the normal neutrino mass hierarchy, only the
oscillations with extremely small mixing angles are allowed and thus the
flavor content is almost unchanged.

This bipolar system can be well understood by analogy with the spheri-
cal pendulum (Hannestad et al., 2006). Given the initial conditions P(0) =
P(0) = (0, 0, 1) and thus D(0) = 0 and S(0) = (0, 0, 2), it is possible to get
Q(0) = (−ω sin 2θ/μ, 0, 2 + ω cos 2θ/μ) because of B = (sin 2θ, 0,− cos 2θ)
with θ being the mixing angle. In view of the equations of motion shown in
Eq. (5.150), one may observe that B and Q lie in the (x, z)-plane and D is
along the y-axis. In addition, the length of Q is conserved; i.e.,

Q ≡ |Q| =

[
4 +
(
ω

μ

)2

+ 4
(
ω

μ

)
cos 2θ

]1/2

. (7.58)

If Q = Q(sinϕ, 0, cosϕ) and D = D(0, 1, 0) with D ≡ |D| are taken, the
equations of motion of Q and D in Eq. (5.150) can be simplified to those of
ϕ and D:
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ϕ̇ = μD , Ḋ = −ωQ sin (ϕ+ 2θ) . (7.59)

Eq. (7.59) allows us to obtain a second-order differential equation of the tilt
angle ϕ (Hannestad et al., 2006):

ϕ̈ = −κ2 sin(ϕ+ 2θ) , (7.60)

where κ ≡ √
ωμQ

√√
denotes the intrinsic frequency. This result implies that

Q in the flavor space behaves like a spherical pendulum. Note that one may
also derive Eq. (7.59) from the Hamiltonian

H(ϕ,D) =
κ2

μ
[1 − cos(ϕ+ 2θ)] +

1
2
μD2 , (7.61)

if one identifies ϕ as a general coordinate and D as the canonically conju-
gate momentum. Therefore, the first and second terms in Eq. (7.61) stand
respectively for the potential and kinetic energies. Let us define the potential
energy as (Hannestad et al., 2006)

V (ϕ) = κ2 [1 − cos(ϕ+ 2θ)] , (7.62)

which determines whether the system is stable or not for a given initial value
of ϕ. In the case of the normal neutrino mass hierarchy, we can expand the
potential in terms of small tilt and mixing angles (i.e., ϕ� 1 and θ � 1):

V (ϕ) =
κ2

2
(ϕ+ 2θ)2 . (7.63)

Hence the minimum of the potential is reached at ϕmin = −2θ. On the other
hand, one may get sinϕ(0) = −[ω/(μQ)] sin 2θ or ϕ(0) ≈ −2θ[ω/(μQ)] > −2θ
from Q(0) = (−ω sin 2θ/μ, 0, 2+ω cos 2θ/μ). So the initial value ϕ(0) is in the
vicinity of the stable point ϕmin, and the system will oscillate around ϕmin

with the frequency κ and the amplitude 2θ[1 − ω/(μQ)]. That is why there
is no significant flavor conversion for the normal neutrino mass hierarchy.
The inverted neutrino mass hierarchy corresponds to θ ∼ π/2, and hence the
equations of motion are the same as those in the case of the normal mass
hierarchy but with θ being replaced by θ ≡ π/2−θ′. In this case the potential
in Eq. (7.62) can be expanded as

V (ϕ) = −κ
2

2
(ϕ− 2θ′)2 , (7.64)

whose maximum is achieved at ϕmax = 2θ′. Similarly, the initial value of ϕ
is given by sinϕ(0) = −[ω/(μQ)] sin 2θ′ with Q ≈ |2 − ω/μ| in the θ′ � 1
limit. Depending on the value of ω/μ, the initial tilt angle ϕ(0) varies from
0 to 2θ′ − π. Therefore, ϕ initially lies around the maximum point and it
should finally roll down to the minimum ϕmin = −π. PzPP and P z at ϕmin are
consequently given by
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Fig. 7.4 The relative fluxes of νe and νe events in the neutrino-antineutrino
asymmetric scenario (Hannestad et al., 2006. With permission from the American
Physical Society): (1) the initial conditions PzPP (0) = 1 and P z(0) = 0.8 are taken;
(2) the profile of the neutrino self-interaction strength μ(r) ≈ 0.3× 105 km−1r−4

10 is
assumed, where r10 is the radius r in units of 10 km (i.e., the radius of the neutrino
sphere); (3) the mixing angle is given by sin 2θ′ = 0.001 in the case of the inverted
neutrino mass hierarchy

PzPP |ϕmin
= P z

∣∣∣∣
ϕmin

≈ 1
2

(
ω

μ
−
∣∣∣∣∣∣∣∣∣∣2 − ω

μ

∣∣∣∣∣∣∣∣∣∣) . (7.65)

So the complete flavor conversions (i.e., PzPP = P z = −1) are possible only
if the neutrino self-interaction strength is large enough (i.e., ω/μ � 1). For
intermediate values of ω/μ, the flavor conversions will be partial.

Fig. 5.4 has shown that the complete flavor conversion is periodic, imply-
ing that the transformed neutrinos will be converted back into the original
flavor state. This is not the case, however, if the variation of the strength of
neutrino-neutrino interactions is taken into account. Since μ(r) ∝ r−4, the
interaction strength decreases as neutrinos propagate outwards. Hence the
kinetic energy μD2/2 of the pendulum given in Eq. (7.61) becomes smaller
after some oscillations such that the pendulum is unable to reach its initial
height. Fig. 7.4 illustrates the relative neutrino fluxes in the bipolar system
with asymmetric νe and νe events. These results follow from a numerical
solution to the equations of motion with two typical inputs for realistic su-
pernova neutrinos: the neutrino-antineutrino asymmetry with PzPP (0) = 1 and
PzPP (0) = 0.8, and μ(r) = 0.3 × 105 km−1r−4

10 with r10 being the radius r
in units of 10 km. Just above the neutrino sphere r = 10 km, the neutrino
self-interaction strength μ is 105 times larger than the vacuum oscillation
frequency ω. Significant flavor conversions start around r ≈ 45 km, and the
behavior between r ≈ 10 km and r ≈ 45 km is due to the synchronized oscil-
lations which are guaranteed by the large neutrino-antineutrino asymmetry
and the large value of μ in this region. However, the flavor conversions in
this region are essentially negligible just because the effective mixing angle is
highly suppressed.
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Fig. 7.5 The initial fluxes (in arbitrary units) at the neutrino sphere r = 10 km
for different neutrino flavors as functions of the neutrino energy (Fogli et al., 2007.
With permission from the Institute of Physics)

Fig. 7.4 shows that the synchronized oscillations take place at small r (e.g.,
10 km � r � 45 km) or for large μ, and the ordinary vacuum oscillations occur
at large r (e.g., r > 200 km) or for small μ. Thus the bipolar oscillations are
expected to happen at intermediate r or for modest μ. In the general case
with a neutrino-antineutrino asymmetry P(0) = αP(0) (for 0 � α � 1),
the condition for the bipolar neutrino oscillations turns out to be ω � μ <
4(1 + α)ω/(1 − α)2 (Duan et al., 2006a; Hannestad et al., 2006).

7.4.4 Neutrino Spectral Splits

An intriguing phenomenon observed in the numerical simulations of super-
nova neutrino flavor conversions is the existence of a critical energy Ec which
splits the transformed neutrino spectra into parts of almost pure but differ-
ent flavors (Duan et al., 2006b; Fogli et al., 2007). Let us first specify the
initial fluxes of neutrinos and antineutrinos. For simplicity, the relevant neu-
trinos and antineutrinos are assumed to follow the thermal distribution at
the neutrino sphere r = Rν = 10 km; i.e.,

φi(E) =
2

3ζ(3)T 3
iTT
· E2

eE/TiT + 1
, (7.66)

where ζ(3) ≈ 1.202 is a Riemann zeta function, and the subscript “i” stands
for νe, νe, νx or νx. The effective temperature TiTT can be determined such
that the average neutrino energies are 〈Eνe

〉 = 10 MeV, 〈Eνe
〉 = 15 MeV and

〈Eνx
〉 = 〈Eνx

〉 = 24 MeV. The standard delayed-explosion supernova model
indicates that the luminosities of different neutrino species are almost equal,
so the number fluxes of neutrinos per unit energy in any direction are
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Fig. 7.6 The final fluxes at the radius r = 200 km for different neutrino flavors
as functions of the neutrino energy, where the dotted lines represent the initial
fluxes. The upper and lower panels are for the single- and multi-angle calculations,
respectively (Fogli et al., 2007. With permission from the Institute of Physics)

ji(E) =
Lν

4π2R2
ν

· φi(E)
〈Ei〉

, (7.67)

where the common neutrino luminosity is Lν = 1051 erg s−1. The initial
neutrino spectra are plotted in Fig. 7.5, in which the fluxes are proportional
to φi(E)/〈Ei〉 and properly normalized. In the single-angle approximation,
the neutrino distribution functions are given by fiff (r,E) = 2πD(r)ji(E) with
D(r) being the geometrical function given in Eq. (7.49). With the help of
these initial conditions and the matter density profile, one may solve the
equations of motion in Eq. (7.47) in the single- and multi-angle scenarios.
The final results of neutrino fluxes at the radius r = 200 km are shown in
Fig. 7.6 and summarized as follows (Fogli et al., 2007).
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(1) In the final neutrino spectra, there exists a critical energy Ec 
 7 MeV.
In the energy region below Ec, the neutrino flavors remain the same; but
above Ec, the complete flavor conversions take place. As for antineutrinos,
the critical energy is Ec 
 4 MeV.

(2) The split in the antineutrino spectra disappears in the multi-angle
calculations, but the one for neutrinos survives. The neutrino spectral splits
only occur in the case of the inverted neutrino mass hierarchy.

Note that the matter density profile used in the above calculations is
high enough to make sure that the MSW resonances are absent in the region
of collective neutrino oscillations (Fogli et al., 2007). If the shallow matter
profiles are taken, the spectral splits may exist in both normal and inverted
neutrino mass hierarchies (Duan et al., 2006b, 2007). In the following we
shall assume the decoupling of collective neutrino oscillations from the MSW
resonances and analytically understand the neutrino spectral splits (Raffelt
and Smirnov, 2007a, 2007b).

We start with the equations of motion in Eq. (7.51). Instead of using Pω,
one may extend the polarization vector Pω to negative frequencies such that
Pω = P−ω with ω > 0. In this case the equations of motion can be rewritten
in terms of only Pω; i.e.,

Ṗω = (ωB + λL + μD) ×Pω , (7.68)

where D =
∫ +∞
−∞
∫∫

sωPωdω with sω ≡ sign(ω) = ω/|ω|. Since the absence of
the MSW resonances has been assumed, it is possible to eliminate the matter
term λL by going into a rotating frame (Duan et al., 2006a; Hannestad et
al., 2006). After the elimination of λL and the integration of Eq. (7.68) with
sω, we obtain the equation of motion of D as

Ḋ = B× M , (7.69)

where M ≡
∫ +∞
−∞
∫∫

sωωPω. Eq. (7.69) indicates that
d(D · B)

dt
= 0 holds and

thus Dz = B ·D is conserved. For the small mixing angle, one approximately
has B = (0, 0,−1) or B = (0, 0, 1) in the case of the normal or inverted
neutrino mass hierarchy. Because Dz denotes the excess of the νe flux, the
conservation of Dz implies that the collective effects only induce the pair
transformation νe +νe → νx + νx. Therefore, the νe excess from deleptoniza-
tion is conserved.

The equation of motion in Eq. (7.68) can also be written as Ṗω = Hω×Pω

with Hω ≡ ωB + μD, implying that each polarization vector Pω precesses
around Hω. In the adiabatic limit each Hω moves slowly as compared with
the precession of Pω, so the latter will follow the former. We assume that
all Pω are initially prepared in a specific flavor and thus aligned with each
other. If μ is very large, Pω is essentially aligned with Hω. Therefore, Pω

keeps aligned with Hω during the entire period of evolution in the adiabatic
limit. Pω(μ) = Ĥω(μ)PωPP with Ĥω = Hω/|Hω| and PωPP = |Pω| is consequently
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the solution to the equation of motion. On the other hand, all Hω lie in the
so-called corotating plane spanned by B and D, and thus all Pω and M stay
in the same plane in the adiabatic limit. We can now decompose M into
M = bB + ωcD and express Eq. (7.69) as

Ḋ = ωcB × D . (7.70)

This result implies that both D and the corotating plane precess around B
with the common frequency ωc. Hence the system experiences a fast preces-
sion around B with ωc(μ) and the drift in the corotating plane due to the
variation of μ(t). A convenient treatment is to go into the corotating frame,
where the effective Hamiltonian reads

Hω = [ω − ωc(μ)]B + μD . (7.71)

Initially μ → ∞, the oscillations are synchronized and have ωc(μ → ∞) =
ωsyn; i.e., all Pω form a total polarization vector P. As μ decreases, the Pω

will spread out but remain in the corotating plane. Finally μ→ 0, Eq. (7.71)
implies that all Hω or all Pω with ω > ω0

c ≡ ωc(μ = 0) are aligned with
B, while the others are antialigned. In other words, the flavor conversions
are complete for ω < ω0

c and absent for ω < ω0
c ; i.e., the spectral split is

inevitable at ω = ω0
c . Since the length of Pω is conserved and all Pω are

finally aligned with either +B or −B, the lepton number conservation yields
(Raffelt and Smirnov, 2007a, 2007b)

Dz =
∫ 0

−∞

∫∫
PωPP dω −

∫ ω0
c

0

∫∫
PωPP dω +

∫ +∞

ω

∫∫
0
c

PωPP dω . (7.72)

Hence the critical energy Ec = |Δm2|/(2ω0
c ) is determined by the neutrino

spectrum PωPP and the initial lepton number Dz. The above arguments clearly
explain the existence of neutrino spectral splits and reveal the underlying
physics behind them — the lepton number conservation.

Much progress has recently been made in the study of supernova neutrino
spectral splits. It is found that there exist multiple spectral splits for both
normal and inverted neutrino mass hierarchies if the neutrino fluxes in the
cooling phase are considered (Dasgupta et al., 2009). However, the three-
flavor effects may smear one of the splits (Friedland, 2010; Dasgupta et al.,
2010b). Many open issues, including the kinematical decoherence of different
angular modes in the multi-angle scenario and the criteria for adiabaticity,
remain to be solved (Duan et al., 2010).

7.4.5 Effects of Three Neutrino Flavors

So far we have discussed collective neutrino oscillations in the two-flavor
approximation. This approximation is well justified in the supernova envi-
ronment: (a) the charged leptons μ and τ are too heavy to be produced in
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the supernova core, so νμ and ντ have only neutral-current interactions which
cannot distinguish between the muon and tau flavors; (b) for the same reason,
the total fluxes and average energies of νμ and ντ are equal; (c) because of
the strong hierarchy |Δm2

31| � Δm2
21, the relevant neutrino mixing parame-

ters for collective neutrino oscillations should be Δm2
31 and θ13. However, the

three-flavor effects should be taken into account for a few reasons.
(1) For completeness, the analytical and numerical studies of collective

neutrino oscillations should be performed in the three-flavor framework in-
cluding the CP-violating phase (Gava and Volpe, 2008).

(2) The three-flavor effects may trigger collective neutrino oscillations
even if the smallest neutrino mixing angle θ13 is exactly vanishing (Dasgupta
et al., 2010a). As mentioned before, the bipolar system can be viewed as
a spherical pendulum. In the case of the inverted neutrino mass hierarchy,
the pendulum is initially placed around an unstable point and will rapidly
move to a stable point, causing almost complete flavor conversions. This
transformation is independent of θ13 as long as it is small. If θ13 = 0 exactly
holds, the system may continue to stay at the unstable point and thus flavor
conversions cannot take place. Although quantum fluctuations might trigger
the transformation (Hannestad et al., 2006), the three-flavor effects including
radiative corrections and small differences between νμ and ντ fluxes could
practically do this job.

(3) We stress that the generic features of collective neutrino oscillations
(i.e., synchronized oscillations, bipolar flavor conversions and spectral splits)
preserve in the three-flavor case. However, some new features may emerge
and quantitatively change the two-flavor predictions. For instance, there ex-
ist two different splits in the neutrino spectra, which are determined by
two distinct conditions for lepton number conservation (Dasgupta et al.,
2008; Duan et al., 2008). To be explicit, let us use the Bloch-vector for-
malism given in Section 5.3 and decompose the vacuum Hamiltonian term
into Hω = ω(BH + εBL), where BH (or BL) denotes the magnetic field asso-
ciated with Δm2

31 (or Δm2
21) and ε ≡ Δm2

21/|Δm2
31| is defined. With the help

of the equation of motion of the polarization vector P, it is straightforward

to show
d(BH ·P)

dt
=

d(BL · P)
dt

= 0 (i.e., the conditions for lepton number

conservation). By virtue of the same arguments leading to Eq. (7.72), one
can understand the patterns of spectral splits in the three-flavor case.

Finally, it is worth mentioning that the first multi-angle simulations of
neutrino flavor conversions in the three-flavor case have recently been done
for an O-Ne-Mg core-collapse supernova (Cherry et al., 2010). Although the
results are qualitatively consistent with those in the single-angle limit, it is
found that the multi-angle effects reduce the adiabaticity of flavor evolution
for the normal neutrino mass hierarchy. Further studies of collective neutrino
oscillations are needed in order to understand the underlying physics.
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8

Ultrahigh-energy Cosmic Neutrinos

Many astrophysical objects in the Universe are expected to produce cosmic
neutrinos with very high energies (1 TeV � Eν � 1 PeV), ultrahigh energies
(Eν � 1 PeV) or extremely high energies (Eν � 100 EeV) 1. Such energetic
neutrinos may serve as a unique cosmic messenger and provide us with useful
information about the cosmos that cannot be extracted from the measure-
ments of cosmic rays and gamma rays. The burning questions in neutrino
astronomy include where ultrahigh-energy (UHE) cosmic neutrinos originate
from and how they can be detected. In this chapter we shall first describe
some possible sources of UHE cosmic neutrinos and then outline a few pos-
sible ways to detect them. The flavor distribution and oscillations of UHE
cosmic neutrinos, together with their sensitivities to new physics, will also
be discussed. We shall finally highlight the importance of multi-messenger
astronomy by illustrating the interplay between UHE cosmic neutrinos and
cosmic rays, gamma rays or gravitational waves.

8.1 Possible Sources of UHE Cosmic Neutrinos

The sources of UHE cosmic neutrinos are presumably related to those of
UHE cosmic rays. In fact, most of the models for the origin of UHE cos-
mic rays predict the existence of UHE cosmic neutrinos. Such models can
be classified into two categories: the top-down and bottom-up scenarios. In
the top-down scenarios it is assumed that UHE cosmic rays originate from
the annihilation or decays of some superheavy particles, which must be the

1Note that the terms VHE (very high energy), UHE (ultrahigh energy) and
EHE (extremely high energy) are highly relative and taste-dependent. Some useful
units of energy in neutrino astronomy are keV = 103 eV, MeV = 106 eV, GeV =
109 eV, TeV = 1012 eV, PeV = 1015 eV, EeV = 1018 eV, ZeV = 1021 eV and YeV
= 1024 eV, where “k”, “M”, “G”, “T”, “P”, “E”, “Z” and “Y” denote kilo, mega,
giga, tera, peta, exa, zetta and yotta, respectively.
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relics of the Big Bang. In the bottom-up scenarios it is assumed that UHE
cosmic rays originate in some cosmic accelerators. One may find a long list of
the hitherto-proposed sources of UHE cosmic neutrinos (Halzen and Hooper,
2002). Some of them will be briefly introduced in this section.

8.1.1 The GZK Cutoff and UHE Neutrinos

Charged cosmic rays consist mostly of protons and heavier nuclei with life-
times of O(106) years or longer. The “primary” cosmic rays are referred to as
those particles accelerated at the astrophysical sources, and the “secondary”
cosmic rays are those particles produced in the interactions of the primary
cosmic rays with the interstellar gas. The existence of cosmic rays was dis-
covered by Victor Hess in 1912, and the extensive air showers initiated by
the primary cosmic rays were first observed by Pierre Auger in 1938 (Auger
et al., 1938). After about a century of measurements, the energy spectrum of
cosmic rays is now determined to a good degree of accuracy. It spans more
than ten orders of magnitude and exhibits an approximate power-law shape.
Fig. 8.1 shows the “all-particle” spectrum of cosmic rays, in which the dif-

ferential flux F (E) ≡ dΦ
dE

has been multiplied by E2.7 so as to make the

visibility of its steep structure much better (Nakamura et al., 2010). The im-
pressive steepening that occurs between E = 1015 eV and E = 1016 eV is
the so-called “knee” of the spectrum. A structure known as the “ankle” of
the spectrum appears around E = 1019 eV. If the cosmic rays up to energies
of 1017 eV to 1018 eV originate in our Galaxy, those around and beyond the
ankle are most likely to have an extragalactic origin. In fact, the origin of
UHE cosmic rays is not known at all, nor are the reasons for either the knee
or the ankle of the spectrum of cosmic rays.

Soon after Arno Penzias and Robert Wilson discovered the cosmic mi-
crowave background (CMB) radiation (Penzias and Wilson, 1965), it was
pointed out by Kenneth Greisen and independently by Georgiy Zatsepin
and Vadim Kuzmin that this radiation would have a strong attenuating ef-
fect on the propagation of cosmic rays with energies higher than about 1020

eV (Greisen, 1966; Zatsepin and Kuzmin, 1966). Today we expect that the
Greisen-Zatsepin-Kuzmin (GZK) cutoff takes place in the spectrum of cosmic
rays around E ∼ 5 × 1019 eV, as a result of the onset of inelastic interac-
tions of UHE cosmic rays with the CMB photons. The dominant reaction
leading to the GZK cutoff is the pion photoproduction on the Δ+ resonance;
i.e., p + γCMB → Δ+(1232) → p + π0 or n + π+, where the final-state par-
ticles roughly have only half of the energy of the initial proton. If the Δ+

resonance is unavailable, a weakened version of the GZK cutoff may result
from the non-resonant photoproduction of one or more pions (Coleman and
Glashow, 1998): p+ γCMB → p+ nπ or n+ nπ, where n is a positive integer
and the total electric charge of nπ should be consistent with the conservation
of electric charges for this multi-pion channel. A simple kinematic analysis
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Fig. 8.1 The all-particle spectrum of cosmic rays from the air shower measure-
ments, where the shaded area shows the range covered by the direct measurements
(Nakamura et al., 2010. With permission from the Institute of Physics)

yields a threshold energy of the proton in either case:

EthEE =

⎧⎪⎧⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎩⎪⎪
m2

Δ −m2
p

2〈EγE 〉 ≈ 3.19
〈EγE 〉 × 1017eV2 (on resonance) ,

mπ

(
2mp +mπ

)γ
2〈EγE 〉 ≈ 1.36

〈EγE 〉 × 1017eV2 (no resonance) ,
(8.1)

where 〈EγE 〉 denotes the average CMB photon energy 2, and only a single pion
(n = 1) has been taken into account in the non-resonant case. An input of
〈EγE 〉 ≈ 6.35 × 10−4 eV leads to EthEE ≈ 5.0 × 1020 GeV (or 2.1 × 1020 GeV)
for the resonant (or non-resonant) pion photoproduction. This naive result,
which is somewhat larger than EGZK ∼ 5 × 1019 eV, implies that Eq. (8.1)
can only be used to give a ballpark estimate of the GZK cutoff. The reason
is simply that many details of the inelastic photon-proton interactions in the
CMB need to be carefully dealt with (Stecker, 1968).

Fig. 8.1 shows that the observed spectrum of cosmic rays has a dip struc-
ture at the GZK-cutoff energy EGZK. This significant steepening has been
revealed mainly in the HiRes and Auger experiments (Abbasi et al., 2008;
Abraham et al., 2008), and it is apparently inconsistent with the AGASA
measurement (Takeda et al., 2003). Such a cutoff implies that the Universe
is opaque to EHE cosmic rays, with an absorption length of λp+γCMB

=

2Given the CMB temperature TγTT = 2.725 K, it is easy to get the photon energy
Eγ = 2.348 × 10−4 eV. The average value of Eγ at TγTT is 〈Eγ〉TγT ≈ 6.35× 10−4 eV.
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n−1
CMBσ

−1
p+γCMB

∼ 8 Mpc for nCMB ≈ 411 cm−3 and σp+γCMB
∼ 10−28 cm2

(Halzen and Hooper, 2002). In other words, the GZK effect suppresses EHE
cosmic rays coming from distances larger than a few tens of Megaparsecs.
The Auger experiment is expected to provide a solid observational basis for
the existence or non-existence of the GZK cutoff by detecting a sufficiently
large number of events at and above EGZK in the coming years.

Associated with the GZK cutoff of cosmic rays, cosmogenic neutrinos can
be produced from the decays of charged pions (or neutrons) (Berezinsky and
Zatsepin, 1969): π+ → μ+ +νμ and μ+ → e+ + νμ +νe (or n→ p+ e− +νe).
The energies of such GZK neutrinos should be close to EGZK, because roughly
equal energies go into the secondary nucleons and pions in the photoproduc-
tion processes discussed above. A measurement of UHE cosmic neutrinos
with Eν ∼ EGZK can therefore serve for a promising way to probe the GZK
cutoff of UHE cosmic rays. Of course, the flux of GZK neutrinos is so low
(� 10−26 MeV−1cm−2s−1sr−1) that it will be very challenging to observe
them even at an unprecedented km3-scale detector (Spiering, 2009).

8.1.2 Astrophysical Sources of UHE Neutrinos

The expected astrophysical sources of UHE neutrinos include the active galac-
tic nuclei (AGN), gamma ray bursts (GRBs) and other sources associated
with compact stellar objects, such as the supernova remnants, X-ray bina-
ries and microquasars (Halzen and Hooper, 2002; Torres and Anchordoqui,
2004). Here we give a brief introduction about two typical examples, AGN
and GRBs, together with a rough estimate of the UHE neutrino fluxes from
those optically thin sources.

(1) UHE cosmic neutrinos from AGN. The AGN should presumably be-NN
long to the most promising UHE neutrino sources, but the detailed mecha-
nism of neutrino production in the AGN remains unclear. One may follow a
conservative way, which is independent of any specific neutrino-production
models, to describe the AGN according to their geometric properties and
electromagnetic emission (Achterberg et al., 2006). For instance, the obser-
vational differences among a variety of AGN (e.g., blazars, radio galaxies
and quasars) can be partially interpreted with the help of a geometrically
axisymmetric scheme as the result of their different inclination angles which
are defined as the angles between the lines of sight and the AGN axis (Urry
and Padovani, 1995). Fig. 8.2 shows some basic ingredients of such an ax-
isymmetric scheme of the AGN. It consists of a rotating supermassive black
hole, two jets with matter outflowing along the rotation axis and an accretion
disk of matter perpendicular to the rotation axis.

The radio emission of AGN is assumed to originate mostly in relativistic
jets; namely, it is caused by the synchrotron radiation of electrons moving
along the jet. The energy spectrum of the photons emitted from the AGN
and observed on the Earth may range from radio waves to TeV gamma rays.
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Fig. 8.2 A pictorial scheme of the AGN with a black hole in the center and an
accretion disk perpendicular to the direction of two jets along its rotation axis. The
different inclination angles of the lines of sight with respect to the jet for blazars,
steep spectrum radio quasars (SSRQs) and radio galaxies are indicated by arrows
(Urry and Padovani, 1995; Achterberg et al., 2006. With permission from Elsevier)

The luminous energy of the AGN is presumably supplied by the gravitational
energy of matter falling into the supermassive black hole in the center of their
core. In this case the infalling matter forms an accretion shock at a certain
distance from the central black hole, where protons can be accelerated by the
first-order Fermi acceleration (Protheroe and Szabo, 1992; Tu, 2004). Protons
and other charged primaries can also be accelerated in the relativistic jets or
in the hot spots (e.g., of the FR-II radio galaxies) to energies around or above
1020 eV (Rachen and Biermann, 1993). Then a large amount of pions can be
produced from the interactions of protons with the dense matter surrounding
the core of the AGN (in particular, the intense photon field). In this scenario
the photons and protons cannot escape from the source region (Stecker and
Salamon, 1996), and thus the latter might only be visible by detecting the
UHE neutrinos arising from the decays of charged pions.

The accelerated protons may interact with the ambient photons or matter
via the reactions p + γ → Δ+ → n + π+ and p + X → π± + Y , leading to
the production of UHE neutrinos through π+ → μ+ + νμ and π− → μ− + νμ

decays as well as μ+ → e+ + νμ + νe and μ− → e− + νμ + νe decays. On
the other hand, the decays of neutral pions (i.e., π0 → 2γ) can produce
high-energy gamma rays. The resultant neutrino and gamma-ray fluxes are
expected to be of the same order of magnitude (Achterberg et al., 2006). Since
the proton and target photon spectra fall steeply with the increase of energies
in most scenarios, the multi-pion production, kaon production and higher
resonances only represent a small correction to the single pion production.
Given the low plasma density in the AGN jets, the proton-photon interactions
are likely to dominate over the proton-proton interactions (or generically, the
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proton-X interactions) unless the latter can take place at the inner edge of
the accretion disk (Nellen et al., 1993; Stecker and Salamon, 1996).

Blazars, which emit high-energy radiation in collimated jets pointing at
the Earth, are a subclass of AGN. They are characterized by a flat radio
spectrum (Achterberg et al., 2006), and appear less distant than the GRBs
since their lower luminosity makes distant sources difficult to observe (Halzen
and Hooper, 2002). Blazars have been identified to be prodigious gamma-ray
sources by a number of experiments in different energy regimes: infrared, keV
(or X-ray), GeV and TeV. Gamma rays in the multi-TeV range are observed
from the most powerful blazars. If the emission of high-energy photons in the
blazar jets only involves the electromagnetic processes (i.e., electron acceler-
ation and inverse Compton scattering), it is impossible to produce neutrinos.
If highly-shocked protons are present in the blazar jets, however, they may in-
teract with the ambient photons and matter to generate charged and neutral
pions which can then decay into UHE neutrinos and photons.

(2) UHE cosmic neutrinos from GRBs. GRBs are the brightest gamma
ray sources in the Universe during a period of a few seconds or tens of sec-
onds. An enormous amount of energy, typically 1051 erg to 1054 erg per
second, is released from a GRB. It can phenomenologically be described as
a fireball expanding with a highly relativistic velocity and powered by the
radiation pressure (Waxman, 2003). The delayed low-energy emission or “af-
terglow” of GRBs has been observed (Kulkarni et al., 2000) and it indicates
that GRBs are predominantly generated in host galaxies and are likely the
result of a stellar process — e.g., the “collapsar” scenario, where a supermas-
sive star undergoes the core collapse resulting in a failed supernova, is one
of the most popular models proposed for the fireball’s inner engine (Mac-
Fadyen and Woosley, 1999; Halzen and Hooper, 2002). The dynamics of a
GRB fireball is quite similar to the physics of the early expanding Universe:
(a) a radiation-dominated soup of leptons and photons (and few baryons)
is initially present, and it is hot enough to freely produce electron-positron
pairs; (b) the optical depth of photons is large enough that it is possible
to create a thermal plasma of photons, electrons and positrons — a fireball
which can then expand and accelerate to relativistic velocities; (c) the fireball
expands with increasing velocity until it becomes optically thin, and then the
photons may escape and the radiation is released in the visual display of a
GRB (Halzen and Hooper, 2002; Waxman, 2003). The observed hard photon
spectra are produced from the synchrotron radiation of electrons accelerated
by the shocks in the expanding fireball, because the latter is made up of
multiple shocks. The protons present in the fireball can also be accelerated
to very high energies in the same region, making the GRBs a good candidate
for the source of UHE cosmic rays.

Analogous to the case of AGN, pions can be produced from a GRB via
interactions of the accelerated protons with the target photon field which
is simply the highly variable radiation formed in the GRB blast wave and
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detected as the GRB. The most important pion photoproduction processes
are p+γ → n+π+ and p+γ → p+π0, in which a large fraction of the initial
proton energy is lost. In contrast, only a small fraction of the initial proton
energy is lost in the e+e− pair photoproduction process p+γ → p+ e+ + e−.
For the resonant pion photoproduction (i.e., p+γ → Δ+ → p+π0 or n+π+),
high-energy gamma rays may come from π0 → 2γ decays and high-energy
neutrinos can arise from π+ → μ++νμ decays together with μ+ → e++νμ+νe

decays. For the non-resonant multi-pion channel p+ γ → p+ nπ or n+ nπ,
the production rate of π+, π− and π0 events is possible to approach 1 : 1 : 1
(Dermer and Atoyan, 2006), implying that the ratio of νμ, νμ, νe, νe and γ
events would be 2 : 2 : 1 : 1 : 2. The energies of cosmic neutrinos produced
from the interactions of shocked protons with the ambient photons in GRBs
may vary from TeV to EeV (Halzen and Hooper, 2002) 3.

(3) UHE neutrino fluxes from optically thin sources. Both AGN and GRBs
are probably the cosmic accelerators in which UHE cosmic rays may origi-
nate. The accelerated electrons lose their energy in the magnetic field as a
result of their synchrotron radiation. The resultant photons provide a target
field for protons and heavier nuclei to trigger the meson photoproduction and
photo-disintegration processes, respectively. A neutron produced in this way
may diffuse out of the magnetically confining source before it undergoes the
beta decay. Such an astrophysical source is referred to as the optically thin
source, as shown in Fig. 8.3 (left). For an optically thick source in Fig. 8.3
(right), however, some neutrons may scatter inelastically off the photon gas
before they escape from the region of magnetic confinement (Ahlers, 2007).
Focusing on the optically thin source and assuming the resonant photopro-
duction p+γ → Δ+ → n+π+ to be the dominant process for the charged-pion
production, we shall estimate the UHE neutrino flux in the following.

In the assumption made above, we obtain νμ, νμ and νe events from
π+ → μ+ + νμ and μ+ → e+ + νμ + νe decays. They constitute the flux of
UHE neutrinos emitted from an optically thin source. Following the Waxman-
Bahcall treatment (Waxman and Bahcall, 1999), we define επ ≡ 〈Eπ〉/〈En〉
as a ratio of the average pion energy to the average neutron energy in the
reaction p + γ → Δ+(1232) → n + π+. The inelasticity of this process is
kinematically determined by requiring equal boosts for n and π+ (Stecker,
1968), giving επ ≈ 0.28. The average energies of νμ and μ+ emitted from the
π+ decay are 〈Eνμ

〉 ≈ γπ(m2
π −m2

μ)/(2mπ) ≈ Eπ(1 −m2
μ/m

2
π)/2 ≈ 0.22Eπ

and 〈Eμ〉 ≈ Eπ − 〈Eνμ
〉 ≈ 0.78Eπ. Because μ+ is much heavier than e+

and the neutrino masses are negligibly small, we assume that the energy
of μ+ is equally distributed among e+, νμ and νe in the μ+ decay; i.e.,

3Like a supernova, a GRB radiates the vast majority of its initial energy as
thermal MeV neutrinos. On the other hand, neutrons may decouple from protons in
the expanding fireball. If their relative velocity is sufficiently large, their interactions
may produce charged pions (i.e., p + n → p + p + π− and p + n → n + n + π+)
which can then produce GeV neutrinos (Halzen and Hooper, 2002).
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Fig. 8.3 A sketch of the neutrino production in an accelerator of UHE cosmic rays.
The relative fluxes depend on the optical thickness of the magnetic confinement
region illustrated by the wavy lines. The left and right panels represent the optically
thin and thick sources, respectively (Ahlers et al., 2006. With permission from
Elsevier)

〈Eνμ
〉 ≈ 〈Eνe

〉 ≈ 0.26Eπ (Ahlers, 2007). Roughly speaking, about 1/4 of
the pion’s energy is taken away by each of νμ, νμ and νe. So we define a
flavor-universal ratio for three relevant neutrinos,

εν ≡ 〈Eν〉
〈En〉

=
〈Eν〉
〈Eπ〉

· 〈Eπ〉
〈En〉

≈ επ
4
, (8.2)

which will later on be used in the calculation of the UHE neutrino flux.
For a given optically thin source at the redshift position z, one may con-

sider the differential rate of the neutron flux in an energy interval [E1, E2] and
that of the neutrino flux in the corresponding energy interval [ενE1, ενE2]:

NνNN ≡
∫ ενE2

ε

∫∫
νE1

dELν(z,E) ,

NnNN ≡
∫ E2

E

∫∫
1

dELn(z, E) =
∫ ενE2

ε

∫∫
νE1

dE
1
εν

Ln(z,E/εν) , (8.3)

where Lν (or Ln) denotes the neutrino (or neutron) luminosity per comoving
volume. Since the rates of the neutron and neutrino fluxes are 1 : 3 (i.e.,
NνNN = 3NnNN ), we have (Ahlers et al., 2006; Ahlers, 2007)

Lν(z, E) =
3
εν

Ln(z, E/εν) . (8.4)

Except for the resonant (Z-burst) interactions in the cosmic neutrino back-
ground (Weiler, 1982, 1999; Fargion et al., 1999), the UHE neutrinos may
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only undergo the redshift loss once they are emitted from the source. Their
propagation function is simply given by a step function: Pν|ν(E;Ei, z) =
Θ(Ei − (1 + z)E), whose derivative is just the delta function. Then one can
arrive at the total flux of UHE neutrinos (Ahlers, 2007):

JνJJ (E) =
1
4π

∫ ∞

0

∫∫
dEi

∫ ∞

0

∫∫
dz

1
H(z)(1 + z)

∣∣∣∣∣∣∣∣∣∣∣∣∣∂Pν|ν(E;Ei, z)

∂E

∣∣∣∣∣∣∣∣∣∣∣∣∣Lν(z, Ei)

=
1
4π

· 3
εν

∫ ∞

0

∫∫
dz

1
H(z)

Ln(z, (1 + z)E/εν) , (8.5)

where H(z) is the Hubble expansion rate at the redshift position z. Such a
UHE neutrino flux, which arises from a transparent source of cosmic rays, is
often referred to as the Waxman-Bahcall flux (Waxman and Bahcall, 1999).

8.1.3 Top-down Models and UHE Neutrinos

In the “bottom-up” approach discussed above, it is very difficult to identify
an astrophysical source as the wanted “zevatron” accelerator of cosmic rays.
A variety of “top-down” models have so far been proposed to avoid this dif-
ficulty and attribute the observed UHE cosmic ray primaries to the decay
or annihilation products of some supermassive particles. Two classes of the
top-down models, the superheavy dark matter (DM) and topological defects
(TDs), have attracted some particular interest because they are well moti-
vated even if the origin of UHE cosmic rays is irrelevant. For instance, TDs
(e.g., monopoles, cosmic strings, domain walls, etc.) are a generic prediction
of some grand unified theories and could be formed in the symmetry-breaking
phase transitions in the early Universe. The superheavy DM is an interest-
ing DM candidate, and its stable or metastable particles with masses around
1013 GeV could be produced during the inflation era of the Universe. If one
of the top-down models is responsible for the origin of UHE cosmic rays, it
must be able to produce UHE neutrinos and photons.

Superheavy stable or metastable relic particles can be a good candidate
for cold DM. They could be produced in the early Universe in various ways,
for example, by gravitational interactions from vacuum fluctuations at the
end of inflation (Chung et al., 1999; Kuzmin and Tkachev, 1999). The lifetime
of a superheavy DM particle X has to lie in the range 1017 s � τXτ � 1028 s
(Kachelrieß, 2008), longer or much longer than the age of the Universe. Such
a long-lived particle might be protected by an underlying global symmetry
which is broken in a perturbative way by high-dimensional operators sup-
pressed by 1/Mn with n � 7, where M is close to the Planck mass scale, or
in a non-perturbative way by wormhole or instanton effects (Berezinsky et
al., 1997; Kuzmin and Rubakov, 1998; Hamaguchi et al., 1998). The super-
heavy DM has several clear observational signatures (Kachelrieß, 2008). (1)
It does not predict a GZK cutoff for UHE cosmic rays; instead, it yields a
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spectrum, which is flatter than that given by an astrophysical source, up to
the kinematical cutoff at E ∼ mX/2. (2) The decay or annihilation products
of the superheavy DM contain a lot of π± and π0 events whose decays yield
large UHE neutrino and photon fluxes, usually larger than those produced
from the shock-accelerated protons at an astrophysical source. (3) The flux
of cosmic rays from the superheavy DM should show a galactic anisotropy,
as the Sun is not in the center of the Galaxy. (4) There is no correlation
between UHE cosmic ray arrival directions and astrophysical sources, since
extragalactic cosmic rays are strongly suppressed in a superheavy DM model.

TDs, whose existence was in no conflict with cosmic inflation, could be
produced in the non-thermal phase transitions during the preheating stage
of the Universe (Vilenkin and Shellard, 1994). They can naturally produce
particles with sufficiently high energies, but have problems to produce suffi-
ciently large fluxes of UHE cosmic ray primaries because of the typically large
distance between two TDs (Kachelrieß, 2008). So the flux of UHE cosmic rays
is either exponentially suppressed or strongly anisotropic if a TD happens to
be nearby. Note that the energy spectrum of UHE cosmic rays originating
from cosmic strings might have a less pronounced GZK cutoff, simply because
it is not so steep as usual and is dominated by photons instead of protons.
Since cosmic strings do not cluster, no correlation is expected between the
UHE cosmic ray arrival directions and astrophysical sources.

It is worth mentioning that the weakly interacting massive particles
(WIMPs), which are regarded as one of the most promising DM candidates,
can also produce energetic neutrinos when they annihilate. A typical example
of WIMPs is the lightest supersymmetric particle, such as the neutralino. If
the masses of WIMPs are around the electroweak scale, their annihilation will
produce neutrinos and antineutrinos with energies of O(102) GeV to O(1)
TeV. The detection of such signatures at a neutrino telescope can serve for an
indirect search for DM (Bell, 2008; Halzen and Hooper, 2009). In comparison,
the detection of UHE neutrinos with E � O(1) PeV will indirectly probe the
existence of the superheavy DM or TDs.

8.2 Detection of UHE Cosmic Neutrinos

An important subject of high-energy neutrino astronomy is to search for the
point-like neutrino sources, which would help solve a longstanding problem
— the origin of UHE cosmic rays. The detection of UHE cosmic neutrinos
requires the construction of huge detectors, the so-called neutrino telescopes,
which are well motivated by their discovery potential in astronomy, astro-
physics, cosmology and particle physics (Halzen, 2006a). Because the fluxes
of cosmic rays above the knee are too small to be detected in the satellite or
balloon experiments, large ground-based or underground detectors with large
effective detection areas have to be built. The most important experimental
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Fig. 8.4 A sketch of the experimental techniques for ground-based or underground
detection of high-energy cosmic rays, gamma rays and neutrinos (Lohse, 2005)

techniques for ground-based or underground observation of high-energy cos-
mic rays, gamma rays and neutrinos are sketched in Fig. 8.4 (Lohse, 2005).
To detect UHE cosmic neutrinos, a deep underground ice or water Cherenkov
detector is needed. In addition, radio and acoustic detection techniques for
the detection of neutrino interactions have been developed.

8.2.1 A km3-scale UHE Neutrino Telescope

An optical Cherenkov neutrino telescope consists of large arrays of photomul-
tiplier tubes underwater or under ice. It detects the Cherenkov light emitted
by charged leptons which have been produced in neutrino interactions with
the medium (water or ice). This technique was established by two pioneer-
ing detectors, NT200 in Lake Baikal (Balkanov et al., 1998) and AMANDA
at the South Pole (Ahrens et al., 2004; Ackermann et al., 2006). At present
three underwater neutrino telescope projects, ANTARES (Aslanides et al.,
1999), NESTOR (Tzamarias et al., 2003) and NEMO (Piatelli et al., 2005),
are being pursued in the Mediterranean sea. The most impressive optical
Cherenkov neutrino telescope is IceCube, a km3-scale successor of AMANDA
at the South Pole (Achterberg et al., 2006).

IceCube is a km3-volume under-ice neutrino detector under construction
at the South Pole. Once its deployment is completed in 2011, IceCube will
comprise 4800 digital optical modules (DOMs) along 80 vertical strings de-
ployed in the ice at depths from 1450 m to 2450 m. The distance between
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two neighboring strings is 125 m. Each string consists of 60 DOMs at a verti-
cal spacing of 16.7 m. Each DOM consists of a 25-cm-diameter Hamamatsu
photomultiplier tube, the electronics for waveform digitization and a spher-
ical pressure-resistant glass housing. Half of the array configuration with 40
strings had been finished before April 2008, and it has began operating since
May 2008. The IceCube facility is complemented with an air shower array,
IceTop, which covers a surface of 1 km2 above the IceCube detector and is
composed of 80 detector stations (Bernardini, 2009). Each station is equipped
with two ice Cherenkov tanks. The IceTop facility serves as a veto to cosmic
ray showers and as a calibration array, and it can also be used to study some
other scientific topics on cosmic rays.

The IceCube detector is optimized to detect cosmic neutrinos of all flavors
in the energy range from TeV to EeV. The signal waveforms recorded by
individual photomultipliers are digitized in each DOM and transmitted to
the surface by twisted-pair cables (Bernardini, 2009). Experimental data can
be processed by several hardware and software triggers, which are responsive
to different event topologies. A series of reconstruction algorithms and event
filters are applied in situ to the calibrated data so as to reduce the trigger rate
to a total data volume, which can then be transferred north via a satellite.
Such events will later on be fitted to the templates representing different
neutrino interaction modes (Bernardini, 2009). The IceCube Collaboration
has so far searched for possible point-like sources of cosmic neutrinos in the
northern sky by using the data recorded from 2007 to 2008 with 22 strings of
the detector and 275.7 days of live time (Abbasi et al., 2009). The final sample
of 5114 neutrino candidate events agrees well with the expected background
of atmospheric muon neutrinos and a small component of atmospheric muons,
and shows no evidence for a point-like source.

To build a km3-scale neutrino telescope in the northern hemisphere as a
counterpart of IceCube is well motivated (Avignone et al., 2008). On the one
hand, the candidate sources for high-energy neutrinos are not isotropically
distributed in the local Universe. This fact, together with the probably mod-
est number of detectable sources, calls for a complete coverage of the sky.
On the other hand, only a telescope in the northern hemisphere is able to
see the upward-going neutrinos coming from the galactic center — a place
of particular interest. Hence KM3NeT, a km3-scale UHE neutrino telescope
in the Mediterranean sea to complement the IceCube detector at the South
Pole, has been proposed (Carr et al., 2007). The KM3NeT design study is
currently underway to address many important issues, such as its scientific
sensitivity, fast and secure installation, stable operation and maintainability,
and long-term deep-sea measurements.

8.2.2 Identification of UHE Neutrino Flavors

For either IceCube or KM3NeT, the detection of all neutrino flavors is im-
portant because of the tau neutrino “regeneration” through the Earth and



8.2 Detection of UHE Cosmic Neutrinos 301

neutrino oscillations (Halzen, 2006a). A generic cosmic accelerator is ex-
pected to produce UHE neutrinos from the decays of charged pions, and
thus the ratio of initial (νe + νe), (νμ + νμ) and (ντ + ντ ) fluxes should be
φe : φμ : φτ = 1 : 2 : 0. Thanks to neutrino oscillations, this ratio turns out to
be 1 : 1 : 1 at a neutrino telescope, as one can see in Section 8.3. The appear-
ance of ντ (or ντ ) events is a natural consequence of neutrino oscillations.
Unlike UHE νe and νμ neutrinos, which can be absorbed by their charged-
current interactions with matter in the Earth, UHE ντ neutrinos cannot be
absorbed in the Earth due to the charged-current regeneration effect (Halzen
and Saltzberg, 1998). In other words, ντ neutrinos with energies larger than
1 PeV can pass through the Earth and then emerge with energies of about
1 PeV. The reason is simple: an UHE ντ neutrino interacting in the Earth
can produce another ντ neutrino, whose energy is somewhat lower, either di-
rectly via the neutral-current interaction of ντ with matter or indirectly via
the decay of a τ lepton produced from the charged-current interaction of ντ

with matter. UHE ντ neutrinos will therefore cascade down to the PeV level
at which the Earth is essentially transparent.

A km3-scale neutrino telescope is in general designed to detect cosmic
neutrinos of all possible energies above O(102) GeV. It actually detects the
secondary particle showers initiated by neutrinos of all flavors as well as the
leading secondary muon tracks initiated only by muon neutrinos (Halzen,
2006b). Let us briefly describe how to identify different neutrino flavors at
the IceCube (or KM3NeT) detector.

(1) Identification of electron neutrinos. High-energy electron neutrinos
can only deposit � 1% of their energy into an electromagnetic shower ini-
tiated by the leading final-state electrons (e.g., νe + n → p + e−) (Halzen,
2006a) 4. The rest of their energy goes into the fragments of the targets
which produce a second subdominant shower. The span of the electromag-
netic shower is only a few meters in ice or water, much smaller than the
horizontal spacing of the DOMs (∼ 125 m). Hence such a shower approxi-
mates to a point-like source of Cherenkov photons radiated by its charged
particles. These Cherenkov photons trigger the DOM at the single photo-
electron level over a spherical volume whose radius scales up with the shower
energy (Halzen, 2006a), as illustrated in Fig. 8.5. A measurement of the ra-
dius of this sphere in the lattice of DOMs can then be used to determine the
energy of the incident electron neutrinos. Because the shower itself and its
accompanying Cherenkov lightpool are not completely symmetric but elon-
gated in the direction of the leading electron, the direction of the incident
neutrino can then be reconstructed to a reasonable degree of accuracy (with
an error bar � 10◦) (Halzen, 2006b).

4For high-energy electron antineutrinos, νe + p → n + e+ and other similar
charged-current interactions take place in the detector. One may therefore identify
νe and νe events by observing e− and e+ events, respectively.
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Fig. 8.5 Cherenkov light patterns produced by muons (left) and by secondary
showers initiated by electron and tau neutrinos (right) in IceCube (Halzen, 2006b.
With permission from Springer Science+Business Media)

(2) Identification of muon neutrinos. The secondary muons initiated by
the incident muon neutrinos may range over a few kilometers when Eν ∼ O(1)
TeV and tens of kilometers when Eν ∼ O(1) EeV, generating showers along
their tracks by bremsstrahlung, pair production and photonuclear interac-
tions (Halzen, 2006a). These are the sources of Cherenkov radiation and can
be detected in the same way as that for high-energy electron neutrinos dis-
cussed above. Since the energy of the muon degrades along its track, the
energy of the secondary showers decreases and thus the distance from the
track over which the associated Cherenkov light can trigger a DOM becomes
smaller and smaller. The geometric pattern of the Cherenkov lightpool sur-
rounding the muon track is therefore a kilometer-long cone whose radius
gradually decreases, as shown in Fig. 8.5. For the first kilometer, a high-
energy muon typically loses about one tenth of its initial energy in a couple
of showers. Hence the initial size of the cone is the radius of a shower with
about 10% of the muon energy (e.g., about 130 m for an 100 TeV muon)
(Halzen, 2006b). Near the end of its range the muon becomes minimum ion-
izing and emits light which creates single photoelectron signals at a distance
of just over 10 m from the track. Because of the stochastic nature of muon en-
ergy loss, only the logarithm of the muon energy can be measured. Although
UHE muons initiated by the incident UHE muon neutrinos have ranges of
tens of kilometers, the initial energies of their events cannot always be mea-
sured. A muon can be produced at one energy, travel several kilometers and
then be detected with another (much lower) energy (Halzen, 2006b).

(3) Identification of tau neutrinos. Relative to electron and muon neu-
trinos, the production rate of tau neutrinos from a cosmic accelerator is
suppressed by about five orders of magnitude. But the detection of UHE tau
neutrinos at a neutrino telescope makes sense because nearly half of the UHE
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muon neutrinos can actually convert over cosmic distances into tau neutrinos
as a consequence of neutrino oscillations. On the other hand, an UHE tau
neutrino beam is not absorbed by the Earth due to its “regeneration” effect.
Hence it can always reach the detector in spite of some energy loss. There
are several ways to identify the flavor of UHE tau neutrinos in a km3-scale
neutrino telescope. The most striking signature comes from the characteristic
double-bang events, in which the production and decay of a tau are detected
as two separated showers inside the detector (Learned and Pakvasa, 1995;
Gaisser et al., 1995). It is also possible to identify the “lollipop” events in
which a tau neutrino creates a long minimum-ionizing track that penetrates
the detector and ends in a high-energy cascade when the tau decays (Halzen,
2006b). The parent tau track can then be identified by the reduced catas-
trophic energy loss compared with a muon track with the similar energy. To
identify a double-bang event in the IceCube or KM3NeT detector, the fol-
lowing conditions have to be satisfied (Halzen, 2006b): (a) the incident tau
neutrino has to interact with ice or water via the charged-current interactions,
producing a hadronic shower contained inside or close to the instrumented
volume; (b) the produced tau must decay inside the detector into a final state
which can generate an electromagnetic or hadronic shower contained inside
the device; (c) the travel distance of the tau (before it decays) has to be
sufficiently long such that the two showers can be clearly separated; and (d)
the showers must be sufficiently energetic to trigger the DOMs.

8.2.3 Other Ways to Detect UHE Neutrinos

Besides the optical detection of UHE cosmic neutrinos in ice and water, some
other techniques have been developed to measure the low-flux tails of UHE
cosmic neutrino spectra (see Fig. 8.4 for illustration).

(1) Radio detection of neutrino-induced air showers. Electromagnetic cas-
cades produced by the interactions of high-energy electron neutrinos can
emit strong coherent Cherenkov radiation in any dielectric medium, the so-
called Askaryan effect (Askaryan, 1962, 1965) which was first observed in 2001
(Saltzberg et al., 2001). The signal strength rises proportionally to E2

ν , mak-
ing this method particularly interesting for detecting UHE cosmic neutrinos.
In ice or salt domes, attenuation lengths of several kilometers can be reached
with the radio detection technique, depending on the frequency band, ice
temperature or salt quality (Avignone et al., 2008). This allows large spac-
ing between the individual detectors and a comparatively cheap extension
to large volumes. Hence radio detection in ice or salt may be competitive
with or superior to optical detection for Eν � O(10) PeV. The ANITA Long
Duration Balloon experiment was designed specifically to search for cosmic
neutrinos above Eν ∼ 1017 eV in an Antarctic circumpolar flight (Barwick
et al., 2006). At a typical altitude of about 35 km above the ice surface,
the ANITA detector is able to record radio impulses in the thick ice sheet
and monitor a huge volume (∼ 1.6 × 106 km3). ANITA’s antennas are 32
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quad-ridged dual-linear-polarization horns, each with a field of view which
averages about 50◦ angular diameter over their (0.2 · · · 1.2)×109 Hz working
bandwidth. The combined view of all antennas covers the entire lower hemi-
sphere down to angles of about 55◦, comprising 99.4% of the area within the
horizon (Gorham et al., 2009). Some initial results from ANITA’s first 35-day
flight have recently been reported, but no evidence for a diffuse flux of cosmic
neutrinos above Eν ≈ 3 × 1018 eV is found (Gorham et al., 2009).

(2) Acoustic detection of neutrino-induced showers in water, ice or salt.
This promising technique, based on Gurgen Askaryan’s observation that an
interacting neutrino can emit a thin thermoacoustic pancake normal to the
shower axis (Askaryan, 1962, 1965), remains in its R&D phase. It relies on
the ionization loss in high-energy particle cascades transforming into heat,
and the subsequent fast expansion of the medium leads to a short acoustic
pulse (Avignone et al., 2008). The signal power spectrum peaks at 20 kHz,
where the attenuation length of sea water or ice is expected to be a few kilo-
meters. Such a large theoretical attenuation length has not been experimen-
tally demonstrated, but it makes this method attractive for the detection
of extremely energetic cosmic neutrinos (in the EeV region) because large
detector spacing is mandatory in order to achieve a huge detection volume
necessary for a low neutrino flux. Open key issues include the signal strength
and natural background levels (Podgorski and Ribordy, 2010). Acoustic de-
tectors might be deployed to surround the optical detectors of KM3NeT in
the Mediterranean sea and enhance its sensitivity to much higher energies,
but radio does not work in salt water. For IceCube, a hybrid scheme con-
sisting of optical, radio and acoustic detection facilities has been proposed
(Vandenbroucke et al., 2006; Avignone et al., 2008) and its total volume will
be of O(102) km3.

(3) Optical detection of neutrino-induced air showers. This technique can
be used to measure horizontal air showers initiated by neutrino interactions
deep in the atmosphere. A large air shower detector (e.g., Auger) is able to
probe cosmic neutrinos in the energy range 0.1 EeV � Eν � 1 EeV. If the
effective detector mass is sufficiently large (e.g., more than 20 gigatons), it
is possible to detect UHE tau neutrinos scratching the Earth and interacting
close to the detector array (Avignone et al., 2008). They are known as the
Earth-skimming neutrinos (Feng et al., 2002; Fargion, 2002). An extremely
energetic tau produced in such interactions may escape the rock, and the
particle cascade produced by its decay in the atmosphere above the detector
array can then be recorded. When Eν approaches its maximum, one is led
to the space-based detectors monitoring larger volumes than visible from
any point on the Earth’s surface. The EUSO project has been proposed to
launch large mirrors with optical detectors to the height of 500 km on the
International Space Station and search for fluorescence and Cherenkov light
signals arising from UHE neutrino interactions in the atmosphere (Agnetta,
2006). On the other hand, one may simply consider to apply the techniques
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of air shower fluorescence and Cherenkov light detectors with the help of
a mountain or the Earth’s crust. The CRTNT project has therefore been
proposed to detect the Earth-skimming UHE tau neutrinos (Cao et al., 2005).
Both projects are at present suspended, unfortunately.

It is finally worth mentioning a Chinese version of the CRTNT (cosmic
ray tau neutrino telescope) project (Liu et al., 2009). Such a telescope is as-
sumed to be located at the foothill of Mt Balikun in Xinjiang, China. The
site is sufficiently dry throughout the year and the mountain is reasonably
thick and sufficiently steep, suitable for detecting the Earth-skimming UHE
tau neutrinos by means of air shower fluorescence and Cherenkov light detec-
tors. Because of their charged-current interactions with the rock, the incident
UHE cosmic neutrinos may convert into charged leptons inside the mountain.
The electrons can quickly shower in the rock, while the muons may travel a
very long distance before decaying. Hence both of them are difficult to be de-
tected using this method. The taus produced inside the mountain may have
a sufficiently long lifetime to escape from the mountain, and then decay and
induce air showers in the air near the mountain. For the time being it remains
unclear whether the CRTNT project in China has a bright prospect or not.

8.3 Flavor Distribution of UHE Cosmic Neutrinos

On the way from a distant astrophysical source to a telescope on the Earth,
the flavors of UHE cosmic neutrinos must oscillate many times. A measure-
ment of the flavor distribution of UHE cosmic neutrinos at a telescope can
therefore probe their initial flavor composition, which is closely associated
with the source properties, or examine the effects of neutrino mixing and CP
violation in such ultralong-baseline neutrino oscillations. In principle, it is also
possible to use the flavor oscillations of UHE neutrinos to test some funda-
mental symmetries (e.g., CPT invariance) or explore some “exotic” properties
of neutrinos (e.g., neutrino decays).

8.3.1 Flavor Issues of UHE Neutrinos

Given the initial UHE cosmic neutrino fluxes Φ = {φe, φμ, φτ} at a distant
astrophysical source, its flavor components are defined as φα = φνα

+φνα
(for

α = e, μ, τ), where φνα
and φνα

denote the να and να fluxes, respectively. At
a neutrino telescope one may similarly define the fluxes ΦT = {φT

e , φ
T
μ , φ

T
τ }

with φT
α = φT

να
+φT

να
(for α = e, μ, τ). The relation between φνα

(or φνα
) and

φT
να

(or φT
να

) is given by

φT
νβ

=
∑
α

φνα
P (να → νβν ) ,

φT
νβ

=
∑
α

φνα
P (να → νβ) , (8.6)
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where P (να → νβν ) and P (να → νβ) stand respectively for the probabilities of
να → νβν and να → νβ oscillations. As the cosmological distances far exceed
the observed neutrino oscillation lengths, P (να → νβν ) and P (να → νβ) are
actually averaged over many oscillations and take a very simple form:

〈P (να → νβν )〉 = 〈P (να → νβ)〉 =
∑

i

|VαiVV |2|VβiVV |2 , (8.7)

as already shown in Eq. (5.6), where VαiVV and VβiVV (for i = 1, 2, 3 and α, β =
e, μ, τ) denote the elements of the neutrino mixing matrix V . Eqs. (8.6) and
(8.7) lead us to a straightforward relation between φα and φT

β :

φT
β =
∑
α

∑
i

|VαiVV |2|VβiVV |2φα . (8.8)

The unitarity of V assures a sum rule φT
e + φT

μ + φT
τ = φe + φμ + φτ ≡ φ0.

For most of the astrophysical sources which are able to produce UHE
neutrinos via the decays of charged pions (and kaons) followed by the decays
of muons, we expect φe : φμ : φτ = 1 : 2 : 0 to hold. This flavor ratio is
only approximate in practice, not only because the production of ντ and ντ

events is not purely suppressed but also because the sizes of φe and φμ may
depend on the very details of a source model (e.g., the energy spectrum of
UHE neutrinos at the source). A careful estimate yields φe : φμ : φτ ≈ 1 :
1.86 : x with x � 0.001 (Lipari et al., 2007; Pakvasa et al., 2008). For the
postulated neutron beam source (Anchordoqui et al., 2004; Crocker et al.,
2005), however, φe : φμ : φτ = 1 : 0 : 0 might approximately hold; and
for a possible muon-damped source (Rachen and Meszaros, 1998; Kashti and
Waxman, 2005), one has φe : φμ : φτ = 0 : 1 : 0 as a good approximation.
As for the “GZK neutrinos” produced via the dominant p+ γCMB → Δ+ →
n + π+ process, one expects φe : φμ : φτ = 1 : 0 : 0 when the neutrino
energy is below about 100 PeV and the neutron decays dominate the neutrino
production; or φe : φμ : φτ = 1 : 2 : 0 when the neutrino energy is above
about 100 PeV and the pion decays dominate the neutrino production (Engel
et al., 2001; Pakvasa, 2008). To universally describe the flavor content of UHE
cosmic neutrinos at different sources, we propose a simple parametrization of
their initial fluxes as (Xing and Zhou, 2006)

φe = φ0 sin2 ξ cos2 ζ , φμ = φ0 cos2 ξ cos2 ζ , φτ = φ0 sin2 ζ , (8.9)

where ξ ∈ [0,π/2] and ζ ∈ [0,π/2], and φ0 = φe + φμ + φτ denotes the total
flux. Then the conventional flux ratio φe : φμ : φτ = 1 : 2 : 0 corresponds
to ξ = arctan(1/

√
2) ≈ 35.3◦ and ζ = 0◦. Of course, ξ and ζ take different

values for other aforementioned sources.
At a neutrino telescope three working observables, which are largely free

from the systematic uncertainties associated with the measurements of φT
α
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(for α = e, μ, τ), can be defined as Rα ≡ φT
α/(φ

T
β + φT

γ ), where α, β, γ run
over e, μ, τ cyclically. Since Re, Rμ and Rτ satisfy

Re

1 +Re

+
Rμ

1 +Rμ

+
Rτ

1 +Rτ

= 1 , (8.10)

only two of them are independent. Without loss of generality, we choose Re

and Rμ as two typical observables and derive their explicit relations with ξ
and ζ. Substituting Eqs. (8.8) and (8.9) into Eq. (8.10), we obtain

Re =
PeePP sin2 ξ + PμeP cos2 ξ + PτePP tan2 ζ

sec2 ζ −
[
PeePP sin2 ξ + PμeP cos2 ξ + PτePP tan2 ζ

] ,
Rμ =

PeμPP sin2 ξ + PμμP cos2 ξ + PτμPP tan2 ζ

sec2 ζ −
[
PeμPP sin2 ξ + PμμP cos2 ξ + PτμPP tan2 ζ

] , (8.11)

where PαβP ≡ |VαVV 1|2|VβVV 1|2 + |VαVV 2|2|VβVV 2|2 + |VαVV 3|2|VβVV 3|2 (for α, β = e, μ, τ).
The source flavor parameters ξ and ζ turn out to be (Xing and Zhou, 2006)

sin2 ξ =
re(PτμPP − PμμP ) − rμ(PτePP − PμeP ) + (PμμP PτePP − PμeP PτμPP )

(re − PτePP )(PeμPP − PμμP ) − (rμ − PτμPP )(PeePP − PμeP )
,

tan2 ζ =
re(PμμP − PeμPP ) − rμ(PμeP − PeePP ) + (PeμPP PμeP − PeePP PμμP )

(re − PτePP )(PeμPP − PμμP ) − (rμ − PτμPP )(PeePP − PμeP )
, (8.12)

where re ≡ φT
e /φ0 = Re/(1 +Re) and rμ ≡ φT

μ/φ0 = Rμ/(1 +Rμ) have been
used to simplify the expressions. One may in principle choose either (Re, Rμ)
or (re, rμ) as a set of working observables to inversely determine ξ and ζ.
In the standard parametrization of V shown in Eq. (3.107), the magnitudes
of PαβP depend on three mixing angles (θ12, θ13, θ23) and one CP-violating
phase (δ). So Re and Rμ totally rely on six parameters. One may make two
arguments on flavor physics at a neutrino telescope:

• If θ12, θ13, θ23 and δ are known to a good degree of accuracy, then a mea-
surement of Re and Rμ will help determine or constrain the initial flavor
composition of UHE cosmic neutrinos for a given astrophysical source
(Xing and Zhou, 2006; Choubey and Rodejohann, 2009; Lai et al., 2009).

• If the production mechanism and flavor distribution of UHE neutrinos
at an astrophysical source have been understood, then a measurement of
Re and Rμ will help probe the neutrino mixing pattern and CP violation
(Serpico and Kachelrieß, 2005; Serpico, 2006; Xing, 2006; Winter, 2006;
Rodejohann, 2007; Xing, 2007; Blum et al., 2007; Choubey et al., 2008).

In the following we illustrate the second point by taking a simple example.
Let us focus on a conventional astrophysical source of UHE cosmic neu-

trinos with the ideal flavor ratio φe : φμ : φτ = 1 : 2 : 0. Because of neutrino
oscillations, the flavor ratio at a neutrino telescope can be calculated by
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means of Eq. (8.8). It is easy to show that the flavor distribution at the tele-
scope may have a democratic pattern φT

e : φT
μ : φT

τ = 1 : 1 : 1, provided the
condition |VμiVV | = |VτiVV | (for i = 1, 2, 3) or equivalently the μ-τ symmetry is
satisfied (Xing and Zhou, 2008). This condition corresponds to either θ13 = 0
and θ23 = π/4 (CP invariance) or δ = ±π/2 and θ23 = π/4 (CP violation)
in the standard parametrization of V . Current neutrino oscillation data in-
dicate that θ13 is very small and θ23 is close to π/4, and thus V exhibits an
approximate μ-τ symmetry. In this case we use two small parameters θ13 and
ε ≡ θ23 − π/4 to describe the small effects of μ-τ symmetry breaking:⎡⎣|VeVV 1|2 |VeVV 2|2 |VeVV 3|2

|VμVV 1|2 |VμVV 2|2 |VμVV 3|2
|VτVV 1|2 |VτVV 2|2 |VτVV 3|2

⎤⎦ =
1
2

⎡⎣2c212 2s212 0
s212 c212 1
s212 c212 1

⎤⎦+ ε

⎡⎣ 0 0 0
−s212 −c212 1
s212 c212 −1

⎤⎦
+
θ13
2

sin 2θ12 cos δ

⎡⎣ 0 0 0
1 −1 0
−1 1 0

⎤⎦+ · · · , (8.13)

where c12 ≡ cos θ12, s12 ≡ sin θ12, and higher-order terms of θ13 and ε have
been omitted. Substituting Eq. (8.13) into Eq. (8.8), we arrive at (Xing, 2006)

φT
e : φT

μ : φT
τ = (1 − 2Δ) : (1 +Δ) : (1 +Δ) , (8.14)

whereΔ = (2ε sin2 2θ12−θ13 sin 4θ12 cos δ)/4 compatible with the approxima-
tion made in Eq. (8.13). It is obvious that the naive flavor democracy is broken
as a direct consequence of μ-τ symmetry breaking. Given 30◦ < θ12 < 38◦,
θ13 < 10◦ (≈ 0.17) and |ε| < 9◦ (≈ 0.16) as indicated by current experimental
data (see Section 3.1.5), we find −0.1 � Δ � +0.1 by allowing δ to vary from
0 to 2π. The working observables Re, Rμ and Rτ defined above Eq. (8.10)
for a neutrino telescope turn out to be

Re ≈ 1
2
− 3

2
Δ , Rμ ≈ Rτ ≈ 1

2
+

3
4
Δ . (8.15)

So Re is most sensitive to the effect of μ-τ symmetry breaking.
One may also consider to probe the breaking of μ-τ symmetry by de-

tecting the νe flux from a distant astrophysical source through the Glashow
resonance (GR) channel νe + e → W− → anything (Glashow, 1960). The
latter can actually take place over a narrow energy interval around the νe

energy EGR
νe

≈ M2
WMM /2me ≈ 6.3 PeV. A neutrino telescope is in principle

possible to measure both the GR-mediated νe events (NGR
νNN e

) and the νμ + νμ

events of charged-current (CC) interactions (NCC
νNN μ+νμ

) in the vicinity of EGR
νe

.
Their ratio, defined as RGR ≡ NGR

νNN e
/NCC

νNN μ+νμ
, can be related to the ratio of

νe events to νμ and νμ events entering the detector, R0 ≡ φT
νe
/(φT

νμ
+ φT

νμ
).

One obtains RGR = aR0 with a ≈ 30.5 (Bhattacharjee and Gupta, 2005) by
considering the muon events with contained vertices in a water- or ice-based
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detector (Beacom et al., 2003a). Provided the neutrinos are initially produced
via the decays of charged pions created from high-energy pp or pγ collisions
at an optically thin source, their flavor composition can be expressed as fol-
lows: {φνe

, φνe
, φνμ

, φνμ
, φντ

, φντ
} = {1/6, 1/6, 1/3, 1/3, 0, 0}φ0 (for

pp collisions) or {1/3, 0, 1/3, 1/3, 0, 0}φ0 (for pγ collisions). In either case
φe : φμ : φτ = 1 : 2 : 0 holds. Due to neutrino oscillations, the νe flux detected
at a neutrino telescope reads (Xing, 2006, 2008)

φT
νe

(pp) =
φ0

6
(1 − 2Δ) , φT

νe
(pγ) =

φ0

12
(
sin2 2θ12 − 4Δ

)
, (8.16)

where Δ has been given below Eq. (8.14). In addition, we have φT
νμ

+ φT
νμ

≈
φ0(1 +Δ)/3. It is then straightforward to obtain

R0(pp) ≈
1
2
− 3

2
Δ , R0(pγ) ≈

sin2 2θ12
4

− 4 + sin2 2θ12
4

Δ . (8.17)

This result indicates that R0(pγ) is very sensitive to the value of sin2 2θ12
(Anchordoqui et al., 2005), and the effect of μ-τ symmetry breaking shows
up in both R0(pγ) and R0(pp).

8.3.2 Flavor Effects in New Physics Scenarios

Some “exotic” scenarios of new physics, such as quantum decoherence, CPT
violation, neutrino decays, sterile neutrinos and non-unitarity of the 3 × 3
neutrino mixing matrix V , may also affect the flavor oscillations of UHE
cosmic neutrinos for a given source.

(1) Quantum decoherence. In some models of quantum gravity the phe-
nomenon of spacetime “foam” may be incorporated and the singular micro-
scopic fluctuations of the metric give the ground state of quantum gravity the
structure of a “stochastic medium” (Barenboim et al., 2006). Such a medium
has the profound effect of CPT-violating decoherence of quantum matter as
it propagates. A striking consequence of gravitational decoherence on neu-
trino oscillations is the exponential damping of oscillatory terms with time
or distances. In a generic Lindblad decoherence model the probabilities of
να → νβν oscillations can be written as (Barenboim et al., 2006)

P (να → νβν ) =
1
3

+
∑

i

Oie
−DiL , (8.18)

where Oi denotes an oscillatory term modified by quantum decoherence, Di

is the corresponding decoherence parameter which can be either a constant
or a function of energy, and L represents the travel distance of neutrinos.
For UHE cosmic neutrinos from a very distant source (i.e., L → ∞), one is
left with P (να → νβν ) = 1/3 under complete quantum decoherence and thus
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φT
β = φ0/3 or φT

e : φT
μ : φT

τ = 1 : 1 : 1 at a neutrino telescope regardless
of their initial flavor composition (Liu et al., 1997; Ahluwalia, 2001; Hooper
et al., 2005). This result mimics the one obtained in Section 8.3.1 from a
specific astrophysical source with φe : φμ : φτ = 1 : 2 : 0 and under the exact
μ-τ symmetry. To search for possible evidence for quantum decoherence in
UHE cosmic neutrino oscillations, one should consider an astrophysical source
which has a different flavor content (e.g., φe : φμ : φτ = 1 : 0 : 0 from the
beta decay of neutrons) (Hooper et al., 2005; Pakvasa, 2008).

(2) CPT violation. In a theory with spontaneous CPT violation (Col-
laday and Kostelecký, 1997), its Lagrangian may contain the vector- and
pseudovector-like spinor bilinears ψγμψ and ψγμγ5ψ which are apparently
CPT-odd as shown in Table 3.5. An effective CPT- and Lorentz-violating
operator contributing to the neutrino sector can be parametrized as Oν =
ναLC

αβ
μC γμνβν L, where α and β run over e, μ and τ , and Cαβ

μC are real coeffi-
cients (Dighe and Ray, 2008). This operator can modify the dispersion rela-
tion of neutrinos and the effective Hamiltonian responsible for their propaga-
tion. Hence the behaviors of UHE cosmic neutrino oscillations get modified:

〈P (να → νβν )〉 = 〈P (να → νβ)〉 =
∑

i

|V ′
αiVV |2|V ′

βiVV |2 , (8.19)

where V ′ is the effective neutrino mixing matrix which depends on both V
and CμC (Bustamante et al., 2010). Given a conventional source of UHE cosmic
neutrinos with φe : φμ : φτ = 1 : 2 : 0, CPT violation has a large room to
modify the flavor democracy φT

e : φT
μ : φT

τ = 1 : 1 : 1 at a neutrino telescope
(Barenboim and Quigg, 2003; Bustamante et al., 2010).

(3) Unitarity violation. In some seesaw models in which there exists the
mixing between three light neutrinos and a few heavy degrees of freedom (e.g.,
heavy Majorana neutrinos) as discussed in Chapter 4, the 3 × 3 neutrino
mixing matrix V must be non-unitary. The strength of unitarity violation
can be of O(10−2) if a seesaw model works at the TeV scale (Xing, 2009),
and thus it may show up in UHE cosmic neutrino oscillations. Following the
parametrization of V given in Section 4.5.2, we consider a simple pattern of
V which slightly deviates from the tri-bimaximal neutrino mixing pattern V0VV
given in Eq. (3.110) (Xing and Zhou, 2008):

V ≈ V0VV −

⎛⎜⎛⎛⎝⎜⎜
2√
6
W1WW 1√

3
W1WW 0

1√
6

(2X −W2WW ) 1√
3

(X +W2WW ) 1√
2
W2WW

1√
6

(2Y − Z +W3WW ) 1√
3

(Y + Z −W3WW ) 1√
2

(Z +W3WW )

⎞⎟⎞⎞⎠⎟⎟ , (8.20)

where WiWW = (s2i4 + s2i5 + s2i6)/2 (for i = 1, 2, 3), X = ŝ14ŝ
∗
24 + 1̂5ŝ

∗
25 + 1̂6ŝ

∗
26,

Y = ŝ14ŝ
∗
34+ 1̂5ŝ

∗
35+ 1̂6ŝ

∗
36 and Z = ŝ24ŝ

∗
34+ 2̂5ŝ

∗
35+ 2̂6ŝ

∗
36 with sij ≡ sin θij

and îj ≡ eiδijsij being defined. The mixing angles θij can at most be of
O(0.1), but the CP-violating phases δij are entirely unrestricted. Now we
look at the oscillations of UHE cosmic neutrinos coming from a conventional
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astrophysical source with φe : φμ : φτ = 1 : 2 : 0. With the help of Eq. (8.8),
we arrive at (Xing and Zhou, 2008)

φT
e ≡ φ0

3

[
1 − 4

9
(7W1WW + 2W2WW ) +

4
9
ReX
]
,

φT
μ ≡ φ0

3

[
1 − 4

9
(W1WW + 8W2WW ) − 2

9
ReX
]
,

φT
τ ≡ φ0

3

[
1 − 2

9
(2W 1 + 7W2WW + 9W3WW ) − 2

9
ReX
]
, (8.21)

at a neutrino telescope. The flavor democracy of φT
α (for α = e, μ, τ) is clearly

broken, and the effect of this symmetry breaking can be as large as several
percent. Because of the non-unitarity of V , the total flux of UHE cosmic
neutrinos at the telescope is not equal to that at the source:∑

α

φT
α = φ0

[
1 − 2

3
(2W1WW + 3W2WW +W3WW )

]
. (8.22)

This sum approximately amounts to 0.96φ0 if W i ∼ 0.01 (for i = 1, 2, 3).
The non-unitarity of V is very small and certainly difficult to be observed in
a realistic experiment, but Eqs. (8.21) and (8.22) can at least illustrate how
sensitive a neutrino telescope should be to this kind of new physics.

(4) Neutrino decays. Now that neutrinos have finite masses and lepton
flavors are mixed, the heavier neutrinos are in general expected to decay into
the lighter ones via the flavor-changing channels. But one may wonder (a)
whether the lifetimes of neutrinos are short enough to be phenomenologically
interesting and (b) what the dominant decay modes are (Pakvasa, 2000). Ra-
diative neutrino decays are less interesting in this sense, whereas the “exotic”
decays νi → νjν +χ with χ being a Majoron (Chikashige et al., 1981; Gelmini
and Roncadelli, 1981) or unparticle (Zhou, 2008) might be suggestive and
interesting. Regardless of any details of model building and other astrophys-
ical implications, here we focus on the flavor issues of unstable UHE cosmic
neutrinos. Given a neutrino mass eigenstate νi, a characteristic feature of its
decay is the strong energy dependence: exp(−t/τlabττ ) with τlabττ = τ0ττ E/mi,
where τ0ττ , mi, E, t and L denote the rest-frame lifetime of νi, its mass, its
energy, its travel time and its travel distance, respectively (Beacom et al.,
2003b). For simplicity, we only consider the case that the decays are com-
plete (i.e., such exponential factors vanish) for UHE cosmic neutrinos on
their way from a distant astrophysical source to a neutrino telescope on the
Earth. In this case only the lightest neutrinos arrive at the Earth (Farzan
and Smirnov, 2002). If the neutrino mass spectrum has a normal hierarchy,
the lightest neutrino is ν1 = V ∗

eVV 1νe + V ∗
μVV 1νμ + V ∗

τVV 1ντ and thus the flavor ratio
at the telescope is

φT
e : φT

μ : φT
τ = |VeVV 1|2 : |VμVV 1|2 : |VτVV 1|2 , (8.23)
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independent of the initial flavor composition at the source. Given the inverted
neutrino mass hierarchy, the lightest neutrino is ν3 = V ∗

eVV 3νe + V ∗
μVV 3νμ + V ∗

τVV 3ντ

and hence the flavor ratio at the telescope is given by

φT
e : φT

μ : φT
τ = |VeVV 3|2 : |VμVV 3|2 : |VτVV 3|2 . (8.24)

Taking V = V0VV to be the tri-bimaximal neutrino mixing pattern, for example,
we obtain φT

e : φT
μ : φT

τ = 4 : 1 : 1 (normal hierarchy) or 0 : 1 : 1 (inverted
hierarchy). If |VeVV 3| = 0, the numerical result will depend on three mixing an-
gles and the CP-violating phase δ (Beacom et al., 2004; Meloni and Ohlsson,
2007; Xing and Zhou, 2008; Maltoni and Winter, 2008). Of course, the fla-
vor ratio of UHE cosmic neutrinos may also get modified in the existence of
incomplete decays, magnetic fields and “exotic” new physics (Pakvasa, 2008).

(5) Sterile neutrinos. Today one seems not to be well motivated to con-
sider the existence of very light sterile neutrinos 5, which may take part in the
oscillations of active neutrinos (i.e., νe, νμ and ντ ) and modify the standard
interpretation of solar, atmospheric, reactor and accelerator neutrino oscil-
lation data (Xing, 2008). If one or more sterile neutrinos exist, their mixing
with active neutrinos has to be sufficiently suppressed; otherwise, neutrino
oscillations would bring sterile neutrinos in equilibrium with active neutrinos
before neutrino decoupling — the resultant excess in energy density would
endanger the standard scheme for the Big Bang nucleosynthesis of light el-
ements (Barbieri and Dolgov, 1990; Kalliomäki et al., 1999). Using VαiVV and
Sαj to denote the active-active and active-sterile neutrino mixing matrix ele-
ments, respectively, we can express the averaged probabilities of UHE cosmic
neutrino oscillations as (Xing and Zhou, 2008)

〈P (να → νβν )〉 = 〈P (να → νβ)〉 =
3∑

i=1

|VαiVV |2|VβiVV |2 +
n∑

j=1

|Sαj |2|SβjS |2 , (8.25)

where α and β run over e, μ and τ , and

3∑
i=1

|VαiVV |2 +
n∑

j=1

|Sαj |2 = 1 . (8.26)

Eq. (8.26) shows the direct unitarity violation of V induced by light sterile
neutrinos. Two observations have been achieved in the literature (Athar et
al., 2000; Keränen et al., 2003; Awasthi and Choubey, 2007): (a) for small
active-sterile neutrino mixing, the effect of non-unitarity of V at neutrino
telescopes is very small and quite similar to that obtained in Eq. (8.21); (b)
for relatively large hitherto-unconstrained mixing between active and sterile
neutrino species, the flavor distribution of UHE cosmic neutrinos at neutrino
telescopes might be significantly modified.

5A sterile neutrino is by definition a hypothetical neutrino that does not interact
with other known particles via electroweak or strong interactions except gravity.
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We admit that the present versions of neutrino telescopes are mainly
designed to be a discovery tool for UHE cosmic neutrinos. A determination of
the flavor distribution of UHE cosmic neutrinos actually requires the precision
measurements. Using neutrino telescopes to probe new physics is certainly
more challenging and could only be done in the long run.

8.4 Neutrinos and Multi-messenger Astronomy

Although most of what we have known about the cosmos derives from the
observation of photons, we are learning some further things beyond the solar
system by observing cosmic rays and neutrinos. Different astronomical mes-
sengers, such as gamma rays, protons, neutrinos and even gravitational waves,
are expected to complement one another in probing the high-energy Universe.
Hence some longstanding problems in astronomy may finally be solved in the
era of multi-messenger astronomy. In this section we shall briefly describe
the interplay between UHE cosmic neutrinos and cosmic rays, gamma rays
or gravitational waves in a given astrophysical source. The interaction of
UHE cosmic neutrinos with the cosmic neutrino background (CνB) via the
Z-resonance will also be discussed.

8.4.1 Cosmic Neutrinos and Z-bursts

The existence of the CνB, comprised of relic neutrinos from the epoch of
decoupling of weak interactions about one second after the Big Bang, is a
robust prediction of the standard Big Bang cosmology (Kolb and Turner,
1990; Peebles, 1993). Today’s temperature and number density of cosmic
background neutrinos can be calculated in terms of the observed temperature
and number density of cosmic background photons:

TνTT i
= TνTT i

=
(

4
11

)1/3

TγTT ≈ 1.945 K ,

nνi
= nνi

=
3
22
nγ ≈ 56 cm−3 , (8.27)

where νi (or νi) denotes a neutrino (or antineutrino) species with the definite
mass mi (for i = 1, 2, 3), TγTT = 2.725 K and nγ = 411 cm−3 (Nakamura et al.,
2010) have been input. As a result, the average three-momentum of each relic
neutrino is rather small: 〈pνi

〉 = 〈pνi
〉 = 3TνTT i

≈ 5.835 K ≈ 5.028 × 10−4 eV,
implying that at least two mass eigenstates of the relic neutrinos are non-

i

relativistic today (i.e., 〈pνi
〉 = 〈pνi

〉 � mi) no matter how the neutrino mass
spectrum looks like 6. These cosmic background neutrinos are subject to the

6In view of Δm2
21 ≈ 7.6×10−5 eV2 and |Δm2

31| ≈ 2.4×10−3 eV2 in Table 3.1, one
may have m2 ≈ 8.7 × 10−3 eV and m3 ≈ 4.9 × 10−2 eV (normal mass hierarchy);
or m1 ≈ 4.9 × 10−2 eV and m2 ≈ 5.0 × 10−2 eV (inverted mass hierarchy); or
m1 ∼ m2 ∼ m3 �

√|Δm2
31| ≈ 4.9 × 10−2 eV (near mass degeneracy).
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gravitational clustering on massive structures (e.g., cold dark matter). Hence
there may exist some local overdensities in the CνB relative to the standard
value given in Eq. (8.27), and the corresponding momentum distribution of
relic neutrinos is possible to deviate from the one given by the homogeneous
and isotropic relativistic Fermi-Dirac distribution (Ringwald, 2009).

An interesting observation is that UHE cosmic neutrinos, when propa-
gating over cosmological distances, may interact with the CνB via the Z
boson and thus get absorbed (Weiler, 1982). Although the cross sections of
νUHE + νCνB → Z∗ → hadrons and νUHE + νCνB → Z∗ → hadrons are
negligibly small in most cases, they can be significantly enhanced when the
reactions take place on the Z resonance. In this special case the energy of an
UHE neutrino νi has to satisfy M2

ZM ≈ (Eνi
+mi)

2 −E2
νi

≈ 2miEνi
; namely,

Eνi
≈ M2

ZM

2mi

≈ 4.2 ×
(

eV
mi

)
× 1021 eV . (8.28)

Such extremely energetic cosmic neutrinos might originate from the super-
heavy DM or TDs in the very early Universe. Given the width of the Z boson
ΓZΓ = (2.4952 ± 0.0023) GeV (Nakamura et al., 2010), the Z-resonance en-
hancement is more generally achievable for Eνi

or Eνi
to lie in the range

M2
ZM /(2mi) ± ΓZΓ . The hadrons produced from the Z decay form a highly-

collimated final state, because the Z boson in the rest frame of relic neutrinos
has a Lorentz boost factor characterized by Eνi

/MZM ∼ 1011 for mi ∼ O(0.1)
eV. If the Z-mediated interaction between νUHE (or νUHE) and νCνB (or
νCνB) takes place at a distance of less than 50 Mpc from the Earth, the at-
tenuation should be small such that the UHE cosmic rays arising from the
Z-bursts may induce air showers in the Earth’s atmosphere and give rise to
some events above the GZK cutoff (Fargion et al., 1999; Weiler, 1999). Con-
sidering that the average multiplicity of the reaction e+e− → Z → hadrons
is about 30 and its final state is on average composed of about 2 nucleons,
10 neutral pions and 17 charged pions (Bilenky et al., 2003), one may es-
timate the average energy of protons and pions produced from the Z-burst
process: 〈EpE 〉 ∼ 〈Eπ〉 ∼ Eνi

/30. Neutral and charged pions originate photons
and neutrinos, respectively, via π0 → γ + γ and π+ → μ+ + νμ followed by
μ+ → e+ +νμ +νe (or π− → μ−+νμ followed by μ− → e−+νμ +νe). As dis-
cussed in Section 8.1.3, about 1/4 of the charged pion’s energy is taken away
by each neutrino or antineutrino. So the average energies of UHE photons
and neutrinos emitted from the Z-bursts are 7

〈EγE 〉 ∼
Eνi

60
≈ 7.0 ×

(
eV
mi

)
× 1019 eV ,

〈Eν〉 ∼
Eνi

120
≈ 3.5 ×

(
eV
mi

)
× 1019 eV . (8.29)

7Note that more energetic neutrinos may come from the direct Z → νi + νi

decay with an average energy 〈Eν〉 ≈ Eνi
/2 ≈ 2.1 × (eV/mi) × 1021 eV.
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In the Z-burst scenario these protons, photons and neutrinos constitute the
primaries of UHE cosmic rays. A measurement of such UHE cosmic rays
would in principle allow one to determine the neutrino masses (Päs and
Weiler, 2001; Fodor et al., 2002).

The Z-burst mechanism provides an appealing opportunity to detect the
CνB in two approaches. The first one is to search for the “emission” feature of
Z-bursts, characterized by a directional excess of UHE cosmic rays, gamma
rays and neutrinos beyond the GZK cutoff. As discussed above, this scenario
probes the Universe delimited by the GZK sphere and is sensitive to the local
overdensities in the CνB which may result from the gravitational clustering
on cold dark matter and baryonic structures (Van Elewyck, 2007). The other
approach is to search for the “absorption” feature in the UHE cosmic neutrino
flux which would reflect their interactions with the CνB via the Z-resonance
along their path (Weiler, 1982; Roulet, 1993; Yoshida, 1994). Such an en-
ergetic neutrino flux arriving at the Earth is therefore expected to exhibit
absorption dips whose locations in the energy spectrum are determined by
the respective redshifted resonance energies of νUHE+νCνB → Z → anything
and νUHE + νCνB → Z → anything processes: E′

νi
≈ M2

ZM / [2mi (1 + z)], de-
pending on both the neutrino masses mi and the source redshift z. The
observation of these dips would not only serve as the most direct evidence
for the existence of the CνB but also help determine the absolute values of
relic neutrino masses and the distribution of UHE cosmic neutrino sources
(Eberle et al., 2004; Barenboim et al., 2005; D’Olivo et al., 2006; Ringwald
and Schrempp, 2006; Scholten and van Vliet, 2008).

8.4.2 Cosmic Neutrinos and Gamma Rays

Supernova remnants (SNRs) have been conjectured to be the accelerators
of galactic cosmic rays for a long time (Baade and Zwicky, 1934; Ginzburg
and Syrovatskii, 1964). In the past few years the HESS Collaboration has
determined the energy spectra of a few young SNRs, such as RX J1713.7-
3946 and RX J0852.0-4622 (Vela Junior), and demonstrated that they emit
gamma rays with energies above 10 TeV (Aharonian et al., 2006a, 2007a,
2007b). But it is still impossible to conclusively pinpoint SNRs as the sources
of galactic cosmic rays by identifying that the observed gamma rays origi-
nate from the decays of neutral pions. Eliminating the possibility of a purely
electromagnetic origin of TeV gamma rays is challenging, and hence detect-
ing their accompanying neutrinos would provide incontrovertible evidence for
the acceleration of cosmic rays at the sources (Halzen, 2009). The connection
between photon and neutrino fluxes in the case of galactic supernova shocks
is clear: cosmic rays interact with the ambient matter (e.g., dense molecular
clouds in the disk) and then produce equal numbers of π+, π− and π0 in
hadronic collisions p+ p→ n

(
π+ + π− + π0

)
+X with n � 1 being an inte-

ger. One may therefore estimate the neutrino flux expected from the source
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by means of the known gamma ray spectrum (Vissani, 2006; Vissani and
Villante, 2008; Villante and Vissani, 2008).

Let us assume that equal numbers of π+, π− and π0 events have been
produced from a SNR. Then VHE gamma rays can originate from the decay
mode π0 → γ+ γ, and their flux φγ(E) is related to the flux of neutral pions
φπ0(E) in the following way (Vissani, 2006) 8:

φγ(E) = 2
∫ ∞

E

∫∫
dE′φπ0(E′)

E′ ; (8.30)

or equivalently,
dφγ(E)

dE
= −2φπ0(E)/E, implying that the gamma ray flux

has to be strictly decreasing. On the other hand, VHE neutrinos can originate
from the decay mode π+ → μ+ + νμ. Similar to Eq. (8.30), the νμ and π+

fluxes are related to each other though

φνμ
(E) = κ

∫ ∞

κE

∫∫
dE′φπ+(E′)

E′ , (8.31)

where κ ≡ 1/(1 − r) with r ≡ m2
μ/m

2
π ≈ 0.573. In the extremely relativistic

limit Eνμ
and Eμ+ lie in the ranges 0 � Eνμ

� Eπ+(1−r) and rEπ+ � Eμ+ �
Eπ+ , respectively. Note that the approximate isospin-invariant distribution
of pions implies φπ0 ≈ φπ+ ≈ φπ− . Then a comparison between Eqs. (8.30)
and (8.31) leads us to the relationship φνμ

(E) = κφγ(κE)/2. In addition,
φμ+ can be read off from Eq. (8.31) by replacing its integral’s interval with
Eμ+ ∈ [rEπ+ , Eπ+ ]; namely, φμ+(E) = κ[φγ(E)−φγ(E/r)]/2. The μ+ decay
produces νμ and νe, whose flux is given by (Vissani, 2006)

φν(Eν) =
∫ 1

0

∫∫
dy
y
φμ+(Eμ+)

[
g0(y) − g1(y)Pμ(Eμ+)

]
, (8.32)

where the subscript ν denotes νe or νμ, y ≡ Eν/Eμ+ , g0(y) = 2(1−3y2+2y3)
and g1(y) = −2(1−6y+9y2−4y3) for ν = νe, or g0(y) = (5−9y2+4y3)/3 and
g1(y) = (1− 9y2 + 8y3)/3 for ν = νμ, and Pμ+ describes the μ+ polarization
averaged over the π+ distribution:

Pμ+(E)×φμ+(E) = −κ
2
[
φγ(E) + φγ(E/r)

]
+κ2r

∫ E/r

E

∫∫
dE′φγ(E′)

E′ . (8.33)

As for π− → μ− + νμ and μ− → e− + νμ + νe decays, the corresponding νμ,
νμ and νe fluxes can similarly be given by Eqs. (8.31) and (8. 32). Thus one

8We have assumed that the VHE gamma ray flux is not significantly absorbed by
the source. Hence the method described here is not directly applicable to a number
of possible galactic sources of VHE photons and neutrinos such as microquasars
that are intrinsically non-transparent, or to possible extragalactic sources since the
infrared photon background absorbs VHE gamma rays if their energies are above
about 10 TeV (Aharonian et al., 2006b; Vissani, 2006).
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may obtain the fluxes of VHE neutrinos and antineutrinos in terms of that
of VHE gamma rays from a galactic SNR. Two comments are in order.

• One may include the contribution of the η → γ + γ decay to the VHE
photon flux and those of leptonic K± decays to the VHE neutrino fluxes
in a more careful analysis (Vissani, 2006; Villante and Vissani, 2008).

• One may incorporate neutrino oscillations into the above formulas with
the replacement φνμ

→ φνμ
〈P (νμ → νμ)〉 + φνe

〈P (νe → νμ)〉, where
〈P (να → νβν )〉 (for α, β = e, μ, τ) have been given in Eq. (8.7). The same
treatment is valid for antineutrinos (Vissani and Villante, 2008).

It is then possible to compute the fluxes of VHE neutrinos and antineutrinos
with the help of the observed VHE gamma rays (Vissani, 2006; Villante and
Vissani, 2008; Vissani and Villante, 2008; Morlino et al., 2009).

The astrophysical sources of extragalactic cosmic rays include AGN and
GRBs. For example, the fireball producing a GRB converts a fraction of a
solar mass into the acceleration of electrons which is seen as synchrotron
photons (Halzen, 2009). Shocks in the expanding GRB fireball may convert
roughly the same amount of energy into the acceleration of protons that are
observed as UHE cosmic rays (Waxman, 1995). In this scenario cosmic rays
and synchrotron photons coexist before the fireball reaches transparency and
produces the observed GRB display. Their interactions via the Δ+-resonance
processes p+ γ → Δ+ → π0 + p and p+ γ → Δ+ → π+ + n can give rise to
neutral and charged pions, respectively, with probabilities 2/3 and 1/3. UHE
gamma rays and neutrinos are then produced from π0 → γ+γ, π+ → μ++νμ

and μ+ → e+ + νμ + νe decays. As discussed in Section 8.1.2, about 1/4 (or
1/2) of the pion’s energy is taken away by each neutrino (or photon). Then we
have xν ≡ Eν/EpE ≈ 0.25〈Eπ〉/〈EpE 〉 and xγ ≡ EγE /EpE ≈ 0.5〈Eπ〉/〈EpE 〉, where
〈Eπ〉/〈EpE 〉 ≈ επ/(1 + επ) ≈ 0.22 with επ ≡ 〈Eπ〉/〈En〉 ≈ 0.28 measures the
average energy transferred from the proton to the pion. The UHE neutrino
and photon fluxes produced by a GRB are therefore given by

dφν

dE
= 1 × 1

3
× 1
xν

dφp

dEpE

∣∣∣∣∣∣∣∣∣∣
Ep=E/xν

,

dφγ

dE
= 2 × 2

3
× 1
xγ

dφp

dEpE

∣∣∣∣∣∣∣∣∣∣
Ep=E/xγ

, (8.34)

where φν (= φe = φμ = φτ ) stands for the sum of neutrino and antineutrino
fluxes of each flavor which will not be distinguished at a neutrino telescope.

Provided the energy spectrum of primary protons is taken to be
dφp

dEpE
∝ E−2

pE ,

then Eq. (8.34) leads us to the relation
dφγ

dE
= 8

dφν

dE
. It is well known that

neutrino oscillations over cosmic distances approximately yield equal fluxes
for three flavors. Given some details of the source and the detector, one should
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be able to evaluate the flux of UHE neutrinos and the number of events to be
detected (Halzen, 2009). It might be impossible to observe the corresponding
UHE gamma rays because they would be absorbed by the CMB on their way
from an extragalactic source to the Earth.

8.4.3 Neutrinos and Gravitational Waves

As a classical field theory of gravitation, Einstein’s general relativity predicts
the existence of gravitational waves emitted from massive objects undergoing
large accelerations. Typical examples include the binary systems of compact
objects like neutron stars and black holes, or ultra-compact binaries such
as double white dwarfs and ultra-compact X-ray binaries (Avignone et al.,
2008). Many attempts have been made to verify the existence of gravitational
waves. In particular, Russell Hulse and Joseph Taylor received the 1993 Nobel
Prize for their indirect detection of gravitational waves through the energy
loss of the binary pulsar PSR 1913+16 (Hulse and Taylor, 1975). The direct
observation of gravitational waves is still a big challenge in astrophysics,
although the experimental techniques are becoming more mature than before.

Since supernova explosions are believed to be the sources of long-timescale
GRBs, the observation of gravitational waves expected from such violent
events may allow us to better understand the dynamical processes giving rise
to GRBs. In the forthcoming era of multi-messenger astronomy it will be
particularly interesting to detect high-energy neutrinos in coincidence with
gravitational waves produced from supernovae and GRBs. Both messengers
can escape very dense media and travel over cosmological distances without
being absorbed, pointing back to their common sources and carrying informa-
tion from the innermost regions of those astrophysical engines (Van Elewyck,
2009). They could also reveal possible hidden sources that are unable to be
seen by means of high-energy gamma rays. Indeed, neutrino bursts associated
with the same source as gravitational waves can lead to some effects in the
gravitational wave antennas, but the contrary is not true (Castagnoli et al.,
1978). The point is simply that the velocity of a massive neutrino is slightly
smaller than that of the massless graviton and hence results in a time delay
between their signals to be detected on the Earth. It is therefore meaningful
and useful to establish a correlation in time among neutrino and gravitational
wave detectors for a given astrophysical source. On the other hand, the de-
tection of gravitational waves and high-energy neutrinos originating from the
early Universe will provide a unique source of information about fundamental
physics at work in the early Universe.

The feasibility of searching for high-energy neutrinos in coincidence with
gravitational waves is under discussion. In principle, a neutrino telescope can
accurately determine the time and direction of high-energy neutrino events,
while a network of gravitational wave detectors can also provide timing and
directional information for gravitational wave bursts (Van Elewyck, 2009).
Combining the measurements from these totally independent detectors will
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allow one to achieve robust background rejection and much better sensi-
tivities. A typical example is to combine the ANTARES neutrino telescope
(Carr, 2008) with the VIRGO and LIGO interferometers for gravitational
waves (Acernese et al., 2008; Abbott et al., 2008). They share the challenge
to search for faint and rare signals on top of abundant noise or background
events, and the observation of coincident triggers would provide strong ev-
idence for a gravitational wave burst and a neutrino burst coming from a
common source (Van Elewyck, 2009; Pradier, 2009).
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9

Big Bang Nucleosynthesis and Relic Neutrinos

The concerns of cosmology include the birth of the Universe, its evolution, its
structure, and its ultimate fate. At present the most convincing theoretical
paradigm in cosmology is the so-called Big Bang model, which attributes the
origin of the Universe to an extremely hot and dense plasma that was highly
isotropic and homogeneous. In this intriguing picture the evolution of the
early Universe underwent a number of crucial events, such as the inflation,
quark-baryon transition, neutrino decoupling, nucleosynthesis and photon de-
coupling. The Big Bang nucleosynthesis (BBN) has so far provided us with
the most reliable probe of the early Universe based on the well-established
knowledge of particle physics and nuclear physics. In this chapter we shall
make use of the standard Big Bang model to describe the irreplaceable role of
neutrinos in the history of the Universe. In particular, their contributions to
the energy density of the Universe, their effects on the BBN and their prop-
erties as the cosmic neutrino background (CνB) will be discussed in some
detail. Possible ways and experimental challenges to directly detect these Big
Bang relic neutrinos will also be introduced.

9.1 Neutrinos in the Early Universe

The Big Bang model of cosmology, which was first formulated by George
Gamow and his collaborators in the 1940’s (Gamow, 1946; Alpher et al.,
1948), is based on Einstein’s general relativity and the cosmological principle.
The latter states that the Universe was homogeneous and isotropic at early
times and on large scales, implying that all spatial positions in the Universe
should be essentially equivalent. Instead of going into details of the standard
Big Bang model of cosmology, which has been described in an excellent way
in some textbooks (see, e.g., Kolb and Turner, 1990; Weinberg, 2008), we
shall briefly introduce some of its key ingredients and consequences relevant
to the expansion of the early Universe and the interplay of matter, radiation
and vacuum energy up to the time of neutrino decoupling.
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9.1.1 Hubble’s Law and the Friedmann Equations

One of the seminal discoveries in the history of science is Edwin Hubble’s
observation that galaxies have been receding from each other at a velocity v
which is linearly proportional to their distance D (Hubble, 1929): v = HD
with H being the time-dependent Hubble parameter. The present-day value
ofH, known as the Hubble constantH0HH ≡ H(t0) at t = t0, has been measured
to a good degree of accuracy: H0HH = 100 h km s−1 Mpc−1 with h = 0.72±0.03
(Nakamura et al., 2010) 1. The physical coordinate distanceD from the Earth
to a distant galaxy at time t can be written as D(t) = rR(t), where r denotes
the time-independent comoving coordinate distance measured in a reference
frame moving together with the expansion of the Universe, and R(t) is the
cosmological scale parameter which determines proper distances in terms of
the comoving coordinates. Given the cosmological principle (i.e., homogeneity
and isotropy of the early Universe), R(t) is the same over all space and
depends only time. The value of R(t) at time t is related to its value today
at t = t0 via a redshift factor: R(t) = R(t0)/(1 + z). Hubble’s law on the
expansion of the Universe can then be expressed as

Ṙ(t) = HR(t) , (9.1)

where Ṙ ≡ dR
dt

. One may also define a dimensionless scale parameter a(t) ≡
R(t)/R(t0) to express Hubble’s law: ȧ(t) = Ha(t).

The evolution of the Universe is governed by the solution of Einstein’s
field equations of general relativity. Given a homogeneous and isotropic dis-
tribution of matter and radiation behaving like the perfect frictionless fluid,
Einstein’s equations lead to the Friedmann equations (Friedmann, 1922):

H2 =

(
Ṙ

R

)2

=
8πGNρ

3
− k

R2
+
Λ

3
, (9.2)

H2 + Ḣ =
R̈

R
= −4πGN

3
(ρ+ 3p) +

Λ

3
, (9.3)

where GN is Newton’s gravitational constant, ρ denotes the energy density,
p represents the isotropic pressure, k is the curvature constant, and Λ is the
cosmological constant. Differentiating Eq. (9.2), we obtain

Ḣ =
4πGN

3H
ρ̇+

k

R2
(9.4)

with the help of Eq. (9.1). A combination of Eqs. (9.2), (9.3) and (9.4) yields

1Note that 1 Mpc = 103 kpc = 106 pc, where pc = parsec is a commonly-used
unit of cosmic distances. 1 pc = 3.0857 × 1013 km is defined as the distance that
an object has to be for its parallax to equal 1 second of arc (or 1/3600 of a degree).
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ρ̇ = −3H (ρ+ p) . (9.5)

In some literature the so-called Friedmann equation only refers to Eq. (9.2).
The ultimate fate of the Universe is determined by the curvature constant

k, which can only take the discrete values 0 and ±1. In astrophysics k = +1,
k = −1 and k = 0 correspond respectively to closed, open and spatially flat
geometries. Let us assume Λ = 0 in Eq. (9.2) to discuss the cosmological
meaning of k. The k = +1 case corresponds to a closed Universe which
expands and reaches a maximum radius and then recollapses in a finite time,
whereas the k = −1 case corresponds to an open Universe which expands
without any limit. For k = 0, the Universe is flat in the sense that it expands
forever but the velocity tends asymptotically to zero at sufficiently large
t. But these simple observations may change if Λ is nonvanishing. Current
observational data indicate that the Universe is extremely close to a flat
Universe (i.e., k ≈ 0) on large scales.

9.1.2 The Energy Density of the Universe

The energy density ρ and the isotropic pressure p in Eq. (9.3) are in general
related to each other through the equation of state: p = wρ, where w is a
dimensionless parameter. If w is time-independent, then Eq. (9.5) becomes
ρ̇ = −3 (1 + w) ρṘ/R and can be easily integrated. The result is

ρ ∝ R−3(1+w) . (9.6)

The total energy density of the Universe may consist of three components:

ρ = ρm + ρr + ρv , (9.7)

where ρm, ρr and ρv stand respectively for the energy densities of matter,
radiation and vacuum. The role of ρv is equivalent to that of the cosmological
constant Λ in the Friedmann equation; i.e., Λ = 8πGNρv. Eq. (9.2) can then
be rewritten as

H2 =

(
Ṙ

R

)2

=
8πGN

3
(ρm + ρr + ρv) −

k

R2
. (9.8)

In the following we discuss the simplified solutions to Eq. (9.8) by assuming
the energy density ρ to be dominated by one of its three components, and
summarize relevant results in Table 9.1.

(1) A radiation-dominated Universe. The early Universe was very hot and
dense, and thus its energy density was dominated by radiation (or relativistic
particles). A gas of radiation can be described by the equation of state p =
ρr/3 (i.e., w = 1/3). In this case Eq. (9.6) becomes ρr ∝ R−4. Neglecting the
terms associated with ρm, ρv and k in Eq. (9.8), we immediately arrive at
Ṙ ∝ 1/R. As a result, R(t) ∝ t1/2 and H = 1/(2t).
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Table 9.1 The equation of state, energy density and scale parameter of a Universe
dominated by radiation, matter or vacuum energy.

Different era Equation of state Energy density Scale parameter

Radiation p = ρ/3 ρr ∝ R−4 ∝ t−2 R ∝ t1/2

Matter p ≈ 0 ρm ∝ R−3 ∝ t−2 R ∝ t2/3

Vacuum p = −ρ ρv = constant R ∝ exp(
√
Λ/3 t)

(2) A matter-dominated Universe. At relatively late times the Universe
gradually cooled down, so non-relativistic matter eventually dominated the
energy density over radiation. An essentially pressureless gas corresponds to
the equation of state p ≈ 0 (i.e., w ≈ 0) 2, implying ρm ∝ R−3 as one can
see from Eq. (9.6). If the terms associated with ρr, ρv and k in Eq. (9.8) are
omitted, we obtain Ṙ ∝ 1/R1/2. Therefore, R(t) ∝ t2/3 and H = 2/(3t) hold.

(3) A vacuum-dominated Universe. In quantum field theory the vacuum is
defined as the lowest energy state of a system and contains virtual particle-
antiparticle pairs which spontaneously appear and disappear. The vacuum
energy density ρv, which acts as a cosmological constant Λ, could dominate
the energy density of the Universe in an era when R(t) is large enough. In
this case the vacuum state is described by the equation of state p = −ρv, and
such a negative pressure is equivalent to a gravitational repulsion. It is obvious
that ρv is independent of R(t), as a result of w = −1. Neglecting the terms
associated with ρm, ρr and k in Eq. (9.8), we simply obtain H = Ṙ/R =√
Λ/3 and thus R(t) ∝ exp(

√
Λ/3 t). This result implies an exponential

expansion of the Universe. One may argue that the parameter w = p/ρ might
be inconstant and deviate from −1 as a result of the dynamically evolving
vacuum energy or “dark energy” (Garnavich et al., 1998; Perlmutter et al.,
1999; Maor et al., 2002). If w is a constant, the best current measurement
for the equation of state yields w = −1.006+0.067

−0.068 (Komatsu et al., 2009). So
we simply assume that the vacuum energy is equivalent to a cosmological
constant with w = −1.

One may use the Friedmann equation in Eq. (9.8) to define the critical
energy density of the Universe which assures k = 0 to hold:

ρc ≡
3H2

8πGN

. (9.9)

To be more explicit, ρc ≈ 1.05×10−5 h2 GeV cm−3 with h being the rescaled
Hubble parameter. Today’s value of the critical density is expected to be
ρc ≈ 9.6 × 10−27 kg m−3 ≈ 5.4 × 10−6 GeV cm−3 with the input h ≈ 0.72.

2In fact, the gas consisting of non-relativistic particles has the equation of state
p = (2ρ/3) · (v2/c2) (Perkins, 2009). Because v2 	 c2 generally holds for cosmic
matter, the pressure that it exerts is very small and can be neglected.
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The cosmological density parameter Ω, which is also called the closure
parameter, is defined as the ratio of the energy density to the critical density:

Ω ≡ ρ

ρc

= 1 +
k

H2R2
, (9.10)

where Eqs. (9.7) and (9.8) have been used. One can see that a flat Universe
with k = 0 must have Ω = 1 for all values of t. When Ω > 1, k = +1 holds
and the Universe is closed. When Ω < 1, k = −1 holds and the Universe is
open. Similar definitions Ωm ≡ ρm/ρc, Ωr ≡ ρr/ρc and Ωv ≡ ρv/ρc lead to
the relationship

Ω = Ωm +Ωr +Ωv . (9.11)

At the present time (t = t0) the density of the microwave photon radia-
tion is measured by Ωr(t0) ≈ 4.84 × 10−5 and thus completely negligible in
comparison with that of non-relativistic matter Ωm(t0) ≈ 0.26, but the ma-
jor contribution to Ω comes from the vacuum term Ωv(t0) ≈ 0.74 if k = 0
is assumed (Komatsu et al., 2009; Nakamura et al., 2010). Both luminous
baryonic matter and dark matter contribute to Ωm, and the latter actually
dominates.

9.1.3 The Age and Radius of the Universe

Let us estimate the age of the Universe by means of the Friedmann equation.
Note that R(t) = R(t0)/(1+ z) holds, where z denotes the redshift. Eq. (9.9)
means 8πGN/3 = H2(t)/ρc(t) = H2

0HH /ρc(t0), where H0HH is the Hubble constant
today at t = t0. Then Eq. (9.8) can be rewritten as

H2(t) =
H2

0HH

ρc(t0)

[
ρm(t) + ρr(t) + ρv(t) −

ρc(t0)
H2

0HH
· k

R2(t)

]
=

H2
0HH

ρc(t0)

[
ρm(t0) (1 + z)3 + ρr(t0) (1 + z)4 + ρv(t0)

−ρc(t0)
H2

0HH
· k

R2(t0)
(1 + z)2

]
= H2

0HH
[
Ωm(t0) (1 + z)3 +Ωr(t0) (1 + z)4 +Ωv(t0)

+ [1 −Ωm(t0) −Ωr(t0) −Ωv(t0)] (1 + z)2
]
, (9.12)

where Table 9.1 and Eq. (9.10) have been used. Furthermore, one has

H =
Ṙ

R
= − 1

1 + z
· dz

dt
=⇒== dt = − 1

(1 + z)H
dz , (9.13)

with the help of Hubble’s law in Eq. (9.1). Given z = ∞ at t = 0 and z = 0
at t = t0, it is possible to determine the age of the Universe (i.e., the value
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of t0) by substituting Eq. (9.12) into Eq. (9.13) and then calculating the
integration. For simplicity, here we assume the Universe to be flat with k = 0
or Ωm(t0) + Ωr(t0) + Ωv(t0) = 1 and neglect the tiny Ωr(t0) term. The age
of the Universe turns out to be

t0 =
1
H0HH

∫ ∞

0

∫∫
dz

(1 + z)
√
Ωm(t0) (1 + z)3 +Ωv(t0)

=
1

3H0HH
√
Ωv(t0)

ln
1 +
√
Ωv(t0)

1 −
√
Ωv(t0)

, (9.14)

where Ωv(t0) = 1 − Ωm(t0). Taking Ωm(t0) ≈ 0.26, Ωv(t0) ≈ 0.74 and h ≈
0.72 for example, we obtain t0 ≈ 1/H0HH ≈ 13.6 Gyr. This estimate is consistent
very well with the age of the Universe deduced from the study of its structure
formation by means of the cosmic microwave background (CMB) and large-
scale structures: t0 = 13.69 ± 0.13 Gyr (Komatsu et al., 2009).

The radius of the observable Universe, defined as DH, is measured by the
distance from the Earth to the optical horizon beyond which no light signals
could reach the Earth at the present time (Perkins, 2009). As the Universe
expands and time evolves, this distance increases because more parts of the
Universe come inside the horizon. Hence DH > ct0 ≈ 4.2 Gpc is expected,
where c = 2.99792458× 108 m s−1 is the speed of light which has been taken
to be unity in the system of natural units. Note that the physical coordinate
distance from the Earth to any point of the Universe at time t is expressed
as D(t) = rR(t) with r being the comoving coordinate distance. Since both
r and R(t) are not directly measurable, we need to link them to the Hubble
parameter H(t) and the redshift z with the help of the Friedmann-Lemâıtre-
Robertson-Walker metric. The latter is known as

ds2 = dt2 −R2(t)
[

dr2

1 − kr2
+ r2
(
dθ2 + sin2 θ dφ2

)]
. (9.15)

Given a light signal to or from a distant object at fixed (θ, φ), ds2 = 0 holds
and thus

dr√
1 − kr2

=
dt
R(t)

= − dz
HR(t0)

, (9.16)

where Eq. (9.13) and R(t) = R(t0)/(1 + z) have been used. We obtain

R(t0)
∫ r

0

∫∫
dr√

1 − kr2
= −
∫ 0

z

∫∫
dz
H

=
I(z)
H0HH

, (9.17)

where Eq. (9.12) has been used, and

I(z) ≡
∫ z

0

∫∫ [
Ωm(t0) (1 + z)3 +Ωr(t0) (1 + z)4 +Ωv(t0)

+ [1 −Ωm(t0) −Ωr(t0) −Ωv(t0)] (1 + z)2
]−1/2

dz . (9.18)
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The simplest case is k = 0, corresponding to a flat Universe, in which D(z) =
rR(t0) = I(z)/H0HH as one can easily see from Eq. (9.17). The horizon distance
DH is then obtainable by setting z = ∞ for the upper limit of the integration
in Eq. (9.18). Typically taking Ωr(t0) = 0, Ωm(t0) = 0.26 and Ωv(t0) = 0.74,
we find a numerical solution I(∞) ≈ 3.5. The radius of the observable flat
Universe turns out to be DH ∼ 3.5 c/H0HH ≈ 3.5 ct0 ≈ 14.8 Gpc ≈ 4.8×1010 ly.

9.1.4 Radiation in the Early Universe

If matter has been conserved in the Universe, its energy density is expected
to vary as ρm ∝ R−3. In comparison, the energy density of radiation varies as
ρr ∝ T 4 ∝ R−4 if it is in thermal equilibrium (see Table 9.1). The extra R−1

in ρr, as compared with ρm for non-relativistic matter, simply arises from
the redshift. So ρr ∝ R−4 applies not only to the CMB photons but also to
any relativistic particles in the early Universe, provided they have a uniform
distribution on the same cosmological scale as the photons (Perkins, 2009).
Although ρm � ρr holds today, we believe that ρr � ρm and ρr � ρv must
have been true for small values of R in the olden days of the Universe. In
that case the Friedmann equation in Eq. (9.8) can be simplified to(

Ṙ

R

)2

=
8πGN

3
ρr , (9.19)

because the term proportional to k/R2 is also negligible as compared with
the term proportional to ρr ∝ R−4. Therefore,

ρ̇r

ρr

= −4
Ṙ

R
= −8

3

√
6πGNρr , (9.20)

leading to the energy density of radiation:

ρr =
3

32πGN

· 1
t2
. (9.21)

For a photon gas in thermal equilibrium, its energy density is given by

ρr = 4σSBT
4 =

gγπ2

30
T 4 , (9.22)

where σSB = π2/60 is the Stefan-Boltzmann constant and gγ = 2 denotes the
number of spin substates of the photon. Combining Eqs. (9.21) and (9.22)
allows us to obtain a relationship between the temperature of radiation and
the time of expansion in the early Universe:

T =
(

45
16gγπ3GN

)1/4 1√
t
. (9.23)
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This result implies T ≈ 1.31 MeV/
√
t ≈ 1.52 × 1010 K/

√
t with t being in

seconds. In view of T → ∞ as t → 0, we conclude that the Universe must
have started out as a hot Big Bang.

Note that the spectrum of blackbody photons of energy E = p is given by
the Bose-Einstein distribution. The latter describes the number of photons
per unit volume in the momentum interval p→ p+ dpd . To be explicit 3,

nγ =
∫ ∞

0

∫∫
gγp

2dpd
2π2 [exp (E/T ) − 1]

=
2ζ(3)
π2

·
gγ

2
T 3 ≈ 411

(
T

2.725 K

)3

cm−3 , (9.24)

in which ζ(3) ≈ 1.202 is a Riemann zeta function. Taking T = 2.725 K as
today’s CMB temperature, one obtains the number density of relic photons
nγ ≈ 411 cm−3. The total energy density of photons integrated over their
blackbody spectrum turns out to be

ρr =
∫ ∞

0

∫∫
gγEp

2dpd
2π2 [exp (E/T ) − 1]

=
gγπ2

30
T 4 , (9.25)

which is already given in Eq. (9.22). Given T = 2.725 K today at t = t0,
the energy density of radiation is ρr(t0) ≈ 4.65 × 10−31 kg m−3 ≈ 2.61 ×
10−10 GeV cm−3. Hence Ωr(t0) = ρr(t0)/ρc ≈ 4.84× 10−5, about four orders
of magnitude smaller than Ωm(t0) ≈ 0.26.

Relativistic leptons and quarks can also contribute to the energy density
of radiation if they are sufficiently stable. A fermion gas obeys the Fermi-
Dirac distribution, and the corresponding number density in the relativistic
limit (i.e., T � m and E =

√
p
√√

2 +m2 → p with m being the fermion mass
and p being the momentum) reads

nf =
∫ ∞

0

∫∫
gfp

2dpd
2π2 [exp (E/T ) + 1]

=
3ζ(3)
2π2

· gf
2
T 3 (9.26)

with gf being the number of spin substates of the fermion. Similar to ρr in
Eq. (9.25), the total energy density of relativistic fermions integrated over
their Fermi-Dirac distribution is

ρf =
∫ ∞

0

∫∫
gfEp

2dpd
2π2 [exp (E/T ) + 1]

=
7gfπ

2

240
T 4 . (9.27)

For a mixture of extremely relativistic bosons and fermions, their total energy
density is expected to be

3Four integrals are very useful in calculating the Bose-Einstein and Fermi-
Dirac distributions:

∫∞
0

∫∫
x2 (ex − 1)−1 dx = 2ζ(3),

∫∞
0

∫∫
x3 (ex − 1)−1 dx = π4/15,∫∞

0

∫∫
x2 (ex + 1)−1 dx = 3ζ(3)/2 and

∫∞
0

∫∫
x3 (ex + 1)−1 dx = 7π4/120, where ζ(3) ≈

1.202 is a Riemann zeta function (Broadhurst, 2010).
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ρb+f =
∑
b

∫ ∞

0

∫∫
gbEp

2dpd
2π2 [exp (E/T ) − 1]

+
∑

f

∫ ∞

0

∫∫
gfEp

2dpd
2π2 [exp (E/T ) + 1]

=
g∗π2

30
T 4 , (9.28)

where the effective number of degrees of freedom g∗ is given by

g∗ =
∑
b

gb +
7
8

∑
f

gf (9.29)

with the summation over all types of relativistic particles and antiparticles
which contribute to the energy density of radiation in the early Universe.

In the radiation-dominated epoch, the relation between T and t obtained
in Eq. (9.23) should be modified by replacing gγ with g∗. As a result,

t =
(

45
16g∗π3

)1/2
MPlMM

T 2
≈ 0.301

√
g

√√
∗

· MPlMM

T 2
, (9.30)

where MPlMM = 1/
√
GN ≈ 1.22 × 1019 GeV is the Planck mass. To be specific,

tT 2 ≈ 2.42/√g√√
∗ s MeV2. One may also express the Hubble parameter H(t)

in terms of the temperature T in the radiation-dominated epoch of the early
Universe. Combining Eqs. (9.20), (9.21) and (9.30), we obtain

H(t) =
Ṙ

R
=

1
2t

≈ 1.66
√
g

√√
∗
T 2

MPlMM
. (9.31)

When the temperature was high enough, all types of elementary particles
and their antiparticles would have been in the thermal bath of the early
Universe. In this case g∗ equals the number of all available spin and color
substates of particles and antiparticles. Given the standard model (SM) of
electroweak and strong interactions which contains one photon, eight gluons,
three massive gauge bosons, one Higgs boson, six quarks, six antiquarks, three
charged leptons, three charged antileptons, three massless neutrinos and three
massless antineutrinos 4, the value of g∗ turns out to be g∗ = 28+7/8×90 =
106.75. This number would become smaller as the Universe expanded and the
temperature fell. For example, the most massive particles (i.e., the top quark,
the Higgs boson and the W± and Z0 bosons) would have been rapidly lost by
their decays (in less than 10−23 s) and not replenished once the temperature
T is significantly below their masses (Perkins, 2009). After T fell below the
scale of quantum chromodynamics ΛQCD ∼ 200 MeV, the remaining quarks,

4Note that each quark (or antiquark) has three color substates and each massless
neutrino (or antineutrino) has one spin substate. Although three known neutrinos
should be massive beyond the SM, their masses are so small that the coupling of
each neutrino to the additional spin substate is strongly suppressed and its effect
on the value of g∗ is therefore negligible (Grupen et al., 2005).
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antiquarks and gluons would no longer exist as separate components of a
plasma but as color-neutral hadrons such as pions and nucleons. However,
only protons and neutrons could survive since all the other hadrons would be
too short-lived to exist beyond the first few nanoseconds. After T � 20 MeV
most of the nucleons and antinucleons would have annihilated into radiation
and the number of surviving nucleons was only about one billionth of the
number of photons.

Note that Eq. (9.30), or equivalently tT 2 ≈ 2.42/√g√√
∗ s MeV2, can be used

to estimate what time a typical energy scale of particle physics corresponds
to. Given g∗ = 106.75, the Planck scale T ∼ 1019 GeV and the Fermi scale
T ∼ 102 GeV correspond respectively to t ∼ 10−45 s and t ∼ 10−11 s after the
Big Bang. The scale of grand unified theories T ∼ 1016 GeV is associated with
t ∼ 10−39 s. Around the scale ΛQCD, just before the hadronization of light
quarks and gluons, one may take the photon, eight gluons, three light quarks
(u, d, s), the electron, the muon, three neutrinos and their antiparticles to be
relativistic. In this case g∗ = 18+7/8×50 = 61.75 holds, and thus T ∼ ΛQCD

corresponds to t ∼ 7.7 × 10−6 s after the Big Bang.

9.1.5 Neutrino Decoupling

When the temperature went down to a few MeV, the only surviving rel-
ativistic particles in the early Universe were photons, electrons, positrons,
neutrinos and antineutrinos. In this case the effective number of degrees of
freedom g∗ took its value g∗ = 2+7/8×10 = 10.75. The relevant photons, lep-
tons and antileptons should have been present in comparable numbers thanks
to the equilibrium reactions γ + γ � e+ + e− � να + να (for α = e, μ, τ).
The e+ + e− � να + να scattering is a weak neutral-current process whose
thermally-averaged cross section is roughly 〈σe±ve±〉 ∼ G2

FT
2, in which ve±

denotes the relative velocity of electrons and positrons. The collision rate
for this reaction is Γ = ne±〈σe±ve±〉 with ne± being the number density of
electrons or positrons. Given ne± ∼ T 3 at T as one can see from Eq. (9.26),
the collision rate turns out to be Γ ∼ G2

FT
5. In comparison, the expansion

rate of the Universe in the radiation-dominated epoch is H ∼ √
g

√√
∗T

2/MPlMM as
shown in Eq. (9.31). Hence neutrinos and antineutrinos would become out
of equilibrium and decoupled from the thermal bath as soon as Γ < H for
sufficiently small T . A rough estimate yields the “freeze-out” temperature

TfrTT ∼
( √

g
√√

∗
G2

FMPlMM

)1/3

∼ 1 MeV (9.32)

for neutrinos to go out of equilibrium. We therefore expect that neutrinos
and antineutrinos froze out for T < TfrTT and then evolved in a way indepen-
dent of other particles and radiation 5. In other words, the Universe became

5Different from muon and tau neutrinos, the electron neutrinos and their an-
tiparticles could interact with the nucleons via the charged-current weak processes
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transparent to neutrinos and antineutrinos, whose momenta would simply
redshift with the cosmic expansion. So the effective neutrino temperature fell
as T ∼ 1/R, just like the temperature of photons. The number density of the
decoupled neutrinos would continue to decrease in proportion to 1/R3 and
contribute to g∗, if they were stable and relativistic.

Soon after the neutrino decoupling (i.e., when T � me), electrons and
positions began to annihilate via e+ + e− → γ+ γ. The energy released from
this annihilation process would heat up the photon gas relative to the neu-
trino gas, because the latter was already decoupled. The enhancement of the
photon temperature can be calculated by means of the entropy conservation.
The entropy per unit volume of the particle gas is given by s =

∫
dQ/T

with Q being the energy content per unit volume of photons, electrons and
positrons at temperature T . Considering Eq. (9.28) and taking Q = ρb+f

with g∗ = 2 + 7/8 × 4 = 11/2, we have

s =
∫

2g∗π
2

15
T 2dT =

2g∗π
2

45
T 3 =

11
4

·
2gγπ2

45
T 3 . (9.33)

After the annihilation of electrons and positrons the photons must have at-
tained a temperature TγTT with the corresponding entropy density

sγ =
∫ 2gγπ2

15
T 2

γTT dTγTT =
2gγπ2

45
T 3

γTT . (9.34)

Because the expansion of the Universe keeps adiabatic or isentropic, sγ = s
holds. As a result,

TγTT =
(

11
4

)1/3

T . (9.35)

In comparison, the relic neutrinos received no boost and their temperature
should just be TνTT = T . The relationship between TνTT and TγTT turns out to be

TνTT =
(

4
11

)1/3

TγTT . (9.36)

For photons and relic neutrinos in this epoch, the total relativistic energy
density is given by

ργ+ν = ργ + ρν =
gγπ2

30
T 4

γTT +
7
8
· gνπ2

30
T 4

νTT =
g′∗π

2

30
T 4

γTT , (9.37)

where the effective number of degrees of freedom g′∗ is defined as

νe +n � e−+p, νe +p � e+ +n and νe +e− +p � n. The point where Γ ∼ H held
for these reactions determines the freeze-out temperature, which is approximately
the same as that given in Eq. (9.32). So all neutrino flavors were decoupled from
other particles below TfrTT ∼ 1 MeV.
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g′∗ ≡ gγ +
7
8
gν

(
TνTT

TγTT

)4

= 2 + 6 × 7
8

(
4
11

)4/3

≈ 3.36 , (9.38)

applying to the region with T � 1 MeV (Kolb and Turner, 1990). The total
entropy density of photons and relic neutrinos is therefore given by

sγ+ν = sγ + sν =
2gγπ2

45
T 3

γTT +
7
8
· 2gνπ2

45
T 3

νTT

=
2π2

45

[
1 +

7
8
· gν

gγ

(
TνTT

TγTT

)3
]
gγT

3
γTT

=
2π2

45
· π2

ζ(3)

(
1 +

7
8
× 6

2
× 4

11

)
nγ ≈ 7.04nγ , (9.39)

where Eqs. (9.24) and (9.36) have been used. Although the neutrinos and
photons have had no more interactions since the neutrino decoupling, they
have been suffering from the same redshift as the Universe expands and cools
down. Hence their relative number densities today should be the same as
those at the time of neutrino decoupling. With the help of Eqs. (9.24) and
(9.26), the number density of relic neutrinos and antineutrinos of all three
flavors is expected to be

nν =
3ζ(3)
2π2

· gν

2
T 3

νTT =
3
4
· gν

gγ

(
TνTT

TγTT

)3

nγ =
9
11
nγ

≈ 336
(

TγTT

2.725 K

)3

cm−3 . (9.40)

Taking TγTT = 2.725 K for the CMB radiation today, we immediately obtain
TνTT ≈ 1.945 K and nν ≈ 336 cm−3 for the CνB.

So far we have assumed that neutrinos were fully decoupled at TfrTT ∼ 1
MeV and thus did not share any entropy from the e± annihilation after
T was below me. In practice, such an instantaneous neutrino decoupling
approximation should be slightly corrected because neutrinos could still have
slight interactions with the electromagnetic plasma at T < 1 MeV and hence
received a small portion of the entropy from the e± annihilation (Dicus et al.,
1982). Those more energetic neutrinos may be more heated, because the weak
interactions in the relevant range of energies get stronger with rising energies.
This phenomenon results in a momentum-dependent (non-thermal) distortion
in the neutrino distribution from the thermal equilibrium case (Mangano
et al., 2002). The small effect of a non-instantaneous neutrino decoupling,
together with a much smaller effect on TγTT /TνTT induced by finite-temperature
quantum electrodynamics corrections to the electromagnetic plasma, can be
taken into account by defining an effective number of neutrino species in the
effective number of degrees of freedom g′∗ given in Eq. (9.38). Namely,

g′∗ = 2

[
1 +

21
8

(
4
11

)4/3
]

=⇒== g′∗ = 2

[
1 +

7
8

(
4
11

)4/3

N eff
νNN

]
, (9.41)
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where N eff
νNN = 3 has been taken in the limit of an instantaneous neutrino

decoupling. A careful numerical analysis shows that N eff
νNN ≈ 3.04 (Seljak and

Zaldarriaga, 1996; Mangano et al., 2002).
Note that we have assumed neutrinos to be extremely relativistic in the

above discussions by ignoring their rest masses. Current neutrino oscillation
data indicate that at least two neutrinos should be massive. When TνTT was
comparable with a neutrino mass, this kind of neutrinos would no more be
relativistic. Because both TνTT and TγTT fell as 1/R after neutrinos were decou-
pled from the thermal bath, their relationship obtained in Eq. (9.36) in the
relativistic limit should essentially keep valid even if one or all of three neu-
trino species became non-relativistic. For a similar reason we expect that
the relationship between the number densities of relic neutrinos and photons
obtained in Eq. (9.40) should essentially keep unchanged even today at t = t0.

Note also that we have neglected the effect of neutrino oscillations on the
process of neutrino decoupling in the above discussions. This effect can be
taken into account by solving the momentum-dependent kinetic equations for
the neutrino spectra (Dolgov et al., 2002; Hannestad, 2002; Mangano et al.,
2005). It is found that neutrino oscillations in the early Universe should not
have an appreciable impact on the neutrino energy density, so their effect on
the BBN should likewise be inappreciable (Mangano et al., 2005).

9.2 Big Bang Nucleosynthesis

One of the major achievements in the standard Big Bang cosmology is the
BBN theory which successfully describes how protons and neutrons could
fuse together and form the light elements (e.g., D, 3H, 3He, 4He and 7Li) in
the first few minutes after the Big Bang. All of the heavier elements were
formed much later from the synthesis of nuclei in stars. We shall outline the
BBN timeline in this section and emphasize that the predictions of the BBN
theory for the abundances of the light elements are in good agreement with
the primordial abundances of those elements observed today in the cosmos.

It should be noted that the light element abundances observed today are
not all “primordial”, because our epoch is certainly much later than the BBN
era and the stellar nucleosynthesis has already commenced for a long time.
The ejected remains of this stellar processing may alter the light element
abundances from their primordial values and produce some heavy elements
such as C, N, O and Fe (“metals”) (Nakamura et al., 2010). In this case
one should look for the astrophysical sites with low metal abundances so
as to measure the light element abundances which are much closer to the
primordial ones. For all the light elements, the precision with which their
primordial abundances can be inferred is mainly limited by systematic errors
of the measurements.
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9.2.1 The Neutron-to-proton Ratio

In the radiation-dominated epoch of the early Universe, the synthesis of the
light elements took place at temperatures varying roughly from about 1 MeV
to below 0.1 MeV. During this BBN period the time t and the temperature
T are related to each other through the relationship tT 2 ≈ 2.42/√g√√

∗ s MeV2,
where the effective number of degrees of freedom g∗ changes from 10.75 (for
relativistic γ, e−, νe, νμ, ντ and their antiparticles) to 3.36 (as T dropped
below the electron mass me ≈ 0.511 MeV). At a higher temperature such
as T ∼ 200 MeV, the gluons, quarks and antiquarks were bound into nucle-
ons and antinucleons. The latter could remain in thermal equilibrium as the
temperature dropped to T ∼ 50 MeV, but their number densities were expo-
nentially suppressed by a factor exp(−mN/T ) with mN ≈ 0.94 GeV (Grupen
et al., 2005). At temperatures below about 20 MeV most of the nucleons and
antinucleons should have annihilated and thus the resulting nucleon density
was unable to make a significant contribution to the total energy density of
the Universe. Since there are not any imaginable baryon-number-violating
processes that would have occurred at temperatures near and in the BBN
era, the baryon number conservation assures the sum of the number densities
of non-relativistic protons and neutrons to be constant in a comoving volume
and change as np + nn ∼ T 3 ∼ R−3 in a physical coordinate system.

Before the decoupling or freeze-out of electron neutrinos and electron
antineutrinos, the following charged-current weak interactions allow the bi-
lateral conversion of neutrons and protons:

n+ νe � p+ e− , p+ νe � n+ e+ , n � p+ e− + νe . (9.42)

Because of T � mN ≈ 0.94 GeV in the epoch under discussion, the nucleons
can be treated as essentially at rest. The initial and final lepton energies in
each of the above processes are then related to each other via Ee− −Eνe

= Q

(for n+νe � p+e−), Eνe
−Ee+ = Q (for p+νe � n+e+) or Ee− +Eνe

= Q

(for n � p + e− + νe), where Q = mn − mp = 1.293 MeV. The reactions
in Eq. (9.42) were in thermal equilibrium for T � TfrTT , because they could
proceed faster than the expansion rate of the Universe (i.e., Γ > H). In this
case the ratio of the neutron and proton number densities is given by 6

nn

np

=
(
mn

mp

)3/2

e−(mn−mp)/T ≈ e−Q/T . (9.43)

Tentatively ignoring the effect of neutron decays and taking TfrTT ≈ 0.72 MeV
as the freeze-out temperature of neutrinos from a more careful analysis (Gru-
pen et al., 2005), one may obtain nn/np ≈ 1/6 at TfrTT corresponding to

6In the non-relativistic limit the number density of either bosons or fermions
can be described by n = g (mT )3/2 / (2π)3/2 exp(−m/T ), where g is the number of
internal degrees of freedom for the particle in question and m denotes its rest mass.
This result is valid in the assumption that the chemical potentials are negligible.
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t ≈ 1.4 s after the Big Bang. Below the freeze-out temperature the neu-
trons were free to decay via n → p + e− + νe. This process lasted a few
minutes before the neutrons were bound up into deuterium and started the
chain of nucleosynthesis reactions. During this period the ratio nn/np reads

nn(t′)
np(t′)

=
e−Q/TfrTT e−t′/τn

1 + e−Q/TfrTT
(
1 − e−t′/τn

) ≈ e−Q/TfrTT e−t′/τn , (9.44)

where t′ means the time beginning from the freeze-out point to the start of
the nucleosynthesis, and τnττ = (885.7±0.8) s is the mean lifetime of neutrons.
At a time t ≈ 160 s (i.e., t′ ≈ 158.6 s and T ≈ 0.09 MeV for g∗ ≈ 3.36),
the neutron-to-proton ratio dropped to nn/np ≈ 0.14. From here on out the
Universe should be cold enough that the BBN could start from scratch.

9.2.2 Synthesis of the Light Nuclei

The nucleosynthesis chain began with the formation of deuterium in the re-
action n + p → D + γ with the binding energy Ebind ≈ 2.22 MeV. This is
an electromagnetic process which has a cross section much larger than those
of the weak processes listed in Eq. (9.42), and thus it could stay in thermal
equilibrium for quite a while. In other words, the deuterium would be bro-
ken apart as soon as it was produced if there were many photons and their
energies were greater than Ebind. Such a photodissociation process actually
delayed the production of deuterium after the temperature T dropped be-
low Ebind. Defining the ratio of the baryon and photon number densities as
η ≡ nB/nγ , one may use the quantity 1/η exp(−Ebind/T ) to approximately
estimate the number of photons per baryon (i.e., per nucleon) above the
deuterium photodissociation threshold energy. Note that η is the only free
parameter in the BBN theory. Given η ≈ 6 × 10−10, the number of photons
with energies above Ebind is found to be roughly equal to that of baryons at
T ∼ 0.1 MeV or t ∼ 132 s. Somewhat below this temperature the deuterium
could begin to form without being immediately photodissociated again.

Over the next few minutes, almost all the neutrons that had survived
since the BBN started were processed into the most stable light element 4He
via a number of dominant two-body processes such as D + n → 3H + γ,
D + D → 3H + p, D + p→ 3He + γ, D + D → 3He + n, and

D + D → 4He + γ , 3H + p→ 4He + γ ,

D + 3H → 4He + n , D + 3He → 4He + p . (9.45)

Much heavier nuclei could not form in any significant quantity both because
of the absence of stable nuclei with the mass number A = 5, 6 or 8 and due
to the large Coulomb barriers for some relevant reactions (Weinberg, 2008;
Perkins, 2009; Nakamura et al., 2010). As an example, 7Li and 7Be could be
produced through the processes
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3H + 4He → 7Li + γ , 3He + 4He → 7Be + γ ,
7Be + e− → 7Li + νe ,

7Be + n→ 7Li + p . (9.46)

One may therefore estimate the primordial mass fraction of 4He (i.e., the
ratio of the masses of all 4He elements to those of all nuclei), conventionally
referred to as YpYY = mHenHe/

[
mN

(
np + nn

)]
, by assuming that all of the

neutrons ended up in 4He. Namely, we have nHe ≈ nn/2 and mHe ≈ 4mN

together with mN ≈ mp ≈ mn ≈ 0.94 GeV. In this approximation,

YpYY ≈ 2nn

np + nn

≈ 0.246 , (9.47)

where nn/np ≈ 0.14 at T ≈ 0.09 MeV or t ≈ 160 s has typically been input.
It should be pointed out that the observed 4He abundance in the cosmos
as given below is consistent with the above prediction from the BBN theory
and far greater than the one which could have been produced from hydrogen
burning in main-sequence stars (Perkins, 2009). Hence YpYY is truly a measure
of the primordial 4He abundance.

A semi-quantitative but more accurate expression of the 4He mass fraction
is given by (Cirelli et al., 2005; Strumia and Vissani, 2006)

YpYY ≈ 0.248 + 0.0096 × ln
(

η

6.15 × 10−10

)
+ 0.013 ×

(
N

4He
νNN − 3

)
, (9.48)

where N
4He
νNN denotes the effective number of neutrino species relevant to the

4He abundance. If there were a very light sterile neutrino contributing to the
effective number of relativistic degrees of freedom during the BBN, the last
term in Eq. (9.48) with N

4He
νNN = 4 would not be negligible. Hence the BBN

theory allows us to constrain not only the baryon-to-photon ratio but also
the number of neutrino species. To determine the value of YpYY as accurately as
possible, one may measure the 4He abundance in regions of hot ionized gas
from “metal-poor” galaxies where only a relatively small amount of heav-
ier elements have been produced through the stellar burning of hydrogen
(Grupen et al., 2005). So far a lot of data on 4He and CNO have been accu-
mulated from the most metal-poor (H II) regions in dwarf galaxies, and they
confirm that the small stellar contribution to helium is positively correlated
with the metal production (Nakamura et al., 2010). Extrapolating a set of
measurements of the 4He mass fraction to zero metallicity yields the primor-
dial value of YpYY as follows (Olive and Skillman, 2004): YpYY = 0.249 ± 0.009.
Other recent extrapolations to zero metallicity lead us to YpYY = 0.247± 0.001
or 0.252 ± 0.001 (Izotov et al., 2007), or YpYY = 0.248 ± 0.003 (Peimbert et
al., 2007). These results are apparently consistent with one another. Fig. 9.1
shows the numerical dependence of YpYY on η, constrained by both the BBN
and CMB measurements (Cyburt et al., 2008; Nakamura et al., 2010).

A salient feature of the BBN theory is that it can account not only for
the 4He abundance but also for the other light elements (such as D, 3He
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Fig. 9.1 The abundances of D, 3He, 4He and 7Li elements predicted by the BBN
theory, where the bands show the ranges at the 95% confidence level (Cyburt et
al., 2008). The boxes indicate the observational data with ±2σ statistical errors
(smaller boxes) or with ±2σ statistical and systematic errors (larger boxes). The
narrow vertical band stands for the CMB measurement of the cosmic baryon-to-
photon ratio η, while the wider one represents the BBN concordance range. Both of
them are given at the 95% confidence level (Nakamura et al., 2010. With permission
from the Institute of Physics).

and 7Li) whose primordial abundances are rather small but far larger than
the values that would have been if those light elements had only been pro-
duced from thermonuclear reactions in stellar interiors. Different from the
4He abundance, which is traditionally given as the mass fraction YpYY , the
primordial abundances of the other light elements are usually presented as
the number fractions. For instance, the 3He abundance is described by the
3He-to-hydrogen number density ratio 3He/H|p ≡ n3He/nH. Of particular
importance is the primordial deuterium abundance, which can be estimated
by the semi-quantitative formula (Cirelli et al., 2005)

D
H

∣∣∣∣∣∣∣∣∣∣
p

≈ (2.75 ± 0.13) × 10−5

(
6.15 × 10−10

η

)1.6 [
1 + 0.11

(
ND

νNN − 3
)]

(9.49)
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with an uncertainty arising mainly from the nuclear cross sections. Assuming
ND

νNN = N
4He
νNN ≡ NνNN , one may therefore determine or constrain the magnitudes

of η and NνNN by combining the measurements of YpYY in Eq. (9.48) and D/H|p
in Eq. (9.49). This point is clearly illustrated in Fig. 9.1, where NνNN = 3 has
been taken to determine the cosmic baryon-to-photon ratio η from the BBN
data on the primordial D and 4He abundances.

Although deuterium can be produced via the reaction p+p→ D+e+ +νe

in hydrogen-burning stars, it will quickly be fused into helium. Hence one
believes that there are no astrophysical sources of deuterium (Epstein et al.,
1976). In order to measure the primordial D abundance, one has to detect the
high-redshift and low-metallicity gas clouds which are far away and far back in
time and thus have never been a part of stars (Grupen et al., 2005). The pres-
ence of deuterium has been measured from some quasar absorption systems at
high redshifts via its isotope-shifted Lyman-α absorption, and an average of
the measurements done by several groups yields D/H|p = (2.82±0.21)×10−5

(Nakamura et al., 2010). We expect that more accurate measurements of the
D abundance might offer the most stringent constraint on the number of
neutrino species during the BBN.

The best determination of the primordial 7Li abundance comes from the
measurements of hot metal-poor stars in the spheroid (Pop II) of our galaxy.
One may extrapolate to zero metallicity to find out the magnitude of the
lithium-to-hydrogen ratio Li/H|p. Current experimental data yield Li/H|p =
(1.7 ± 0.06 ± 0.44) × 10−10, as shown in Fig. 9.1 (Nakamura et al., 2010).
But one can see that the stellar Li/H measurements are inconsistent with
the CMB and D/H measurements because they apparently point to different
values of η. For now this lithium problem is a central unresolved issue in the
BBN theory, and its solution might involve new physics beyond the SM of
particle physics (Jedamzik and Pospelov, 2009).

It is much more difficult to measure the primordial 3He abundance, since
the only available data on 3He are from the solar system and high-metallicity
(H II) regions in our galaxy (Bania et al., 2002). But one might use the
predicted value of the primordial 3He-to-hydrogen ratio (i.e., 3He/H|p as
shown in Fig. 9.1) to constrain stellar astrophysics.

9.2.3 The Baryon Density and Neutrino Species

Thanks to the BBN theory, it is possible to determine the cosmic baryon-
to-photon ratio η and the number of neutrino species NνNN from some reliable
measurements of the primordial 4He and D abundances. The value of η ≡
nB/nγ allows us to calculate the baryon number density nB, since the photon
number density nγ ≈ 411 cm−3 is already known as given in Eq. (9.24) with
the CMB temperature T = 2.725 K. We have nB ≈ 0.25 m−3 today for
η ≈ 6×10−10. The baryons are non-relativistic today, so their energy density
is simply the total mass of nucleons per unit volume:
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ρB = mNnB = mNnγη , (9.50)

where mN ≈ mp ≈ mn ≈ 0.94 GeV. Then we obtain the ratio of the energy
density of baryons to the critical energy density of the Universe:

ΩB ≡ ρB

ρc

≈ 3.68 × 107 η

h2
, (9.51)

where ρc has been given in Eq. (9.9). Taking η ≈ 6 × 10−10 and h ≈ 7.2
today at t = t0, for example, we arrive at ΩB(t0) ≈ 0.043 together with
ρB(t0) ≈ 2.32 × 10−7 GeV cm−3 ≈ 4.12 × 10−28 kg m−3. This result is
consistent very well with ΩB(t0) = 0.0438± 0.0013 extracted from the recent
measurement of temperature variations in the CMB radiation (Nakamura
et al., 2010). In comparison, Ωr(t0) ≈ 4.84 × 10−5 and Ωm(t0) ≈ 0.26. We
see that ΩB(t0) � Ωr(t0) holds but ΩB(t0) itself is only about 16.5% of
Ωm(t0). It is worthwhile to make a remark here: while the relative numbers
of photons, baryons and antibaryons would have been comparable in the
first nanoseconds after the Big Bang (their difference should only be in spin
multiplicity factors), most of the nucleons and antinucleons must have later
disappeared due to their mutual annihilation, leaving a tiny — about one part
per billion — excess of nucleons as the matter of the everyday world (Perkins,
2009). In other words, there is no primordial antimatter surviving today in
the observable Universe. This cosmological matter-antimatter asymmetry will
be discussed in detail in Chapter 11.

Once the cosmic baryon-to-photon ratio η is known, the primordial deu-
terium or helium abundance can be fixed to a quite narrow range by the BBN
theory (see Fig. 9.1 for illustration). As shown in Eqs. (9.48) and (9.49), a
simple comparison between the predicted and measured values of YpYY or D/H|p
allows us to determine or constrain the effective number of neutrino species.
Note that the helium and deuterium curves in Fig. 9.1 are plotted by taking
N eff

νNN = 3 in the limit of an instantaneous neutrino decoupling (Cyburt et
al., 2008). If small corrections for non-equilibrium neutrino heating are taken
into account in the thermal evolution below T ∼ 1 MeV, one has N eff

νNN ≈ 3.04
(Seljak and Zaldarriaga, 1996; Mangano et al., 2002). Note also that N eff

νNN
matters in the BBN era (for T < me) via the effective number of degrees of
freedom

g∗ ≈ 2
[
1.681 + 0.227

(
Neff

νNN − 3
)]
, (9.52)

which is equivalent to g′∗ given in Eq. (9.41). For instance, g∗ ≈ 3.82 would
hold if N eff

νNN = 4 were taken, as compared with g∗ ≈ 3.36 for N eff
νNN = 3. Hence

the presence of extra neutrino flavors (or of any other relativistic species) at
this time would enhance g∗, leading to a larger freeze-out temperature TfrTT ,
a larger neutron-to-proton ratio nn/np and a larger 4He mass fraction YpYY as
one can easily see from Eqs. (9.32), (9.43) and (9.47). This observation was
originally used to constrain the number of light neutrino families before the
LEP experiment demonstrated NνNN = 3 to a high degree of accuracy for the
SM of electroweak interactions (Nakamura et al., 2010).
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The above discussions illustrate that the BBN provides us with an inter-
esting playground to enjoy the interplay between particle physics and cos-
mology. Just as one may use the observed helium and deuterium abundances
to probe the effective number of degrees of freedom g∗, any changes in the
strong, weak, electromagnetic or gravitational coupling constants can be sim-
ilarly constrained (Nakamura et al., 2010). Furthermore, the constraints on
the effective number of neutrino species can be translated into the limits on
other types of particles or particle masses that would affect the expansion
rate of the Universe during the BBN. For the sake of simplicity, however,
we do not go into details of concrete new physics models and their possible
consequences on the BBN in this book.

9.3 Possible Ways to Detect Relic Neutrinos

The Big Bang model of cosmology predicts the existence of a CνB composed
of relic neutrinos which were decoupled from matter and radiation at about
TfrTT � 1 MeV or t � 0.74 s after the Big Bang. It is quite analogous to the
well-known CMB, whose formation was at a time of about 3.8 × 105 years
after the Big Bang (i.e., when the photons were decoupled from matter at
a temperature of about 0.26 eV). At present the observational evidence for
this CνB is rather indirect, coming mainly from the measurements of the
primordial abundances of light elements, the anisotropies in the CMB and
the large-scale structures of the cosmos. Is it possible to directly detect the
CνB by means of current experimental technologies?

9.3.1 Cosmic Neutrino Background

In Section 9.1.5 we have shown that the large-scale properties of the CνB
are closely related to those of the CMB. In particular, the temperatures or
number densities of relic neutrinos and photons are related to each other:

TνTT =
(

4
11

)1/3

TγTT , nν =
9
11
nγ . (9.53)

Given TγTT ≈ 2.725 K and nγ ≈ 411 cm−3 for the CMB radiation today, the
corresponding temperature and number density of the CνB turn out to be
TνTT ≈ 1.945 K and nν ≈ 336 cm−3. As a consequence, the average three-
momentum of each relic neutrino is very small (Ringward, 2009):

〈pν〉 = 3TνTT ≈ 5.8 K ≈ 5 × 10−4 eV , (9.54)

implying that at least two mass eigenstates of the relic neutrinos are already
non-relativistic today no matter whether the neutrino mass spectrum has
a normal hierarchy or an inverted hierarchy (see Section 8.4.1 for a similar
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discussion). The CνB is naively expected to be homogeneous and isotropic on
large scales, but it is somewhat subject to the gravitational clustering effect
due to the existence of cold dark matter and baryonic structures. Hence some
local overdensities might appear in the CνB as compared with the standard
value given above, and the momentum distribution might more or less deviate
from the one following from the Fermi-Dirac distribution.

The presence of the CνB can affect the evolution of CMB anisotropies and
the growth of matter perturbations. For instance, relativistic relic neutrinos
contributed to the energy density of radiation and thus had an impact on
the time of matter-radiation equality. The free-streaming massive neutrinos
could also suppress the growth of structures on small scales. Similar to CMB
anisotropies, CνB anisotropies have been calculated although it is extremely
difficult to detect them even in the far future. If neutrinos were massless,
the power spectrum of CνB fluctuations would closely resemble the usual
CMB spectrum without the baryon-photon acoustic oscillations (Hu et al.,
1995). The calculation of the primary CνB spectrum is rather complicated
for massive neutrinos, and the CνB anisotropy can be quite sensitive to the
absolute values of neutrino masses (Hannestad and Brandbyge, 2009).

9.3.2 Direct Detection of Relic Neutrinos

As indicated in Eq. (9.54), relic neutrinos have little kinetic energies today.
It is extremely difficult to detect such low-energy neutrinos because the cross
sections of their interactions with matter within a detector are terribly sup-
pressed. Nevertheless, it is very important to directly verify the existence
of the CνB in order to test the neutrino aspects of the Big Bang model of
cosmology. Here we give a brief overview of a few proposals for the direct
detection of the CνB in the present epoch and in our local neighborhood.

(1) Relic neutrino capture on β-decaying nuclei. The most promising
method for detecting the CνB is to search for a peak, which is related to
the capture of a relic electron neutrino, in the energy spectrum of a beta
decay. This idea was first proposed by Steven Weinberg a long time ago
(Weinberg, 1962; Irvine and Humphreys, 1983), and has recently attracted
some interest (Cocco et al., 2007, 2009; Lazauskas et al., 2008; Blennow, 2008;
Kaboth et al., 2010; Li et al., 2010). The point can be made clear as follows.
Let us consider a nucleus N which can naturally undergo the beta decay
N → N ′ + e− + νe with an energy release Qβ = mN −mN ′ −me > 0 in the
limit of vanishing neutrino masses (i.e., mi → 0 for i = 1, 2, 3). Then we see
that the neutrino capture reaction

νe +N → N ′ + e− (9.55)

has a salient feature: it can take place with no threshold on the incident neu-
trino energy Eνi

(for each mass eigenstate νi in νe). In contrast, the reaction
νe + N ′ → N + e+ is subject to a threshold on the incoming antineutrino
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energy Eνi
. The number of events for the neutrino capture in Eq. (9.55) is

determined by the product of the cross section of the reaction itself and the
i

flux of relic νe neutrinos, which depend respectively on 1/vνi
and vνi

with
vνi

∼ 3TνTT /mi being the modulus of the velocity of νi (Lazauskas et al., 2008).
Hence it converges to a finite value even for vνi

→ 0 or Eνi
→ 0 and can

be reasonably large if a sufficient amount of the β-decaying target material
is prepared (Cocco et al., 2007; Lazauskas et al., 2008). In the extreme case
with mi → 0 and Eνi

→ 0, the νe neutrino contributes to this reaction via
its correct lepton number and the final-state electron exactly possesses the
β-decay endpoint energy Qβ. Given finite values of neutrino masses mi, how-
ever, the monoenergetic electron’s kinetic energy is Qβ + Eνi

� Qβ + mi

for each neutrino mass eigenstate νi. In comparison, the non-monoenergetic
electron emitted from the beta decay N → N ′ + e− + νe carries a kinetic
energy Qβ −Eνi

� Qβ −mi for each νi if the recoil of the final-state nucleus
N ′ is neglected. So there is a gap equal to or larger than 2mi between the
electron’s kinetic energy in νe +N → N ′ + e− and that in N → N ′ + e− + νe

(Cocco et al., 2007) 7. This observation implies that it is possible, at least in
principle, to distinguish the neutrino capture reaction from its correspond-
ing beta decay by measuring the energy spectrum of final-state electrons to
an unprecedentedly high degree of accuracy characterized by the neutrino
masses. One may therefore has a chance to directly detect the presence of
the CνB in this way.

The capture rate of relic electron neutrinos via νe +N → N ′ + e− can be
given as (Lazauskas et al., 2008; Blennow, 2008; Li et al. 2010)

N (i)
CNN νB ≈ 6.5|VeiVV |2

nνi

n̄νi

yr−1 MCi−1 , (9.56)

where VeiVV denotes the neutrino mixing matrix element and |VeiVV |2 measures
the electron neutrino content of νi (for i = 1, 2, 3), nνi

/n̄νi
is the ratio of

the relic neutrino density on the Earth to the mean relic neutrino density in
the Universe for each neutrino mass eigenstate. With the help of Eq. (9.53),
we have n̄νi

= nν/6 ≈ 56 cm−3. We expect that nνi
/n̄νi

� 1 holds in view
of the gravitational clustering of relic neutrinos (Ringwald and Wong, 2004).
Taking N to be the tritium (i.e., νe + 3H → 3He + e−), for example, one
has Qβ = 18.6 keV and 1 MCi source of tritium is about 100 g. In this
case the capture rate should be reasonably large for a long running time
of the experiment. The main problem is whether the CνB signal would be
detectable given the overwhelming rate of the beta decay. Of course, the
signal-to-noise ratio critically depends on mi, |VeiVV | and the energy resolution

7If the mass of the lightest neutrino is below 〈pν〉 given in Eq. (9.54) (i.e.,
it remains hot or relativistic today), then its energy can be expressed as Eνi

≈√〈pν〉2 + m2
i , which is of O(〈pν〉) and hence has little impact on the overall electron

energy spectrum under discussion (Li et al., 2010).
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of the detection apparatus Δ (Cocco et al., 2007; Lazauskas et al., 2008;
Blennow, 2008; Kaboth et al., 2010; Li et al., 2010). But this ratio relies
neither on the value of Qβ nor on the nuclear matrix elements for the final-
state electrons to lie within the energy resolution interval Δ just below the
endpoint. Given mi < Δ, the corresponding signal-to-noise ratio is expected
to be

N (i)
CNN νB

N (i)
βNN

≈ 6π2
nνi

Δ3
≈ 2.5 × 10−11

nνi

n̄νi

(
1 eV
Δ

)3

. (9.57)

This number is hopelessly small, unless it could be significantly enhanced by
an extreme gravitational clustering effect.

It is unrealistic to apply the above method to all the presently-developed
β-decay experiments, including the KATRIN experiment (Otten and Wein-
heimer, 2008), for two obvious reasons: (a) the amount of their target material
is very small, leading to a tiny total capture rate of relic neutrinos; and (b)
their energy resolution is very poor (Δ � mi), such that the signal-to-noise
ratio is too small to claim a discovery (Ringwald, 2009).

If the CνB consists of both active neutrinos (ν1, ν2, ν3) and sterile neutri-
nos (ν4ν , ν5, · · · ), the latter may also leave an imprint on the electron energy
spectrum in the capture of relic electron neutrinos by means of radioactive
beta-decaying nuclei. To be more explicit, let us assume that the masses of
sterile neutrinos are of O(0.1) eV and somewhat larger than the absolute
mass scale of three active neutrinos. In this case we have a few very general
expectations about the direct laboratory detection of the CνB and its ster-
ile component (Li et al., 2010). First, the signal of the sterile component of
the CνB is on the right-hand side of the electron energy spectrum as com-
pared with the signal of the active component of the CνB. Their separation
is measured by their mass differences. Second, the rate of events for the sig-
nal of relic sterile neutrinos is crucially dependent on the magnitude of their
mixing with active neutrinos. Hence a larger value of |VeiVV | (for i � 4) leads
to a higher rate of signal events. Third, whether a signal can be separated
from its background depends on the finite energy resolution Δ in a realistic
experiment. In general, Δ � mi/2 (for i = 1, 2, · · · ) is required to detect the
CνB via a neutrino capture reaction.

(2) A Cavendish-type torsion balance for relic neutrinos. We are not at rest
with respect to the almost isotropic CMB, nor to the almost isotropic CνB
because the Earth is moving through both of them. The coherent scattering of
a relic neutrino flux off the target matter in a terrestrial detector may give rise
to a mechanical force (Shvartsman et al., 1982; Smith and Lewin, 1983), which
is possibly detectable in a Cavendish-type torsion balance by searching for
an annual modulation of the signal (Hagmann, 1999). The point is that relic
neutrinos have a macroscopic de Broglie wavelength λν = 1/TνTT ≈ 0.12 cm,
where TνTT ≈ 1.945 K has been input. So a terrestrial detector with a mass
density ρ and a linear size r < λν may experience a tiny acceleration induced
by the neutrino wind due to the coherent neutrino-nucleon scattering effect.
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If neutrinos are Dirac particles, which can have vectorial couplings, this tiny
acceleration is described by (Ferreras and Wasserman, 1995; Duda et al.,
2001; Gelmini, 2005; Ringwald, 2009) 8

a ≈
∑
ν,ν̄

4π

3
N 2

AN ρ r3 σνN (nν vrel)︸ ︷︷︷ ︸︸
flux

(2mν vrel)︸ ︷︷︷ ︸︸
mom. transfer

≈ 2 × 10−28 cm s−2

(
nν

n̄ν

)(
10−3 c

vrel

)(
ρ

g cm−3

)(
r

λν

)3

, (9.58)

where NAN is Avogadro’s number, σνN ≈ G2
Fm

2
ν/π measures the cross sec-

tion of elastic neutrino-nucleon scattering, and vrel ≡ |〈v − v⊕〉| denotes the
mean velocity of the relic neutrinos in the rest system of the detector with
|v⊕| ≈ 7.7×10−4 c being the velocity of the Earth through the Milky Way. If
neutrinos are Majorana particles, which only have axial couplings, the corre-
sponding acceleration involves a further suppression factor (vrel/c)

2 ∼ 10−6

for an unpolarized target or vrel/c ∼ 10−3 for a polarized target (Hagmann,
1999). The minimal acceleration that can be detected by current Cavendish-
type torsion balances is of O(10−13) cm/s2 (Adelberger et al., 2009), over-
whelmingly larger than the expected signal. Solar neutrinos and dark matter
are likely to produce a much larger background (Strumia and Vissani, 2006).

(3) The Stodolsky effect. This effect consists of an energy split of the two
spin states of non-relativistic electrons in the CνB; i.e., the energy of an elec-
tron receives an extra contribution ΔEe ∼ GFs ·v(nν −nν) that relies on the
direction of its spin s with respect to the relic neutrino wind v (Stodolsky,
1974). The magnitude of ΔEe depends on GF instead of G2

F, but it might
be suppressed by the asymmetry of relic neutrino and antineutrino number
densities. The latter is defined as ην ≡ (nν − nν)/nγ . The Stodolsky effect is
also dependent on the Dirac or Majorana nature of non-relativistic neutrinos
(Gelmini, 2005). It practically manifests itself as a torque T ∼ NeN ΔEe act-
ing on a magnetized macroscopic object with NeN polarized electrons. In the
typical case of one polarized electron per atom, an object with a linear size
r and atomic number A may experience a tiny acceleration induced by the
relic neutrino wind (Strumia and Vissani, 2006):

a ∼ T
ANeN mer

∼ 10−28 cm s−2

(
100
A

)(cm
r

)( 〈v〉
10−3

)
ην . (9.59)

We see that the estimates in Eqs. (9.58) and (9.59) are comparable in mag-
nitude, far below the present experimental sensitivities.

(4) Z-bursts of relic and UHE neutrinos. As discussed in Section 8.4.1,
ultrahigh-energy (UHE) cosmic neutrinos may interact with the CνB and
get absorbed via the following reactions taking place on the Z resonance:

8Since relic neutrinos are mostly non-relativistic today, their effects in question
are significantly dependent on their Dirac or Majorana nature (Gelmini, 2005).
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νUHE + νCνB → Z → hadrons and νUHE + νCνB → Z → hadrons (Weiler,
1982). In such a Z-burst event the kinetic energy of an UHE neutrino νi ought
to be Eνi

≈M2
ZM /(2mi) ≈ 4.2 × (eV/mi) × 1021 eV, where mi stands for the

mass of νi. One may use the Z-burst mechanism to probe the existence of
the CνB in two ways: one is to detect the “emission” feature of Z-bursts
characterized by a directional excess of UHE cosmic rays, gamma rays and
neutrinos above the well-known GZK cutoff EGZK ∼ 5×1019 eV (see Section
8.1.1 for a detailed discussion), and the other is to observe the “absorption”
feature in the UHE cosmic neutrino flux which is just the consequence of its
interactions with the CνB on the Z resonance (Weiler 1982; Roulet, 1993;
Yoshida, 1994). But in either case the signal rate is too small to be detected
by means of the present technology of UHE neutrino telescopes.
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10

Neutrinos and Cosmological Structures

As fairly stable and weakly interacting particles, relic neutrinos of the Big
Bang must survive today and form a cosmic background similar to the cosmic
microwave background (CMB) radiation. This cosmic neutrino background
(CνB) played an important role in the evolution of the Universe. A measure-
ment of the CMB anisotropies can tell us a lot of cosmological information,
including the number of neutrino species and neutrino masses. Since mas-
sive neutrinos became non-relativistic when the temperature fell below their
masses, they should have left an imprint on the clustering of galaxies. In this
chapter we shall first describe how the CMB and large-scale structures (LSS)
formed, and then discuss how to constrain neutrino masses from the mea-
surements of the CMB and LSS. We shall also comment on sterile neutrinos
as a possible candidate of warm dark matter in the Universe.

10.1 The Cosmic Microwave Background

The CMB radiation was first discovered by Arno Penzias and Robert Wilson
in 1965 (Penzias and Wilson, 1965). The significance of this discovery was
recognized with the Nobel Prize in Physics in 1978. Since then the CMB
has become one of the most important pillars of the Big Bang model of
cosmology. In 2006, John Mather and George Smoot received the Nobel Prize
in Physics for their discovery of the blackbody form and anisotropy of the
CMB radiation by means of the COBE satellite (Smoot et al., 1992). It
turns out that the CMB anisotropy measurements can place very precise
constraints on a number of cosmological parameters, including the sum of
neutrino masses, and thus have led us to the era of precision cosmology.

10.1.1 Matter-radiation Equality

As discussed in Section 9.2, the primordial nucleosynthesis started at about
t ≈ 2 s after the Big Bang. It was completed by about t ≈ 103 s, after the tem-
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perature had fallen to the level of O(10−2) MeV (Grupen et al., 2005). Any
neutrons that had not become bound into heavier nuclei by this time could no
longer survive but would soon decay. Since then the early Universe evolved
in a somewhat different way. The next remarkable event took place when
the energy density of radiation (i.e., relativistic particles, including photons
and neutrinos) became as low as the energy density of matter (i.e., non-
relativistic particles, including nuclei and electrons). This matter-radiation
equality signifies a transition of the Universe from its radiation-dominated
era to its matter-dominated epoch. In the following let us work out the time
of matter-radiation equality.

To estimate when the matter-radiation equality happened in the evolution
of the early Universe, one needs some information on the energy densities
of matter and radiation. It will be seen that a global analysis of current
observational data on the CMB and LSS yields Ωm(t0) ≈ 0.26 for non-
relativistic matter and Ωv(t0) ≈ 0.74 for vacuum energy if a flat Universe
with k = 0 is assumed today at t = t0 (Komatsu et al., 2009; Nakamura et
al., 2010). In comparison, the energy density of photons ρr has a contribu-
tion Ωr(t0) ≈ 4.84× 10−5 as estimated below Eq. (9.25). Because the energy
density of relativistic neutrinos ρν is related to ρr through

ρν

ρr

=
7
8
· gν

gγ

(
TνTT

TγTT

)4

=
21
8

(
4
11

)4/3

≈ 0.681 , (10.1)

we obtain Ων(t0) = (ρν/ργ)Ωr(t0) ≈ 3.30 × 10−5 for neutrinos 1. The sum
Ωr(t0) + Ων(t0) ≈ 8.14 × 10−5 turns out to be about 3200 times smaller
than Ωm(t0). In addition, the energy density of non-relativistic baryons has a
contribution ΩB(t0) ≈ 0.043 as given below Eq. (9.51). Table 9.1 has provided
us with the proportionality relations Ωr ∝ ρr ∝ 1/R4 and Ωm ∝ ρm ∝ 1/R3.
Taking account of R(t) = R(t0)/(1 + z), we find

Ωr(t)
Ωm(t)

=
Ωr(t0)R

4(t0)
R4(t)

· R3(t)
Ωm(t0)R3(t0)

= (1 + z)
Ωr(t0)
Ωm(t0)

. (10.2)

Then the redshift z for the matter-photon equality Ωr(t) = Ωm(t) is given by

z =
Ωm(t0)
Ωr(t0)

− 1 ≈ 5372 . (10.3)

In a similar way, the redshift z for the baryon-photon equality Ωr(t) = ΩB(t)
is found to be

z =
ΩB(t0)
Ωr(t0)

− 1 ≈ 887 ; (10.4)

1Note that we have assumed neutrinos to be relativistic particles. When their
masses are taken into account, at least two mass eigenstates of the relic neutrinos
are already non-relativistic today. In this case Ων(t0) should be estimated in a
different way, as discussed in Section 10.2.
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and the redshift z for the equality Ωr(t)+Ων(t) = Ωm(t) between the energy
density of matter and that of all relativistic particles (i.e., both photons and
neutrinos) is given by

z =
Ωm(t0)

Ωr(t0) +Ων(t0)
− 1 ≈ 3193 . (10.5)

In order to figure out when the above equalities took place, one needs to
establish the relations between t and t0 via the redshift z. For illustration,
we simply assume that the Universe has been matter-dominated since the
matter-radiation equality. In this case t ∝ R3/2 holds as shown in Table 9.1,
and therefore t is related to t0 through

t = t0

[
R(t)
R(t0)

]3/2

=
t0

(1 + z)3/2
, (10.6)

where t0 ≈ 13.7 Gyr is the age of the Universe (Komatsu et al., 2009). Then
we obtain tmr ≈ 3.5× 104 yr for z ≈ 5372 or tmr ≈ 7.6× 104 yr for z ≈ 3193.
Note that these numbers can only give us a ballpark feeling of the magnitude
of tmr, because we know that the vacuum energy makes up an important
portion of the total energy density of the Universe (i.e., Ωv(t0) ≈ 0.74 today)
and hence the assumption of matter dominance is more or less problematic.

When the energy density of matter exceeded that of radiation (i.e., for z <
3000 as indicated by Eq. (10.5)), the gravitational clustering of matter could
take place. Dark matter was vitally important here, because the dominance
of baryons alone over radiation would not occur until very much later (e.g.,
at z < 900 as indicated by Eq. (10.4) or after the decoupling of photons from
matter) (Perkins, 2009).

10.1.2 Formation of the CMB

In the radiation-dominated epoch any protons and electrons that managed
to bind into neutral hydrogen atoms via the reaction p+ e− → H + γ would
be immediately photodissociated via the inverse reaction H+γ → p+ e−. As
the temperature T dropped significantly below the electron binding energy of
hydrogen (i.e., Ebind = 13.6 eV), the formation of hydrogen became feasible
and the Universe transformed from an ionized plasma into a gas of neutral
atoms. This process is usually referred to as recombination. When the number
density of free electrons in the cosmos was sufficiently small, the mean free
path of a photon would be sufficiently long such that most photons have
not scattered with matter since then. This phenomenon is usually called the
decoupling of photons from matter.

Let us estimate the temperature and time of recombination. The process
p+e− ↔ H+γ should be in thermal equilibrium when the temperature T was
above the ionization energy of hydrogen Ebind = 13.6 eV. We are interested
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in what happened as the temperature fell. A naive expectation is that a
significant amount of hydrogen could have been formed when T dropped
below Ebind. But the smallness of the baryon-to-photon ratio η ≡ nB/nγ ∼
6× 10−10 fixed during the Big Bang nucleosynthesis (BBN) implies that the
number of photons with E > Ebind might be comparable with the number of
baryons only at a much lower temperature. Note that the rate of the reaction
p + e− → H + γ is proportional to the product of the number densities of
protons and electrons npne, and the rate of the reaction H + γ → p + e− is
proportional to the number density of hydrogen atoms nH

2. According to
the Saha equation (Saha, 1921),

npne

nH

=
(
meT

2π

)3/2

exp
(
−Ebind

T

)
. (10.7)

Here the total baryon number density is nB = np + nH. Using x to denote
the fraction of hydrogen atoms which are ionized, we have ne = np = xnB

and nH = (1 − x)nB. Then Eq. (10.7) can be rewritten as

x2nB

1 − x
=
(
meT

2π

)3/2

exp
(
−Ebind

T

)
. (10.8)

One may numerically illustrate the changes of x with T by inputting the
values of me and Ebind. It is found that x catastrophically drops for T
to vary from 0.35 eV to 0.25 eV (Perkins, 2009). This result implies that
the Universe was transforming from an ionized plasma into an essentially
neutral gas of hydrogen (and helium) at the recombination temperature
TrecTT ≈ 0.3 eV. A comparison between TrecTT and today’s CMB temperature
T0TT = 2.725 K = 2.348× 10−4 eV allows us to determine when recombination
took place. Because of T ∝ 1/R, the redshift at the time of recombination is

1 + zrec =
R(t0)
R(trec)

=
TrecTT

T0TT
. (10.9)

Thus we obtain zrec ≈ 1277. Assuming the Universe to be matter-dominated
from this point up to today, we have t ∝ R3/2 ∝ T−3/2 and thus

trec = t0

(
T0TT

TrecTT

)3/2

=
t0

(1 + zrec)
3/2

. (10.10)

Given t0 ≈ 13.7 Gyr as the age of the Universe, the time of recombination is
then found to be trec ≈ 3.0 × 105 yr.

Shortly after recombination, the mean free path of a photon became so
long that radiation and matter were effectively decoupled. The decoupling

2Since the number density of photons nγ is remarkably larger than np, ne and
nH, the reaction rate is essentially insensitive to nγ (Perkins, 2009).
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of photons from matter was of course not an instantaneous process, because
a photon emitted upon recombination of one hydrogen atom could almost
immediately ionize another hydrogen atom at T ∼ TrecTT . While the Universe
was an ionized plasma during this period, the photon scattering cross sec-
tion was dominated by the Thomson scattering (i.e., the elastic scattering
of electromagnetic radiation by a free charged particle). The mean free path
of a photon was therefore determined by the decreasing number density of
electrons as the Universe expanded. This path length became longer than the
horizon distance (i.e., the radius of the observable Universe at a given time)
at the decoupling temperature TdecTT ≈ 0.26 eV, corresponding to a redshift
zdec ≈ 1100 (Grupen et al., 2005). The decoupling time is determined by

tdec = t0

(
T0TT

TdecT

)3/2

=
t0

(1 + zdec)
3/2

. (10.11)

So we get tdec ≈ 3.8×105 yr, the approximate moment for the CMB to form.
After the decoupling of radiation from matter, the latter became trans-

parent to the former and thus the formation of atoms and molecules could
begin in earnest. We may define the “surface of last scattering” as the sphere
centered about us with a radius equal to the mean distance to the last place
where the CMB photons scattered (Grupen et al., 2005). Such a distance
is approximately equal to the one to where the matter-radiation decoupling
took place, and the time of last scattering is essentially the same as tdec. In
this sense, today’s detection of the CMB is actually probing the conditions
in the Universe at a time of roughly 3.8 × 105 years after the Big Bang.

10.1.3 Anisotropies of the CMB

The spectrum of the CMB measured initially by Penzias and Wilson could
well be described by a blackbody function with a direction-independent tem-
perature T ∼ 3 K. In the 1970’s it was found that the temperature was a
bit higher in one particular direction of the microwave sky than in the op-
posite direction. This interesting anisotropy of the CMB, of O(10−3), was
interpreted as being caused by the Earth’s motion which should be equiva-
lent to a peculiar velocity of the Milky Way (i.e., vMW ∼ 630 km s−1). In
1992, the COBE satellite discovered the temperature variations of O(10−5) in
the CMB at smaller angular separations (Smoot et al., 1992). These remark-
able CMB anisotropies have been confirmed by a number of ground-based
and ballon-borne measurements with much better sensitivities and angular
resolutions (White et al., 1994; Hu and Dodelson, 2002). In particular, the
WMAP satellite has measured the CMB and its anisotropies to an unprece-
dentedly good degree of accuracy since 2003 (Bennett et al., 2003; Jarosik et
al., 2007; Hinshaw et al., 2009).

To describe the CMB anisotropies over a wide range of angular scales,
one may consider the CMB temperature as a direction-dependent function
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T (θ, φ), where θ and φ stand respectively for the polar and azimuthal angles
in the spherical coordinate system. This function can be expanded in terms
of the spherical harmonic functions Y�mYY (θ, φ) as follows:

T (θ, φ) =
∞∑

�=0

�∑
m=−�

a�mY�mYY (θ, φ) . (10.12)

Such an expansion of the CMB sky is analogous to a Fourier series, in which
the higher-order terms correspond to higher frequencies. Here the terms with
higher � values point to the structures of the CMB at smaller angular scales.
A term in the series of Eq. (10.12) is usually referred to as a multipole mo-
ment: the � = 0 term is the monopole; the � = 1 term is the dipole; and so
on. This language is borrowed from the multipole expansion used frequently
in the study of electromagnetic and gravitational fields. Current theoretical
models generally predict that the a�m modes are Gaussian random fields to
a good degree of precision, and possible non-Gaussian effects are expected
to be one or two orders of magnitude smaller than the present observational
limits (Bartolo et al., 2004). A statistically isotropic CMB sky means that
all m values are equivalent; i.e., there is no preferred axis. Given this ob-
servation and the Gaussian statistics, the variance of the temperature field
(or equivalently, the power spectrum in �) can fully characterize the CMB
anisotropies (Nakamura et al., 2010). The power summed over all possible m
values at each � is (2� + 1)C�C /(4π), where C�C ≡ 〈|a�m|2〉 is defined. The set
of C�C (for � = 0, 1, · · · ,∞) is called the angular power spectrum. The value
of C�C represents the level of the CMB structure measured at an angular sep-
aration Δθ ≈ π/� (Grupen et al., 2005). A measurement can only be able to
resolve angles down to a minimum value, from which the maximal value of �
is then deducible.

(1) The monopole. The � = 0 term in the Laplace expansion of T (θ, φ),
which can be regarded as the monopole component of the CMB spectrum,
signifies the temperature of the CMB averaged over all directions of the sky
as shown in the left panel of Fig. 10.1. Its value with the 1σ error bar is
TγTT = 2.725±0.001 K today (Mather et al., 1999). The monopole distribution
of the CMB is consistent with a blackbody function with T = TγTT , and the
corresponding number density of relic photons is known as nγ ≈ 411 cm−3.

(2) The dipole. The largest anisotropy of the CMB, with an amplitude of
ΔT = 3.355 ± 0.008 mK (Hinshaw et al., 2009) and a “yin-yang” pattern as
shown in the middle panel of Fig. 10.1, is described by the � = 1 term in the
Laplace expansion of T (θ, φ). This dipole component of the CMB spectrum
is characterized by the temperature variation ΔT/TγTT ≈ 1.23 × 10−3 and
attributed to the Doppler shift caused by the Earth’s motion relative to the
nearly isotropic blackbody field, as confirmed by a measurement of the radial
velocity of local galaxies (Courteau et al., 2000). To be specific, the motion
of an observer in the solar system with velocity v with respect to the rest
frame of an isotropic Planckian radiation field of temperature T0TT produces a
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Fig. 10.1 The monopole (left), dipole (middle) and multipole (right) patterns in
the cosmographic map of the CMB measured by the WMAP satellite (Courtesy of
the WMAP Science Team, http://map.gsfc.nasa.gov/)

Doppler-shifted temperature pattern (Peebles and Wilkinson, 1968)

T (θ) = T0TT

√
1 − β2

1 − β cos θ
≈ T0TT
[
1 + β cos θ + O(β2)

]
, (10.13)

where θ is the angle between the line of sight and the direction of the motion
of the observer, and β ≡ v/c with c being the speed of light. The observed
spectrum of the CMB as a function of θ is given by (Fixsen et al., 1994)

Sν(θ) = Bν(T ) ≈ Bν(T0TT ) + T0TT β cos θ
dBν

dT

∣∣∣∣∣∣∣∣∣∣
T=T0TT

, (10.14)

where Bν(T ) denotes the Planck function. One observes a blackbody spec-
trum of the CMB at every point in the microwave sky with temperature
T (θ). The monopole part of the spectrum is just described by Bν(T0TT ), while
the dipole part of the spectrum must have the shape of the derivative of
Bν(T ) evaluated at the temperature T = T0TT . Given T0TT = TγTT together with
ΔT = 3.355±0.008 mK, the implied velocity for the solar system barycenter is
v = 369.0±0.9 km s−1 towards (�, b) = (263.99◦±0.14◦, 48.26◦±0.03◦) (Hin-
shaw et al., 2009). The dipole anisotropy means that the CMB is blueshifted
to a slightly higher temperature in the direction of motion and redshifted in
the opposite direction. Because the dipole is a frame-dependent quantity, one
may define a “local rest frame” of the Universe in which the CMB has no
dipole anisotropy at all (Grupen et al., 2005).

(3) The multipoles. The � � 2 terms in the Laplace expansion of T (θ, φ)
constitute the multipole part or small-angle anisotropies of the CMB spec-
trum characterized by the temperature variations ΔT/TγTT ∼ 10−5. It was the
COBE satellite that first discovered such small-angle CMB anisotropies, be-
cause it had an angular resolution Δθ ∼ 7◦ and could probe the angular power
spectrum up to a multipole number � ≈ π/Δθ ∼ 20 (Smoot et al., 1992). An
impressive multipole pattern in the cosmographic map of the CMB, as shown
in the right panel of Fig. 10.1 (with the dipole component subtracted), has
been established from the measurements of the WMAP satellite which has
an angular resolution Δθ ∼ 0.2◦ and can therefore determine the angular
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power spectrum up to � ∼ 1000 (Bennett et al., 2003; Jarosik et al., 2007;
Hinshaw et al., 2009). The observed multipole effects can be interpreted as
being mostly the result of small density fluctuations in the early Universe,
manifesting themselves in the epoch of last scattering of the CMB photons.
Such small density fluctuations could be amplified by gravity, with denser
regions attracting more matter, until the non-relativistic matter of the Uni-
verse was separated into clumps. This picture is actually how the formation
of galaxies is expected to have taken place (Grupen et al., 2005). Given a
certain amount of clumpiness observed today, it is possible to work out what
density perturbations must have existed at the time of last scattering based
on the Big Bang model of cosmology. Since these perturbations should corre-
spond to regions of different temperatures, the observed LSS of the Universe
would imply the existence of temperature variations at a level of about one
part in 105 of TγTT in the microwave sky. Of course, this reasonable expectation
was verified by the COBE and WMAP measurements.

Let us give a brief summary of the physics behind the CMB radiation.
Before recombination, the baryons and photons were tightly coupled and
the perturbations oscillated in the potential wells produced primarily by the
dark matter perturbations (Nakamura et al., 2010). After the decoupling of
photons from baryons, the baryons were free to collapse into those potential
wells. The CMB is expected to carry a record of conditions at the time of
last scattering, often called the primary anisotropies. It may also be affected
by a time-varying gravitational potential (i.e., the integrated Sachs-Wolfe
effect or the so-called ISW rise), gravitational lensing and scattering from a
homogeneous distribution of ionized gas at low redshifts. These effects can
all be computed by using the CMBFAST (Seljak and Zaldarriaga, 1996) or
CAMB (Lewis et al., 2000) code based on the linear perturbation theory. The
angular power spectrum of the CMB is usually plotted as �(� + 1)C�C /(2π)
versus the multipole number �, as shown in Fig. 10.2, in which a description
of the physics underlying the CMB anisotropies can be separated into three
main regions (Nakamura et al., 2010):

• the ISW rise with � � 10 and the Sachs-Wolfe plateau with 10 � � � 100
(Sachs and Wolfe, 1967) at large angular scales;

• the acoustic peaks with 100 � � � 1000 at sub-degree angular scales;
• the damping tail with � � 1000 at very tiny angular scales (Silk, 1968).

In particular, the acoustic peaks represent the oscillations of the photon-
baryon fluid around the decoupling time of photons from matter. As men-
tioned above, the density fluctuations in the early Universe gave rise to grav-
itational instabilities. When a kind of matter fell into these gravitational
potential wells, it was compressed and thereby heated up. This hot matter
radiated photons causing the plasma of baryons to expand, and then it cooled
down and hence produced less radiation. With decreasing radiation pressure
the irregularities could reach a point at which gravity again took over and
initiated another compression phase (Grupen et al., 2005). A competition
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Fig. 10.2 A theoretical CMB anisotropy power spectrum computed from CMB-
FAST based on the standard ΛCDM model (Nakamura et al., 2010. With permission
from the Institute of Physics)

between the gravitational accretion and radiation pressure resulted in longi-
tudinal acoustic oscillations in the photon-baryon fluid. After the decoupling
of matter from radiation, the pattern of acoustic oscillations became frozen
into the CMB. So the CMB anisotropies are actually a consequence of sound
waves in the primordial baryon fluid. The first and most prominent acous-
tic peak appears at Δθ ∼ 1◦ or � ∼ 200, as one can see from Fig. 10.2. Its
position provides a measurement of the total energy density parameter Ω of
the Universe. The fact that Ω is very close to unity implies that the early
Universe should essentially be flat, as predicted by the inflation mechanism.
The height of the first acoustic peak and the heights and positions of other
peaks allow us to determine some other important cosmological parameters,
such as the Hubble parameter, the baryon density and the amount of cold
dark matter (Perkins, 2009).

10.1.4 Neutrino Species and Masses

An accurate measurement of the CMB anisotropy power spectrum may help
determine or constrain the effective number of neutrino families and neutrino
masses. Around the time of recombination (i.e., trec ∼ 3×105 yr or TrecTT ∼ 0.3
eV), the total energy density of relativistic particles (photons and neutrinos)
can be expressed as follows:

ρr + ρν = ρr

[
1 +

7
8

(
4
11

)4/3

NCMB
νNN

]
, (10.15)
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Fig. 10.3 How sensitive the power spectrum of CMB anisotropies is to the effective
number of relativistic neutrino species (left) and to the fraction of free or interacting
neutrinos (right), where the crosses denote the WMAP data and other parameters
of the standard ΛCDM model have been fixed (Strumia and Vissani, 2006)

where ρr is the energy density of photons, NCMB
νNN denotes the effective num-

ber of neutrino species relevant to the CMB, and Eq. (10.1) has been used
by replacing “3” with NCMB

νNN . There are two different ways to reconstruct
the value of NCMB

νNN from the observational data on CMB anisotropies (Stru-
mia and Vissani, 2006): (a) a determination of the energy density ρr + ρν

which should significantly contribute to the measurable expansion rate of the
Universe around recombination, because recombination took place slightly
later than a transition from the radiation-dominated Universe to the matter-
dominated one; (b) a determination of the energy density of freely-moving
neutrinos which could slow down the growth of matter perturbations and
the formation of galaxies and other structures (see Section 10.2 for more dis-
cussions). Fig. 10.3 illustrates how the power spectrum of CMB anisotropies
changes with the effective number of relativistic neutrino species (left panel)
and with the fraction of freely-moving or interacting neutrinos (right panel),
where other cosmological parameters in the standard ΛCDM model have been
fixed (Strumia and Vissani, 2006) 3. Although current data on the CMB and
its anisotropies are not precise enough to pin down the value of NCMB

νNN , it
must not be far away from NνNN = 3.

The WMAP Collaboration has recently reportedNCMB
νNN = 4.34+0.86

−0.88 at the
68% confidence level based on a careful analysis of the 7-year data (Komatsu
et al., 2010). A similar study including the SDSS data on the DR7 halo
power spectrum has arrived at NCMB

νNN = 4.78+1.86
−1.79 at the 95% confidence level

(Hamann et al., 2010a). These preliminary results seem to favor NCMB
νNN > 3,

3Note that the standard Big Bang model of cosmology is often referred to as
the ΛCDM model, where the abbreviation ΛCDM means a combination of the
cosmological constant Λ and cold dark matter.
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implying that one or more sterile neutrinos with very small masses might
exist and contribute to the total energy density of relativistic particles. If
this is the case, such sterile neutrinos should mix with three active neutrinos
and could be thermally excited by the interplay of oscillations and collisions
(Kainulainen, 1990). Their mass scale is likely to lie in the sub-eV range and
their family number might be one or two (Hamann et al., 2010b). A mild
conclusion is that the present cosmological constraints cannot be used as an
argument against the existence of light sterile neutrinos.

The Planck spacecraft, which is taking data on the CMB with a much
better degree of accuracy than the WMAP satellite, is expected to probe
NCMB

νNN up to the precision ΔNCMB
νNN = ±0.26. Therefore, the ongoing Planck

measurement has a good chance to confirm or rule out the hypothesis of
light and cosmologically friendly sterile neutrinos (Hamann et al., 2010b). If
the CνB consists of both active and sterile neutrinos, how to directly detect
them will be a great challenge. It is in principle possible to directly probe
the active and sterile components of the CνB via the capture of relic electron
neutrinos by means of radioactive beta-decaying nuclei (Li et al., 2010), such
as νe + 3H → 3He+e− (signal) against 3H → 3He+ e− +νe (background).

Note that a precision measurement of the CMB and its anisotropies can
also help determine or constrain the sum of light neutrino masses mi (for
i = 1, 2, · · · ). When the temperature of the Universe was below mi, the cor-
responding neutrino mass eigenstate would be non-relativistic. Hence neutri-
nos should be counted in the budget of non-relativistic matter when T � mi,
and be classified as radiation when T � mi. Such a “leak” from one category
to the other is a rather specific effect of finite neutrino masses (Lesgourgues,
2010). By measuring the time of matter-radiation equality and other cosmo-
logical parameters, one may probe this leak and obtain a bound on the total
mass of non-relativistic neutrinos

∑
mi = 94h2Ων eV (see Eq. (10.21) for

more discussions). The latter has been well constrained by means of current
WMAP data combined with the distance information. Given the standard
ΛCDM model with k = 0, an analysis of the 7-year WMAP data yields∑
mi < 1.3 eV at the 95% confidence level (Komatsu et al., 2010). After

the latest distance measurements from the baryon acoustic oscillations in
the distribution of galaxies (Percival et al., 2010) and the Hubble constant
measurement (Riess et al., 2009) are also taken into account, one arrives at∑
mi < 0.58 eV at the same confidence level (Komatsu et al., 2010). This

is currently the best upper limit on the sum of neutrino masses without
information on the growth of structure.

10.2 Large-scale Structures and Dark Matter

The LSS in the Universe (e.g., galaxies, galactic clusters, superclusters, voids,
etc.) should be seeded by some primordial density perturbations arising from
quantum fluctuations during the period of inflation. The latter provides a
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natural mechanism to solve the horizon problem, the flatness problem and
the magnetic monopole problem in cosmology. Massive neutrinos must have
played a role in the formation of the LSS, and they can leave a small imprint
in the measurable amount of the gravitational clustering of galaxies. In this
case it is possible to obtain a robust cosmological bound on the absolute mass
scale of light active and sterile neutrinos.

10.2.1 Inflation and Density Fluctuations

The mechanism of inflation, which describes an exponentially accelerating
phase in the very early Universe, was originally proposed by Alan Guth to
solve the magnetic monopole problem (Guth, 1981). Magnetic monopoles
were suggested by Paul Dirac a long time ago (Dirac, 1931), and their ex-
istence is definitely predicted in grand unified theories (GUTs). A magnetic
monopole should be stable and its mass should be around the GUT scale
ΛGUT ∼ 1016 GeV, but nobody has yet succeeded in observing it.

Model-independently, the elegant idea of inflation (Guth, 1981; Linde,
1982; Albrecht and Steinhardt, 1982) was motivated to resolve the cosmic
horizon and flatness problems. The horizon problem arises on account of
the observed isotropy of the CMB radiation out of the largest angles in the
microwave sky. The horizon at the time of the decoupling between matter and
radiation or equivalently the formation of the CMB (i.e., tdec ≈ 3.8× 105 yr,
corresponding to TdecTT ≈ 0.26 eV and zdec ≈ 1100) was of O(102) Mpc in size,
subtending an angle of about 1◦ on the Earth today. It is therefore difficult to
understand how the large-angle uniformity in temperature could have been
achieved via some causal processes. In other words, the unexplained uniform
temperature in regions that appear to be causally disconnected is referred
to as the horizon problem (Grupen et al., 2005; Perkins, 2009). The flatness
problem is associated with today’s observation that the total energy density
of the Universe is very close to the critical energy density (i.e., Ω ≡ ρ/ρc ≈ 1).
With the help of Eq. (9.10), one has

Ω − 1 =
k

Ṙ2
∼
{
kt2/3 (matter-dominated era, R ∼ t2/3) ,
kt (radiation-dominated era, R ∼ t1/2) .

(10.16)

Hence Ω(t0) ≈ 1 at present (roughly matter-dominated) implies that Ω(t)
must have been very much closer to unity at very early times of the Universe
(essentially radiation-dominated), and the level of fine-tuning of Ω(t) → 1 at
the Planck time would be of O(10−60) (Grupen et al., 2005). This flatness
problem implies that a Universe with non-vanishing curvature k today has to
require very finely-tuned initial conditions, which seem to be very unnatural.

Let us take a look at how inflation works to solve the aforementioned prob-
lems. By definition, inflation means a short period of accelerating expansion
in the very early Universe. If this period was dominated by the vacuum-energy
term ρv in the Friedmann equation as given in Eq. (9.8), then the Universe
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would undergo an exponential expansion described by H = Ṙ/R =
√
Λ/3

with Λ = 8πGNρv being the cosmological constant. Namely,

R(t) = R(ti) exp [H (t− ti)] , (10.17)

where ti denotes the initial time of inflation. In a specific inflation model it is
possible to directly link ρv to the potential V (φ) of a scalar field φ(x) (Guth,
1981; Linde, 1982; Albrecht and Steinhardt, 1982). The form of V (φ) can be
taken in such a way that the inflaton field first settles down into a metastable
state or false vacuum near φ ≈ 0 and then effectively “rolls” down to the true
vacuum (Grupen et al., 2005). A combination of Eqs. (10.16) and (10.17)
yields Ω(t)−1 ∝ exp [−2H (t− ti)], whereH is a constant and t runs from the
initial time ti to the final time tf of inflation. This result tells us that Ω(t) was
exponentially driven towards unity during inflation. So one may easily obtain
Ω(tf) ≈ 1 only if H (tf − ti) or ρv is sufficiently large. The flatness problem
can therefore be resolved in this way, since Ω(t0) ≈ 1 observed today must
be intrinsically associated with Ω(tf) ≈ 1 as a consequence of the evolution
of the Universe from tf to t0 through the radiation- and matter-dominated
epochs. Note that a region of size D(t) in the physical coordinate system
would expand in proportion to the scale factor R(t) during inflation. Hence
the size D(ti) of a region, which was in causal contact at the beginning of
inflation, would become D(tf) = D(ti) exp [H (tf − ti)] at the end of inflation.
The present size D(t0) of this region, in which everywhere has been causally
connected, must be intrinsically related to D(tf) and thus can be sufficiently
large (e.g., much larger than the current Hubble distance ct0 ≈ c/H0HH ∼
1026 m) by adjusting the exponential factor exp [H (tf − ti)]. So the currently
visible Universe, including the entire surface of last scattering, can easily fit
into a much larger region which has been in causal contact and has been
at the same temperature (Grupen et al., 2005). This is just the solution to
the horizon problem. In other words, inflation provides a natural mechanism
to ensure the isotropy of the CMB radiation in the entire microwave sky to
a high degree of accuracy. A solution to the magnetic monopole problem is
also straightforward. One may simply assume that magnetic monopoles were
produced before or during the period of inflation. In a GUT framework whose
typical temperature and time scales were T ∼ 1016 GeV and t ∼ 10−39 s,
for example, one expects that inflation should be taking place during the
period from ti ∼ 10−38 s to tf ∼ 10−36 s. The number densities of magnetic
monopoles at the beginning and end of inflation are related to each other via
n(tf) = n(ti) exp [−3H (tf − ti)], just because the volume containing a given
number of magnetic monopoles increase in proportion to R3(t). Hence n(tf)
must be vanishingly small if H (tf − ti) is sufficiently large as required to solve
the flatness and horizon problems. Since today’s number density of magnetic
monopoles n(t0) must be intrinsically associated with n(tf), we expect that
the inflationary expansion of the Universe made n(t0) so small that there
might not even exist a single magnetic monopole in the observable Universe.
That is why one has never seen a magnetic monopole.
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After inflation the energy ρv ≈ V (0) was transferred to particles such as
photons, electrons and neutrinos, but their energy density turned to decrease
as the Universe continued to expand in a relatively mild way. Because infla-
tion itself might not simultaneously end everywhere 4, the commencement of
this energy density decrease was somewhat delayed in regions where infla-
tion went on a bit longer. As a result, the variation in the time of the end
of inflation provides a natural mechanism to interpret spatial variations in
the energy density. Such primordial density fluctuations were later on ampli-
fied by gravity and finally led to the LSS observed today, such as galaxies,
galactic clusters and superclusters. As discussed in Section 10.1.3, quantum
fluctuations at the very beginning of inflation were also responsible for the
observed CMB anisotropies at the O(10−5) level in the microwave sky. They
would become frozen density fluctuations when they were inflated beyond the
causal horizon (Perkins, 2009).

The existence of the LSS is naturally attributed to the primordial den-
sity fluctuations. To be more explicit, let us consider the relative difference
between the density at a given position and the average density:

δ(x) ≡ ρ(x) − 〈ρ〉
〈ρ〉 . (10.18)

Now that this density contrast inhabits a Universe which is isotropic and
homogeneous on sufficiently large scales, its statistical nature should also be
isotropic and homogeneous. One usually describes δ(x) as a Fourier series
with periodic boundary conditions:

δ(x) =
∑

δkeik·x , (10.19)

where the sum is taken over all values of k = (kx, ky, kz) which fit into a cube
of size L and volume V = L3 (e.g., kx = 2πnx/L with nx = 0,±1,±2, · · · ;
and similarly for ky and kz). Averaging over all directions yields the average
magnitude of the Fourier coefficients as a function of k = |k| (Grupen et al.,
2005). So the matter power spectrum is defined as

P (k) ≡ 〈|δk|2〉 = 〈|δk|2〉 , (10.20)

which measures the level of structure at a wavelength λ = 2π/k. In most
of the structure formation models one arrives at a primordial power law
of the form P (k) ∼ kn, where n = 1 denotes the scalar spectral index and
yields a scale-invariant Harrison-Zeldovich spectrum. Most of the inflationary
models predict |n − 1| � 3%, and the exact value of n depends on the form
of the potential V (φ) (Peacock, 1999; Liddle and Lyth, 2000). For example,
an analysis of the 5-year WMAP data yields n = 0.963+0.014

−0.015 based on the
standard ΛCDM model (Nakamura et al., 2010).

4Due to quantum fluctuations, the value of the inflaton field φ at the onset of
inflation would not be exactly the same at all places (Grupen et al., 2005).
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In short, the main success of inflationary models is that they provide
us with a simple but dynamical interpretation of specific initial conditions of
the Universe such that the horizon, flatness and magnetic monopole problems
can naturally be resolved. Moreover, inflation offers a natural mechanism to
explain the primordial density fluctuations which finally grew into the LSS
such as galaxies and clusters observed today. We shall proceed to discuss the
indispensable role of dark matter in the formation of the LSS.

10.2.2 LSS and Dark Matter

The LSS observed today should most likely have evolved from gravitational
instabilities which can be traced back to the primordial density fluctuations
in the very early Universe. Such small perturbations in the energy density
were amplified by gravity, and in the course of time they would collect more
and more matter and lead to the formation of the LSS. The latter requires
a sufficient amount of mass, otherwise the original density fluctuations could
never have been transformed into distinct mass aggregations (Grupen et al.,
2005). However, the amount of visible matter itself has been found to be
insufficient for the Universe to reach the critical energy density today (i.e.,
Ω ≈ 1). Non-baryonic dark matter is therefore needed in order to understand
the dynamics of the Universe and its evolution.

In 1933, Fritz Zwicky found that luminous galaxies in the Coma cluster
of galaxies moved faster than one would have expected if they had only felt
the gravitational attraction from other visible objects (Zwicky, 1933, 1937).
He was the first to infer the existence of dark matter by means of the virial
theorem. In 1970 and 1980, Vera Rubin and her collaborators measured the
rotation curves of individual galaxies and found further evidence for invisible
matter (Rubin and Ford, 1970; Rubin et al., 1980). Recent observations of
clusters of galaxies yield ΩDM ≈ 0.2 as compared with Ω = 1 for a flat Uni-
verse. They include measurements of the peculiar velocities of galaxies in the
cluster; measurements of the X-ray temperature of hot gas in the cluster; and
most directly, studies of (weak) gravitational lensing of background galaxies
on the cluster (Nakamura et al., 2010). A particularly compelling example
is the bullet cluster (1E0657-558) which passed through another cluster re-
cently. The hot gas forming most of the baryonic mass of these two clusters
was shocked and decelerated, whereas the galaxies in them proceeded on bal-
listic trajectories. Gravitational lensing indicates that most of the total mass
of the clusters also moved ballistically, implying that the self-interaction of
dark matter should be quite weak (Clowe et al., 2006; Nakamura et al., 2010).
In addition, current cosmological observations have clearly demonstrated the
existence of a large quantity of cold dark matter and accurately determined
the value of ΩCDM. For example, an analysis of the 5-year WMAP data
yields ΩCDMh

2 = 0.110 ± 0.006 with h = 0.72 ± 0.03 (Dunkley et al., 2009;
Komatsu et al., 2009). This result can be compared with the total matter
density Ωm and the baryonic matter density ΩB obtained from the same
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analysis based on the standard ΛCDM model, as shown in Table 10.1. We
see ΩCDM/Ωm ≈ 83% and ΩB/Ωm ≈ 17%; i.e., cold dark matter dominates
today’s matter content of the Universe. So somebody said, “If it’s not dark,
it doesn’t matter” (Grupenrr et al., 2005). Note that the average density of
cold dark matter in the “neighborhood” of our solar system is roughly equal
to that of luminous matter (stars, gas and dust): ρlocal

CDM ≈ 0.3 GeV cm−3

(Kamionkowski and Kinkhabwala, 1998) and thus much larger than today’s
critical energy density of the Universe ρc ≈ 5.4 × 10−6 GeV cm−3.

Table 10.1 Some important cosmological parameters determined from an analysis
of the 5-year WMAP data based on the standard ΛCDM model (Nakamura et al.,
2010. With permission from the Institute of Physics). The cold dark matter density
ΩCDM is given by ΩCDM = Ωm − ΩB − Ων

Parameter Value
The Hubble parameter h 0.72 ± 0.03
The total matter density Ωm Ωmh

2 = 0.133 ± 0.006
The baryon density ΩB ΩBh

2 = 0.0227 ± 0.0006
The vacuum energy density Ωv Ωv = 0.74 ± 0.03
The radiation density Ωr Ωrh

2 = 2.47 × 10−5

The neutrino density Ων Ωνh
2 =
∑
mi/ (94 eV)

The nature of dark matter remains a mystery in particle physics and cos-
mology. A candidate for non-baryonic dark matter must satisfy the following
three conditions (Nakamura et al., 2010): (a) it must be stable on cosmologi-
cal time scales, otherwise it would have decayed by now; (b) it must interact
very weakly with electromagnetic radiation, otherwise it would not be qual-
ified as dark matter; and (c) it must have the right relic density. Possible
candidates of cold dark matter include primordial black holes, axions and
weakly interacting massive particles (WIMPs).

• Primordial black holes were proposed in a few cosmological models as a
candidate for dark matter (Kohri et al., 2008). They must have formed be-
fore the BBN epoch, otherwise they would have been counted as baryonic
matter instead of cold dark matter.

• Axions were first postulated to resolve the strong CP problem in quantum
chromodynamics (Peccei and Quinn, 1977). This kind of pseudo-Nambu-
Goldstone bosons may result from the spontaneously broken Peccei-Quinn
U(1) symmetry at very high energies. Axions could constitute cold dark
matter if they were non-thermally produced in the early Universe and
their masses lie in the sub-eV range (e.g., from O(10−6) eV to O(1) eV).

• WIMPs are by definition a kind of particles whose interactions with ordi-
nary matter are weak and whose masses lie in the range between 10 GeV
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and a few TeV. WIMPs could constitute cold dark matter if they were
thermally produced in the early Universe and then froze out after the
temperature was below their masses. The lightest supersymmetric parti-
cle (e.g., neutralino) is currently the best motivated and widely studied
WIMP candidate (Nakamura et al., 2010).

These candidates for cold dark matter are all detectable by means of current
experimental techniques, but no convincing evidence for any of them has so
far been found. The present dark matter searches include direct searches,
indirect searches and collider searches. Taking WIMPs for example, one may
directly search for them by detecting their interactions with ordinary matter
through elastic scattering on nuclei; or indirectly search for them by detect-
ing their annihilation products such as neutrinos, gamma rays, positrons,
antiprotons and antinuclei; or look for their signatures at high-energy collid-
ers such as the Large Hadron Collider (LHC). A combination of all of them
is necessary in order to pin down the nature of WIMPs on solid ground.

In general, candidates for dark matter are subdivided into three cate-
gories: “hot”, “cold” and “warm” particles. Primordial black holes, axions
and WIMPs belong to cold dark matter. The typical example of hot dark mat-
ter is light neutrinos. Sterile neutrinos with masses of O(1) keV are possible
to constitute warm dark matter. A lot of more or less “exotic” candidates for
dark matter have also been proposed in the literature. Although the nature
of cold dark matter remains unclear, we believe that it dominates the matter
content of the Universe and is primarily responsible for the formation of the
observed LSS. The status and prospects of direct and indirect dark matter
searches have recently been reviewed by the Particle Data Group (Nakamura
et al., 2010) and other authors (Feng, 2010).

10.2.3 Constraints on Neutrino Masses

Given the CνB temperature TνTT ≈ 1.945 K today, the average three-momentum
of each relic neutrino is expected to be 〈pν〉 = 3TνTT ≈ 5 × 10−4 eV as given
in Eq. (9.54). Hence neutrinos have become non-relativistic today if their
masses are larger than 〈pν〉. In this case the present CνB contribution to the
total energy density of the Universe is 5

5If one of the neutrinos has a mass much smaller than 〈pν〉, it may remain
relativistic today. But its contribution to the sum of all neutrino masses is insignif-
icant, so Eq. (10.21) remains valid as a good approximation. On the other hand,
light sterile neutrinos and antineutrinos should be most likely to stay in full thermal
equilibrium in the early Universe provided their mixing with active neutrinos and
antineutrinos is not strongly suppressed (Hannestad and Raffelt, 1999). In this case
their number densities are expected to be equal to those of active neutrinos and
antineutrinos, because the calculation of nνi

and nνi
has nothing to do with the

flavor properties. Therefore, the sum in Eq. (10.21) is over both active and sterile
neutrinos only if they are sufficiently light.
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Ων ≡ ρν

ρc

=
8πGN

3H2

∑
i

mi

(
nνi

+ nνi

)
≈ 1

94 h2 eV

∑
i

mi , (10.21)

where nνi
= nνi

≈ 56 cm−3 is today’s number density of relic νi neutrinos or
νi antineutrinos as given in Eq. (8.27) or Eq. (9.40). The small values of mi

yield a small value of Ων , typically of O(10−2) or smaller if the sum of mi is
of O(1) eV or smaller. But small effects of neutrino masses may still leave an
imprint in the measurable amount of clustering of galaxies.

Table 10.1 lists today’s energy densities of neutrinos, photons, baryons
and total matter as compared with the vacuum energy density (or equiva-
lently, the cosmological constant). In fact, ρν , ργ , ρB and ρCDM all decreased
with the expansion of the Universe. The evolution of these energy densi-
ties is shown in Fig. 10.4 (Strumia and Vissani, 2006), from which one can
clearly see the transition from the radiation-dominated epoch to the matter-
dominated epoch around T ∼ O(1) eV. As discussed before, gravity amplified
the primordial density fluctuations of cold dark matter. This gravitational
clustering process finally led to the formation of galaxies and other LSS that
we have observed today. Relativistic particles with a mean free path larger
than the horizon, such as relativistic neutrinos, could freely stream in the
Universe and thus suppress the gravitational clustering process. However,
neutrino masses should more or less hinder the free streaming of neutrinos
because their velocities were smaller than the speed of light such that they
could only travel in a fraction of the horizon within the Hubble time. On the
other hand, the contribution of massive neutrinos to the total energy density
of the Universe tended to increase the cosmological expansion which would
weaken gravitational interactions and slow down the formation of structures.
A careful study of the formation rate of structures in the recent past of the
Universe should therefore provide us with a unique opportunity to measure
the absolute neutrino mass scale.

Similar to Eq. (10.18), small fluctuations in the density of cold dark matter
can be described by δCDM(x) ≡ [ρCDM(x)− 〈ρCDM〉]/〈ρCDM〉. The evolution
of this parameter obeys (Bond et al., 1980; Kolb and Turner, 1990)

δ̈CDM + 2Hδ̇CDM = 4πGNΔρ , (10.22)

where Δρ ≡ ρ(x)− 〈ρ〉 denotes the perturbations to the total energy density
ρ. To examine the role of neutrinos with respect to that of cold dark matter
in the LSS, we simply take ρ ≈ ρCDM +ρν by neglecting other components of
ρ. As long as T � mi, neutrinos would be relativistic and have little chance
to cluster. In this case we take Δρν = 0 and rewrite Eq. (10.22) as

δ̈CDM + 2Hδ̇CDM = 4πGNρ (1 − fνff ) δCDM , (10.23)

where fνff ≡ ρν/ρ. Given a spatially flat Universe with k = 0 or ρ = ρc =
3H2/(8πGN), an analytical solution to Eq. (10.23) can be found in the
matter-dominated era with H = 2/(3t). One obtains δCDM ∝ t2/3 ∝ a(t) ∝
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Fig. 10.4 Evolution of the energy densities of photons, neutrinos, baryons and cold
dark matter (CDM) between T ∼ 102 eV and T0TT ≈ 2.73 K today, as compared with
the cosmological constant Λ, based on the standard ΛCDM model (Strumia and
Vissani, 2006). Note that neutrinos were relativistic at T 
 mi (where ρν ∝ T 4)
and non-relativistic at T � mi (where ρν ∝ miT

3). For simplicity, different neutrino
species are assumed to have the degenerate mass of O(0.1) eV. The shaded area
covers the epoch before the decoupling of photons from matter

T−1 by taking fνff = 0, where a(t) ≡ R(t)/R(t0) is the dimensionless scale
parameter and satisfies Hubble’s law ȧ(t) = Ha(t). During the period from
T ∼ 1 eV to T0TT = 2.725 K, the primordial fluctuations were enhanced by a
large factor T/T0TT ∼ 4300 and thus produced the LSS as one has observed to-
day (Strumia and Vissani, 2006). Of course, fνff = 0 would somewhat suppress
the growth of the dark matter fluctuations. One may obtain δCDM ∝ ap(t)
with p = [

√
1 + 24(1 − fνff ) − 1]/4 in the assumption of a constant fνff . It is

obvious that the primordial fluctuations would have never grown (i.e., p = 0)
if the Universe had been dominated by relativistic particles with fνff = 1 (i.e.,
ρ = ρν). That is why only the matter-dominated epoch was relevant to the
formation of the LSS. Note that the cosmological constant (or vacuum energy)
gradually dominated the energy density of the Universe after the temperature
was below T � 10−3 eV as shown in Fig. 10.4. It would reduce the late-time
growth of the dark matter fluctuations by a factor ∼ 1/4 (Strumia and Vis-
sani, 2006; Lesgourgues and Pastor, 2006). Neutrinos became non-relativistic
after T ∼ mi. One has fνff = Ων/Ω ∼ Ων for non-relativistic neutrinos, as
given in Eq. (10.21). Even such a small fνff could make the growth of struc-
ture a bit slow from the time T ∼ mi until today. Since the matter power
spectrum P (k) defined in Eq. (10.20) is proportional to |δCDM|2, we find
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Fig. 10.5 The matter power spectrum P (k) predicted by the standard ΛCDM
model (solid curve) and its dependence on neutrino masses (dashed curves). Mea-
surements at different cosmological scales are performed with different techniques,
which slightly overlap. The data points do not show the overall uncertainty that
plagues galaxy surveys (SDSS and 2dF) at intermediate scales and especially
Lyman-α data at smaller scales with larger wavenumbers (Strumia and Vissani,
2006)

P (k)fν �=0��
P (k)fν=0

∼ |a(t)|2(p−1) ∼ |a(t)|−6fν/5 (10.24)

during the aforementioned period. A simple numerical interpolation yields
P (k)fν �=0�� /P (k)fν=0 ∼ e−8fν ≈ 1 − 8fνff (Strumia and Vissani, 2006; Lesgour-
gues and Pastor, 2006), and thus the matter power spectrum is modified up
to ΔP (k)/P (k) ∼ −8fνff on small cosmological scales.

A complete description of the effect of massive neutrinos on the matter
power spectrum P (k) is technically complicated (Lesgourgues and Pastor,
2006). For simplicity, here we only illustrate the shape of P (k) and its depen-
dence on neutrino masses in Fig. 10.5, where mν stands for nearly degenerate
mi (Strumia and Vissani, 2006). One can see that it is possible to probe neu-
trino masses via a precision measurement of P (k), if mν � 0.1 eV holds.
Future cosmological measurements of the LSS might even be sensitive to the
mass splitting

√
Δm2

32 ≈ 0.05 eV for atmospheric neutrino oscillations.
It is worth mentioning that a very tight upper bound on neutrino masses

has recently been obtained from a new mapping of the matter density distri-
bution of surrounding galaxies based on the standard ΛCDM model (Thomas
et al., 2010). In this analysis the authors used the SDSS data and photometric
redshift estimates to reconstruct a three-dimensional map of galaxies on much
larger cosmological scales than before, providing an important indication of
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the distribution of structures not only in a recent past but also a few billion
years ago when most remote galaxies in this map emitted the light that we
have observed today (Lesgourgues, 2010). Such an approach is particularly
suitable for probing the effect of neutrino masses on the rate of structure
formation, on both smaller and larger cosmological scales as compared with
the neutrino free-streaming scale. In combination with the WMAP data and
other cosmological measurements, it yields

∑
mi � 0.28 eV at the 95% con-

fidence level (Thomas et al., 2010). Of course, this and other cosmological
constraints on neutrino masses are strongly dependent upon specific model
parameters and other theoretical assumptions. But they can always be com-
plementary to the laboratory measurements of neutrino masses, which probe
different quantities and have independent systematic errors.

10.2.4 Sterile Neutrinos as Dark Matter

The term “sterile neutrino” was coined by Bruno Pontecorvo in one of his
seminal papers (Pontecorvo, 1968). A sterile neutrino is by definition a neu-
trino that does not take part in the standard weak interactions. In some
literature the SU(2)L singlet neutrinos or right-handed neutrinos are sim-
ply referred to as sterile neutrinos. Such hypothetical particles may not be
completely “sterile” in the sense that they can slightly mix with ordinary
neutrinos and thus indirectly take part in weak interactions (see, e.g., the
type-I seesaw mechanism discussed in Section 3.2.3 and Section 4.1.2). The
existence of completely or almost sterile neutrinos has not been experimen-
tally established, although they are favored in some models to understand the
origin of tiny masses of three active neutrinos, to interpret the cosmological
matter-antimatter asymmetry and to describe dark matter. In this section
we are going to briefly discuss warm dark matter in the form of keV sterile
neutrinos.

To be specific, we assume the existence of a single sterile neutrino νs whose
mass eigenstate ν̃s has an eigenvalue ms. Its mixing with active neutrinos
can be described by an effective mixing angle θ as follows: νs 
 ν̃s cos θ +
νL sin θ, where |θ| � 1 holds and νL denotes a linear combination of the mass
eigenstates of three active neutrinos 6. For this kind of sterile neutrinos to be
a viable dark matter candidate,ms should most likely lie in the keV range and
θ must be extremely small. Such keV sterile neutrinos were never in thermal
equilibrium at high temperatures in the early Universe, but they could be
produced in several ways (Kusenko, 2009). For instance, light sterile neutrinos
could be produced from neutrino oscillations at a temperature T ∼ 100 MeV
(Dodelson and Widrow, 1994). An estimate of the relic population of keV
sterile neutrinos yields

6In a self-consistent parametrization of the four-neutrino mixing matrix (Guo
and Xing, 2002), one approximately has νs � ν̃s cos θ +(ν1ŝ

∗
14 +ν2ŝ

∗
24 +ν3ŝ

∗
34) with

ŝi4 ≡ eiδi4 sin θi4 (for i = 1, 2, 3). Hence sin2 θ � s2
14 +s2

24 +s2
34 (Li and Xing, 2010).
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Fig. 10.6 Allowed regions of sin2 2θ and ms for sterile neutrinos to be dark matter
(Abazajian and Koushiappas, 2006). The contour labeled with L = 0 corresponds
to the production scenario of sterile neutrinos with Ωs ≈ 0.24, and those labeled
with L = 0.003, 0.01 and 0.1 correspond to Ωs ≈ 0.3. The grey region to the right
of the L = 0 contour is excluded to avoid overproduction of sterile neutrinos as
dark matter, and the “X-ray background” and “Cluster X-ray” regions are excluded
because the X-ray signals arising from ν̃s → νi+γ decays (for i = 1, 2, 3) have never
been seen. The diagonal wide-hatched region is the claimed potential constraint
from future X-ray searches. The horizontal band with ms < 0.4 keV is ruled out
by a conservative application of the Tremaine-Gunn bound, whereas the one with
0.5 keV � ms � 1 keV is consistent with the production of a core in the Fornax
dwarf galaxy and pulsar kicks. The regions labeled with Lyα (1), (2) and (3) are
constrained by the amplitude and slope of the matter power spectrum inferred from
some high-resolution data on the SDSS Lyman-α forest

Ωs ∼ 0.2 ×
(

sin2 2θ
10−8

)( ms

3 keV

)1.8

, (10.25)

provided the Universe has a negligibly small lepton number asymmetry L
(Feng, 2010). Here L is defined as L ≡ (nν − nν)/nγ with nν (or nν) being
the number density of neutrinos (or antineutrinos) and nγ being the number
density of photons (Abazajian and Koushiappas, 2006). Fig. 10.6 shows the
allowed parameter space of sin2 2θ and ms for sterile neutrinos to be the
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candidate of dark matter. Given a preexisting lepton number asymmetry
L � 10−3, which remains small enough to be consistent with the current BBN
data, sterile neutrinos with small masses and mixing angles may constitute all
of dark matter in the Universe (Shi and Fuller, 1999; Asaka et al., 2007; Feng,
2010). Sterile neutrinos could also be produced at much higher temperatures,
for example, in the decays of heavy particles in the early Universe. Allowing
a gauge-singlet scalar Φ to couple to right-handed neutrinos and their charge-
conjugate fields, one may obtain a Majorana mass term similar to the MμM
term in Eq. (4.48) after Φ acquires its vacuum expectation value. The lepton-
number-violating decay Φ→ νs+νs might therefore produce sterile neutrinos
as dark matter at a temperature T ∼ mΦ (Shaposhnikov and Tkachev, 2006;
Kusenko, 2006, 2009; Feng, 2010).

Dark matter in the form of keV sterile neutrinos is referred to as warm
dark matter, which should have little small-scale suppression in the matter
power spectrum. In fact, both warm dark matter and cold dark matter can fit
the observed structures on large scales, but their predictions on small scales
are different. A potential problem associated with cold dark matter is the
discrepancy between the number of satellites predicted in the N -body simu-
lations and the one observed in galaxies such as the Milky Way (Kauffmann
et al., 1993; Moore et al., 1999). This discrepancy can be ameliorated if dark
matter is warm, because warm dark matter may suppress the formation of
dwarf galaxies and other small-scale structures (Bode et al., 2001; Kusenko,
2009). How warm sterile neutrinos could be depends on their production
mechanism. Fig. 10.6 shows that ms may vary from O(1) keV to O(10) keV.

Besides its impact on small-scale structures, dark matter in the form
of sterile neutrinos may have some other astrophysical effects, for instance,
on the X-ray spectrum, on the velocity distribution of pulsars and on the
formation of the first stars (Kusenko, 2009; Feng, 2010). The search for an
X-ray line from the radiative decay ν̃s → νi + γ (for i = 1, 2, 3) is expected
to offer the best chance to detect relic sterile neutrinos if they exist as warm
dark matter. In view of Fig. 10.6 together with the widths of the dominant
and subdominant decay modes of ν̃s (Li and Xing, 2010)

3∑
i,j=1

Γ (ν̃s → νi + νjν + νj) 

CνG

2
F

192π3
m5

s sin2 θ 
 Cν sin2 2θ
1.2 × 1020 s

( ms

keV

)5
(10.26)

and (Pal and Wolfenstein, 1982; Shrock, 1982; Li and Xing, 2010)

3∑
i=1

Γ (ν̃s → νi + γ) 
 9αemCνG
2
F

512π4
m5

s sin2 θ 
 Cν sin2 2θ
1.5 × 1022 s

( ms

keV

)5
(10.27)

with αem ≈ 1/137 being the fine-structure constant and Cν = 1 (Dirac
neutrinos) or Cν = 2 (Majorana neutrinos), one concludes that the lifetime
of sterile neutrinos can be much longer than the age of the Universe (i.e.,
t0 ≈ 13.7 Gyr ∼ 1017 s) and thus satisfy one of the requirements for dark
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matter candidates. The signature of the two-body radiative decay ν̃s → νi+γ
is a monoenergetic flux of X-rays with energy EγE ≈ ms/2. It is in principle
possible to observe this signature of sterile neutrinos in the XMN-Newton,
Chandra X-ray and Suzaku observatories (Loewenstein and Kusenko, 2010;
Prokhorov and Silk, 2010; Chan and Chu, 2010).

Finally, it is worth mentioning that a laboratory search for keV sterile
neutrinos would require a careful analysis of kinematics of the beta decays
of different isotopes (Trinczek et al., 2003; Shaposhnikov, 2007). Because of
the mixing between active and sterile neutrinos, one may study the details of
kinematics of the tritium beta decay 3H → 3He+e−+νe in which νe contains
a tiny contribution from sterile antineutrinos. On the other hand, one may
probe the existence of keV sterile neutrinos by detecting the neutrino capture
processes like ν̃s + 3H → 3He+e− and ν̃s + 106Ru → 106Rh+e− against the
β-decay backgrounds (Li and Xing, 2010; Liao, 2010) in a way similar to the
detection of the sterile component of the CνB (Li et al., 2010). Although such
direct laboratory searches for dark matter in the form of sterile neutrinos are
extremely challenging, they might not be hopeless in the long term.
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11

Cosmological Matter-antimatter Asymmetry

The observed matter-antimatter asymmetry of the Universe is a big puzzle in
particle physics and cosmology. Although the hot Big Bang model of cosmol-
ogy is very successful in predicting the cosmic microwave background (CMB)
radiation and the primordial abundances of light elements, it does not explain
why the cosmic baryon-to-photon ratio η ≡ nB/nγ is about 6 × 10−10 and
why the primordial number density of antibaryons n

B
is vanishing. In this

chapter we shall first present some experimental evidence for such a baryon
number asymmetry, and then outline a few interesting dynamic scenarios to
account for it. Among the presently-proposed baryogenesis mechanisms, the
leptogenesis mechanism is most promising because it is intrinsically related
to the popular seesaw mechanisms of neutrino mass generation. So we shall
pay particular attention to the details of this mechanism and give a broad
overview of its recent developments.

11.1 Baryon Asymmetry of the Universe

Shortly after the discovery of the positron, the antiparticle of the electron,
Paul Dirac made an intriguing conjecture in his Nobel lecture (Dirac, 1933):
“If we accept the view of complete symmetry between positive and negative
electric charge so far as concerns the fundamental laws of Nature, we must
regard it rather as an accident that the Earth (and presumably the whole solar
system), contains a preponderance of negative electrons and positive protons.
It is quite possible that for some of the stars it is the other way about, these
stars being built up mainly of positrons and negative protons. In fact, there
may be half the stars of each kind. The two kinds of stars would both show
exactly the same spectra, and there would be no way of distinguishing them
by present astronomical methods.” Unfortunately, current observational data
indicate that there are no stars or galaxies made of antimatter at all in the
visible Universe. If there existed a large region of antimatter, the matter
and antimatter would have unavoidably annihilated with each other at their
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common border. Such violent annihilations would have produced numerous
energetic electrons and photons which must distort the CMB spectrum and
contribute to the diffuse gamma rays with energies around 1 MeV. In this
section we summarize the main astrophysical and cosmological observations
against the presence of a large amount of antimatter in our Universe, and
point out that there is no way to solve this baryon asymmetry problem within
the standard model (SM) of particle physics.

11.1.1 Constraints from Antimatter Searches

It is well known that the fundamental interactions in nature are almost sym-
metric between particles and antiparticles. In particular, the CPT theorem
states that a particle and its antiparticle must have the same mass (and the
same lifetime if they are unstable). So it is rather reasonable to speculate
that the Universe should be symmetric about matter and antimatter, just as
Dirac did. However, it is unclear whether the symmetry between particles and
antiparticles at the microscopic level definitely leads to a matter-antimatter
symmetric Universe at the macroscopic scale (Steigman, 1976). But one may
ask such a meaningful question: is our Universe symmetric between matter
and antimatter based on the astrophysical and cosmological observations?

The searches for antimatter fall into two categories: one is the direct search
(e.g., to search for antiprotons or antinuclei in the cosmic rays) and the other
is the indirect search (e.g., to detect the products from matter-antimatter
annihilations). The absence of antimatter on the Earth is obvious because
we have not seen any proton-antiproton annihilations in our everyday lives.
The largest amount of antimatter is stored in high-energy accelerators, where
pp̄pp or e+e− collisions are used to produce new particles and reactions. Those
successful activities of human beings in outer space demonstrate that the
solar system is made of matter rather than antimatter. Another compelling
evidence comes from the observation of cosmic rays. If there were a sizable
region of antimatter in our galaxy or extragalaxies, we would have discovered
antiprotons or antinuclei in the cosmic ray experiments. The ratio of the an-
tiproton flux to the proton flux is found to be of O(10−4) in cosmic rays, and
this small value can be explained by identifying antiprotons as the secondary
products from the reaction p + p → p + 3p initiated by the primary cosmic
ray protons. Furthermore, current experimental constraints on the fluxes of
antihelium and much heavier antielements are (Dolgov, 2001):

Φ[He]
Φ[He]

< 2 × 10−6 ,
Φ[A(Z > 2)]
Φ[A(Z > 2)]

< 2 × 10−5 , (11.1)

where A(Z > 2) and A(Z > 2) stand respectively for the nuclei with more
than two protons and the antinuclei with more than two antiprotons. These
constraints again indicate that stars or galaxies in the form of antimatter are
actually absent in our Universe.
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Fig. 11.1 The observed spectrum of the diffusive gamma rays (Kappadath et al.,
1995) as compared with the calculated one from the matter-antimatter annihilation
(Cohen et al., 1998), where d0 = 20 Mpc (upper solid curve) and d0 = 103 Mpc
(lower solid curve) denote the typical sizes of matter domains

The indirect searches also indicate the absence of antimatter in the whole
visible Universe. If there are large regions of antimatter, violent matter-
antimatter annihilations are expected to occur at the borders 1. In the
matter-antimatter annihilation neutral and charged pions can be copiously
generated. The decays of neutral pions via π0 → 2γ give rise to a diffuse
gamma-ray background. On the other hand, the decays of charged pions via
π± → μ± + νμ(νμ) together with μ± → e± + νμ(νμ) + νe(νe) produce a lot
of electrons, positrons and neutrinos. All these annihilation products have
very similar energy spectra, and their number densities are peaked around
100 ∼ 200 MeV. The most useful component for probing matter-antimatter
annihilation is the diffuse gamma rays (Steigman, 1976). But a measurement
of the diffuse gamma rays can only impose an upper limit on the matter-
antimatter annihilation, because the Compton scattering of the starlight and
cosmic ray electrons may also contribute to the gamma rays. A careful analy-
sis reveals that the size of matter domain should be as large as d0 = 103 Mpc,
which is just the typical scale of the visible Universe (Cohen et al., 1998).
The strategy of this analysis is to assume that the total baryon number of
the Universe is zero, and the Universe is divided into domains of matter or

1The annihilation might not happen if matter and antimatter were well sepa-
rated. In this case, however, one has to resort to very contrived mechanisms so as
to make matter and antimatter far away from each other.
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antimatter with the typical dimension d0. Then the spectra of the diffuse
gamma rays coming from the matter-antimatter annihilation in the epoch of
recombination can be calculated, redshifted and compared with current ob-
servational data. The results are shown in Fig. 11.1, from which one can see
that the case with d0 = 103 Mpc is more consistent with data, implying that
the visible Universe contains only matter and no sizable regions of antimatter
(Cohen et al., 1998).

11.1.2 Observations from the CMB and BBN

In the standard model of cosmology the anisotropies of the CMB and the
primordial abundances of light elements from the Big Bang nucleosynthesis
(BBN) can be computed with the baryon number density η as an important
input parameter (Kolb and Turner, 1990; Dodelson, 2005; Weinberg, 1972,
2008). It is therefore possible to strictly determine or constrain the value of η
from the precision measurements of the CMB and light element abundances.

The CMB formed shortly after the time of recombination, when protons
and electrons combined to form neutral hydrogen atoms. From this moment
on the cosmological thermal bath became transparent to relic photons, so
they left the surface of last scattering and freely propagated until today.
Hence the anisotropies of the CMB are mainly determined by the dynamics
of the thermal bath before recombination. The value of η is actually extracted
from the angular power spectrum of the CMB, in particular its acoustic
peaks. An intuitive picture for the formation of acoustic peaks is as follows:
(1) the density fluctuations in the early Universe induced the gravitational
instabilities, and the baryon fluid falling into the gravitational potential wells
were compressed and then heated up; (2) this hot baryon fluid expanded and
radiated photons, and thus it gradually cooled down; (3) the gravity overtook
the decreasing radiation pressure again and initiated another compressing
phase. It was just the competition between the gravity and radiation pressure
that induced the acoustic oscillations in the baryon fluid, which would be
frozen in the CMB after the decoupling of photons from the baryon matter.
The acoustic peaks in the angular power spectrum of the CMB serve as a
consequence of the sound waves in the primordial baryon fluid (Grupen et
al., 2005). Given the five-year WMAP results, the ratio of cosmic baryon and
photon number densities has been determined to a good degree of accuracy
(Komatsu et al., 2009) 2

η ≡
nB − n

B

nγ

= (6.21 ± 0.16) × 10−10 , (11.2)

where n
B

= 0 holds today, as already discussed in Section 11.1.1.

2The WMAP Collaboration has recently released the seven-year data (Komatsu
et al., 2010), in which the central value of the baryon energy density is the same as
that given in the five-year data.
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The result obtained in Eq. (11.2) is in good agreement with the results
extracted from the measurements of the primordial abundances of light ele-
ments based on the BBN theory. As shown in Fig. 9.1 and in Eqs. (9.48) and
(9.49), the cosmic baryon-to-photon ratio η can be determined from both the
measured 4He mass fraction and the observed D and 7Li number fractions.
The BBN concordance range of η is consistent very well with the CMB mea-
surement of η at the 95% confidence level (Nakamura et al., 2010), pointing
to η ≈ 6 × 10−10. Because the time for the BBN to happen (t � 1 s) is so
different from that for the CMB to form (t ∼ 3.8× 105 yr), an agreement be-
tween the values of η obtained from these two epochs is particularly striking.
The dynamical origin of this baryon number asymmetry of the Universe (i.e.,
baryogenesis) is an important but unsolved problem in particle physics and
cosmology. We shall briefly describe a few typical mechanisms of baryogenesis
in the next section.

11.2 Typical Mechanisms of Baryogenesis

Even if the baryon number asymmetry were naively taken as one of the initial
conditions of the Universe, it would unavoidably be erased in the inflation era.
Hence a dynamical mechanism for baryogenesis is necessary, and it is among
the most fundamental problems in modern particle physics and cosmology.
In this section we first introduce Sakharov’s three necessary conditions for
baryogenesis, and then give an overview of a few intriguing mechanisms pro-
posed so far to realize those conditions and explain the observed baryon
number asymmetry of the Universe.

11.2.1 Sakharov Conditions

In 1967, Andrei Sakharov proposed three necessary conditions for baryogen-
esis (Sakharov, 1967). They are summarized as follows.

(1) Baryon number violation. If all the fundamental interactions preserved
the baryon number B, it would be obvious that the Universe with an initial
condition B = 0 could not gain any baryon number excess. In the SM both
the lepton number L and the baryon number B are conserved at the clas-
sical level. But these two accidental symmetries are not as fundamental as
the conservation of electric charges which is guaranteed by the local gauge
symmetry. In fact, it has been found that only the combination (B − L)
is exactly conserved in the SM after taking into account the axial anomaly
and the nontrivial vacuum structure of non-Abelian gauge theories (’t Hooft,
1976). Hence the baryon-number-violating interactions already exist in the
minimal version of the SM, but at the non-perturbative level.

(2) C and CP violation. By definition, the baryon number of a given
particle (B) is opposite to the baryon number of its antiparticle (−B). If
the charge-conjugate symmetry (C) is conserved, the interaction rate for a
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reaction generating an amount of B must be equal to that for its charge-
conjugate process which produces the same amount of −B. In this case the
net baryon number of the system remains vanishing. One usually encounters
the chiral interactions which are relevant to both C and P properties of
the fermion fields. For example, the left- and right-handed fermions have
different interactions in the SM. Let us explain why the B- and C-violating
interactions are not sufficient for the baryon number generation. Consider
the B-violating decays X → χL + ψL and X → χR + ψR together with their
CP-conjugate processes X → χR + ψR and X → χL + ψL, where the baryon
numbers of the involved particles are assigned to be B(X) = B(X) = 0,
B(χL,R) = B(ψL,R) = +1 and B(χL,R) = B(ψL,R) = −1. We further assume
C violation; i.e., Γ (X → χL+ψL) = Γ (X → χL+ψL) and Γ (X → χR+ψR) =
Γ (X → χR +ψR) hold for these four decay rates. If CP is a good symmetry,
however, we must have

Γ (X → χL + ψL) = Γ (X → χR + ψR) ,
Γ (X → χR + ψR) = Γ (X → χL + ψL) , (11.3)

implying that a net baryon number excess cannot be generated. Therefore, a
successful baryogenesis mechanism requires both C and CP violation. Since
the weak interactions violate both C and CP symmetries, the SM itself fulfills
the second Sakharov condition too.

(3) Departure from thermal equilibrium. Given a baryon number asymme-
try in the early Universe, its evolution with the temperature must be taken
into account. If the whole system stays in thermal equilibrium, the ensemble
average of the baryon number can be expressed as

〈B〉 = N−1Tr
[
Be−βH

]
= N−1Tr

[
(CPT)B(CPT)−1(CPT)e−βH(CPT)−1

]
= N−1Tr

[
(−B)e−βH

]
= −〈B〉 (11.4)

with N ≡ Tr
[
e−βH
]
, where we have assumed the Hamiltonian H to be

invariant under CPT (i.e., (CPT)H(CPT)−1 = H) and used the fact that
the baryon number B is odd under C and CPT (i.e., (CPT)B(CPT)−1 = −B)
(Bernreuther, 2002). Then we arrive at 〈B〉 = 0 from Eq. (11.4). In practice,
a process will depart from thermal equilibrium if its interaction rate is smaller
than the expansion rate of the Universe.

CPT is a good symmetry in a local quantum field theory which is Lorentz-
invariant and possesses a Hermitian Lagrangian. Most viable mechanisms of
baryogenesis respect the above Sakharov conditions. But an exception can
always be found, for instance, by discarding the CPT theorem (Dolgov, 1992).

11.2.2 Electroweak Baryogenesis

An immediate attempt to account for the cosmological baryon asymmetry
should be made in the SM, where there exists baryon number violation to-
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gether with C and CP violation. In addition, a departure from thermal equi-
librium can be achieved to assure the generated baryon asymmetry to survive
if the electroweak phase transition is of the first order. Such a baryogenesis
mechanism is called the electroweak baryogenesis (Kuzmin et al., 1985).

First, let us show how the baryon number is violated in the standard elec-
troweak theory. The key point here is closely related to an important aspect
of quantum field theories — the symmetry breaking induced by the quantum
anomaly. For instance, the decay rate of π0 → 2γ can be interpreted as a
natural consequence of the chiral symmetry breaking caused by the anomaly.
In a consistent quantum field theory one must make sure that the quantum
anomaly arising from the triangle diagrams is absent, so as to guarantee the
renormalizability of the theory itself (Adler, 1969; Bell and Jackiw, 1969). For
illustration, we consider quantum electrodynamics with a massless fermion
Ψ , for which the Lagrangian can be derived from Eq. (2.4) by setting m = 0.
In this case one may verify that the Lagrangian is invariant under the trans-
formations Ψ → Ψ ′ = e−iαΨ and Ψ → Ψ ′ = e−iαγ5Ψ , where α is an arbitrary
real constant. Then the Noether theorem leads us to the conserved axial
current Jμ

5J (x) ≡ Ψ(x)γμγ5Ψ(x) in addition to the conserved vector current
Jμ(x) ≡ Ψ(x)γμΨ(x). Now we examine how the quantization of the theory
violates the conservation of the axial current (i.e., ∂μJ

μ
5JJ (x) = 0). By means of

the path-integral quantization, we should consider the functional integration
over the gauge and fermion fields:

Z =
∫

[dAμ][dΨ ][dΨ ] exp
{

i
∫

d4x

[
−1

4
FμνFμνF + Ψ i /DΨ//

]}
(11.5)

with /D// ≡ γμ(∂μ − ieAμ) being the covariant derivative. Note that Z is inde-
pendent of all the fields after integration, hence it should be invariant under
the transformation Ψ → Ψ ′ = e−iα(x)γ5Ψ , where α(x) is an arbitrary real
function of x. After applying such a local chiral transformation to the right-
hand side of Eq. (11.5), we find two additional contributions to the total
Lagrangian. The first one arises from the covariant-derivative term

ΔL1 = Ψ ′i /DΨ// ′ − Ψ i /DΨ// = −α(x)∂μJ
μ
5JJ (x) , (11.6)

where the total-derivative term has been omitted. The other contribution
comes from the measure of fermionic integration (Fujikawa, 1979)

[dΨ ′]
[
dΨ ′] = Det

[
e2iα(x)γ5

]
[dΨ ][dΨ ] , (11.7)

where the determinant of the matrix is taken over the spin and space-time
indices; i.e., [exp{2iα(x)γ5}]mx,ny ≈ 1 + 2iα(x)[γ5]mnδ

4(x− y) holds for the
infinitesimal α(x). Using DetM = exp[Tr(M)], one can exponentialize the
determinant in Eq. (11.7), which contributes to the total Lagrangian as

ΔL2 = 2α(x)Tr[γ5]δ
4(x− x) . (11.8)
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Here the delta function yields infinity, while the trace is vanishing. In order to
make Eq. (11.8) meaningful, we may introduce the gauge-invariant differential
operator exp{−(i /D//)4/M4} to regularize the trace and delta function and then
set M → +∞ (Fujikawa, 1979). The result is

ΔL2 = α(x)
e2

8π2
FμνF F̃μν , (11.9)

where F̃μνF ≡ εμνρσF
ρσ/2 is the dual of the field strength with εμνρσ being

a totally antisymmetric tensor. By requiring the generating functional in
Eq. (11.5) to be invariant under the local chiral transformation, we have
ΔL1 + ΔL2 = 0 for the arbitrary real function α(x), implying the anomaly
of the axial current (Fujikawa, 1979, 1980)

∂μJ
μ
5J (x) =

e2

8π2
FμνF F̃μν . (11.10)

Hence the symmetry at the classical level, which leads to ∂μJ
μ
5J (x) = 0, is

violated at the quantum level. Due to the axial anomaly, the lepton and
baryon numbers are not exactly conserved (’t Hooft, 1976). Consider the
fermions in the SM, for which the Lagrangian has been given in Eq. (2.32).
The baryon- and lepton-number currents can be defined as

Jμ
BJJ ≡
∑

i

(
Qi

Lγ
μQi

L + U i
RUU γμU i

RUU +Di
Rγ

μDi
R

)
,

Jμ
LJJ ≡
∑
α

(
�αLγ

μ�αL + Eα
Rγ

μEα
R

)
, (11.11)

where i (= 1, 2, 3) and α (= e, μ, τ ) stand for the quark and lepton flavors,
respectively. Note that the baryon number of each quark with a definite color
is assigned to be 1/3, which has been cancelled out by the summation over
the color index of quark fields. Taking the divergences of baryon- and lepton-
number currents, we obtain

∂μJ
μ
BJJ =

1
2

∑
i

∂μ

(
−Qiγμγ5Q

i + U iγμγ5U
i +Diγμγ5D

i
)
,

∂μJ
μ
LJJ =

1
2

∑
α

∂μ

(
−�αγμγ5�

α +Eαγμγ5E
α
)
, (11.12)

where we have used PLPP ,R = (1∓γ5)/2 and the conservation of vector currents.
Along the same line in deriving Eq. (11.10) and making use of the covariant
derivatives in Eq. (2.33), one may verify

∂μJ
μ
BJJ = ∂μJ

μ
LJJ =

NfN

32π2

(
−g2W i

μνW W̃ iμν + g′2BμνB̃
μν
)

(11.13)

with W i
μνW and Bμν being the strengths of SU(2)L and U(1)Y gauge fields,

respectively. Note that the number of fermion generations is NfN = 3 in the
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SM. Now it becomes evident that both the baryon number B ≡
∫

d3x J0
BJJ (x)

and the lepton number L ≡
∫

d3x J0
LJJ (x) are violated, but the combinations

(B−L) and Δα ≡ B/3−Lα are conserved, where Lα (for α = e, μ, τ) denotes
the lepton flavor number. Furthermore, the (B+L)-violating interactions are
uniquely determined by the gauge fields on the right-hand side of Eq. (11.13).
As we shall show later on, such kinds of interactions are highly suppressed
at the zero temperature but can be enhanced at a temperature higher than
the electroweak scale.

Second, let us estimate the rates of B-violating interactions in the SM
at both zero and finite temperatures. Note that the terms on the right-hand
side of Eq. (11.13) can be written as a total divergence

∂μJ
μ
BJJ = ∂μJ

μ
LJJ =

NfN

32π2

(
−g2∂μKμ + g′2∂μK

μ
)
, (11.14)

where

Kμ = 2εμνρσ

[
(∂νW

i
ρW )W i

σWW +
1
3
gεijkW i

νWW W j
ρW W k

σWW

]
,

Kμ = 2εμνρσ
[
(∂νBρ)Bσ

]
. (11.15)

Integrating Eq. (11.15) over the three-space and using the definition of baryon
and lepton numbers, one may then relate the changes of baryon and lepton
numbers in a unit time to those of the Chern-Simons numbers:

ΔB = ΔL = NfN (ΔNCSNN − ΔnCS) , (11.16)

where the Chern-Simons numbers are defined as

NCSNN = − g2

16π2

∫
d3x 2εlmnTr

[
(∂lWmWW )WnWW − 2

3
igWlWW WmWW WnWW

]
,

nCS = − g′2

16π2

∫
d3x εlmn(∂lBm)Bn . (11.17)

In Eq. (11.17) we have defined WlWW ≡ τ iW i
lWW and used l, m and n to denote the

spatial components. Now it is straightforward to verify that nCS is gauge-
invariant, but NCSNN is not. Under the SU(2)L gauge transformation

W ′
mWW = U(θ)WmWW U−1(θ) − i

g
[∂m∂ U(θ)]U−1(θ) , (11.18)

where U(θ) ≡ exp{−iθi(x)τ i} is a unitary matrix, NCSNN transforms as

δNCSNN =
1

24π2

∫
d3xεlmnTr

[
(∂lU)U−1(∂m∂∂ U)U−1(∂n∂ U)U−1

]
. (11.19)

Although NCSNN depends on the gauge, it is actually invariant under the in-
finitesimal transformations (Weinberg, 1996). As pointed out by Gerardus
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’t Hooft, the vacuum structure of the non-Abelian gauge theories is rather
complicated in the sense that there exists an infinite number of topologically
distinct vacua whose field configurations are just characterized by the Chern-
Simons numbers (’t Hooft, 1976; Callan et al., 1976; Jackiw and Rebbi, 1976).
In this case the Chern-Simons numbers, and thus the baryon and lepton num-
bers, will be changed if a transition between two different vacua takes place.
To be explicit, we consider a pure SU(2) Yang-Mills theory, in which the field
strength of the vacuum state should satisfy the condition WμνW ≡ τ iW i

μνW = 0
at any time. In the temporary gauge W0WW = τ iW i

0WW = 0, one can find that the
gauge transformations in Eq. (11.18) now have to fulfill ∂0U(x) = 0 (i.e., U(x)
is time-independent). Hence the gauge fields WiWW (x) = −ig−1[∂i∂ U(x)]U−1(x)
obviously satisfy the vacuum condition. Furthermore, we restrict ourselves to
a class of gauge transformation matrices which approach the identity matrix
at infinity (i.e., U(|x| → +∞) = 1). It is well known that a three-dimensional
Euclidean space with all the points at infinity being identified as the same one
is acutally the three-sphere S3. On the other hand, the unitary matrix U(x)
defines the mapping from S3 into the parameter space of the group SU(2),
which is also a three-sphere. According to the homotopy theory, the gauge
transformation functions U(x) fall into different homotopic classes, which are
characterized by the integer numbers defined in Eq. (11.19). In a quantum
theory there may exist transitions between two different vacuum states. To
calculate the tunneling probability at the zero temperature, one should find
out a solution to the field equations with finite energies (Belavin et al., 1975;
’t Hooft, 1976). For the transitions with ΔNCSNN = ±1, the tunneling probabil-
ity is approximately given by e−4π/αw ∼ 10−161 with αw ≡ g2/(4π), implying
that the B-violating interactions are negligibly small.

Note that we have ignored two important issues in the above discussions.
On the one hand, the baryon number asymmetry should be generated in the
early Universe at extremely high temperatures, so one must take into account
the finite-temperature effects. On the other hand, the field configurations of
the vacua in the SM should include the Higgs boson field. In order for a
transition between two different vacua to work, we have to examine whether
there exists a static field configuration interpolating the two vacua (Manton,
1983). Such a solution, named sphaleron at the top of the potential barrier,
has been found by solving the field equations in the limit of sin2 θw → 0
(Klinkhamer and Manton, 1984). The energy of the sphaleron is given by

Esph =
4πv

g
B
(
λ

g

)
, (11.20)

where v and λ are the vacuum expectation value and the self-coupling con-
stant of the Higgs field, respectively. Note that the function B(x) is slowly
varying; e.g., B(0) 
 1.52 and B(∞) 
 2.72 (Klinkhamer and Manton, 1984).
In the early Universe, when the temperature was higher than the potential
barrier between the vacua, the transition should not be highly suppressed.
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Including the finite-temperature corrections, the sphaleron energy turns out
to be (Brihaye and Kunz, 1992)

Esph(T ) =
2MWMM (T )
αw

B
(
λ

g

)
, (11.21)

where the W -boson mass MWMM (T ) = gv(T )/2 is temperature-dependent, so is
the vacuum expectation value v(T ) of the Higgs field. It is worth mentioning
that the gauge symmetry, which is spontaneously broken at the zero tempera-
ture, can be restored at much higher temperatures (Weinberg, 1974; Kirzhnits
and Linde, 1974; Dolan and Jackiw, 1974; Bernard, 1974). Hence there must
be a transition from the symmetric phase to the symmetry-breaking phase
as the temperature T decreases. During and below the phase transition, the
rate per unit volume for the sphaleron or B-violating processes is estimated
to be (Carlson et al., 1990; Dine et al., 1992)

γsph ∼ 2.8 × 105κT 4
(αw

4π

)4 [ Esph(T )
B(λ/g)T

]7
exp{−Esph/T} , (11.22)

where 10−4 � κ � 10−1. Above the phase transition, one has v(T ) = 0 and
thus the rate per unit volume approximates to γsph ∼ κ(αwT )4. It can be
shown that the sphaleron rate is in thermal equilibrium if the temperature
T lies in the range 102 GeV � T � 1012 GeV (Kuzmin et al., 1985).

Finally, let us examine how CP violation in the SM comes into play and
discuss possible implications of the departure from thermal equilibrium. A
crucial period here is the electroweak phase transition, which is governed by
the effective potential VeffVV (H,T ) of the system (Weinberg, 1974). At a high
temperature the minimum of VeffVV (H, T ) is reached at 〈H〉 = 0, indicating that
the gauge symmetry is preserved. For the first-order phase transition, another
local maximum and minimum of VeffVV (H,T ) appear at 〈H〉max and 〈H〉min,
as the temperature T decreases. Note that 〈H〉max < 〈H〉min, and the second
minimum becomes degenerate with the original one at the critical tempera-
ture T = TcTT (i.e., VeffVV (0, TcTT ) = VeffVV (〈H〉min, TcTT ) holds). At this moment there
are two degenerate vacua: one is at 〈H〉 = 0, where the gauge symmetry is
maintained; and the other is at 〈H〉min, where the gauge symmetry is broken.
Therefore, a transition from the symmetric phase to the symmetry-breaking
phase takes place by tunneling the potential barrier between them. If the tem-
perature drops below TcTT , the second local minimum of VeffVV (H,T ) becomes the
global one. This first-order phase transition starts with the small bubbles in-
side which the symmetry is broken (i.e., v(T ) = 〈H〉 = 0), but outside is the
symmetric phase with v(T ) = 0. As T decreases, the bubbles expand and
collide, and finally fill up the whole Universe. When the wall of the bubble
expands outwards, the order parameter v(T ) changes dramatically from zero
to a nonzero value which induces the departure from thermal equilibrium. On
the other hand, the baryon numbers carried by quark and antiquark fields



386 11 Cosmological Matter-antimatter Asymmetry

transport from the outside into the inside of the bubbles, and vice versa. How-
ever, both quarks and antiquarks can be reflected by the bubble walls, and
the reflection and transmission coefficients of quarks and antiquarks are dif-
ferent due to C and CP violation. The baryon number asymmetries are then
generated in both the symmetric and symmetry-breaking phases, but the to-
tal baryon number is still vanishing. Because of the rapid rate of sphaleron
processes in the symmetric phase, the corresponding baryon number stored in
the left-handed quarks is finally washed out. Therefore, the net baryon num-
ber asymmetry only resides in the symmetry-breaking phase and can survive
until today if the relevant sphaleron rate is far from thermal equilibrium. We
conclude that it is possible to dynamically generate the cosmological baryon
number asymmetry in the SM if the phase transition is strongly of the first
order and the sphaleron processes are not very efficient. (Cohen et al., 1993;
Rubakov and Shaposhnikov, 1996).

One finds that the condition Esph(TcTT )/TcTT > 45 or v(TcTT )/TcTT > 1, which
leads to a light Higgs boson withMhM < 42 GeV, should be satisfied in order to
assure the sphaleron processes to be impotent. Current experimental bound
on the Higgs mass is MhM > 114 GeV (Nakamura et al., 2010). This contradic-
tion, together with the fact that CP violation is badly suppressed due to the
strong hierarchy of quark masses, excludes the possibility of explaining the
observed baryon number asymmetry of the Universe within the SM. But a
number of extensions of the SM with more sources of CP violation and more
scalar fields, such as the minimal supersymmetric standard model (MSSM),
can realize baryogenesis at the electroweak scale (Riotto, 1998; Riotto and
Trodden, 1999).

11.2.3 GUT Baryogenesis

The unification of electromagnetic and weak interactions in the SM proves
to be very successful. Including quantum chromodynamics, the SM as a
SU(3)c×SU(2)L×U(1)Y gauge theory can well describe both strong and elec-
troweak interactions. However, the direct product of these symmetry groups
means that one has to introduce different gauge coupling constants for strong,
weak and electromagnetic interactions. Howard Georgi and Sheldon Glashow
made the first step in embedding these three fundamental forces into a gauge
theory with the compact symmetry group SU(5) (Georgi and Glashow, 1974).
Subsequent developments along this line have taken advantage of other Lie
groups, such as SO(10) (Fritzsch and Minkowski, 1975; Georgi, 1975) and E6

(Slansky, 1981). In such a grand unified theory (GUT), the SM quarks and
leptons are usually grouped into one multiplet. Just like the W -boson which
mediates charged-current weak interactions between a neutrino field νL and
the corresponding charged-lepton field lL in the same SU(2)L doublet, a new
gauge boson X in the GUT may simultaneously interact with the quarks and
leptons in the same multiplet. Thus the decays of this X boson must violate
both baryon and lepton numbers. In the original Georgi-Glashow model, for
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example, the left-handed fermions are embedded into the 5 and 10 represen-
tations of the SU(5) group:

5 =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
Dc

1

Dc
2

Dc
3

νe

e

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
L

, 10 =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
0 U c

2UU −U c
1UU u1 d1

−U c
2UU 0 U c

3UU u2 d2

U c
1UU −Uc

3UU 0 u3 d3

−u1 −u2 −u3 0 Ec

−d1 −d2 −d3 −Ec 0

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
L

, (11.23)

where U c
iUU L, Dc

iL and Ec
L with i being the color index denote the antiparticles

of the right-handed quark and charged-lepton singlets, QiL = (ui, di)
T
L and

�L = (νe, e)T
L stand for the left-handed quark and lepton doublets. Since the

SU(5) gauge symmetry is not realized in nature, it must be spontaneously
broken down to SU(3)c×SU(2)L×U(1)Y which can be further broken down
to U(1)Q as in the SM. The symmetry breaking is achievable by introducing
a scalar multiplet in the adjoint representation, and its vacuum expectation
value should be properly chosen such that the SU(3)c×SU(2)L×U(1)Y sym-
metry is preserved. After spontaneous symmetry breaking, the corresponding
gauge boson X acquires a mass MXM and mediates the interactions between
down-type quark singlets and lepton doublets (from the 5 representation)
and between charged-lepton singlets and quark doublets (from the 10 rep-
resentation). This example illustrates that a GUT model may offer baryon
number violation, which fulfills the first Sakharov condition. In addition, CP
violation simply follows the Kobayashi-Maskawa mechanism as in the SM
(Kobayashi and Maskawa, 1973). The rates of X → D + � and X → Q+ U
decays are equal to those of their CP-conjugate processes at the tree level, but
the CP-violating asymmetries can arise at the loop level. The third Sakharov
condition, or equivalently a departure from thermal equilibrium, will be sat-
isfied if the decay rates of gauge bosons are smaller than the expansion rate
of the Universe (Kolb and Turner, 1990).

The GUT baryogenesis seems to be promising in explaining the baryon
number asymmetry, but this is not the case. The (B+L)-violating sphaleron
processes, which must have been very efficient in the early Universe, are
possible to erase all the preexisting baryon number asymmetry. One way out
of this difficulty is to break the (B − L) conservation in the GUT, then an
asymmetry in the (B − L) number should not be removed by the sphaleron
interactions (Riotto and Trodden, 1999). This is in some sense similar to the
leptogenesis mechanism, which will be discussed in detail in Section 11.2.5.

11.2.4 The Affleck-Dine Mechanism

We have seen that the minimal versions of electroweak and GUT baryoge-
nesis mechanisms are not very successful in explaining the baryon number
asymmetry. In this case more and more interest has recently been focused
on baryogenesis via leptogenesis or via the Affleck-Dine mechanism. We shall
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introduce the basic idea of the Affleck-Dine mechanism in this subsection,
and then concentrate on leptogenesis in the remaining parts of this chapter.

Consider a theory of the complex scalar field, for which the Lagrangian
can be written as (Dine and Kusenko, 2004)

Lφ = (∂μφ†)(∂μφ) −m2φ†φ . (11.24)

It is obvious that Lφ is invariant under the phase redefinition φ→ φ′ = eiαφ
with α being an arbitrary real constant. Thanks to the Noether theorem, we
have the following conserved current:

Jμ
BJJ = i(φ†∂μφ− φ∂μφ†) , (11.25)

where the global U(1) symmetry has been identified with the baryon number.
It is worth mentioning that the scalar fields with baryon and lepton numbers,
such as the supersymmetric partners of quarks and leptons, are very common
in a variety of supersymmetric theories (Affleck and Dine, 1985). Note that
Lφ is also invariant under the CP transformation φ ↔ φ†, and hence the
theory is CP-invariant. Now we add the interaction terms described by (Dine
and Kusenko, 2004)

Lint = λ(φ†φ)2 +
[
εφ†φ3 + δφ4 + h.c.

]
, (11.26)

where ε and δ are in general complex constants. Then both the baryon number
and CP invariance can be violated by the ε and δ terms in Eq. (11.26). The
evolution of the scalar field φ(x) in the homogeneous Universe is governed by

d2φ(t)
dt2

+ 3H
dφ(t)

dt
+
∂V (φ)
∂φ

= 0 , (11.27)

where H is the Hubble parameter, and V (φ) denotes the scalar potential. At
early times the conditionH � m held, so the scalar field was frozen at φ = φ0

with φ0 � 0 being the expectation value. Therefore, the initial baryon num-
ber must have been vanishing. When the Hubble parameter dropped far below
m, the scalar field started to oscillate, as indicated in Eq. (11.27). Discarding
the quartic term in the potential, we can get φ(t) = φ0(mt)

−3/2 sin(mt) for
the radiation-dominated epoch with H = 1/(2t) or φ(t) = φ0(mt)

−1 sin(mt)
for the matter-dominated era with H = 2/(3t). Taking φ0 to be real and
assuming ε and δ to be small coefficients, we solve Eq. (11.27) and obtain the
imaginary part of φ as follows (Affleck and Dine, 1985):

φI = ar

Im(ε+ δ)φ3
0

m2(mt)3/4
sin(mt+ δr) (11.28)

with ar = 0.85 and δr = −0.91 in the radiation-dominated case; and

φI = am

Im(ε+ δ)φ3
0

m3t
sin(mt+ δm) (11.29)



11.2 Typical Mechanisms of Baryogenesis 389

with am = 0.85 and δm = 1.54 in the matter-dominated case. Inserting either
Eq. (11.28) or Eq. (11.29) into the baryon-number current in Eq. (11.25), we
arrive at a nonzero baryon number at large times:

nB = 2ar

Im(ε+ δ)φ2
0

m3t2
sin(δr + π/8) , (radiation) ,

nB = 2am

Im(ε+ δ)φ2
0

m3t2
sin(δm) , (matter) . (11.30)

The baryon number stored in the scalar field will be converted to the baryon
number of the SM particles through various decays of φ. If the squark plays
the role of the dynamical scalar field, for instance, it can decay into the SM
quarks. The final amount of the baryon number asymmetry depends on the
details of the supersymmetric model and the inflation model (Affleck and
Dine, 1985; Dine and Kusenko, 2004).

11.2.5 Leptogenesis

The leptogenesis mechanism (Fukugita and Yanagida, 1986) is the most pop-
ular mechanism of baryogenesis today, because it is closely related to the
seesaw mechanism of neutrino mass generation. The fact that neutrinos are
massive and lepton flavors are mixed implies that the minimal version of
the SM must be incomplete. One of the most economical extensions of the
SM is to introduce three right-handed neutrinos and allow lepton number
violation (see Section 4.3.1). Such a canonical seesaw scenario can naturally
accommodate baryogenesis via leptogenesis. Here we outline the basic idea of
leptogenesis. A more detailed description of the leptogenesis mechanism will
be presented in the subsequent sections.

The original leptogenesis mechanism works in the type-I seesaw model,
which has the following gauge-invariant neutrino mass terms:

−Lν = �LYνYY H̃NRNN +
1
2
N c

RNN MRMM NRNN + h.c. . (11.31)

After spontaneous gauge symmetry breaking, one obtains the Dirac mass
matrix MDMM = YνYY v/

√
2 with v ≈ 246 GeV. Provided the mass scale of MRMM

is significantly larger than that of MDMM , the seesaw mechanism works and
leads to the effective Majorana mass matrix of three light neutrinos MνMM ≈
−MDMM M−1

RMM MT
DMM . Given YνYY ∼ O(1), the sub-eV mass scale ofMνMM requiresMRMM ∼

O(1014) GeV. Let us denote the mass eigenstates and eigenvalues of three
heavy Majorana neutrinos to be NiNN and MiMM (for i = 1, 2, 3), respectively.
Of course, the Majorana condition NiNN = N c

iNN is fulfilled and lepton number is
violated. In the very early Universe the temperature was so high thatNiNN could
be thermally produced and then stayed in equilibrium with the thermal bath.
As the temperature dropped below MiMM , the lepton-number-violating decays
NiNN → �α +H and NiNN → �α +H (for α = e, μ, τ) would happen. The complex
Yukawa coupling matrix YνYY may result in the CP-violating asymmetries
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εi ≡

∑
α

[
Γ (NiNN → �α +H) − Γ (NiNN → �α +H)

]
∑
α

[
Γ (NiNN → �α +H) + Γ (NiNN → �α +H)

] (11.32)

via the interference between tree- and loop-level decay amplitudes. A net lep-
ton number asymmetry can then be generated from εi if the decays of NiNN are
out of thermal equilibrium. The latter is satisfiable when the decay rates ofNiNN
are smaller than the expansion rate of the Universe. For the decay of a heav-
ier Majorana neutrino N2NN or N3NN , the lepton-number-violating interactions of
the lightest heavy Majorana neutrino N1NN may be rapid enough to wash out
the lepton number asymmetry originating from ε2 or ε3. Hence only the CP-
violating asymmetry ε1 is survivable and relevant to leptogenesis. Once a net
lepton number asymmetry is produced, the sphaleron interactions in thermal
equilibrium will efficiently convert it into a baryon number asymmetry. This
conversion can be expressed as (Kolb and Turner, 1990)

nB

s

∣∣∣∣∣∣∣
equilibrium

= c
nB − nL

s

∣∣∣∣∣∣∣∣∣∣
equilibrium

= −c nL

s

∣∣∣∣∣∣∣
initial

, (11.33)

where nB and nL stand respectively for the baryon and lepton number den-
sities, s denotes the entropy density of the Universe, and c = 28/79 in the
SM. So the final baryon number asymmetry is determined by the initial lep-
ton number asymmetry arising from the decays (and scattering processes) of
heavy Majorana neutrinos. Fig. 11.2 illustrates the relation between B and
L in the presence of rapid sphaleron interactions. Note that nL should be
negative so as to yield nB > 0. The evolution of nL and nB can be figured
out by solving the relevant Boltzmann equations.

11.3 Baryogenesis via Leptogenesis

This section is devoted to a detailed description of baryogenesis via lepto-
genesis. First, we discuss the thermal or non-thermal production of heavy
Majorana neutrinos NiNN . Second, we calculate the CP-violating asymmetries
εi in the decays of NiNN . Third, we write out the full Boltzmann equations to
describe how the produced lepton and baryon number asymmetries evolve.
Finally, we make an analytical estimate of the net baryon number asymmetry.

11.3.1 Thermal or Non-thermal Production

Because of the Yukawa interactions, heavy Majorana neutrinos NiNN with
massesMiMM could abundantly be produced via the inverse decays (�α+H → NiNN
and �α + H → NiNN ) and scattering processes (�α + U → Q + NiNN and
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B

(a)

(b)

B − L > 0

B − L = 0

B − L < 0

L

B = c(B − L)
(equilibrium)

Fig. 11.2 The relationship between baryon (B) and lepton (L) numbers. The
sphaleron processes change both B and L along the thin dotted lines with constant
(B − L). The thick dashed line represents B = c(B − L), which should finally
be reached if the sphaleron interactions are in thermal equilibrium. Arrows (a) and
(b) correspond to successful and unsuccessful leptogenesis mechanisms, respectively
(Hamaguchi, 2002)

Q + U → �α + NiNN ) when T � MiMM was satisfied in the early Universe 3.
It is usually assumed that the interaction rates of these processes are rapid
enough to keep NiNN in thermal equilibrium. Since the Yukawa interactions are
responsible for both the thermal production of NiNN and the out-of-equilibrium
decays of NiNN , whether the number density of NiNN can reach the equilibrium
value is determined by the Yukawa coupling matrix of neutrinos YνYY and the
evolution behavior of Boltzmann equations (Luty, 1992; Plümacher, 1997;
Buchmüller et al., 2005a).

In an inflation model the total energy of the early Universe was stored
in the potential energy of an inflaton field φ, which would decay into the
SM particles at the minimum of the potential energy and then reheat the
Universe to the temperature TrehTT . The value of TrehTT should be larger than the
lightest heavy Majorana neutrino mass M1 ∼ 1012 GeV. This requirement is
free from any problems in those non-supersymmetric seesaw models. In some

3Here U and Q denote the SU(2)L singlet of up-type quarks and the SU(2)L
doublet of quarks, respectively. Their Yukawa interactions with the Higgs doublet
have been given in Eq. (2.46). Note that there are also the production processes
involving the electroweak gauge bosons. We shall discuss such processes when we
derive the Boltzmann equations in Section 11.3.3.
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Fig. 11.3 The Feynman diagrams for the decays NiNN → �a
α + Hb at the tree and

one-loop levels, where a, b = 1, 2 are the SU(2) indices of lepton and Higgs doublets

supersymmetric seesaw models, however, such a high reheating temperature
may cause the overproduction of gravitinos — the supersymmetric partners
of gravitons (Weinberg, 1982; Ellis et al., 1982). A possible way out is to
assume that heavy Majorana neutrinos were non-thermally generated in the
supersymmetric case. IfNiNN and φ are coupled and the mass of φ satisfiesMφM >
2MiMM , then the decays φ → NiNN + NiNN are allowed (Lazarides and Shafi, 1991;
Kumekawa et al., 1994). After the Hubble parameter H became comparable
to or smaller than the decay width of φ (i.e., H � ΓφΓ = λ2

iMφM /4π with λi

being the coupling constant between φ and NiNN ), the inflaton began to decay
(Lazarides, 2002). Then the reheating temperature TrehTT can be determined
from ΓφΓ = H together with Eqs. (9.30) and (9.31):

TrehTT =
(

45
4π3g∗

)1/4√
ΓφΓ MPlMM , (11.34)

where g∗ = 106.75 is the effective number of the relativistic degrees of freedom
in the SM, and MPlMM ≈ 1.22 × 1019 GeV is the Planck mass. If MiMM � TrehTT
holds, NiNN must have decayed immediately after its production. The number
density of NiNN is roughly given by nNi

≈ 3neq
Ni
TrehTT /(2MiMM ), where neq

Ni
denotes

the number density of NiNN in thermal equilibrium (Kumekawa et al., 1994).
Although the non-thermal production mechanism of heavy Majorana neu-

trinos is interesting, it depends on the details of an inflation model. In the
following we shall only focus on the thermal leptogenesis.

11.3.2 CP-violating Asymmetries

The difference between the decay rates Γ (NiNN → �α +H) and Γ (NiNN → �α +H)
vanishes at the tree level, but it is nonzero at the one-loop level because direct
CP violation may arise from the interference between tree- and loop-level
decay amplitudes. The typical Feynman diagrams forNiNN → �aα+Hb decays are
shown in Fig. 11.3, where the SU(2) indices a and b refer to the components
of lepton and Higgs doublets. One can see that the one-loop contributions
to the decay amplitudes include the self-energy and vertex corrections. For
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Fig. 11.4 The Feynman diagrams for the one-loop self-energies of heavy Majorana
neutrinos NiNN , where the arc arrows denote the direction of the fermion flow (Denner
et al., 1992. With permission from Elsevier; Dreiner et al., 2010)

the decays of NiNN with each lepton flavor in the final states, the corresponding
CP-violating asymmetries are defined as

εiα ≡ Γ (NiNN → �α +H) − Γ (NiNN → �α +H)∑
α

[
Γ (NiNN → �α +H) + Γ (NiNN → �α +H)

] , (11.35)

where the summation over the SU(2) indices is implied. The total CP-
violating asymmetry in NiNN decays is therefore εi = εie + εiμ + εiτ . It is
easy to calculate the total decay rate of NiNN at the tree level:

ΓiΓΓ ≡
∑
α

[
Γ (NiNN → �α +H) + Γ (NiNN → �α +H)

]
=

(
Y †

νYY YνYY
)
ii

8π
MiMM , (11.36)

where Γ (NiNN → �α + H) = Γ (NiNN → �α + H) holds in the neglect of CP
violation. Only the vertex corrections were considered in the early analysis
of leptogenesis (Fukugita and Yanagida, 1986; Luty, 1992). The self-energy
corrections were found to be important (Flanz et al., 1995; Covi et al., 1996)
and even dominant if the masses of heavy Majorana neutrinos are nearly
degenerate (Pilaftsis and Underwood, 2004). Note that CP violation requires
at least two different weak phases and two different strong phases in the
decay amplitudes. The weak phases come from the complex Yukawa coupling
matrix YνYY , while the strong phases can be generated if the lepton and Higgs
doublets running in the loops are on their mass shells. This condition is always
satisfied, because NiNN are heavy enough as compared with the SM particles.

Let us begin to calculate the one-loop self-energies of heavy Majorana
neutrinos NiNN (see Fig. 11.4 for the Feynman diagrams). Because of N c

iNN = NiNN ,
it is straightforward to verify that the self-energies can be expressed as

Σij(/p//) = /pP// LPP ΣL
ij(p

2) + /pP// RPP ΣR
ij(p

2) + PLPP ΣM∗
ij (p2) + PRPP ΣM

ij (p2) , (11.37)

where ΣR
ij(p

2) = ΣL∗
ij (p2) and PLPP ,R ≡ (1 ∓ γ5)/2. The contribution from the

Feynman diagram in Fig. 11.4(a) is explicitly given by
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−iΣ(a)
ij (/p//) =

∑
α

∑
a,b

[
−i(Y †

νYY )iα(εT )ba

] [
−i(YνYY )αjεab

]
×
∫

d4k

(2π)4
PLPP

i(/p//+ /k//)
(k + p)2 + iε+

PRPP
i

/k// + iε+

=
i

16π2

(
Y †

νYY YνYY
)
ij
B0(p

2, 0, 0)/pP// RPP , (11.38)

where εab is the totally antisymmetric tensor with ε12 = −ε21 = 1, the positive
infinitesimal ε+ regularizes the propagators, and the masses of lepton and
Higgs doublets have been omitted. The two-point scalar Passarino-Veltman
function is defined as (Passarino and Veltman, 1979) 4

B0(p
2, 0, 0) = ΔE − ln

( |p2|
μ2

)
+ 2 + iπΘ(p2) , (11.39)

where Θ(p2) denotes the step function, and ΔE ≡ 2/(4 −D) − γE + ln(4π)
with D being the space-time dimension and γE being the Euler constant. The
Feynman diagram in Fig. 11.4(b) can similarly be calculated:

−iΣ(b)
ij (/p//) =

∑
α

∑
a,b

[
−i(Y T

νYY )iα(εT )ba

] [
−i(Y ∗

νYY )αjεab

]
×
∫

d4k

(2π)4
PRPP

i(/p//+ /k//)
(k + p)2 + iε+

PLPP
i

/k// + iε+

=
i

16π2

(
Y T

νYY Y ∗
νYY
)
ij
B0(p

2, 0, 0)/pP// LPP . (11.40)

Although the divergence of the one-loop self-energies ΔE is present, it may
directly be removed as in the modified minimal subtraction scheme (MS).
After the renormalization procedure, the finite self-energies turn out to be

Σij(/p//) = /p//
[
KjiK PLPP +KijK PRPP

]
A(p2) , (11.41)

where K ≡ Y †
νYY YνYY is a Hermitian matrix,

A(p2) =
1

16π2

[
ln
( |p2|
μ2

)
− 2 − iπΘ(p2)

]
. (11.42)

Note that the step function in Eq. (11.42) should be Θ(p2 − M2
hM − M2

�M )
if the lepton and Higgs masses are taken into account, implying that an
imaginary part in A(p2) will appear if the particles in the loop are on their
mass shells. Note also that the imaginary part of A(p2) is independent of the
renormalization scale μ.

4The Passarino-Veltman functions are frequently encountered in the loop calcu-
lations (Denner, 1993) if the dimensional regularization is implemented (’t Hooft,
1973). In this scheme the dimension of the space-time is assumed to be D < 4 and
the limit D → 4 is taken for the final results.
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Now we are ready to compute the CP-violating asymmetries arising from
the interference between the tree-level amplitude and self-energy corrections.
In this case the overall decay amplitude of NiNN → �aα + Hb is a sum of the
contributions from Fig. 11.3(a) and Fig. 11.3(b):

iMs,ab
αi = −iεab

∑
j �=�� i

u(q)PRPP
[
(YνYY )αi + (YνYY )αjS(/p,M// jM )ΣjiΣ (/p//)

]
u(p) , (11.43)

where iS(/p,M// jM ) is the propagator of NjN . Note that only the truncated Green
functions contribute to the relevant S-matrix elements, so the summation in
Eq. (11.43) is over all NjN with j = i. The overall decay amplitude for the
CP-conjugate process NiNN → �α +H can be obtained in a similar way:

iMs,ab

αi = −iεab

∑
j �=�� i

v(q)PLPP
[
(Y ∗

νYY )αi + (Y ∗
νYY )αjS(/p,M// jM )ΣjiΣ (/p//)

]
u(p) . (11.44)

Integrating |Ms,ab
αi |2 and |Ms,ab

αi |2 over the phase space of final states, we
arrive at the CP-violating asymmetries induced by the self-energy corrections:

εsiα =

1
2MiMM

∫
dΠqΠ dΠk(2π)4δ4(p− q − k)

∑
a,b

[∣∣∣∣∣∣∣Ms,ab
αi

∣∣∣∣∣∣∣2 − ∣∣∣∣∣∣∣Ms,ab

αi

∣∣∣∣∣∣∣2]∑
α

[
Γ (NiNN → �α +H) + Γ (NiNN → �α +H)

]
=

1
8πKiiK

∑
j �=�� i

MiMM

M2
iMM −M2

jM
Im
{
(Y ∗

νYY )αi(YνYY )αj

[
KjiK MiMM +KijK MjM

]}
, (11.45)

where dΠqΠ ≡ d3q/(2π)3(2q0) is the differential element of the phase space,
and Eqs. (11.36), (11.41), (11.43) and (11.44) have been used. A sum of εsiα
over the lepton flavors gives rise to the total CP-violating asymmetry

εsi ≡
∑
α

εsiα =
1

8πKiiK

∑
j �=�� i

MiMM MjM

M2
iMM −M2

jM
Im
[
(KijK )2

]
. (11.46)

Note that εsiα and εsi seem to be divergent provided the masses of two heavy
Majorana neutrinos are degenerate (i.e., MiMM = MjM ). In this special case one
has to take account of the finite decay widths of NjN in their propagators. The
decay widths ΓjΓ actually serve as the regulator to make the CP-violating
asymmetries well-behaved even in the MiMM = MjM limit. If the mass splits
|MiMM −MjM | are comparable with ΓiΓΓ and ΓjΓ , then the magnitudes of εsiα and
εsi can be resonantly enhanced. This observation is a starting point of the
resonant leptogenesis mechanism (Pilaftsis and Underwood, 2004, 2005).

We proceed to calculate the CP-violating asymmetries arising from the
interference between the tree-level amplitude and one-loop vertex corrections
in NiNN decays (see Fig. 11.5 for the Feynman diagrams). The effective vertex
in Fig. 11.5(a) can be written as



396 11 Cosmological Matter-antimatter Asymmetry

�
d
β

NjN

H
c

NiNN

�
a
α

H
b

NiNN

�
d
β

H
b

NjN

�
a
α

H
c

(b)(a)

Fig. 11.5 The Feynman diagrams for the one-loop vertex corrections to the decays
of heavy Majorana neutrinos NiNN : (a) NiNN → �α + H and (b) NiNN → �α + H , where
the arc arrows denote the direction of the fermion flow (Denner et al., 1992. With
permission from Elsevier)

iΓ ab
αiΓΓ =
∑

β

∑
c,d

∑
j

[
−i(YνYY )αjεac

] [
−i(Y T

νYY )jβ(εT )bd

] [
−i(Y ∗

νYY )βiεdc

]
×
∫

d4k

(2π)4
PRPP [iS(/p//+ /k// + /p//

′,MjM )]PRPP [iS(/p//+ /k//)]PLPP [iΔ(k2)] , (11.47)

where iS(/p,M// jM ) is the propagator of NjN , iS(/p//) denotes the propagator of the
lepton doublet in the neglect of lepton masses, and iΔ(k2) represents the
propagator of massless scalars. Using the dimensional regularization method,
we explicitly work out this effective vertex:

Γ ab
αiΓΓ =
∑

j

εab(YνYY )αj

[(
M̂BKT

)
ji
/p//+
(
M̂CKT

)
ji
/p//
′
]
PLPP , (11.48)

where M̂ , B and C are three diagonal matrices: M̂ = Diag{M1,M2MM ,M3MM }, and
the diagonal elements of B and C are (for k = 1, 2, 3)

Bk(p2, p′2) =
1

16π2
[C11(p, p

′, 0, 0,MkM ) + C0CC (p, p′, 0, 0,MkM )] ,

Ck(p2, p′2) =
1

16π2
C12(p, p

′, 0, 0,MkM ) (11.49)

with C0CC , C11 and C12 being the three-point Passarino-Veltman functions
(Denner, 1993). The Feynman diagram for the one-loop vertex corrections
to the CP-conjugate decay NiNN → �α +H is shown Fig. 11.5(b). Its effective
vertex is similarly expressed as

Γ
ab

αi =
∑

j

εab(Y
∗
νYY )αj

[(
M̂BK

)
ji
/p//+
(
M̂CK

)
ji
/p//
′
]
PRPP , (11.50)

where B and C have been given in Eq. (11.49). After a sum of the contributions
from Fig. 11.3(a) and Fig. 11.3(c), the overall decay amplitude ofNiNN → �α+H
with the one-loop vertex corrections is then obtained:
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iMv,ab
αi = −iu(q)

[
(YνYY )αiεabPRPP − Γ ab

αiΓΓ
]
u(p) . (11.51)

The overall decay amplitude of NiNN → �α +H is similarly given by

iMv,ab

αi = −iv(q)
[
(Y ∗

νYY )αiεabPRPP − Γ
ab

αi

]
u(p) . (11.52)

Integrating |Mv,ab
αi |2 and |Mv,ab

αi |2 over the phase space of final states, we
arrive at the CP-violating asymmetries induced by the vertex corrections:

εviα =

1
2MiMM

∫
dΠqΠ dΠk(2π)4δ4(p− q − k)

∑
a,b

[∣∣∣∣∣∣∣Mv,ab
αi

∣∣∣∣∣∣∣2 − ∣∣∣∣∣∣∣Mv,ab

αi

∣∣∣∣∣∣∣2]∑
α

[
Γ (NiNN → �α +H) + Γ (NiNN → �α +H)

]
=

1
8πKiiK

∑
j

Im
[
(Y ∗

νYY )αi(YνYY )αjKijK
]
fvff

(
M2

jM

M2
iM

)
, (11.53)

where the vertex function fvff (M2
jM /M2

iMM ) is defined by

fvff (x) ≡
√
x

[
1 + (1 + x) ln

(
x

1 + x

)]
. (11.54)

Note that the term with j = i on the right-hand side of Eq. (11.53) is actu-
ally vanishing. In the leading-order approximation the overall CP-violating
asymmetry εiα is simply a sum of the CP-violating asymmetries induced by
vertex and self-energy corrections (i.e., εiα = εviα + εsiα). Taking account of
Eqs. (11.45) and (11.53), we obtain

εiα =
1

8π(Y †
νYY YνYY )ii

∑
j �=�� i

{
Im
[
(Y ∗

νYY )αi(YνYY )αj(Y
†
νYY YνYY )ij

]
F
(
M2

jM

M2
iMM

)

+ Im
[
(Y ∗

νYY )αi(YνYY )αj(Y
†
νYY YνYY )∗ij

]
G
(
M2

jM

M2
iM

)}
, (11.55)

where we have introduced the loop functions G(x) ≡ 1/(1 − x) and

F(x) =
√
x

[
1 +

1
1 − x

+ (1 + x) ln
(

x

1 + x

)]
. (11.56)

If all the interactions in the era of leptogenesis were blind to lepton flavors,
then only the total CP-violating asymmetry εi should be relevant:

εi =
∑
α

εiα =
1

8π(Y †
νYY YνYY )ii

∑
j �=�� i

Im
[
(Y †

νYY YνYY )2ij
]
F
(
M2

jM

M2
iMM

)
. (11.57)
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The above results are very useful for the study of flavor-dependent and flavor-
independent leptogenesis scenarios in the type-I seesaw models.

The lepton number asymmetries can be generated from the CP-violating
and out-of-equilibrium decays of heavy Majorana neutrinos NiNN . Naively, a
difference between the number densities of leptons (n�) and antileptons (n

�
)

is determined by the CP-violating asymmetry εi and the number density of
heavy Majorana neutrinos nNi

; i.e., n� − n
�
∝ εinNi

. But nNi
may change

due to the decay and inverse-decay processes. The values of
ii i

n� and n
�

may
also be modified by both the decays and lepton-number-violating scattering
processes. Hence an exact calculation of the lepton and baryon number asym-
metries relies on the solution to the full set of Boltzmann equations (Kolb
and Turner, 1990; Luty, 1992; Plümacher, 1997; Davidson et al., 2008).

11.3.3 Boltzmann Equations

The Boltzmann equations are widely regarded as the standard tools for de-
termining the particle number densities which may more or less be modified
by decays and collisions in the expanding Universe (Kolb and Turner, 1990).
Given the large mass scale of heavy Majorana neutrinos, the leptogenesis
mechanism must have worked in the very early Universe where the total en-
ergy density was dominated by relativistic particles and all the SM particles
were in thermal equilibrium. To be specific, the number density of the “x”
particles in thermal equilibrium at the temperature T is described by

nx = gx

∫
d3p

(2π)3
fxff (p) = gx

∫
d3p

(2π)3
1

exp [(Ex − μx) /T ] ± 1
, (11.58)

where gx represents the number of internal degrees of freedom, fxff (p) is the
distribution function in the phase space, mx denotes the mass of the “x”
particle, T � mx and Ex =

√
|p|2 +m2

x → |p| hold, μx stands for the
chemical potential, and the “±” signs correspond to fermions (+) and bosons
(−). Neglecting the tiny chemical potentials, one may calculate the energy
densities of relativistic bosons and fermions (see Section 9.1.4):

ρ =
g∗π

2

30
T 4 , (11.59)

where g∗ is the effective number of degrees of freedom and its expression has
been given in Eq. (9.29). In the SM of electroweak and strong interactions
g∗ = 106.75 holds when the temperature is much higher than the electroweak
gauge symmetry breaking scale v ≈ 246 GeV 5. The Hubble parameter H

5At T ∼ v the Higgs boson, the photon and three massive gauge bosons totally
contribute 1 + 2 + 3 × 3 = 12 to g∗. At T 
 v, however, the electroweak gauge
symmetry is restored and all the gauge bosons are massless. In this case four real
components of the Higgs doublet and two polarization states of each gauge boson
should be taken into account. So they also contribute 4 + 2 × 4 = 12 to g∗.
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in this radiation-dominated epoch can be expressed as H ≈ 1.66√g√√
∗T

2/MPlMM
with MPlMM being the Planck mass, as already shown in Eq. (9.31). The entropy
density of the Universe is defined as

s ≡ ρ+ p

T
=

4ρ
3T

=
2g̃∗π

2

45
T 3 , (11.60)

where the equation of state p = ρ/3 is used for the relativistic gas, and

g̃∗ ≡
∑
b

gb

(
T ∗

bTT

T

)3

+
7
8

∑
f

gf

(
T ∗

fTT

T

)3

(11.61)

denotes the effective number of degrees of freedom for the entropy with T ∗
bTT

and T ∗
fTT being the decoupling temperatures of the corresponding bosons and

fermions. Since all the particles should be in thermal equilibrium at the tem-
perature T � MiMM , where MiMM are the masses of heavy Majorana neutrinos NiNN ,
we have T ∗

bTT = T ∗
fTT = T and therefore g̃∗ = g∗ as given in Eq. (9.29). When

T < MiMM , however, non-relativistic NiNN must have decayed and their number
densities in thermal equilibrium are suppressed by the Boltzmann factors
e−Mi/T . To illustrate how a simple leptogenesis mechanism works, here we
only consider the role of the lightest heavy Majorana neutrino N1NN and assume
that the lepton number asymmetries produced previously from the decays of
N2NN and N3NN have been completely washed out 6. Furthermore, we neglect the
Yukawa interactions of charged leptons and focus on the flavor-independent
CP-violating asymmetries εi obtained in Eq. (11.57).

Now we present an intuitive derivation of the Boltzmann equations in the
expanding Universe. The number density of the “a” particles is defined as
na ≡ NaN /V , where NaN is the total number of the “a” particles in the physical
volume V = V0VV R

3(t)/R3(t0) with V0VV being the volume in the comoving co-
ordinate system. In the absence of any interactions NaN should be conserved;
i.e., ṄaN = 0 or equivalently

d(naV )
dt

= V (ṅa + 3Hna) = 0 , (11.62)

where H = Ṙ(t)/R(t) is the Hubble parameter. If there exist collisions which
change na, they should contribute to the right-hand side of Eq. (11.62). For
instance, the reaction a + X → Y and its inverse process Y → a + X can
modify the number of the “a” particles by one unit. Hence the change of the
particle number in the physical volume V in the unit time can be written as

−V
∑
X,Y

∫
dΠaΠ dΠXΠ dΠYΠΠ (2π)4δ4(pa + pX − pY ) {faff fXf (1 ± fYff )

6The contributions of heavier Majorana neutrinos N2NN and N3NN to the lepton
number asymmetries should in general be included, and the washout effects on
these asymmetries can be evaluated by solving the relevant Boltzmann equations.
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×|M(a+X → Y )|2 − fYff (1 ± faff )(1 ± fYff )|M(Y → a+X)|2
}
, (11.63)

where M(a+X → Y ) and M(Y → a+X) are the Feynman amplitudes. Note
that the amplitudes should be summed over all the internal degrees of freedom
of initial and final states. Two reasonable approximations are usually made to
simplify the collision integral: (a) the Maxwell-Boltzmann distribution func-
tion fxff = nxe−E/T /neq

x = e−(E−μx)/T is taken, where neq
x = gx

∫
dΠxΠ e−E/T

stands for the number density in thermal equilibrium; and (b) 1 ± fxff ≈ 1
holds due to fxff ≈ e−〈E〉/T ≈ 0.05, where 〈E〉 = 3T is the average energy.
Then the Boltzmann equation can be derived from Eqs. (11.62) and (11.63)
(Kolb and Turner, 1990; Luty, 1992). After a straightforward calculation, we
arrive at

ṅa + 3Hna =
∑
X,Y

[
nY

neq
Y

γ(Y → a+X) − na

neq
a

· nX

neq
X

γ(a+X → Y )
]
, (11.64)

where the interaction rate density is defined as

γ(a+X → Y ) ≡
∫

dΠaΠ dΠXΠ dΠYΠΠ (2π)4δ4(pa + pX − pY )

× e−Ea/T e−EX/T |M(a+X → Y )|2 . (11.65)

It is more convenient to express the Boltzmann equation in terms of the
particle number per unit entropy YaYY ≡ na/s and to replace the time t with
the dimensionless variable z ≡MaM /T . Note that

dYaYY

dz
=

dt
dz

· d
dt

(
V na

V s

)
=

dt
dz

· ṅa + 3Hna

s
(11.66)

holds, where the total entropy V s is conserved. Because H(t) = 1/(2t) and

T ∝ 1/
√
t in the radiation-dominated epoch, it is easy to show

dt
dz

= 1/(Hz).

As a direct result, the Boltzmann equation in Eq. (11.64) can be rewritten
as

dYaYY

dz
=

1
sHz

∑
X,Y

[
YYYY

Y eq
YYY
γ(Y → a+X) − YaYY

Y eq
aYY

· YXYY

Y eq
XYY
γ(a+X → Y )

]
. (11.67)

The evolution of the number density of the heavy Majorana neutrino N1NN and
that of the lepton number asymmetry produced from N1NN decays are governed
by the corresponding Boltzmann equations. The latter can be fixed after a
calculation of the interaction rate densities of the decays and lepton-number-
violating scattering processes.

We first consider the lepton-number-violating decays NiNN → �α + H and
NiNN → �α + H together with their inverse processes �α +H → NiNN and �α +
H → NiNN . The rates of these reactions have been given in Section 11.3.2. The
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corresponding reaction rate density of NiNN → �α +H can be calculated with
the help of Eq. (11.65):

γ(NiNN → �αH) =
∫

dΠNi
e−EN

i
/T
∫

dΠ�Π α
dΠH

×(2π)4δ4(pNi
− p�α

− pH)|M(NiNN → �α +H)|2

= gNi

∫
dΠNΠ i

e−EN
i
/T 2MiMM Γ (NiNN → �α +H)

= neq
Ni

K1(z)
K2(z)

Γ (NiNN → �α +H) , (11.68)

where Γ (NiNN → �α +H) denotes the partial decay width of NiNN → �α +H in
the rest frame of NiNN , and

K1(z) ≡ z−1

∫ +∞

z

∫∫
e−y
√
y2 − z2 dy ,

K2(z) ≡ z−2

∫ +∞

z

∫∫
ye−y
√
y2 − z2 dy (11.69)

are the modified Bessel functions (Kolb and Turner, 1990). Concentrating
on the lightest heavy Majorana neutrino N1NN and summing over the lepton
flavors, we obtain the total decay rate density

γD =
∑
α

[
γ(N1NN → �α +H) + γ(N1NN → �α +H)

]
= neq

Ni

K1(z)
K2(z)

Γ1ΓΓ , (11.70)

where Γ1ΓΓ has been given in Eq. (11.36). When the one-loop corrections to
Γ (N1NN → �+H) and Γ (N1NN → �+H) are taken into account, their difference
becomes nonzero and is characterized by the CP-violating asymmetry ε1
given in Eq. (11.57). The CPT symmetry leads us to

γ(N1NN → �+H) = γ(�+H → N1NN ) =
1
2
(1 + ε1)γD ,

γ(N1NN → �+H) = γ(�+H → N1NN ) =
1
2
(1 − ε1)γD . (11.71)

The important scattering processes include (a) the lepton-number-violating
ΔL = 1 processes involving the up-type quarks: NiNN + �α → Q+U , NiNN +Q→
�α+U and NiNN +U → �α+Q (Fig. 11.6), where the dominant contributions are
induced by the top quark; (b) the ΔL = 1 processes involving the electroweak
gauge bosons: NiNN + �α → H + VμVV , NiNN + �α → VμVV +H and NiNN +H → �α + VμVV

(Fig. 11.7), where VμVV stands for W i
μW (for i = 1, 2, 3) and Bμ; (c) the ΔL = 2

processes: �α +H → �β +H and �α + �β → H+H (Fig. 11.8). In general, one
may define the reduced cross section for the process a + X → Y as follows
(Davidson et al., 2008):
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Fig. 11.6 The Feynman diagrams for the ΔL = 1 scattering processes involving
the top quark, whose Yukawa coupling constant yt =

√
2 mt/v is of O(1)
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Fig. 11.7 The Feynman diagrams for the ΔL = 1 scattering processes involving
the electroweak gauge bosons VμVV , where VμVV = W i

μW and Bμ (for i = 1, 2, 3)

σ̂(s′) ≡ 8πΦ2(s
′)
∫

dΠYΠΠ (2π)4δ4(pa + pX − pY )|M(a+X → Y )|2 , (11.72)

where Φ2(s
′) is the two-particle phase space integration

Φ2(s
′) ≡
∫

dΠaΠ dΠXΠ (2π)4δ4(pa + pX − q) =

√
λ(s′,M2

aM ,M2
XM )

8πs′
(11.73)

with s′ = q2 and λ(x, y, z) ≡ (x − y − z)2 − 4yz. Now Eq. (11.65) can be
recast into the following form (Giudice et al., 2004):

γ(a+X → Y ) =
∫

dΠaΠ dΠXΠ e−Ea/T e−EX/T s′√
λ(s′,M2

aM ,M2
XM )

σ̂(s′)
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Fig. 11.8 The Feynman diagrams for the ΔL = 2 scattering processes, and the
on-shell contributions in the s-channel diagram should be subtracted for consistency

=
M4

aM

64π4z

∫ ∞

x

∫∫
thr

dx
√
x σ̂(x) K1(z

√
x) , (11.74)

where x ≡ s′/M2
aM , and xthr is the threshold value for the process a+X → Y to

take place. Note that we have inserted the identity
∫
δ4(pa + pX − q) d4q = 1

into the first line of Eq. (11.74) and changed the order of integration. To
illustrate, we may explicitly work out the reduced cross section for the s-
channel process N1NN (p) + �(p′) → Q(k) +U(k′) in Fig. 11.6(a). If only the top
quark contribution is considered, we obtain

∑
|M(N1NN + �→ Q+ U)|2 =

8y2
t

(
Y †

νYY YνYY
)
11

s′2
(p · p′)(k · k′) , (11.75)

where s′ = (p + p′)2 and yt ≡
√

2 mt/v with mt being the top quark mass.
Substituting Eq. (11.75) into Eq. (11.72), we arrive at

σ̂(x) =
(
s′ −M2

1

s′

)(
8y2

t

(
Y †

νYY YνYY
)
11

s′2

)∫
d3k

(2π)32k0
· d3k′

(2π)32k′0

× (2π)4δ4(p+ p′ − k − k′)
(
s′ −M2

1

2

)
(k · k′)

=
y2

t

(
Y †

νYY YνYY
)
11

4π

(
s′ −M2

1

s′

)2

=
y2

t

(
Y †

νYY YνYY
)
11

4π

(
x− 1
x

)2

, (11.76)

where x ≡ s′/M2
1 and p·p′ = (s′−M2

1 )/2 have been used. Inserting Eq. (11.76)
into Eq. (11.74), one may then obtain the reaction rate density γ(N1NN + � →
Q+ U) which appears in the Boltzmann equation. First, let us consider the



404 11 Cosmological Matter-antimatter Asymmetry

Boltzmann equation for the number density of heavy Majorana neutrinos
(Giudice et al., 2004; Buchmüller et al., 2005a),

sHz
dYNYY 1

dz
= −
∑
X,Y

[N1NN +X ↔ Y ] , (11.77)

where the summation should be taken over both the decays and the scatter-
ing processes: (a) the decays and their inverse processes D ≡ [N1NN ↔ �+H];
(b) the ΔL = 1 scattering Ss ≡ Hs + VsVV with Hs ≡

[
N1NN + �↔ Q+ U

]
and

VsVV ≡
[
N1NN + �↔ H + VμVV

]
; (c) the ΔL = 1 scattering StSS ≡ HtHH +VtVV with 2HtHH ≡[

N1NN +Q↔ �+ U
]

+
[
N1NN + U ↔ �+Q

]
and 2VtVV ≡

[
N1NN + VμVV ↔ �+H

]
+[

N1NN +H ↔ �+ VμVV
]
; (d) the ΔL = 2 scattering NsN ≡

[
�+H ↔ �+H

]
and

NtNN ≡
[
�+ �↔ H +H

]
. Note that the termsD,Ss, StSS and their CP-conjugate

terms D,Ss, St change the number densities of both N1NN and the lepton dou-
blets � and �, while the terms NsN ,NtNN and their CP-conjugate terms Ns, N t

only modify the lepton number density. Hence the Boltzmann equations for
the number densities of N1NN , � and � are given by

sHz
dYNYY 1

dz
= −D −D − Ss − Ss − StSS − St ,

sHz
dY�YY

dz
= D −NsN −NtNN − Ss + St ,

sHz
dY

�
Y

dz
= D +NsN −N t − Ss + StSS . (11.78)

So it is straightforward to derive the Boltzmann equation for the lepton
number asymmetry YLYY ≡ Y�YY − Y

�
Y = (n� − n

�
)/s from Eq. (11.78). If only

the decays and their inverse processes are taken into account, the Boltzmann
equation for YLYY turns out to be

sHz
dYLYY

dz
= D −D =

[
ε1

(
YNYY 1

Y eq
NYY 1

+ 1

)
− YLYY

2Y eq
�YY

]
γD , (11.79)

where Eq. (11.71) and the identity Y�YY + Y
�
Y = 2Y eq

�YY have been used. In this
case a net lepton number asymmetry seems to be producible even if the heavy
Majorana neutrinos stay in thermal equilibrium (i.e., YNYY 1

= Y eq
NYY 1

), a result in
conflict with the general argument that no particle number asymmetries can
be generated in thermal equilibrium. The reason for this paradox is that the
on-shell contributions from the s-channel process � +H ↔ � +H should be
subtracted, because they have been included in the decay and inverse decay
terms (Kolb and Turner, 1990; Strumia, 2006). Such on-shell contributions
are estimated to be

γos(�+H → �+H) = γ(�+H → N1NN ) Br(N1NN → �+H) , (11.80)
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where Br(N1NN → � +H) = (1 − ε1)/2 is the branching ratio of N1NN → � +H.
After a consistent subtraction, the reaction rate densities read

γ′(�+H → �+H) = γNs
− (1 − ε1)

2

4
γD ,

γ′(�+H → �+H) = γNs
− (1 + ε1)

2

4
γD , (11.81)

where γNs
denotes the reaction rate density of the NsN process. Taking account

of the decays and lepton-number-violating scattering processes, we finally
arrive at the correct Boltzmann equations (Giudice et al., 2004; Buchmüller
et al., 2005a, 2005b; Davidson et al., 2008) as follows:

sHz
dYNYY 1

dz
= −
(
YNYY 1

Y eq
NYY 1

− 1

)(
γD + 2γSs

+ 4γSt

)
,

sHz
dYLYY

dz
=

(
YNYY 1

Y eq
NYY 1

− 1

)
ε1γD − YLYY

Y eq
�YY

(
2γN + 2γSt

+ γSs

YNYY 1

Y eq
NYY 1

)
, (11.82)

where γN ≡ γNs
+ γNt

, and a subtraction of the on-shell contributions from
γNs

has been done as in Eq. (11.81). The final lepton number asymmetry YLYY
can then be obtained by solving the above Boltzmann equations.

11.3.4 Baryon Number Asymmetry

So far another important lepton-number-violating reaction, the sphaleron
process, has not been considered. In the epoch of leptogenesis the sphaleron
interactions were in thermal equilibrium, so they were very efficient in con-
verting the lepton number asymmetry into the baryon number asymmetry.
Since the sphaleron interactions conserve (B−L), we shall derive the relation
between B and (B − L).

The number density of the “x” particles has been given in Eq. (11.58),
from which one may also write out the number density of their antiparticles
by flipping the sign of the chemical potential μx (Kolb and Turner, 1990). In
the very early Universe the conditions μx/T � 1 and mx/T � 1 are both
satisfied for the SM particles, and hence the particle number asymmetry
Δnx ≡ nx − nx can approximate to Δnx = (μx/T )gxT

3/6 for fermions or
Δnx = (μx/T )gxT

3/3 for bosons. Let us consider the SM withNfN generations
of fermions andNHN Higgs doublets. It consists of the quark doubletsQi, right-
handed up-type quarks UiUU and down-type quarks Di, the lepton doublets �i
and right-handed charged leptons Ei (for i = 1, 2, · · · , NfN ), and the Higgs
doublets HjH (for j = 1, 2, · · · , NHN ). At a sufficiently high temperature the
electroweak gauge symmetry is restored and the gauge interactions are in
thermal equilibrium. In this case the chemical potentials of gauge bosons are
vanishing, and those of the components in the same quark, lepton or Higgs
doublet should be equal. So the baryon and lepton numbers are given by
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nB =
1
6
T 2

Nf∑
i=1

(2μQi
+ μUi

+ μDi
) ,

nL =
1
6
T 2

Nf∑
i=1

(2μ�i
+ μEi

) , (11.83)

where the summation over the color quantum number of quarks is implied.
On the other hand, the reactions in chemical equilibrium allow the chemical
potentials to relate to one another. First, all the Yukawa interactions at a
temperature below TeV are fast enough to guarantee

μQi
+ μH − μUi

= 0 ,
μQi

− μH − μDi
= 0 ,

μ�i
− μH − μEi

= 0 , (11.84)

where we have assumed the Higgs doublets to have a common chemical po-
tential (i.e., μHi

= μH). Furthermore, the mixing of quark flavors arising
from the non-diagonal Yukawa couplings can make the chemical potentials of

i

quarks flavor-independent (i.e., μQi
= μQ, μUi

= μU and μDi
= μD). Second,

the hypercharge conservation requires
i

NfN (μQ − 2μU − μD) −
∑

i

(μ�i
+ μEi

) + 2NHN μH = 0 . (11.85)

Finally, the sphaleron processes turn all the left-handed fermions into the
vacuum state. As a consequence,

3NfN μQ +
∑

i

μ�i
= 0 . (11.86)

With the help of Eqs. (11.84), (11.85) and (11.86), all the chemical potentials
can be expressed in terms of the NfN -independent ones. It is then easy to
rewrite the lepton and baryon numbers as (Harvey and Turner, 1990)

nB = +
1
6
T 2

8NfN + 4NHN

2NfN + 3NHN

∑
i

μEi
,

nL = −1
6
T 2

14NfN + 9NHN

2NfN + 3NHN

∑
i

μEi
. (11.87)

This result leads to the following relation between B and (B − L):

nB =
8NfN + 4NHN

22NfN + 13NHN
(nB − nL) ≡ c (nB − nL) . (11.88)

In the SM we obtain c = 28/79 from NfN = 3 and NHN = 1. Eq. (11.88)
implies that the (B − L) number was first generated in the leptogenesis era
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and then reprocessed into the baryon number by the sphaleron interactions.
The above relation depends on the assumption that the electroweak gauge
symmetry is restored and the chemical potentials of gauge bosons are van-
ishing. If this assumption is relaxed during or below the electroweak phase
transition and only the electric charge neutrality is imposed, then c = 12/37
can be obtained (Harvey and Turner, 1990). After the sphaleron processes
go out of equilibrium, there are no more interactions that can change the
baryon number asymmetry YBYY ≡ (nB − n

B
)/s. Hence YBYY generated at the

temperature T ∗ ∼ O(102) GeV keeps unchanged until today. On the other
hand, the baryon-to-photon ratio η is related to YBYY through

η ≡
nB − n

B

nγ

=
s

nγ

YBYY =
g̃∗π

4

45ζ(3)
YBYY ≈ 1.8g̃∗YBYY , (11.89)

where Eqs. (9.24) and (11.60) are used. The effective number of relativistic
degrees of freedom g̃∗ can be computed by means of Eq. (11.61). The present-
day value of g̃∗ gets contributions only from the photons with T ∗

bTT = TγTT = T

and the neutrinos with T ∗
fTT = TνTT = (4/11)1/3TγTT ; namely, g̃∗(T ) = 2 + 7/8 ×

3 × 2 × 4/11 ≈ 3.91. So we have η ≈ 7.04YBYY (and n
B

= 0) today. The value
of η at T ∗ ∼ O(102) GeV can be given in terms of today’s value of η at T ;
i.e., η(T ∗)/η(T ) = g̃∗(T

∗)/g̃∗(T ) ≈ 27.3, where g̃∗(T
∗) = g∗(T

∗) = 106.75 in
the SM has been input.

To assure the N1NN decay to be out of thermal equilibrium, we require that
its decay rate Γ1ΓΓ be smaller than the Hubble parameter H at the temperature
T = M1. With the help of Eqs. (9.31) and (11.36), one may express the
requirement Γ1ΓΓ < H(T = M1) as

(M†
DMM MDMM )11
M1

≡ m̃1 < m∗ ≡
√

64g∗π5

45
· v2

MPlMM
≈ 1.08 × 10−3 eV . (11.90)

where m̃1 and m∗ are referred to as the effective neutrino mass and the
equilibrium neutrino mass (Buchmüller et al., 2005a), respectively. Note that
the value of m̃1 determines not only the rates of the N1NN decay and its inverse
decay but also the rates of the ΔL = 1 scattering processes, as indicated in
Eqs. (11.70) and (11.76).

Let us briefly reiterate the spirit of baryogenesis via leptogenesis in the
type-I seesaw mechanism with M1 � M2MM and M1 � M3MM . First, the lepton
number asymmetry YLYY can be produced by the CP-violating and out-of-
equilibrium decays of the lightest heavy Majorana neutrinoN1NN . The evolution
of YLYY is governed by the Boltzmann equations in Eq. (11.82). Second, the
efficient sphaleron interactions convert YLYY into the baryon number asymmetry
YBYY , and the efficiency of this conversion is essentially determined by c =
28/79 in Eq. (11.88). Third, the baryon-to-photon ratio η can be diluted
by the decreasing number of relativistic degrees of freedom g̃∗ from T ∗ ∼
O(102) GeV to today, as shown in Eq. (11.89). Finally, today’s baryon number
asymmetry is approximately given by (Buchmüller et al., 2005a)
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η ≈ −0.96 × 10−2ε1κf , (11.91)

where ε1 denotes the CP-violating asymmetry in the N1NN decays and κf is an
efficiency factor measuring the washout effects on YLYY . In the weak washout
regime m̃1 < m∗, the final baryon number asymmetry sensitively depends
on the initial number density of heavy Majorana neutrinos. In the strong
washout regime m̃1 > m∗, the final result of η is independent of the initial
conditions and the efficiency factor κf can be expressed as (Buchmüller et
al., 2004; Giudice et al., 2004)

κf ≈ (2 ± 1) × 10−2

(
0.01 eV
m̃1

)1.1±0.1

. (11.92)

This empirical result is a good approximation to the solution to the full set of
Boltzmann equations. By assuming a successful leptogenesis mechanism and
using current experimental data on neutrino oscillations, one may set a lower
bound on the magnitude of M1 (Davidson and Ibarra, 2002; Buchmüller et
al., 2004). However, such a bound will be modified if the contributions from
heavier Majorana neutrinos and different lepton flavors are taken into account
(Davidson et al., 2008).

11.4 Recent Developments in Leptogenesis

The leptogenesis mechanism has been extensively studied since it was first
proposed by Masataka Fukugita and Tsutomu Yanagida in 1986, and now its
content has become very sophisticated. In Fukugita and Yanagida’s original
paper, the one-loop vertex corrections to heavy Majorana neutrino decays
were calculated and the baryon number asymmetry was estimated (Fukugita
and Yanagida, 1986). Later on, the Boltzmann equations for the evolution of
the lepton number asymmetry were derived (Luty, 1992), and the importance
of the self-energy corrections to heavy Majorana neutrinos was realized (Liu
and Segre, 1994; Flanz et al., 1995; Covi et al., 1996). The latter contribution
to CP violation may even dominate in some cases (Pilaftsis, 1997a, 1997b). In
this section we shall introduce some recent developments in leptogenesis: (a)
the leptogenesis mechanism in the type-II or type-III seesaw model, where
heavy triplet scalars or fermions are introduced; (b) the resonant leptogenesis
mechanism, in which CP violation can be resonantly enhanced if there are
two nearly degenerate heavy Majorana neutrinos; (c) the soft leptogenesis
mechanism, which works in a supersymmetric version of the type-I seesaw
model; and (d) the flavor-dependent leptogenesis mechanism.

11.4.1 Triplet Leptogenesis

It is known that the unique dimension-5 Weinberg operator for neutrino
masses can be derived at the tree-level from an extension of the SM by
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adding heavy SU(2)L singlet neutrinos, SU(2)L triplet scalars or SU(2)L
triplet fermions and allowing lepton number violation. The first option is just
the type-I seesaw mechanism and corresponds to the conventional Fukugita-
Yanagida scenario of leptogeneis. Here we discuss the main features of lepto-
genesis induced by the triplet scalars. The leptogenesis mechanism associated
with the triplet fermions may similarly work (Hambye, 2004; Strumia, 2006).

In the type-II seesaw mechanism the Lagrangian of neutrino mass terms
associated with an SU(2)L scalar triplet Δ has been given in Eq. (4.7), where
the last two terms determine the lepton-number-violating decay modes of Δ
and Δ (i.e., Δ→ �+ �, Δ→ H +H and Δ→ �+ �, Δ→ H +H). Note that
there are no one-loop vertex corrections to the above decays, in contrast with
the decays of heavy Majorana neutrinos. Hence at least two triplet scalars Δ1

and Δ2 are needed to generate CP violation via the self-energy corrections
(Ma and Sarkar, 1998). The relevant Lagrangian can be written as

−L =
1
2

2∑
a=1

�LYΔY a
Δaiσ2�

c
L −

2∑
a=1

λΔa
MΔM

a
HT iσ2ΔaH + h.c. , (11.93)

where YΔY a
are the Yukawa coupling matrices, λΔa

denote the doublet-triplet
Higgs coupling constants, and MΔM

a
are the tree-level masses of Δa (for a =

1, 2). At the one-loop level Δ1 and Δ2 mix with each other via the lepton and
Higgs doublets, so their mass matrices are given by (Ma and Sarkar, 1998)

M2 =

(
M2

ΔM
1
− iΓ11ΓΓ MΔM

1
−iΓ12ΓΓ MΔM

2

−iΓ21ΓΓ MΔM
1

M2
ΔM

2
− iΓ22ΓΓ MΔM

2

)
, (11.94)

where Γ11ΓΓ and Γ22ΓΓ stand respectively for the tree-level decay rates of Δ1 and
Δ2, and ΓabΓ (for a, b = 1, 2) can be obtained by calculating the imaginary
parts of the Δb → Δa transition amplitudes:

ΓabΓΓ =
MΔM

a

16π

[
4λΔa

λ∗Δb
+ Tr
(
Y †

ΔY a
YΔY b

)]
. (11.95)

It is straightforward to obtain the decay rates Γ11ΓΓ and Γ22ΓΓ by setting a = b
in Eq. (11.95). After diagonalizing the mass matrix in Eq. (11.94), one can
find the corresponding mass eigenstates Φ1 and Φ2, which are the linear
superpositions of Δ1 and Δ2. One may similarly consider the mass matrix
for Δ1 and Δ2, and define the mass eigenstates Φ1 and Φ2. Although Φa and
Φa have the same masses, they are not CP eigenstates. The quantity Γ12ΓΓ is in
general complex. The asymmetries between the decays Φa → �+ � and their
CP-conjugate processes Φa → �+ � are given by (Ma and Sarkar, 1998)

εa ≡ 2
Γ (Φa → �+ �) − Γ (Φa → �+ �)
Γ (Φa → �+ �) + Γ (Φa → H +H)

=
MΔM

1
MΔM

2
MΔM

a

2π2(M2
ΔM

1
−M2

ΔM
2
)ΓaaΓΓ

Im
[
λΔ1

λ∗Δ2
Tr
(
Y †

ΔY 2
YΔY 1

)]
, (11.96)



410 11 Cosmological Matter-antimatter Asymmetry

where |M2
ΔM

1
−M2

ΔM
2
| � 2|Γ12ΓΓ |MΔM

2
has been assumed and the summation over

the lepton-flavor index is implied. Note that the factor “2” in the definition
of εa takes into account the fact that each Φa → � + � decay mode violates
the lepton number by two units. The CP-violating and out-of-equilibrium
decays of Φa generate a net lepton number asymmetry, which can partly be
converted into the baryon number asymmetry via the sphaleron processes.
Although the basic ingredients of this leptogenesis mechanism follow the stan-
dard picture, the interactions of triplet scalars are quite different from those
of heavy Majorana neutrinos. In particular, the triplet scalars charged under
the SU(2)L group may be involved with rapid gauge interactions. One can
also use the Boltzmann equations to describe how the number densities of
the triplet scalars and the lepton number asymmetry evolve (Ma and Sarkar,
1998).

In the type-(I+II) seesaw scenario both the scalar triplet Δ and heavy
Majorana neutrinos NiNN contribute to the light neutrino masses and the lepton
number asymmetry. The Lagrangian relevant to the decays ofΔ and N1NN reads

−L = �LYνYY H̃NRNN +
1
2
�LYΔY Δiσ2�

c
L − λΔMΔM HT iσ2ΔH + h.c. , (11.97)

from which one may immediately work out the total decay rates of heavy
Majorana neutrinos ΓiΓΓ = (Y †

νYY YνYY )iiMiMM /(8π) and that of the triplet scalar

ΓΔΓ =
MΔM

16π

[
Tr
(
Y †

ΔY YΔY
)

+ 4λ2
Δ

]
, (11.98)

where a specific phase convention has been chosen to assure λΔ to be real.
As a consequence of the CPT invariance, the total decay rates of Δ and
Δ are equal (i.e., ΓΔΓ = Γ

Δ
Γ ). It is worth pointing out that the presence of

Δ→ H+H andΔ→ H+H decays is necessary for generating a CP-violating
asymmetry between Δ→ �+� and Δ→ �+� decays. The type-(I+II) seesaw
scenario yields the effective neutrino mass matrix MνMM ≈MLMM −MDMM M−1

RMM MT
DMM ,

as shown in Chapter 4. One may rewrite this mass formula as MνMM ≈MIMM +MIIMM
with MIMM ≡ −MDMM M−1

RMM MT
DMM and MIIMM ≡MLMM , so as to emphasize that it consists

of a pure type-I seesaw term and a pure type-II seesaw term. Note that
MDMM = YνYY v/

√
2 and MLMM = YΔY vΔ with vΔ = λΔv

2/MΔM and v ≈ 246 GeV.
For simplicity, let us consider the limit M1 � MΔM or M1 � MΔM , where

M1 and MΔM stand respectively for the mass of the lightest heavy Majorana
neutrino N1NN and that of the triplet scalar Δ. In the M1 � MΔM case only
the CP-violating asymmetry arising from the leptonic Δ and Δ decays is
relevant to the bargogenesis via leptogenesis, since a CP-violating asymmetry
induced by the N1NN decays can be erased by the Δ-induced lepton-number-
violating processes. Unlike the pure triplet leptogenesis scenario discussed
above, here there exist the NiNN -mediated one-loop vertex corrections to the
leptonic Δ→ �+ � decay (see Fig. 11.9). A straightforward calculation leads
us to (Hambye and Senjanovic, 2004; Hambye et al., 2006)
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Δ
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Δ

H

H

NiNN

�

�

Fig. 11.9 The Feynman diagrams for the leptonic Δ → � + � decay at the tree-
and one-loop levels, where NiNN (i = 1, 2, 3) are heavy Majorana neutrinos

εΔ ≡ 2
Γ (Δ→ �+ �) − Γ (Δ→ �+ �)

ΓΔΓ + Γ
Δ
Γ

=
1
2π

∑
j

λΔMjM

MΔM

Im
[(
Y †

νYY YΔY Y ∗
νYY
)
jj

]
Tr
[
Y †

ΔY YΔY
]

+ 4λ2
Δ

ln

(
1 +

M2
ΔM

M2
jM

)
. (11.99)

Given MiMM �MΔM , Eq. (11.99) can approximate to (Hambye et al., 2006)

εΔ ≈ MΔM

2πv2

√
B�BH

Im
[
Tr
(
M †

IIMM MIMM
)]

√
Tr
(
M†

IIMM MIIMM
) , (11.100)

where MIMM ≡ −MDMM M−1
RMM MT

DMM , MIIMM ≡ MLMM , B� and BH stand respectively for
the branching ratios of Δ→ �+ � and Δ→ H +H decays. It is now evident
that the CP-violating asymmetry εΔ will vanish if BH = 0 holds.

In the M1 �MΔM case, we focus on CP violation in the N1NN decays instead
of the Δ decays. The Feynman diagrams for the one-loop corrections to the
decay N1NN → �+H are shown in Fig. 11.10. Note that the contributions from
Fig. 11.10(a) and Fig. 11.10(b) have been evaluated in Eq. (11.57), and the
corresponding CP-violating asymmetry can be recast into the following form:

εN1 =
3M1

8πv2
·
Im
[(
Y †

νYY MIMM Y ∗
νYY
)
11

]
(Y †

νYY YνYY )11
, (11.101)

where F(x) → −3/(2x) has been taken for x → +∞ (i.e., M1 � M2MM ,M3MM ).
In comparison, the CP-violating asymmetry induced by Δ via Fig. 11.10(c)
is found to be (Hambye and Senjanovic, 2004; Antusch and King, 2004)

εΔ
1 =

3M1

8πv2
·
Im
[(
Y †

νYY MIIMM Y ∗
νYY
)
11

]
(Y †

νYY YνYY )11
. (11.102)

The total CP-violating asymmetry is ε1 = εN1 + εΔ
1 . Note that εN1 and εΔ1 are

proportional to MIMM and MIIMM , respectively. Note also that the minimal type-
(I+II) seesaw model with only one heavy Majorana neutrino and one triplet
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Fig. 11.10 The Feynman diagrams for N1 → � + H at the one-loop level: (a)
the self-energy correction; (b) the vertex correction mediated by heavy Majorana
neutrinos NiNN ; (c) the vertex correction mediated by the triplet scalar Δ

scalar can account for both the mass spectrum of three light neutrinos and
the observed baryon number asymmetry (Gu et al., 2006). Since Δ and Δ are
involved with rapid gauge interactions, their number densities may follow the
thermal equilibrium distribution such that the lepton number asymmetry is
essentially independent of the initial conditions (Hambye et al., 2006).

11.4.2 Resonant Leptogenesis

So far we have assumed that three heavy Majorana neutrinos have a strong
mass hierarchy (i.e., M1 � M2MM ,M3MM ). It has been pointed out that the CP-
violating asymmetry arising from the one-loop self-energy corrections can be
resonantly enhanced provided the masses of two or three heavy Majorana
neutrinos are nearly degenerate (Pilaftsis, 1997a, 1997b; Pilaftsis and Un-
derwood, 2004). If the difference between MiMM and MjM is comparable with
the decay widths of NiNN and NjN (i.e., |MiMM − MjM | ∼ ΓiΓΓ , ΓjΓ ), then the con-
ventional perturbation field theory should not work here. For instance, the
CP-violating asymmetry εsi obtained in Eq. (11.46) is apparently divergent
at MiMM = MjM . A proper way to deal with this problem is as follows (Flanz et
al., 1995; Buchmüller and Plümacher, 1998; Plümacher, 1998): (a) we first
calculate the amplitude of � + H ↔ � + H scattering mediated by NiNN in
the s-channel; (b) the resummed propagators of NiNN can be written in the
matrix form as Sij(/p//), whose non-diagonal elements come from the transi-
tion amplitudes of NjN → NiNN ; (c) expanding Sij(/p//) around the complex poles√
si = Mpole

iMM − iΓ pole
iΓΓ /2 with Mpole

iMM and Γ pole
iΓΓ being the physical masses and

decay widths, one can define the effective couplings of the interaction ver-
tices of NiNN → �+H and NiNN → �+H. Then the CP-violating asymmetry can
be directly figured out by using these effective couplings (Pilaftsis, 1997b;
Pilaftsis and Underwood, 2004):

εi =
Im
[
(Y †

νYY YνYY )2ij
]

(Y †
νYY YνYY )ii(Y

†
νYY YνYY )jj

·
(M2

iMM −M2
jM )MiMM ΓjΓ

(M2
iMM −M2

jM )2 +M2
iMM Γ 2

jΓ
, (11.103)

where i = j. Note that this result is only applicable to the case of two nearly
degenerate heavy Majorana neutrinos. It is worth remarking that two heavy
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Majorana neutrinos are sufficient for generating the light neutrino masses
and explaining the baryon number asymmetry in the minimal type-I seesaw
model (Frampton et al., 2002; Guo and Xing, 2004; Guo et al., 2007). The
decay width ΓjΓ appearing in Eq. (11.103) serves as a regulator, which makes
the CP-violating asymmetry εi well-behaved in the MiMM = MjM limit. It is
obvious that εi ∼ O(1) can be obtained when the conditions

Im
[
(Y †

νYY YνYY )2ij
]

(Y †
νYY YνYY )ii(Y

†
νYY YνYY )jj

∼ O(1) ,
∣∣∣∣MiMM −MjM

∣∣∣∣ = 1
2
ΓjΓΓ (11.104)

are satisfied. This resonant leptogenesis mechanism provides us with an in-
teresting possibility to lower the masses of NiNN down to the TeV scale or even
the electroweak scale (Pilaftsis, 2005; Pilaftsis and Underwood, 2005).

In a viable resonant leptogenesis scenario, the required mass degeneracy
|MiMM −MjM |/MjM is usually of O(10−7) (Xing and Zhou, 2007). Such a high de-
gree of degeneracy may arise from the flavor symmetry breaking or radiative
corrections, if MiMM = MjM holds in the symmetry limit or at a superhigh energy
scale (Pilaftsis and Underwood, 2004, 2005; Turzynski, 2004; Gonzalez Felipe
et al., 2004; Joaquim, 2005; Branco et al., 2006).

11.4.3 Soft Leptogenesis

The idea of leptogenesis can be directly applied to the supersymmetric seesaw
models (Giudice et al., 2004). In this case one has to take into account the
CP-violating asymmetries arising from the decays of supersymmetric part-
ners of heavy Majorana neutrinos, denoted as ÑiNN , and from some new decay
modes with supersymmetric particles in the final states and running in the
loops. The overall CP-violating asymmetry from the NiNN (or ÑiNN ) decays is
approximately twice as large as that in a conventional seesaw model. How-
ever, the effective number of relativistic degrees of freedom is now doubled
(i.e., g∗ = 228.75 as compared with g∗ = 106.75 in the SM-like case), leading
to a dilution factor of two for the NiNN -induced (or ÑiNN -induced) lepton num-
ber asymmetry. In the strong washout regime the inverse decays double the
washout rates and hence the total lepton number asymmetry is suppressed by
another factor of two. All in all, the final baryon number asymmetry is more
or less the same in a supersymmetric seesaw model as that in a conventional
seesaw scenario (Davidson et al., 2008).

It has been shown that new sources of CP violation may exist in a super-
symmetric seesaw model: indirect CP violation is possible to arise from the
mixing between ÑiNN and Ñ∗

iNN and in the interference of decays with and with-
out mixing (Grossman et al., 2003; D’Ambrosio et al., 2003). For illustration,
we consider a one-generation toy model whose superpotential reads

W = Y LNHu +
1
2
MNN , (11.105)
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where N, L and Hu stand for the singlet neutrino, lepton doublet and up-
type Higgs doublet chiral superfields, respectively. Note that Y is the Yukawa
coupling constant, and M is the Majorana mass of the neutrino singlet. The
supersymmetry-breaking terms involving the singlet sneutrino are

−Lsoft = m̃2Ñ∗Ñ +
(
AY �̃HÑ +

1
2
BMÑÑ + h.c.

)
, (11.106)

where m̃2 is the soft mass of the sneutrino, A and B denote the trilinear and
bilinear scalar couplings. So the heavy Majorana neutrino has a mass M ,
and the sneutrino Ñ mixes with the anti-sneutrino Ñ∗ via the mass matrix
which can directly be read off from Eqs. (11.105) and (11.106). In the basis
Φ ≡ (Ñ∗, Ñ)T , we write out the mass term as follows:

−Lm =
1
2
Φ†M2Φ =

1
2
(
Ñ Ñ∗)(M2 + m̃2 BM

B∗M M2 + m̃2

)(
Ñ∗

Ñ

)
. (11.107)

In analogy with the K0-K
0

mixing system, the evolution of the Ñ -Ñ∗ mix-
ing system is governed by the effective Hamiltonian H = M̂ − iΓ̂ /2, where
Hermitian M̂ and Γ̂ can be expressed as (D’Ambrosio et al., 2003)

M̂ = M

(
1 B/(2M)

B/(2M) 1

)
, Γ̂ = Γ

(
1 A∗/M

A/M 1

)
(11.108)

to the lowest order of the soft terms. Note that the total decay rate of Ñ
is given by Γ = Y 2M/(4π). Note also that we have chosen a specific phase
convention in which only A is complex. The eigenstates of H are defined as

ÑLNN = pÑ + qÑ∗ , ÑHNN = pÑ − qÑ∗ , (11.109)

where the subscript “L” (or “H”) means “light” (or “heavy”), p and q are
the mixing parameters which are commonly used in the phenomenology of
neutral meson-antimeson mixing and CP violation (Xing, 1997). The proper-
time evolution of the initial sneutrino states |Ñ〉 and |Ñ∗〉 reads

|Ñ(t)〉 = g+(t)|Ñ〉 +
q

p
g−(t)|Ñ∗〉 ,

|Ñ∗(t)〉 = g+(t)|Ñ∗〉 +
p

q
g−(t)|Ñ〉 , (11.110)

where

g+(t) = exp
[
−
(

iM +
Γ

2

)]
cosh
[(

iΔM − ΔΓ

2

)
t

2

]
,

g−(t) = exp
[
−
(

iM +
Γ

2

)]
sinh
[(

iΔM − ΔΓ

2

)
t

2

]
, (11.111)
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with M = (MLMM + MHMM )/2, ΔM ≡ MHMM −MLMM , Γ ≡ (ΓLΓΓ + ΓHΓΓ )/2 and ΔΓ ≡
ΓLΓΓ − ΓHΓΓ . Here MLMM ,H and ΓLΓΓ ,H are the mass and width of ÑLNN ,H, respectively.
The time-integrated CP-violating asymmetry, defined in the standard way
(Xing, 1997), turns out to be (D’Ambrosio et al., 2003)

ε =
1
2

(∣∣∣∣∣∣∣∣∣∣ qp
∣∣∣∣∣∣∣∣∣∣2 − ∣∣∣∣∣∣∣∣∣∣pq

∣∣∣∣∣∣∣∣∣∣2
)(

cB − cF
cB + cF

) ∫∞
0

∫∫
dt|g−(t)|2∫∞

0

∫∫
dt(|g−(t)|2 + |g+(t)|2)

≈ ImA
M

(
cB − cF
cB + cF

)
ΓB

Γ 2 +B2
, (11.112)

where cB and cF parametrize the phase-space contributions of the bosonic
and fermionic final states. Note that |q/p| = 1 implies the mixing-induced
CP violation. This soft leptogenesis mechanism may even offer the dominant
source of CP violation to produce the observed baryon number asymmetry
of the Universe (Grossman et al., 2003; D’Ambrosio et al., 2003).

11.4.4 Flavor Effects

So far we have assumed that the Yukawa interactions of charged leptons
are negligible in leptogenesis, and thus there are no interactions which can
distinguish one lepton flavor from another. In this case it is convenient to
define the lepton and antilepton states from the decays of heavy Majorana
neutrinos NiNN → �α +H and NiNN → �α +H:

|�i〉 ≡
1√

(Y †
νYY YνYY )ii

∑
α

(YνYY )αi|�α〉 ,

|�′i〉 ≡
1√

(Y †
νYY YνYY )ii

∑
α

(Y ∗
νYY )αi|�α〉 , (11.113)

which are also the states involved in the subsequent inverse decays and scat-
tering processes. However, the Yukawa interactions of charged leptons are
possible to be faster than the (inverse) decays of NiNN and destroy the coher-
ent absorption or scattering of the states |�i〉 and |�′i〉. Note that |�i〉 and
�
′
i〉 are not CP-conjugate states, although |�α〉 itself is the CP conjugate

of |�α〉. Let us estimate the interactions involving the tau leptons, such as
�τL + Q3L → tR + τRττ with Q3L = (tL, bL)T and �τL = (ντL, τLττ )T being the
third-family quark and lepton doublets. Neglecting all the relevant masses,
one may immediately obtain the cross section (Davidson et al., 2008)

σ(�τL +Q3L → tR + τRττ ) =
y2

t y
2
τ

16πs′
, (11.114)

where yt =
√

2 mt/v and yτ =
√

2 mτ/v. With the help of Eq. (11.114), one
can further compute the corresponding interaction rate density γτ introduced
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in Eq. (11.74). After the summation over all the processes involving the tau
leptons, the interaction rate is given by

ΓτΓΓ ≡ γτ

neq
�

≈ 10−3y2
τT . (11.115)

Comparing ΓτΓΓ with the Hubble parameter H ≈ 1.66√g√√
∗T

2/MplMM , one finds
that ΓτΓΓ > H holds when T < 1012 GeV. In a similar way one may find that
the Yukawa interactions of the muon leptons can be in thermal equilibrium
around T ∼ 109 GeV. When the temperature drops below T ∼ 105 GeV, all
the charged-lepton Yukawa interactions are faster than the expansion rate of
the Universe (Barbieri et al., 2000; Endoh et al., 2004; Vives, 2006).

In the temperature range 1012 GeV > T > 109 GeV, the tau flavor
is distinguishable but the electron and muon flavors are indistinguishable.
As a consequence, the tau-flavor component of the lepton state |�i〉 from
the NiNN decays should be singled out and then the inverse decays may take
place as �τ + H → NiNN and �o + H → NiNN , where |�o〉 denotes the non-tau
flavor component orthogonal to |�τ 〉. Both the CP-violating asymmetry and
washout effects associated with the tau flavor should be treated separately,
so it is necessary to have two Boltzmann equations for the lepton number
asymmetries Y (τ)

LYY and Y (o)
LYY . To see the flavor effects in a clear way, we consider

the N1NN -dominated leptogensis in the full flavor regime with T � 109 GeV and
all the lepton flavors being distinguishable. First, the flavor-dependent CP-
violating asymmetries ε1α (for α = e, μ, τ) should be calculated. A particular
case is that the successful leptogenesis might be achieved from ε1α = 0 even
though the total CP-violating asymmetry ε1 is vanishing or vanishingly small
(i.e., ε1 = ε1e+ε1μ+ε1τ ≈ 0) (Nardi et al., 2006; Abada et al., 2006). Second,
the efficiency factors κ1α can be computed via the effective neutrino masses

m̃1α ≡ |(YνYY )α1|2

(Y †
νYY YνYY )11

m̃1 . (11.116)

The values of m̃1α characterize the washout effects of different flavors. Finally,
the sphaleron processes conserve the quantum number Δα = B/3 − Lα, as
indicated below Eq. (11.13). In the temperature range under consideration,
the processes in thermal and chemical equilibrium include all the gauge in-
teractions, strong and electroweak sphaleron interactions, (t, b, c)-quark and
(τ, μ)-lepton Yukawa interactions. After imposing the hypercharge conserva-
tion and the equilibrium conditions of chemical potentials, one can obtain
(Abada et al., 2006; Nardi et al., 2006; Davidson et al., 2008)⎛⎜⎛⎛⎝⎜⎜YLYY e

YLYY μ

YLYY τ

⎞⎟⎞⎞⎠⎟⎟ =

⎛⎝⎛⎛−151/179 20/179 20/179
25/358 −344/537 14/537
25/358 14/537 −344/537

⎞⎠⎞⎞
⎛⎜⎛⎛⎝⎜⎜YΔY e

YΔY μ

YΔY τ

⎞⎟⎞⎞⎠⎟⎟ . (11.117)

This result, together with YBYY = 28/79×(YΔY e
+YΔY μ

+YΔY τ
), measures the effi-

ciency in converting the lepton number asymmetries into the baryon number
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asymmetry. Since ε1α and m̃1α are sensitive to the flavor structure of YνYY , the
prediction for the final value of YBYY is strongly model-dependent. This actually
signifies the importance of flavor effects in a specific leptogenesis scenario.

It is worth mentioning that the thermal corrections, spectator processes
and quantum effects in leptogenesis have also been considered (Buchmüller
and Fredenhagen, 2000; Buchmüller and Plümacher, 2001; Giudice et al.,
2004). In addition, CP violation in the decays of heavy Majorana neutrinos
has recently been calculated in the non-equilibrium quantum field theories
(Garny et al., 2009, 2010a, 2010b; Beneke et al., 2010; Kießig et al., 2010). A
full quantum-mechanical calculation of the lepton number asymmetry based
on the Kadanoff-Baym equations has also been done (Anisimov et al., 2010).
It has been found that these improvements are likely to modify the previous
results by one order of magnitude in some cases (Anisimov et al., 2010; Garny
et al., 2010a).
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