Transverse polarization of Λ^{0} hyperons in quasi-real photoproduction: Quark Recombination Model

I. ALIKHANOV
Saint Petersburg State University, Russia
O. Grebenyuk
Petersburg Nuclear Physics Institute, Russia

XII Workshop on High Energy Spin Physics
Dubna, September 3-7, 2007

Outline

$\sqrt{ }$ Introduction
$\sqrt{ }$ Experimental Field
$\sqrt{ }$ Quark Scattering Model (QSM)
$\sqrt{ }$ Quark Recombination Model (QRM)
\checkmark Calculations and Results
$\sqrt{ }$ Conclusion

INTRODUCTION

\checkmark Among the hyperons, Λ^{0} fills a special place due to the spin-flavor structure of its wave function within the $\operatorname{SU}(6)$ symmetry

$$
|\Lambda\rangle_{\frac{1}{2}}=|u d\rangle_{\circ}|s\rangle_{\frac{1}{2}} .
$$

$\sqrt{ }$ In unpolarized reactions $a b \rightarrow \Lambda X$, the direction of the polarization is defined by

$$
\mathbf{n} \propto\left[\mathbf{p}_{a} \times \mathbf{p}_{\Lambda}\right]
$$

\checkmark The polarization sign

$$
\begin{array}{ll}
\mathbf{P} \cdot \mathbf{n}<0 & p p \rightarrow \Lambda X \\
\mathbf{P} \cdot \mathbf{n}>0 & K^{-} p \rightarrow \Lambda X
\end{array}
$$

Experimental field

The recent HERMES results [arxv:0704.3133] are qualitatively similar to the polarization in $K^{-} p$.
\checkmark the positive sign has been observed in both the reactions.
\checkmark similarity in the p_{T} dependence.

In the current fragmentation region ($x_{F}>0$), the Λ kinematic is mostly determined by the strange quark.

EXPERIMENTAL FIELD

We consider the $x_{F}>0$ region only.

EXPERIMENTAL FIELD

We consider the $x_{F}>0$ region only.

Quark Scattering Model

An explanation based on the quark scattering in the color field given by J. Szwed [phys. Lett. в105(1981)200] has been applied to $K^{-} p$ by J.M. Gago, R. Vilela Mendes and P. Vaz [Phys, Lett, в188(1987)357].

$$
P \sim \operatorname{Im}\left(\overline{z^{\prime}} \times \overline{g^{\prime}}\right)
$$

QSM FOR THE Λ PHOTOPRODUCTION

Since the polarization at HERMES is available versus ζ and p_{T}, the QSM has been rewritten in terms of the variables

$$
\begin{gathered}
\zeta_{i(f)}=\frac{E_{i(f)}+p_{z i(f)}}{E_{b}+p_{z b}}, \\
P\left(\frac{\zeta_{f}}{\zeta_{i}}, p_{T}\right)=-\frac{2 C \alpha_{s} V}{1+V^{2} \cos ^{2} \theta / 2} \frac{\sin ^{3} \theta / 2 \ln (\sin \theta / 2)}{\cos \theta / 2}, \\
V=V\left(\frac{\zeta_{f}}{\zeta_{i}}, p_{T}\right), \quad \theta=\theta\left(\frac{\zeta_{f}}{\zeta_{i}}, p_{T}\right)
\end{gathered}
$$

QSM FOR THE Λ PHOTOPRODUCTION

We consider the $\zeta>0.25$ region only, which presumably relates to the current fragmentation.

One needs to know the ζ_{i} as well as the ζ_{f} distributions.

$$
\begin{gathered}
\zeta_{f}=\frac{m_{s}}{m_{\Lambda}} \zeta, \quad p_{T}=\frac{m_{s}}{m_{\Lambda}} p_{T} . \\
P_{\zeta}=\int d \zeta_{i} d p_{T} h\left(p_{T}\right) P\left(\frac{\zeta}{\zeta_{i}}, p_{T}\right) f\left(\zeta_{i}\right), \\
P_{p_{T}}=\int d \zeta_{i} d \zeta g(\zeta) P\left(\frac{\zeta}{\zeta_{i}}, p_{T}\right) f\left(\zeta_{i}\right) .
\end{gathered}
$$

Calculations

$$
h\left(p_{T}\right) \propto \exp \left(-4.2 p_{T}^{2}\right), \quad[\text { Acta. Phys. Polon., B33(2002)3785] }
$$

Calculations

$$
m_{u, d}=0.3 \mathrm{GeV}, \quad m_{s}=0.5 \mathrm{GeV}, \quad 2 C \alpha_{s}=2.5
$$

H	Decay mode	Fraction (\%)
Σ^{0}	$\Lambda+\gamma$	22.8
Σ^{*}	$\Lambda+\pi$	23.1
Ξ	$\Lambda+\pi$	5.5

Results

Quark Recombination Model

Y. Yamamoto, K. Kubo and H. Toki [prog. Theor. Phys. 98(1997)95].

The polarization is standardly given by

$$
\begin{gathered}
P=\frac{\left.\left.\sum_{M_{i}}|\langle+1 / 2| S| M_{i}\right\rangle\left.\right|^{2}-\sum_{M_{i}}|\langle-1 / 2| S| M_{i}\right\rangle\left.\right|^{2}}{\left.\left.\sum_{M_{i}}|\langle+1 / 2| S| M_{i}\right\rangle\left.\right|^{2}+\sum_{M_{i}}|\langle-1 / 2| S| M_{i}\right\rangle\left.\right|^{2}} . \\
\left.\left|\left\langle M_{f}\right| S\right| M_{i}\right\rangle\left.\right|^{2}=\sum G^{M_{f}}\left(r_{f}\right)\left|M\left(r_{f}, r_{i}\right)\right|^{2} G^{M_{i}}\left(r_{i}\right) .
\end{gathered}
$$

The interaction is assumed to be scalar.

QRM FOR THE Λ PHOTOPRODUCTION

The photoproduction may be fairly expected to be richer with the subprocesses

Results

Results

CONCLUSION

\checkmark The reached reproduction should be regarded only as qualitative
\checkmark The calculations are based on the $\operatorname{SU}(6)$ symmetry, while it is not exact
\checkmark We used the PYTHIA programm, which gives rather qualitative than quantitative predictions
\checkmark We assumed the $s+(u d)_{0}$ to take place only
$\sqrt{ }$ A large difficulty is the parameter $2 C \alpha_{s}$

Thank You!

