Transverse polarization of Λ^0 hyperons in quasi-real photoproduction: Quark Recombination Model

I. Alikhanov

Saint Petersburg State University, Russia

O. Grebenyuk

Petersburg Nuclear Physics Institute, Russia

XII Workshop on High Energy Spin Physics

Dubna, September 3-7, 2007

OUTLINE

- \checkmark Introduction
- \checkmark Experimental Field
- \checkmark Quark Scattering Model (QSM)
- $\sqrt{}$ Quark Recombination Model (QRM)
- \checkmark Calculations and Results
- \checkmark Conclusion

INTRODUCTION

 \checkmark Among the hyperons, Λ^0 fills a special place due to the spin-flavor structure of its wave function within the SU(6) symmetry

$$|\Lambda\rangle_{\frac{1}{2}} = |ud\rangle_0 |s\rangle_{\frac{1}{2}}.$$

 \checkmark In unpolarized reactions $ab \rightarrow \Lambda X$, the direction of the polarization is defined by

$$\mathbf{n} \propto [\mathbf{p}_a imes \mathbf{p}_\Lambda].$$

 \checkmark The polarization sign

$$\begin{aligned} \mathbf{P} \cdot \mathbf{n} &< 0 \qquad pp \to \Lambda X, \\ \mathbf{P} \cdot \mathbf{n} &> 0 \qquad K^- p \to \Lambda X. \end{aligned}$$

EXPERIMENTAL FIELD

The recent HERMES results [arXiv:0704.3133] are qualitatively similar to the polarization in K^-p .

 $\sqrt{}$ the positive sign has been observed in both the reactions. $\sqrt{}$ similarity in the p_T dependence.

In the current fragmentation region ($x_F > 0$), the Λ kinematic is mostly determined by the strange quark.

EXPERIMENTAL FIELD

We consider the $x_F > 0$ region only.

EXPERIMENTAL FIELD

We consider the $x_F > 0$ region only.

QUARK SCATTERING MODEL

An explanation based on the quark scattering in the color field given by J. Szwed [Phys. Lett., B105(1981)403] has been applied to K^-p by J.M. Gago, R. Vilela Mendes

and P. Vaz [Phys. Lett., B183(1987)357].

QSM for the Λ photoproduction

Since the polarization at HERMES is available versus ζ and p_T , the QSM has been rewritten in terms of the variables

$$\zeta_{i(f)} = \frac{E_{i(f)} + p_{zi(f)}}{E_b + p_{zb}},$$

$$P\left(\frac{\zeta_f}{\zeta_i}, p_T\right) = -\frac{2C\alpha_s V}{1 + V^2 \cos^2 \theta/2} \frac{\sin^3 \theta/2 \ln(\sin \theta/2)}{\cos \theta/2},$$

$$V = V\left(\frac{\zeta_f}{\zeta_i}, p_T\right), \quad \theta = \theta\left(\frac{\zeta_f}{\zeta_i}, p_T\right)$$

QSM for the Λ photoproduction

We consider the $\zeta > 0.25$ region only, which presumably relates to the current fragmentation.

One needs to know the ζ_i as well as the ζ_f distributions.

$$\zeta_f = \frac{m_s}{m_\Lambda} \zeta, \qquad p_T = \frac{m_s}{m_\Lambda} p_T.$$

$$P_{\zeta} = \int d\zeta_i dp_T \ h(p_T) P\left(\frac{\zeta}{\zeta_i}, p_T\right) f(\zeta_i),$$

$$P_{p_T} = \int d\zeta_i d\zeta \ g(\zeta) P\left(\frac{\zeta}{\zeta_i}, p_T\right) f(\zeta_i).$$

CALCULATIONS

 $h(p_T) \propto \exp{(-4.2 p_T^2)},$ [Acta. Phys. Polon., B33(2002)3785].

10

CALCULATIONS

$$m_{u,d}=0.3~{\rm GeV}$$
, $m_s=0.5~{\rm GeV}$, $2C\alpha_s=2.5$.

н	Decay mode	Fraction (%)
Σ^0	$\Lambda + \gamma$	22.8
Σ^*	$\Lambda + \pi$	23.1
Ξ	$\Lambda + \pi$	5.5

RESULTS

QUARK RECOMBINATION MODEL

Y. Yamamoto, K. Kubo and H. Toki [Prog. Theor. Phys. 98(1997)95].

The polarization is standardly given by

$$P = \frac{\sum_{M_i} |\langle +1/2 | S | M_i \rangle|^2 - \sum_{M_i} |\langle -1/2 | S | M_i \rangle|^2}{\sum_{M_i} |\langle +1/2 | S | M_i \rangle|^2 + \sum_{M_i} |\langle -1/2 | S | M_i \rangle|^2}.$$

$$|\langle M_f | S | M_i \rangle|^2 = \sum G^{M_f}(r_f) |M(r_f, r_i)|^2 G^{M_i}(r_i).$$

The interaction is assumed to be scalar.

QRM for the Λ photoproduction

The photoproduction may be fairly expected to be richer with the subprocesses

RESULTS

RESULTS

CONCLUSION

- \checkmark The reached reproduction should be regarded only as qualitative
- $\sqrt{}$ The calculations are based on the SU(6) symmetry, while it is not exact
- \checkmark We used the PYTHIA programm, which gives rather qualitative than quantitative predictions
- \checkmark We assumed the $s+(ud)_0$ to take place only
- \checkmark A large difficulty is the parameter $2Clpha_s$

Thank You!