THE COULOMB SCATTERING IN HOMOGENEOUS MAGNETIC FIELD

S.I. Vinitsky

O. Chuluunbaatar, A.A. Gusev, Joint Institute for Nuclear Research, Dubna, Russia

Workshop in computational physics
Saint-Petersburg 28-30 October 2009.

Outline

1. Application of the adiabatic method for solving axis channeling problem for oppositive or similar charged ions in a homogeneous magnetic field or a transversal oscillator potential.
2. Effects of resonance transmission and total reflection of oppositive or similar charged ions in a transversal oscillator potential.
3. The estimation of the resonance photoionization cross-section and laser-induced recombination rate of hydrogen atom in homogeneous magnetic filed.
4. The quanlitative estimation of an enhancement coefficient in a vicinity of the pair impact point of ions in presence of a transversal oscillator potential.

1. Statement of the problem

The Schrödinger equation ${ }^{1}$ for a wave function
$\hat{\Psi}(\Omega)=\Psi(r, \eta) \exp (\imath m \varphi) / \sqrt{2 \pi}$ of a hydrogen atom with a charge
q in an axially symmetric homogeneous magnetic field
$\vec{B}=\left[B_{x}=0, B_{y}=0, B_{z}=B\right]$ writing in spherical coordinates
$\Omega=(r, \eta=\cos \theta, \varphi)$ is reduced to the 2D equation for a partial component $\Psi(r, \eta) \equiv \Psi^{m \sigma}(r, \eta)=\sigma \Psi^{m \sigma}(r,-\eta)$ at fixed values of the magnetic quantum number $m=0, \pm 1, \ldots$ and z-parity $\sigma= \pm 1$

$$
\begin{equation*}
\left(-\frac{1}{r^{2}} \frac{\partial}{\partial r} r^{2} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \hat{A}(p)+\frac{2 q}{r}\right) \Psi(r, \eta)=\epsilon \Psi(r, \eta) \tag{1}
\end{equation*}
$$

Here we use the atomic units (a.u.) $\hbar=m_{e}=\boldsymbol{e}=\mathbf{1}$ and put the mass of the nucleus to be infinite, and $\boldsymbol{\epsilon}=\mathbf{2} \boldsymbol{E}, \boldsymbol{E}$ is an energy (expressed in Rydbergs, $1 R y=(1 / 2) a . u$.) of a state $|m \sigma\rangle$. A similar equation with the reduced charge, $\boldsymbol{q}=\boldsymbol{\mu} \boldsymbol{q}_{1} \boldsymbol{q}_{2}$, and reduced mass, $\mu=m_{1} m_{2} /\left(m_{1}+m_{2}\right)$, of pair ions is described axis channeling of the similar charged particles possess equal charge-to-mass ratios, $q_{1} / m_{1}=q_{2} / m_{2}$, such that the motion of the center of mass is separated in transversal oscillator potential ${ }^{2}$ with frequency γ.

[^0]
Parametric basis functions

The operator $\hat{A}(p)$ is defined by

$$
\hat{A}(p)=-\frac{\partial}{\partial \eta}\left(1-\eta^{2}\right) \frac{\partial}{\partial \eta}+\frac{m^{2}}{1-\eta^{2}}+2 p m+p^{2}\left(1-\eta^{2}\right)
$$

where $p=\gamma r^{2} / \mathbf{2}$ is the confinement potential induced by the magnetic field, $\gamma=B / B_{0}, B_{0} \cong 2.35 \times 10^{5} T$, is a dimensionless parameter determining the field B.
Let us consider a formal adiabatic expansion of the partial solution $\boldsymbol{\Psi}_{\boldsymbol{i}}^{\boldsymbol{E m \sigma}}(\boldsymbol{r}, \boldsymbol{\eta})$ of Eq. (1) in terms of one-dimensional basis functions $\left\{\boldsymbol{\Phi}_{j}^{m \sigma}(\boldsymbol{\eta} ; r)\right\}_{j=1}^{j_{\text {max }}}$

$$
\begin{equation*}
\Psi_{i}^{E m \sigma}(r, \eta)=\sum_{j=1}^{j_{\max }} \Phi_{j}^{m \sigma}(\eta ; r) \chi_{j}^{(m \sigma i)}(E, r) \tag{2}
\end{equation*}
$$

The radial wave functions $\chi^{(i)}(r) \equiv \chi^{(m \sigma i)}(E, r),\left(\chi^{(i)}(r)\right)^{T}$ $=\left(\chi_{1}^{(i)}(r), \ldots, \chi_{j_{\text {max }}}^{(i)}(r)\right)$ are unknown.

The orthonormal basis wave functions
$\Phi(r, \eta) \equiv \Phi^{m \sigma}(\eta ; r)=\sigma \Phi^{m \sigma}(-\eta ; r)$ and the potential curves $\boldsymbol{E}_{\boldsymbol{j}}(r)$ (in $R y$) are the solutions of the parametric eigenvalue problem

$$
\begin{equation*}
\hat{A}(p) \Phi_{j}(\eta ; r)=E_{j}(r) \Phi_{j}(\eta ; r) \tag{3}
\end{equation*}
$$

The solutions of this problem with shifted eigenvalues $\check{\boldsymbol{E}}_{j}(r)=E_{j}(r)-2 \boldsymbol{p m}$ corresponded to the angular oblate spheroidal functions ${ }^{3}$.

[^1]
System of radial equations

By using the expansion (2) we reduce of the problem (1) to a boundary problem for a set of $j_{\text {max }}$ coupled second-order ordinary differential equations that determine the radial wave functions $\chi^{(i)}(r)$ of the expansion (2) on the finite interval $r \in\left[0, r_{\text {max }}\right]$

$$
\begin{equation*}
\left(-\frac{1}{r^{2}} \mathrm{I} \frac{d}{d r} r^{2} \frac{d}{d r}+\frac{\mathrm{U}(r)}{r^{2}}+\mathrm{Q}(r) \frac{d}{d r}+\frac{1}{r^{2}} \frac{d r^{2} \mathrm{Q}(r)}{d r}\right) \chi^{(i)}(r)=\epsilon_{i} \mathrm{I} \chi^{(i)}(r) \tag{4}
\end{equation*}
$$

with the boundary conditions

$$
\begin{equation*}
\lim _{r \rightarrow 0} r^{2}\left(\frac{d \chi^{(i)}(r)}{d r}-\mathrm{Q}(r) \chi^{(i)}(r)\right)=0 \tag{5}
\end{equation*}
$$

Here $\mathbf{I}, \mathbf{U}(\boldsymbol{r})$ and $\mathbf{Q}(\boldsymbol{r})$ are $\boldsymbol{j}_{\max } \times \boldsymbol{j}_{\text {max }}$ matrices with the elements evaluated as

$$
\begin{align*}
& U_{i j}(r)=\frac{E_{i}(r)+E_{j}(r)+4 q r}{2} \delta_{i j}+r^{2} H_{i j}(r), I_{i j}=\delta_{i j} \\
& H_{i j}(r)=H_{j i}(r)=\int_{-1}^{1} \frac{\partial \Phi_{i}(\eta ; r)}{\partial r} \frac{\partial \Phi_{j}(\eta ; r)}{\partial r} d \eta \tag{6}\\
& Q_{i j}(r)=-Q_{j i}(r)=-\int_{-1}^{1} \Phi_{i}(\eta ; r) \frac{\partial \Phi_{j}(\eta ; r)}{\partial r} d \eta
\end{align*}
$$

The calculations of the eigenfunctions $\boldsymbol{\Phi}_{\boldsymbol{j}}(\boldsymbol{\eta} ; \boldsymbol{r})$, potential curves $\boldsymbol{E}_{\boldsymbol{i}}(\boldsymbol{r})$ and radial coupling matrix elements $\boldsymbol{H}_{i j}(r)$ and $\boldsymbol{Q}_{i j}(r)$ have been performed by means of the program POTHMF ${ }^{4}$ or the program ODPEVP ${ }^{5}$

[^2]

The behavior of potential curves $\boldsymbol{E}_{\boldsymbol{j}}(r), \boldsymbol{j}=\mathbf{1}, \mathbf{2}, \ldots$ at $\boldsymbol{m}=\mathbf{0}$ and $\gamma=1$ for some first even $j=(l-|m|) / 2+1$ (marked by symbol "e") and odd $j=(l-|m|+1) / 2$ states. The dotted lines are asymptotic of potential curves at large r.

Some radial potentials $\boldsymbol{Q}_{i j}$ for even (marked by symbol "e") and odd parity at $\boldsymbol{m}=\mathbf{0}$ and $\gamma=\mathbf{1}$. The dotted lines are asymptctics of \equiv

Some potentials $\boldsymbol{H}_{i \boldsymbol{j}}$ for even (marked by symbol "e") and odd parity at $\boldsymbol{m}=\mathbf{0}$ and $\gamma=\mathbf{1}$. The dotted lines are asymptotics of potentials at large r.

The discrete spectrum solutions
The discrete spectrum solutions $\chi^{(i)}(r)$ obey the first-type boundary condition, $\chi^{(i)}\left(r_{\max }\right)=0$, to calculate unknown energies
$\boldsymbol{E} \equiv \boldsymbol{E}_{\boldsymbol{m \sigma} \boldsymbol{i v}}, \mathrm{v}=\overline{\mathbf{0}, \mathrm{v}_{\text {max }}}$, and corresponding
$\Psi_{i \mathbf{v}}^{m \sigma}(r, \eta) \equiv \Psi_{i}^{E m \sigma}(r, \eta)$ of Eqs. (2) at $i=1$ by the program
KANTBP ${ }^{6}$. The orthogonality/normalization condition for $\hat{\mathbf{\Psi}}_{\mathbf{i v}}^{m \sigma}(\boldsymbol{\Omega})$ is

$$
\begin{equation*}
\left\langle\hat{\Psi}_{i \mathrm{v}}^{m \sigma}(\Omega) \mid \hat{\Psi}_{i^{\prime} \mathrm{v}^{\prime}}^{\boldsymbol{\prime}^{\prime}}(\Omega)\right\rangle=\delta_{\mathrm{vv}} \delta_{m m^{\prime}} \delta_{\sigma \sigma^{\prime}} \delta_{i i^{\prime}} \tag{7}
\end{equation*}
$$

The binding energy $\mathcal{E}_{i}=\gamma-\boldsymbol{\epsilon}_{\boldsymbol{i}}$ (in Ry) vs γ of first ten states at $m \leq 0$.
Correspondence rule:
$(N, l, m) \rightarrow\left(N_{\rho}, m, N_{z}\right)$
${ }^{6}$ O. Chuluunbaatar et al., Comput. Phys. Commun. 177, 649 (2007)

Table of correspondence rule: $(N, l, m) \rightarrow\left(N_{\rho}, m, N_{z}\right)$

$$
\gamma \rightarrow 0 \quad \gamma \rightarrow \infty
$$

N	l	\boldsymbol{m}	σ	N_{η}	N_{r}	N_{ρ}	N_{z}	\boldsymbol{m}	$\epsilon^{t h}$	j
1	0	0	1	0	0	0	0	0	γ	1
2	0	0	1	0	1	0	2	0	γ	1
2	1	-1	1	0	0	0	0	-1	γ	1
2	1	0	-1	1	0	0	1	0	γ	1
2	1	1	1	0	0	1	0	1	3γ	2
3	0	0	1	0	2	0	6	0	γ	1
3	1	-1	1	0	1	0	2	-1	γ	1
3	1	0	-1	1	1	0	3	0	γ	1
3	1	1	1	0	1	1	2	1	3γ	2
3	2	-2	1	0	0	0	0	-2	γ	1
3	2	-1	-1	1	0	0	1	-1	γ	1
3	2	0	1	2	0	0	4	0	γ	1
3	2	1	-1	1	0	1	1	1	3γ	2
3	2	2	1	0	0	2	0	2	5γ	3

$$
\begin{aligned}
& N_{z}=2\left[\frac{N_{r}}{2}\right]+ \begin{cases}2\left[\frac{N-|m|+1}{2}\right]\left[\frac{N-|m|}{2}\right], & \sigma=+1 \\
2\left[\frac{N-|m|}{2}\right]\left[\frac{N-|m|-1}{2}\right]+1, & \sigma=-1,\end{cases} \\
& N_{\rho}=\frac{|m|+m}{2} \\
& \epsilon_{N_{\rho}|m| N_{z}}=\epsilon_{N_{\rho},-|m|, N_{z}+2|m| .}
\end{aligned}
$$

$3 s_{0}$ rotational state vs γ :
$1 / 100<\gamma<99 / 100 \sim 1$

$3 \mathrm{~d}_{0}$ vibrational state vs γ :
$1 / 100<\gamma<99 / 100 \sim 1$

The asymptotic expansion of 2D-function in Kantorovich form at $\boldsymbol{r} \rightarrow \mathbf{0}$

$$
\begin{aligned}
& \psi_{i_{o}}^{(\mathrm{as})}(\eta, r)=\sum_{i=1}^{j_{\max }} \sum_{k=0}^{k_{\text {max }}} \sum_{p=0}^{k_{\text {max }}-k} \sum_{j=1}^{j_{\text {max }}} r^{\mu_{i}+k} \phi_{j}^{(k-p)}(\eta) \tilde{\chi}_{j i}^{(p) \mathrm{reg}} C_{i i_{o}} \\
= & \sum_{i=1}^{j_{\max }} \sum_{k=0}^{k_{\max }} \sum_{p=0}^{k_{\max }-k} \sum_{j=1}^{j_{\max }} \sum_{s=\max (-l,-2 k+2 p)}^{2 k-2 p} r^{\mu_{i}+k} P_{l+s}^{|m|}(\eta) b_{s j}^{(k-p)} \tilde{\chi}_{j i}^{(p) \mathrm{reg}} C_{i i_{o}}
\end{aligned}
$$

where $P_{l+s}^{|m|}(\eta)$ is Legendre polynomials, $l=2 i+|m|+(-\sigma+|\sigma|) / 2, \mu_{i}=l$. The recurrence relations for evaluation coefficients $b_{s j}^{(k-p)}$ and $\tilde{\chi}_{j i}^{(p) r e g}$ is given in ${ }^{7}$ and constant $\boldsymbol{C}_{\boldsymbol{i} \boldsymbol{i}_{o}}$ calculated by program KANTBP 2.0^{8} This expansion is satisfy to the Kato condition and corresponds to expansion for Coulomb function at $\gamma=0$.

[^3]The above asymptotic of Kantorovich expansion is equivalent of Galerkin expansion over basis of Legendre polynomials:

$$
\psi_{i_{o}}^{(\text {as })}(\eta, r)=\sum_{i=1}^{j_{\max }} \sum_{k=0}^{k_{\max }} \sum_{s=\max (-l,-2 k+2 p)}^{2 k-2 p} r^{\mu_{i}+k} P_{l+s}^{|m|}(\eta) g_{s i}^{\left(k_{\max }-k\right)} C_{i i_{o}}
$$

for

$$
g_{s i}^{\left(k_{\max }-k\right)}=\sum_{p=0}^{k_{\max }-k} \sum_{j=1}^{j_{\max }} b_{s j}^{(k-p)} \tilde{\chi}_{j i}^{(p) \mathrm{reg}}
$$

This expansion will be correspond to one given in ${ }^{9}$

[^4]The continuous spectrum solutions
The continuous spectrum solutions $\chi^{(i)}(r)$ obey the third-type boundary condition at fixed energy $\boldsymbol{\epsilon}=\mathbf{2 E}$ above the first threshold $E_{j}(\infty) \equiv \epsilon_{m j}^{t h}(\gamma)=\gamma(2 j-1+m+|m|)$ with $j=1$

$$
\begin{equation*}
\frac{d \chi(r)}{d r}=\mathbf{R} \chi(r), \quad r=r_{\max } \tag{8}
\end{equation*}
$$

where \mathbf{R} is a non-symmetrical $j_{\text {max }} \times j_{\text {max }}$ matrix which is calculated by the program KANTBP ${ }^{10}$. The orthogonality/normalization condition for $\hat{\Psi}_{i}^{E m \sigma}(\Omega)$ is

$$
\begin{equation*}
\left\langle\hat{\Psi}_{i}^{E m \sigma}(\Omega) \mid \hat{\Psi}_{i^{\prime}}^{E^{\prime} m^{\prime} \sigma^{\prime}}(\Omega)\right\rangle=\delta\left(E-E^{\prime}\right) \delta_{m m^{\prime}} \delta_{\sigma \sigma^{\prime}} \delta_{i i^{\prime}} \tag{9}
\end{equation*}
$$

Asymptotic expansion of 2D-function in Kantorovich form:

$$
\begin{aligned}
& \Psi_{i}^{m \sigma, a s}(\eta, r)=(2 \gamma)^{1 / 2} y^{|m| / 2} \exp \left(-\frac{y}{2}\right)\left(1-\frac{y}{2 \gamma r^{2}}\right)^{|m| / 2} \\
& \times \sum_{k=0}^{k_{\max }} \sum_{k^{\prime}=0}^{k_{\max }-2 k}\left(\frac{1}{2 \gamma}\right)^{k} r^{1-2 k-k^{\prime}} \\
& \times \sum_{j=1}^{j_{\max }} \sum_{s=\max (-k, 1-j)}^{k} c_{s, j-1}^{(2 k)} L_{j-1+s}^{(|m|)}(y) \\
& \quad \times\left(R_{0}\left(p_{i_{o}}, r\right) \phi_{j i_{o}}^{\left(k^{\prime}\right)}+\frac{d R_{0}\left(p_{i_{o}}, r\right)}{d r} \psi_{j i_{o}}^{\left(k^{\prime}\right)}\right) .
\end{aligned}
$$

where $\boldsymbol{R}_{\mathbf{0}}\left(\boldsymbol{p}_{\boldsymbol{i}_{o}}, \boldsymbol{r}\right)$ are Coulomb functions, $\boldsymbol{L}_{\boldsymbol{j}-1+\boldsymbol{s}}^{(|\boldsymbol{m}|)}(\boldsymbol{y})$ are Laguerre polynomials, $y=2 p(1-|\eta|), p=\gamma r^{2} / 2, \eta=\cos \theta$, $|\eta| \in\left[1-\eta_{1}, 1\right], \eta_{1}=o\left(p^{-1 / 2-\epsilon}\right), 0<\epsilon<1 / 2$.
The recurrence relations for evaluation coefficients $c_{s, j-1}^{(2 k)}$ and $\phi_{j i_{o}}^{\left(k^{\prime}\right)}$ is given in ${ }^{11}$ and in the threshold case of $\boldsymbol{p}_{\boldsymbol{i}_{o}}$. $=\mathbf{0}$ in ${ }^{12}$

11 O. Chuluunbaatar, J. Phys. A 40, pp. 11485-11524 (2007)
${ }^{12}$ S.I.Vinitsky et al, LNCS 5743, pp. 334-349 (2009).

Correspondence between asymptotic expansions in spherical and cylindrical coordinates

For $k_{\max }=\mathbf{1}$ in terms of asymptotic functions $\langle\rho \mid \boldsymbol{j}\rangle=\tilde{\Phi}_{j}^{m}(\rho)$ ，of the two－dimensional oscillator，we have

$$
\begin{align*}
\phi_{j_{1} i_{o}}^{(1)} & =0 \\
\psi_{j_{1} i_{o}}^{(1)} & =-\frac{1}{2}\left\langle j_{1}\right| \rho^{2}\left|i_{o}\right\rangle=\frac{\sqrt{n_{o}} \sqrt{n_{o}+|m|}}{\gamma} \delta_{j_{1}, i_{o}-1} \\
& +\frac{\sqrt{n_{o}+1} \sqrt{n_{o}+|m|+1}}{\gamma} \delta_{j_{1}, i_{o}+1} \tag{10}\\
\phi_{i_{o} i_{o}}^{(1)} & =0, \tag{11}\\
\psi_{i_{o} i_{o}}^{(1)} & =-\frac{1}{2}\left\langle i_{o}\right| \rho^{2}\left|i_{o}\right\rangle=-\frac{2 n_{o}+|m|+1}{\gamma}
\end{align*}
$$

In view of orthogonality $\left\langle\boldsymbol{j} \mid \boldsymbol{i}_{o}\right\rangle=\boldsymbol{\delta}_{j i_{o}}$ completeness conditions $\sum_{j} \mid\left\langle\rho^{\prime} \mid j\right\rangle\langle j \mid \rho\rangle=\delta\left(\rho^{\prime}-\rho\right)$ and relation $|z|=r\left(1-\rho^{2} /\left(2 r^{2}\right)\right)+O\left(r^{-2}\right)$, Asymptotic of total wave function at $p_{i_{o}} \rho^{2} /(2 r) \ll 1$ takes form:

$$
\begin{align*}
& \Psi^{m \hat{v}}(r, \eta)=r \sum_{j}|j\rangle\left[\left\langle j \mid i_{o}\right\rangle-\frac{1}{2 r}\langle j| \rho^{2}\left|i_{o}\right\rangle \frac{d}{d r}\right] R_{0}\left(p_{i_{o}}, r\right) \\
& \quad=r \sum_{j}|j\rangle\langle j|\left[\left|i_{o}\right\rangle-\frac{1}{2 r} \rho^{2}\left|i_{o}\right\rangle \frac{d}{d r}\right] R\left(p_{i_{o}}, r\right) \tag{12}\\
& \approx r\left\langle\rho \mid i_{o}\right\rangle R_{0}\left(p_{i_{o}}, r\left(1-\frac{\rho^{2}}{2 r^{2}}\right)\right) \approx \frac{1}{2} \Phi_{i_{0}}^{m}(\rho) X_{i_{o} i_{o}}^{(+)}(|z|) \exp \left(\imath \delta_{i_{o}}^{c}\right)
\end{align*}
$$

where $\delta_{i_{o}}^{c}$ is Coulomb phase shift and $\boldsymbol{X}_{n^{\prime} \boldsymbol{n}}^{(\pm)}(\boldsymbol{z})$ is required asymptotic

$$
X_{n^{\prime} n}^{(\pm)}(z)=p_{n^{\prime}}^{-1 / 2} \exp \left(\pm \imath p_{n^{\prime}} z \mp \imath \frac{q}{p_{n^{\prime}}} \frac{z}{|z|} \ln \left(2 p_{n^{\prime}}|z|\right)\right) \delta_{n^{\prime} n}
$$

"standing-wave" solutions

We express the corresponding eigenfunction $\Psi_{i}^{E m \sigma}(r, \eta)$ in open channels, $i=\overline{1, N_{o}}, N_{o}=\max _{2 E \geq \epsilon_{m j}^{t h}} j<j_{\max }$, of the continuous spectrum with the energy $\boldsymbol{\epsilon}=\mathbf{2 E}$ in the form of Eq. (2), where $\hat{\chi}^{(m \sigma)}(E, r) \equiv\left\{\chi^{\left(i_{o}\right)}(r)\right\}_{i_{o}=1}^{N_{o}}$ is now the radial part of the eigenchannel or "incoming" wave function.
The eigenchannel wave function $\hat{\chi}^{(m \sigma)}(\boldsymbol{E}, \boldsymbol{r})$ is expressed as

$$
\begin{equation*}
\hat{\chi}^{(m \sigma)}(E, r)=(2 / \pi)^{1 / 2} \chi^{(p)}(r) \mathrm{C} \cos \delta . \tag{13}
\end{equation*}
$$

The function $\chi^{(p)}(r)$ is a numerical solution of Eq. (4) that satisfies the "standing-wave" boundary conditions (8) and has the standard asymptotic form

$$
\begin{equation*}
\chi^{(p)}(r)=\chi^{s}(r)+\chi^{c}(r) \mathrm{K}, \quad \mathrm{~K} \mathrm{C}=\mathrm{C} \tan \delta \tag{14}
\end{equation*}
$$

reaction matrix

Here $\mathbf{K} \equiv \mathbf{K}_{\boldsymbol{\sigma}}$ is the numerical short-range reaction matrix with the eigenvalue $\tan \boldsymbol{\delta}$ and the orthogonal matrix $\mathbf{C}^{\boldsymbol{T}} \mathbf{C}=\mathbf{I}_{o o}$ of the corresponding eigenvectors \mathbf{C}, where $\mathbf{I}_{o o}$ is the unit $N_{o} \times N_{o}$ matrix. The regular $\chi^{s}(r)=2 \Im(\chi(r))$ and irregular $\chi^{c}(r)=2 \Re(\chi(r))$ asymptotic functions are expressed via the fundemential asymptotic solution $\chi(r)$ with leading terms at $r \rightarrow \infty$

$$
\begin{equation*}
\chi_{j i_{o}}(r)=\frac{\exp \left(\imath p_{i_{o}} r+\imath \zeta \ln \left(2 p_{i_{o}} r\right)+\imath \delta_{i_{o}}^{c}\right)}{2 r \sqrt{p_{i_{o}}}} \delta_{j i_{o}} \tag{15}
\end{equation*}
$$

where $p_{i_{o}}=\sqrt{2 E-\epsilon_{i_{o}}^{t h}}>0$ is the relative momentum in the channel $\boldsymbol{i}_{o}, \zeta \equiv \zeta_{i_{o}}=-\boldsymbol{q} / \boldsymbol{p}_{\boldsymbol{i}_{o}}$ is a Zommerfeld-type parameter, $\delta_{i_{o}}^{c}=\arg \Gamma(1-\imath \zeta)$ is the known Coulomb phase shift ${ }^{13}$.

[^5]Using R-matrix calculus, we obtain the equation expressing the reaction matrix \mathbf{K} via the matrix \mathbf{R} at $r=r_{\text {max }}$

$$
\begin{equation*}
\mathbf{K}=-\mathrm{X}^{-1}\left(r_{\max }\right) \mathrm{Y}\left(r_{\max }\right) \tag{16}
\end{equation*}
$$

where $\mathbf{X}(r)$ and $\mathbf{Y}(r)$ are square $N_{o} \times N_{o}$ matrices depended on the open-open matrix (channels)

$$
\begin{align*}
& \mathbf{X}(r)=\left(\frac{d \chi^{c}(r)}{d r}-\mathbf{R} \chi^{c}(r)\right)_{o o}, \tag{17}\\
& \mathbf{Y}(r)=\left(\frac{d \chi^{s}(r)}{d r}-\mathbf{R} \chi^{s}(r)\right)_{o o}
\end{align*}
$$

"incoming" wave function
The radial part of the "incoming" wave function
$\hat{\chi}^{(m \sigma)}(E, r)=(2 / \pi)^{1 / 2} \chi^{-}(r)$ is expressed via the numerical "standing" wave function and the short-range reaction matrix \mathbf{K} by the relation

$$
\begin{equation*}
\chi^{-}(r)=\imath \chi^{(p)}(r)\left(\mathbf{I}_{o o}+\imath \mathbf{K}\right)^{-1} \tag{18}
\end{equation*}
$$

and has the asymptotic form

$$
\begin{equation*}
\hat{\chi}^{(m \sigma)}(E, r)=(2 / \pi)^{1 / 2}\left(\chi(r)-\chi^{*}(r) S^{\dagger}\right) \tag{19}
\end{equation*}
$$

Here $\mathbf{S} \equiv \mathbf{S}_{\boldsymbol{\sigma}}$ is the short-range scattering matrix, $\mathbf{S}^{\dagger} \mathbf{S}=\mathbf{S S}^{\dagger}=\mathbf{I}_{o o}$, expressed via the calculated \mathbf{K} matrix

$$
\begin{equation*}
\mathbf{S}=\left(\mathbf{I}_{o o}+\imath \mathbf{K}\right)\left(\mathbf{I}_{o o}-\imath \mathbf{K}\right)^{-1} . \tag{20}
\end{equation*}
$$

"incident wave + ingoing wave"

The ionization wave function $\Psi_{E m \hat{v}}^{(-)}(r, \eta) \equiv \Psi_{E m \rightleftarrows}^{(-)}(r, \eta)$ has the asymptotic form reverse to the common scattering problem, namely, "incident wave + ingoing wave"

$$
\begin{equation*}
\Psi_{E m \hat{v}}^{(-)}(r, \eta)=\frac{\Psi^{E m,+1}(r, \eta) \pm \Psi^{E m,-1}(r, \eta)}{\sqrt{2}} \exp \left(-\imath \delta^{c}\right) \tag{21}
\end{equation*}
$$

The function $\Psi_{\boldsymbol{E} \boldsymbol{m} \hat{\boldsymbol{v}}}^{(-)}(r, \eta)$ corresponds to the function $\left|\boldsymbol{E} \hat{\boldsymbol{v}} \boldsymbol{m} \boldsymbol{N}_{\rho}\right\rangle$ defined in cylindrical coordinates (ρ, z, φ)

$$
\begin{equation*}
\left|E \hat{v} m N_{\rho}\right\rangle=\frac{\exp (\imath m \varphi)}{2 \pi} \sum_{n^{\prime}=1}^{j_{\max }} \Phi_{n^{\prime}}(\rho) \chi_{E m \hat{v} n^{\prime} n}^{(-)}(z) \tag{22}
\end{equation*}
$$

Here $\boldsymbol{N}_{\boldsymbol{\rho}}=\boldsymbol{n}-\mathbf{1}, \hat{\boldsymbol{v}}=\leftrightarrows$ denotes the initial direction of the particle motion along the \boldsymbol{z} axis, $\boldsymbol{\Phi}_{n^{\prime}}(\rho)$ is the eigenfunction of the two-dimensional oscillator that corresponds to
$\Phi_{n^{\prime}}(\rho) \rightarrow \lim _{r \rightarrow \infty} r^{-1} \Phi_{j}^{m \hat{v}}(r, \eta):$
$\Phi_{j}^{m \hat{v}}(r, \eta)=\left(\Phi_{j}^{m,+1}(r, \eta) \pm \Phi_{j}^{m,-1}(r, \eta)\right) / \sqrt{2}$ at $r \rightarrow \infty$.

$$
\Phi_{j}^{m \leftrightarrows}(r, \eta)=\left(\Phi_{j}^{m,+1}(r, \eta) \pm \Phi_{j}^{m,-1}(r, \eta)\right) / \sqrt{2}
$$

$\Phi_{1}^{\sigma=0, m=0}$
$\Phi_{1}^{\sigma=1, m=0}$

Asymptotics

At $z \rightarrow \pm \infty$ the function $\chi_{E m \hat{v} n^{\prime} n}^{(-)}(z)$ has the following asymptotics:

$$
\chi_{E \hat{v}}^{(-)}(z)= \begin{cases}\left\{\begin{array}{ll}
\mathrm{X}^{(+)}(z)+\mathrm{X}^{(-)}(z) \hat{\mathrm{R}}^{\dagger}, & z>0, \\
\mathrm{X}^{(+)}(z) \hat{\mathrm{T}}^{\dagger}, & z<0, \\
\mathrm{X}^{(-)}(z) \hat{\mathrm{T}}^{\dagger}, & z=\rightarrow, \\
\mathrm{X}^{(-)}(z)+\mathbf{X}^{(+)}(z) \hat{\mathrm{R}}^{\dagger}, & z<0, \tag{23}
\end{array} \quad \hat{v}=\leftarrow,\right.\end{cases}
$$

where the matrix elements of $\mathbf{X}^{(\pm)}(z)$ are

$$
\begin{equation*}
X_{n^{\prime} n}^{(\pm)}(z)=\exp \left(\pm \imath p_{n^{\prime}} z \pm \imath \zeta_{n^{\prime}} \frac{z}{|z|} \ln \left(2 p_{n^{\prime}}|z|\right)\right) \frac{\delta_{n^{\prime} n}}{\sqrt{p_{n^{\prime}}}} \tag{24}
\end{equation*}
$$

transmission and reflection amplitude matrices

$\hat{\mathrm{T}}$ and $\hat{\mathrm{R}}$ are the transmission and reflection amplitude matrices, $\hat{\mathrm{T}}^{\dagger} \hat{\mathbf{T}}+\hat{\mathbf{R}}^{\dagger} \hat{\mathbf{R}}=\mathbf{I}_{\text {oo. }}$. It is easy to show that $\hat{\mathrm{T}}$ and $\hat{\mathbf{R}}$ may be expressed in terms of the long-range scattering matrices
$\check{\mathrm{S}}_{\sigma}=\exp \left(\imath \delta^{c}\right) \mathrm{S}_{\sigma} \exp \left(\imath \delta^{c}\right)$ as

$$
\begin{equation*}
\hat{\mathrm{T}}=2^{-1}\left(-\check{\mathrm{S}}_{+1}+\check{\mathrm{S}}_{-1}\right), \quad \hat{\mathrm{R}}=2^{-1}\left(-\check{\mathrm{S}}_{+1}-\check{\mathrm{S}}_{-1}\right) \tag{25}
\end{equation*}
$$

The asymptotics of "incident+ingoing" wave function has the form

$$
\begin{align*}
&\left(\begin{array}{ll}
\Psi_{E m \rightarrow}^{(-)}\left(r, \eta_{+}\right) & \Psi_{E m \leftarrow}^{(-)}\left(r, \eta_{+}\right) \\
\Psi_{E m \rightarrow}^{(-)}\left(r, \eta_{-}\right) & \Psi_{E m \leftarrow}^{(-)}\left(r, \eta_{-}\right)
\end{array}\right) \rightarrow \sqrt{\frac{2}{\pi}}\left(\begin{array}{ll}
\Phi^{m \leftarrow}\left(\eta_{+} ; r\right) & 0 \\
0 & \Phi^{m \rightarrow}\left(\eta_{-} ; r\right)
\end{array}\right)^{T} \\
& \times\left[\left(\begin{array}{ll}
\check{\chi}(r) & 0 \\
0 & \check{\chi}(r)
\end{array}\right)+\left(\begin{array}{ll}
0 & \check{\chi}^{*}(r) \\
\check{\chi}^{*}(r) & 0
\end{array}\right) \hat{\mathbf{S}}^{\dagger}\right], \tag{26}
\end{align*}
$$

where $\eta_{ \pm}= \pm|\eta|,|\eta| \sim 1$ and $\hat{\mathbf{S}}^{\dagger}=\hat{\mathbf{S}}^{-1}$ inverse scattering matrix

$$
\hat{\mathbf{S}}^{\dagger}=\left(\begin{array}{cc}
\hat{\mathbf{T}}^{\dagger} & \hat{\mathbf{R}}^{\dagger} \tag{27}\\
\hat{\mathbf{R}}^{\dagger} & \hat{\mathbf{T}}^{\dagger}
\end{array}\right), \quad \hat{\mathbf{S}}^{\dagger} \hat{\mathbf{S}}^{\dagger}=\mathbf{I}
$$

Note that the transition operator $\hat{\mathcal{T}}=\hat{\mathbf{S}} \mathbf{- 1}$ satisfy to $\hat{\mathcal{T}} \hat{\mathcal{T}}^{\dagger}=-\mathbf{2 \Re} \hat{\mathcal{T}}$

2a. Effects of resonance transmission and total reflection of oppositive charged ions in a transversal oscillator potential

Fig. 1 Profiles $\left|\Psi_{E m \rightarrow}^{(-)}\right|$of the total wave functions of the continuous spectrum in the $\boldsymbol{z x}$ plane with $\boldsymbol{q}=-\mathbf{1}, \boldsymbol{m}=\mathbf{0}, \gamma=\mathbf{0 . 1}$ and the energies $E=0.05885$ a.u. (a) and $E=0.11692$ a.u. (b), demonstrating resonance transmission and total reflection, respectively.

Profiles of the wave function (21) for $\boldsymbol{q}=\mathbf{- 1}, \boldsymbol{m}=\mathbf{0}, \gamma=\mathbf{0 . 1}$ and $j_{\text {max }}=10$ are shown in Fig. 1 at two fixed values of energy \boldsymbol{E}, corresponding to resonance transmission $|\hat{\mathrm{T}}|^{2}=\sin ^{2}\left(\delta_{e}-\delta_{o}\right)=1$ and total reflection $|\hat{\mathbf{R}}|^{2}=\cos ^{2}\left(\delta_{e}-\delta_{o}\right)=1$.

Transmission and reflection coefficients

 (a)
(b)

Fig. 2. Transmission $|\hat{T}|^{2}$ and reflection $|\hat{\mathbf{R}}|^{2}$ coefficients, even $\boldsymbol{\delta}_{\boldsymbol{e}}$ and odd $\boldsymbol{\delta}_{o}$ phase shifts versus the energy \boldsymbol{E} (a) and $\left(\tilde{\boldsymbol{E}}_{\mathbf{2}}-\mathbf{2} \boldsymbol{E}\right)^{-\mathbf{1 / 2}}$ (b) for $\gamma=\mathbf{0 . 1}$ and the final state with $\sigma=-\mathbf{1}, \boldsymbol{q}=-\mathbf{1}, \boldsymbol{m}=\mathbf{0}$. The arrow marks the first Landau threshold $\boldsymbol{E}_{\mathbf{1}}=\gamma / \mathbf{2}$.
Transmission and reflection coefficients are explicitly shown in Fig. 2 together with even $\boldsymbol{\delta}_{e}$ and odd δ_{o} phase shifts versus the energy \boldsymbol{E} (Fig. 2a) and $\left(\tilde{\boldsymbol{E}}_{\mathbf{2}}-\mathbf{2} \boldsymbol{E}\right)^{-\mathbf{1 / 2}}$ (Fig.2b), where $\tilde{\boldsymbol{E}}_{2}=\epsilon_{m 2}^{t h}(\gamma)$ is second threshold shift. The quasi-stationary states imbedded in the continuum correspond to the short-range phase shifts $\delta_{o(e)}=n_{o(e)} \pi+\pi / 2$ at $\left(\tilde{E}_{2}-2 E\right)^{-1 / 2}=n_{o(e)}+\Delta_{n_{o(e)}}$.
Nonmonotonic behavior of $|\hat{\mathbf{T}}|$ and $|\hat{\mathbf{R}}|$ is seen to include the cases of resonance transmission and total reflection, related to the existence of these quasistationary states.

3.Photoionization cross-section

Therefore the cross-section $\sigma_{N l m}^{d}(\omega)$ of photoionization by the light linearly polarized along axis z reads as

$$
\begin{equation*}
\sigma_{N l m}^{d}(\omega)=4 \pi^{2} \alpha \omega \sum_{i=1}^{N_{o}}\left|D_{i, N, l}^{m \sigma \sigma^{\prime}}(E)\right|^{2} a_{0}^{2} \tag{28}
\end{equation*}
$$

where $\boldsymbol{\alpha}$ is the fine-structure constant, \boldsymbol{a}_{0} is the Bohr radius, $\boldsymbol{D}_{\boldsymbol{i}, N, \boldsymbol{l}}^{m \sigma \sigma^{\prime}}(\boldsymbol{E}) \equiv \boldsymbol{D}_{\boldsymbol{i}, i^{\prime}, \mathrm{v}^{\prime}}^{m \sigma \sigma^{\prime}}(\boldsymbol{E})$ are the dipole moment matrix elements

$$
\begin{equation*}
D_{i, i^{\prime}, \mathbf{v}^{\prime}}^{m \sigma \sigma^{\prime}}(E)=\left\langle\Psi_{i}^{E m \sigma=\mp 1}(r, \eta)\right| r \eta\left|\Psi_{i^{\prime} \mathrm{v}^{\prime}}^{m \sigma^{\prime}= \pm 1}(r, \eta)\right\rangle \tag{29}
\end{equation*}
$$

In the above expressions $\boldsymbol{\omega}=\boldsymbol{E}-\boldsymbol{E}_{\boldsymbol{N} l \boldsymbol{m}}$ is the frequency of radiation, $\boldsymbol{E}_{\boldsymbol{N l m}} \equiv \boldsymbol{E}_{\boldsymbol{m} \boldsymbol{\sigma}^{\prime} \boldsymbol{i}^{\prime} \mathbf{v}^{\prime}}$ is the energy of the initial bound state $|N l m\rangle=\Psi_{i^{\prime} \mathbf{v}^{\prime}}^{m \sigma^{\prime}}(r, \eta)$ below half of the first true threshold shift $\epsilon_{m 1}^{t h}(\gamma) / 2$ at $i^{\prime}=1$. The continuous spectrum solution $\chi^{(p)}(r)$ having the asymptotic form of a "standing" wave and the reaction matrix \mathbf{K} required for using Eq. (13) or (19), as well as the discrete spectrum solution $\chi(r)$ and the eigenvalue $\boldsymbol{E}_{\boldsymbol{m} \sigma^{\prime} \boldsymbol{i}^{\prime}=1 \mathbf{v}^{\prime}}$, can be calculated using the program KANTBP .
photoionization cross-section

Fig. 3 Cross-section of photoionization from the state $3 \mathrm{~s}_{0}$ versus the energy \boldsymbol{E} for $\gamma=2.595 \times 10^{-5}$ and the final state with $\sigma=\mathbf{- 1}$, $q=-1, m=0$.

Fig. 3 clarifies the behavior of the cross-section of photoionization by the light, linearly polarized along the axis \boldsymbol{z}, from the rotational state $3 s_{0}$ at $B_{0}=6.1 T\left(\gamma=2.595 \times 10^{-5}\right)$ in the energy interval $E=6.0-8.0 \mathrm{~cm}^{-1}$ at $j_{\max }=\mathbf{3 5}$. The cross-sections have been calculated with the energy step $5 \times \mathbf{1 0}^{-4} \mathbf{c m}^{\mathbf{- 1}}$ in all the region except the vicinity of peaks, where the step was $\mathbf{5} \times \mathbf{1 0}^{\mathbf{- 6}} \mathrm{cm}^{\mathbf{1}}$.
laser-stimulated recombination rate

Fig. 4 Laser-stimulated recombination rate into the bound state $N^{\prime}=3, l^{\prime}=0, m^{\prime}=0$ versus the energy \boldsymbol{E} of the initially free positron.

Fig. 4 shows the dependence of the laser-stimulated recombination rate $\boldsymbol{\lambda}_{\mathbf{S R R}}$ per one antiproton upon the initial energy $\boldsymbol{E}=\boldsymbol{E}_{\boldsymbol{N l m}}+\boldsymbol{\omega}$ of the positron. For comparison the horizontal dashed line displays the rate $\boldsymbol{\lambda}_{\mathbf{R R}}$ of the spontaneous radiative recombination into all the states with $N=\mathbf{3}$, which at the intensity considered is equal to the rate of the laser-stimulated recombination without the magnetic field ${ }^{14}$ One can see narrow resonances for which the rate of recombination into the state with fixed $\boldsymbol{l}=\mathbf{0}, \boldsymbol{m}=\mathbf{0}$ in the magnetic field is appreciably higher than the rate of recombination into all nine states with different \boldsymbol{l} and \boldsymbol{m} possible for $\boldsymbol{N}=\mathbf{3}$ without the magnetic field.

[^6]4. Model of axis channeling of similar charged ions

Enhancement coefficient $\boldsymbol{K}(\boldsymbol{E})$ of a nuclear reaction rate of channeling ions is ratio of probability density of wave function in a vicinity of pair collision point $\boldsymbol{r}=\mathbf{0}$ of ions with/without an additional transversal potential:

$$
K(E)=\frac{|C(2 E)|^{2}}{\left|C_{0}(2 E)\right|^{2}}=\sum_{i=1}^{N_{o}} \frac{\left|C_{i}(2 E)\right|^{2}}{\left|C_{0}(2 E)\right|^{2}},
$$

where $C_{i}(2 E)=\Psi_{1 i}(r=0)$ is numerical values of solutions at $\gamma=1 ; C_{0}(2 E)=\Psi_{11}(r=0)$ is Coulomb function, $N_{o} \leq 10$.

2b. Reflection and transmission coefficients at $q=6$

Resonance effects of practically full reflection and transition of similar charged ions in a channel of crystal characterized by transversal oscillator potential are predicted firstly and upper estimation of enhancement coefficient of a nuclear reaction rate of channeling ions are obtained.

These results may be interpreted as a resonance mechanism of anomalous repulsion Coulomb scattering on a nonspherical barrier. Such mechanism can be explained in the framework of a diagonal approximation of Eq. (4) in that is reduced to effective equations in each open channel $i_{o}=1, \ldots, 10$:

$$
\begin{align*}
& -\frac{1}{r^{2}} \frac{d}{d r} \frac{r^{2}}{\mu_{i_{o} i_{o}}(r)} \frac{d}{d r} \chi_{i_{o} i_{o}}^{\mathrm{eff}}(r)+\frac{\mu_{i_{o} i_{o}}^{\prime}(r)}{\mu_{i_{o} i_{o}}^{2}(r)} \chi_{i_{o} i_{o}}^{\mathrm{eff}}(r) \tag{30}\\
& \quad+\left[U_{i_{o} i_{o}}^{\mathrm{eff}}(q, r)-(2 E-1)\right] \chi_{i_{o} i_{o}}^{\mathrm{eff}}(r, E, q, \gamma)=0,
\end{align*}
$$

where $\boldsymbol{\mu}_{i_{o} i_{o}}^{-1}(r)=\left(1+W_{i_{o} i_{o}}(r)\right)$ is the effective mass and $\boldsymbol{U}_{i_{o} i_{o}}^{\text {eff }}(\boldsymbol{q}, r)$ are the effective potentials ${ }^{15}$.

Fig. 5. The effective mass correction \boldsymbol{W}_{11}, its derivative W_{11}^{\prime} and the inverse effective mass μ^{-1} and effective potentials $\boldsymbol{U}_{\text {eff }} \equiv \boldsymbol{U}_{11}^{\text {eff }}(q, r)$ for $q=-24,-12,-$ $6,-1,0,1,6,12,24$ at $\mu=1, \gamma=1$ and $m=0$ for the first even state $i_{o}=1$.
The dashed line is values of effective potential $U_{e f f} \equiv \boldsymbol{U}_{11}^{\mathrm{eff}}(\boldsymbol{q}, \boldsymbol{r})$ for $q=0$ that describes in spherical coordinates the exact-solvable problem for scattering of electron in homogenous magnetic field $\gamma=\mathbf{1}$ in cylindrical coordinates. ${ }^{16}$

[^7]One can see that for charges $\boldsymbol{q}=\mathbf{1 , 6 , 1 2 , 2 4}$ and for $\gamma=\mathbf{1}$ the barrier energies are:

$$
\begin{array}{r}
U_{11}^{\text {eff }}(q=1, r \approx 2.95)=1.27 \\
\approx 2 U_{0}-1=0.89 \\
\varepsilon_{1}^{t h}=2(1-1)+1=1 ; \\
U_{11}^{\text {eff }}(q=6, r \approx 2.90)=4.72 \\
\approx 2 U_{0}-1=5.24, \\
\varepsilon_{3}^{t h}=2(3-1)+1=5 \\
U_{11}^{\text {eff }}(q=12, r \approx 2.85)=8.90 \\
\approx 2 U_{0}-1=8.90 \\
\varepsilon_{5}^{t h}=2(5-1)+1=9 \\
U_{11}^{\text {eff }}(q=24, r \approx 2.80)=17.4 \\
\approx 2 U_{0}-1=14.7, \\
\varepsilon_{8}^{t h}=2(8-1)+1=15
\end{array}
$$

that approximately correspond to relative energy of open channel with the numbers $i_{o}=N_{o}^{s p} \approx \max \left(1, U_{0}=3(q /(2 \sqrt{\gamma}))^{2 / 3} / 2=1,3,5,8\right.$.

$$
\begin{aligned}
& p_{1}^{2}=E-\epsilon_{1}^{t h}=5.52 \\
&>2 U_{0}-1=5.24 \\
&>U_{11}^{\mathrm{eff}}(q=6, r \approx 2.9)=4.72 \\
&>\varepsilon_{3}^{t h}-1=4 \\
& i_{o}=N_{0}^{s p}=3
\end{aligned}
$$

Conclusions

1. We demonstrate the efficiency of the proposed approach and program packages POTHMF ${ }^{17}$, ODPEVP ${ }^{18}$, KANTBP ${ }^{19}$, KANTBP 2.0^{20} in calculations of:
i) photoionization and laser-induced recombination of a (anti)hydrogen atom in the magnetic field
ii) the effects of resonance transmission and total reflection of oppositely and similarly charged particles in the magnetic field or transversal oscillator potential.
2. Further applications of the method may be associated with calculations of laser-induced recombination of antihydrogen in magnetic traps ${ }^{21}$, channeling of light nuclei in thin doped films ${ }^{22}$ and potential scattering with confinement potentials ${ }^{23}$, photo-absorbtion in quantum well ${ }^{24}$ and three-body problems ${ }^{25}$.
[^8]
[^0]: ${ }^{1}$ O. Chuluunbaatar et al., J. Phys. A 40, 11485 (2007).
 ${ }^{2}$ O. Chuluunbaatar, et al. Phys. At. Nucl., 72, 768 (2009).

[^1]: ${ }^{3}$ M. Abramovits, and I.A. Stegun, Handbook of Mathematical Functions (New York: Dover, 1972)

[^2]: ${ }^{4}$ O. Chuluunbaatar et al., Comput. Phys. Commun. 178, 301 (2008)
 ${ }^{5}$ O. Chuluunbaatar et al., Comput. Phys. Commun., 180, 1358 (2009).

[^3]: ${ }^{7}$ O. Chuluunbaatar, , et al. Physics of Atomic Nuclei. 72, pp. 768-778 (2009).
 ${ }^{8}$ O. Chuluunbaatar, , et al. Comput. Phys. Commun. 179 (2008) 695

[^4]: ${ }^{9}$ V.V. Pupyshev. Generalization of Fock and Kato expansions for systems of three quantum particles. Physics of Elementary Particles and Atomic Nuclei V. 40, N 4, p. 763-892 (2009)

[^5]: ${ }^{13}$ M. Abramovits, and I.A. Stegun, Handbook of Mathematical Functions (New York: Dover, 1972)

[^6]: ${ }^{14}$ M.V. Ryabinina and L.A. Melnikov, Nucl. Instr. Meth. Phys. Res. B 214, 35 (2004).

[^7]: ${ }^{16}$ Landau, L.D.; Lifshits, E.M. 1977. Quantum Mechanics, N.Y.: Pergamen-Press.

[^8]: ${ }^{17}$ O. Chuluunbaatar et al., Comput. Phys. Commun. 178, 301 (2008)
 ${ }^{18}$ O. Chuluunbaatar et al., Comput. Phys. Commun., 180, 1358 (2009).
 ${ }^{19}$ O. Chuluunbaatar et al., Comput. Phys. Commun. 177, 649 (2007)
 ${ }^{20}$ O. Chuluunbaatar, et al. Comput. Phys. Commun. 179, 685 (2008)
 ${ }^{21}$ V.V. Serov et al., Opt. \& Spectr. 102, 557 (2007).
 ${ }^{22}$ Yu.N. Demkov and J.D. Meyer, Eur. Phys. J. B 42, 361 (2004).
 ${ }^{23}$ J.I. Kim, et al. Phys. Rev. Lett. 97, 193203 (2006)
 ${ }^{24}$ S.I.Vinitsky et al, LNCS 5743, 334 (2009)
 ${ }^{25}$ O. Chuluunbaatar et al, J. Phys. B 39, 243 (2006)

