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Introduction

[n 1948 1t was shown by Casimir that vacuum fluctuations
of quantum fields generate an attraction between two parallel
uncharged conducting planes | H.B.G. Casimir, Proc. K. Ned.

Akad. Wet. 51, 793 (1948)]

F %

T'his phenomena called the Casimir effect (CE) has been well

investigated with methods of modern experiments

[ S.K.Lamoreaux, Phys. Rev. Lett. 78,5 (1997), U.Mohideen
and A. Rov, Phys. Rev. Lett. 81. 4549 (1998): A. Roy,
C.-Y. Lin, and U. Mohideen, Phys. Rev. D 60, 111101(R)
(1999), B.W. Harris, F. Chen, and U. Mohideen, Phys. Rev.
A 62, 052109 (2000), G. Bressi et al., Phys. Rev. Lett. 88,

041804 (2002)].



The CE is a manifestation of influence of fluctuations of
quantum fields on the level of classical interaction of material
objects.

Theoretical and experimental investigation of phenomena
such a kind became very important for development of micro-
mechanics and nano-technology.

Though there are many theoretical results on the CE

KA. Milton, J.Phys. A 37, R209 (2004)], however the
majority of them are received in framework of several models

based not on the quantum electrodynamics (QED) directly.



An approach for construction of the single QED model for
imvestigation of all peculiar properties of the CE for thin ma-
terial films was proposed in | V.N.Markov, Yu.M. Pis'mak,
ArXiv:hep-th/0505218, J Phys.  A: Math. Gen. 39, 6525
(2006) (arXiv:hep-th/0606058), 1.V. Fialkovsky, V.N. Markov,
Yu.M. Pis'mak, Int. J. Mod. Phys. A 21,2601 (2006), 1.V. Fi-
alkovsky, V.N.Markov, Yu.M. Pis'mak. J.Phvs. A: Math. Gen.
41, 075403 (2008)].



We consider its application for simple forms of films. We
show that gauge invariance, locality and renormalizability con-
sidered as basic principles make strong restrictions for con-
structions of the CE models in QED, which make it possible

to reveal new important teatures of the CE-like phenomena.



Formulation of the model

Svinanzik action functional (Symanzik K 1981 Nucl.
Phys. B 190 1):

S(¢) = Sy(p) + Saer(e)

where
Splo) = [ Lio(x)dPx, Spi(p) = [ Lai(o(z))d? z,
D\ ) de f\ ¥ - de f\'¥

and I'is a subspace of dimension D" < D in D-dimensional

SPACe.



From the principles of QED: gauge invariance, locality,
renormalizability it follovs that in the model of interac-
tion of material surface with the guantum QED fields the
pure photon field contribution can be described with the
action functional of the form

S(A) = So(A) + Saep(A)
Here Sh(A) - is the usual free action of the photon field
Aylx)
Sp = %/dd‘i‘.F”“(:f)Fﬁ_y(I),
Fuu(@) = 9, A, (x) — 9,4, (x),

and Sger(A) 1s the defect action modeling the interaction

of field A, () with a macroscopic inhomogeneity.



[fit is a 2 surface (defect) with the form described by
equation ®(x) = 0, then:

Sier = 0 / d*2e""0,@(x)5(D(x)) A, () O\ Ag().

For the stationary defect dyd(z) = 0 which will be

considered the action Sg.¢(A) can be written as

—*

S(ggf(ﬂ) = {T/d42‘5 ){22 Ao(z)Lg 4’( )+ (}{I}[E(SI‘) X E}DJI(T)]}

where Lg = ¢[0P x d] and o is a dimensionless coupling
constant.



The fermion defect action can be written as
Se(1), ) = (2)

= [P()[ A+ 'y + 5T + VM) + Vo] () 0(P(x))da

Here, v,. p =0, 1,2, 3, are the Dirac matrices, 75 = 270717373

I/

O = UV — YY) /2, and A, 7, wyv,, WM = =W v =
0,1,2,3 are 16 dimensionless parameters.

FExpressions (1), (2) are the most general forms of gauge
ivariant actions concentrated on the detect surface being in-

variant in respect to reparametrization of one and not having

any parameters with negative dimensions.



Casimir force
We consider defect concentrated on two parallel planes x5 = 0
and xs = r. For this model, it is convenient to use a notation
like & = (xq, 21, 19, 23) = (T, 23).

Defect action (1) has the form:
1 | . , 2 , ,
Sop = 5 [(a1d(x3) + asd(xs — 1)) PA(x)F,,(x)dr.

It 1s the main point in our model formulation, and no any

boundary conditions are used.



The energy density Eyp of defect 1s defined as
1 R
InG(0) = 5 Trln(DypD 1 = —iTSEyp

where T" = I'dxg 1s duration of defect, and S = rdridrs. is
the area of film.

It is expressed in an explicit form in terms of polyloga-
rithm function Liy(z) [V.N. Markov,Yu.M. Pis'mak, ArXiv:
hep-th /0505218



For identical films with a; = a9 = a it holds:

Esyp =2E+ Ecus, Es = [Iny(1 + a?)—

| a’ @’
E ‘as — T L~ 9 a2 L + L
Ca 167213 . (La +1)? ] N ((a - f)g]

Here £, is an infinite constant, which can be interpreted as

selt-energy density on the plane. and E¢,. 1s an energy density

of their interaction.



The function Lig(z) is defined as

k

. o0 1 o0 g ¢ . _
L-14(:1):£1 =5 B R In(1 — e ") dk.

The force Fyp(r, a) between planes is given by

OE (1, a) T2

Faplr.a) = =——5 == =510/ @)
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Figure 1: Function f(a) determining Casimir force between parallel planes



The force Fyop is repulsive for |a| < ag and attractive for

a| > ag, ag ~ 1.03246 (see Figure 1),

For large |a| it is the same as the usual CF between perfectly
conducting planes. 'I'he model predicts that the maximal mag-

nitude of the repulsive Fop is expected for |a| = 0.6.



For two infinitely thick parallel slabs the repulsive CE was

predicted also in [O. Kenneth et al., Phys. Rev. Lett. 89,
033001 (2002)].

Real film has a finite width, and the bulk contributions to
the CF for nonpertectly conducting slabs with widths hq, hs
are proportional to hyhs. Therefore it follows directly from the
dimensional analvsis that the bulk correction Fy, . to the CF
is of the form Fpur =~ cFoashiha/ r? where Frg. is the CF for
perfectly conducting planes and ¢ 1s a dimensionless constant,

1'his estimation can be relevant for modern experiments on the

CL.



Non-planar geometry

The case of cvlindrical film.

Spep = /2 [ d*z £, 0" (2) AYOP A75(D)
where A EM vector-potential, £,,,,, — totaly antisymmetric
tensor (o123 = 1), and the defect is described with equation
O(x) =0, x = (x0, 21, 9. T3).

For cvlindrical shell placed along the x5 axis. :;z:f + x

b B

— R2

we have



For the sphere with radius rg

The limit 0 — oo corresponds to ideal conducting sur-
face with with conditions n,F*|s = 0.



Regularization

To remove the ultraviolet divergencies we use the Pauli-
Willars regularization:
Sp — S _ ! e F () (1 + M—20,0MF,, (z
0 0r =7 cF*(x)(1+ M™70,0") F) ()
S(f’i) — ST(A) = Sp, + nggf
and use for calculations the Fuclidean version of the ac-

tion Sg, which 1s obtained by replations

xrog —r —i:l?o_, a[} — '?ff)g, ;’-L] — i"-;’-lgj a — 1a.



Casimir energy

For the Casimir energy Eogs holds the expression

1 |

where D 1s the propagator in the model with defect, and
Dy 1s the propagator for the model in homogenous space.
For the spherical defect 1t diverges by M — oo.



Divergences and renormalization

The asymptotic of the regularized Casimir energy of
the spherical defect with raduis » for large M has the
form:

Flo 1
0

with

=1
2

> 1 -0 (21 + 1)
X/ dp In gf( ) Lp)_|_ | : .__1( : ) - |
: it ) W @




Here the following notations are used:

Gi(x) = I 1(x) Ky 1 (),

Ri(e) = (5hag@)+ iy @)) (5Kralo) + Kiyo))

with Bessel function IE+%(I)! hH%(:}:‘.j.
[t 1s finite for finite M but diverges for removing of
regularization M — oo. This problem is solved by the

renormalization.



For o0 — oo we opbtaine

Fg@ — F(J”J—}Gﬁ —

HZ‘?JJA

oo o1+ 1)t
></c. {m[ PR ()]+(4p2+(23+ )JB}*

[t the results for ideal connecting sphere Feg. = Foo /70,

coinciding with one obtained by Bover.



For removing of the divergences ol Casimir energy in
the framework of usual multiplicative renormalization
procedure one needs to add to the action the terms with-
out photon field with Lagrangian

La(z) = (Ar: + B)o(

T —ro),

having two constant parameters A, B . Making renor-
malization of them one can cancel the divergences and
obtain the finite renirmalized Casimir energy

Flo)

ro

Eou = 4ﬁ?‘ga + 3+

with finite parameters a;, 3 of dimension of surface ener-
oy density and energy. If @ > 0, F(o) > 0 the function
Eege has minimum with rg = \E/F(Gf)/Sﬁas.




Cilindrical film

The result for CE has the form

E = Edi-u + Efiﬂ.

Euiw = MPRfs(a) + — fi(a),

R
Ems(a'j - -
Epin = =20+ O(1/M)

V. Fialkovsky, V.N.Markov, Yu.M. Pis'mak, J.Phys. A:
Math. Gen. 41, 075403 (2008)]



Electromagnetic fields generated by
simplest fermion defects

We consider the fermionic defect of the form

5

Srg(0, ) = [(F,0)(X + q) (T, 0)dZ

Here 2/, 70 are the Dirac spinor fields, A is a constant pa-

rameter, ¢ is a fixed 4-vectors, ¢ = q,y" (4" are the Dirac

5

camma-matrices), and we used the short hand notation for

the 4-vector: x = (xg, x1,x9, x3) = (T, T3).



Vector ¢ = (¢,0) and scalar A describe the iteraction of
current and density of Dirac field with material defect. Namely,
the zero component of vector ¢ defines a surface charge density
and space like components of vector ¢ parallel to the defect
plane describe the surface current.

The scalar A defect can be interpreted as a surface mass

term.



The interaction of vacuum fluctuations of the Dirac field
with the background generates quantum corrections to usual
classical effects.

Asvmptotics of the generated by the defect electromagnetic
fields for large and small a3 are the following

LV, Fialkovsky,V.N. Markov.Yu.M. Pis'mak, Int. J. Mod.
Phys. A 21,2601 (2006)].



If ¢ = (k,0,0,0) = gM, the defect generates pure electric
field Ex

Es R {('1 )%L(fg,( ) — l_,u] ( >3 2) .

) .
em- o | 4k

Cr3—o A2 - ’ 41— g2

For ¢ = (0, k,0,0) = ¢'? the field is pure magnetic

i ) - . -
. ~ e , 1.r2_ l + W Y, ) l 9
HQ :1‘33 0 — 16?1_2@;2 {[\l -+ W ’)1]11 — LW } ( 2 .

e

2 : - 1 e
em” l+w , Ak
Ho =~ [ ] — 2;,:.;} -

g— ! _:l.-"l—:}-' ‘if
1300 722



For ¢ = (0. %,0,0) = ¢'® the field is pure magnetic

> ..2 , lo. | Lu‘f |
Hy ~ — HT? {Llerg)lnlJr——Ew’H 2—2).

a4 ! ‘ ‘
r3— 0 1672w m2ax3

E

T

2 g 2 B ‘:-" ol
T3=00 Q22

em.? l+4 , s
— 2w |, =——7.
44+ K



For g = (k,k,0,0) = ¢, FE, = FEy, = H, = H; =0, and

asymptotics of the fields £5, Hs are of the form

5 7 exm? (1 5
3 ~ 2 = T — <]
r3— 0 r3— 0 1272 \m?xd

ERTTL 2

E3 :..rr;;e,: 0 HQ 1?3: < 1272



Casimar-Polder eftfect

Casimir-Polder effect was predicted theoretically in 1948
(H.B.G.Casimir and D.Polder, Phys.Rev. 73, 360 (1948)).
Casimir and Polder found the energy of a neutral point
atom in its ground state in the presence of a perfectly
conducting infinite plate. In the case of a perfectly con-
ducting plate one can say that the imteraction of a fluc-
tuating dipole with the electric field of its 1mmage vields
the Casimir-Polder potential.



Model

In our model the interaction of the plane surface x3 =0
with a quantum electromagnetic field A, is described by
the action:

Su(4) =a [ €0 A, ()94, (2)5(y)dr

We will use latin indices for the components of 4- ten-

sors with numbers 0,1, 2, also the following notations:
P"Fm(,l;) _ gfm o kikm/kﬂr
Imery . Imn3g, L2 32 2 2
L UL) — € 'l'ﬂ/“‘ ) k™ = L‘O o L‘l o ‘lL'Qr

—

k| = V k2, and g - metric tensor.

where



The atom is modeled as a localized electric dipole at
the point (1, x9, x3) = (0,0, ), which is described by the
current Jﬁ_(ilf):

2

Z 1)0'5(a1)8(29)0 (5 — 1),

i=1

Ji(x) = —pi(t)o(x1)d(x9)d (w3 — 1), i =1,2,3,



The condition of the current conservation holds:

d,J" = 0.
pi(t) 1s a function with a zero average and the pair cor-
relator
+0o0 E,_—i.‘.d[tl—ﬁg)
(p;(t1)pr(ta)) = —i ; ajp(w)dw,
oo 2T

where ;. (w) for w > 0 coincides with the atomic polar-
1zability.



The aim is to calculate the mteraction energy £ of
the atom with a plane, and we will use the following
representation for the energy:
Z . -
E = T {ln/exp (2S(A)+ JA) DA — 111/e::~:p (2S(A)) D;—l}
(a)

{- }a) means that the @ = 0 value of the a-dependent
function has to be subtracted: {f(a)}) = fla) — f(0).



The ground state energy of a neutral atom in the pres-
ence of a plane with Chern-Simons interaction is obtained
in the form:

1 -‘_’12 +oo ot
E=- . dwe™ " 2(1 + 2wl auzs(iw
6472151 + a? ,/0 ‘ (1 + 2wl)az(iw)

+oC
—l—f dw _EWE( -+ sz -+ %232)(au(1w) -+ ﬂzz(?w))
0

1 a
64722 1 4 a?

400
4+ / dwe_%@w(l + QLdf) (ﬂlﬁ(iwj - &21(5"-’“))
0



Consider the system with a nonzero C}:i(w} and as-

sume for simplicity the one mode model of the atomic
polarizability with a characteristic frequency wyg. Then
aih(w) = iwCy /(2(wiy—w?)), where Cy is a real constant.

In the limit of large separations wypl =>> 1 we obtain :

a? C]ﬁll([]) + C]ﬁgg([]} + &33(0) a Co

E‘wulfl‘?l - 1 + a2 32724 1 + a2 32m2w?

al-

wavs dominates. Assuming for simplicity aq1(0) = ag0(0) =

At large enough separations the

a33(0) = C1/(3wyg), C1 is a positive constant, one can

. . C _
see from () that if the condition %—zll < 1 holds then for

. C

separations [ < Ot he term with off-diagonal ele-
~ |a|lCiwn

ments of the atomic polarizability (the second term in

£5.

Z;-



Interaction of film with classical charge and current

The classical charge and the wire with current near defect
plane are modeled by appropriately chosen 4-current J in (3).
The mean vector potential A4, eenerated bv .J and the plane
['he mean vector potential A, generated by J and the plane

xs = 0, with a; = a can be calculated as

OG(JJ

1
A é]ﬂ

Ly e
D jju||511 =a,a9=0- LG)

a|=a, (1*}—0
Using notations F;. = 0; AL — O A;. one can present electric
and magnetic fields as £ = (Fo1, Foo, Fos). H = (Fas, Far, Fi2).



For charge e at the point (x1, zo, 23) = (0,0,1), [ > 0 the
corresponding classical 4-current is

S

u(x) = dmed(y)0(a2)d(x3 — 1)dy,

In virtue of (5) the mean vector potential A*(x) is independent
on xp and the electric field in considered system is defined by

potential

€ (1 2 €

Aolzy, 10, 23) = — — -
1,82, 73) p_ at+1py

where pp = af + 23 + (|za| +1)% p- = Ja3 + a3+ (23— 1)




The electric field E = ( Ey, By, E4) is of the form

eI a’  exs

Fo=—= — o
. PP at+1pd

) -

ex a“  ery
pP At 1pt

By =

o «.

elrs — [ ) a.ge | T3)€e (: :1?3‘ + ﬂ;)
bp = 3 RPN 3 '
P> a-+ 1 P

Here, e(x3) = x3/|x3].

o «.




We see that for x3 > 0 the field E' coincides with field gen-
erated in usual classical electrostatic by charge e placed on
distance [ from infinitely thick slab with diclectric constant
e =2a’+ 1.

Because A" (x) # 0 for = 1,2, 3. the defect generate also
a magnetic field H = (Hq, Hy, H3):

ear eaTs eal|xs] +1)

Hy = —, = —, Hy = —————.
R @+ 1)pt T (@ + 1)

It 1s an anomalous field which doesn't arise i classical electro-

statics. Its direction depends on sign of a.



A current with density 7 flowing in the wire along the z-axis

1s modeled by
]“(1) = 475 (x5 — 5)5(:139)5;5_1

For magnetic field from (5) one obtains in region a3 > 0 the
usual results of classical electrodynamics for the current paral-
lel to infinitely thick slab with permeability p = (2a% + 1)1,
There is also an anomalous electric field E = (0, Eo, E3):

27a o
a4+ 172

o 27a |xs] +1

E = —
’ a?+1 72

] =

where 7 = (23 + (|z3| + 1)?)2.



Problem of scattering

The model of the photon field interacting with the
two-dimensional material surface, given by equation
G(2) =0, is characterized by the action functional

|
S(A) = — 7 Fuw k" + S4(A)

where
F}'_LL" — ap:_fqy - aﬁ_ﬁqy?

{1

Se(4) =3 / MUPO\D (1) Ay (2) Fyp(2)5(D() ) dor.



For the plane defect &(x) = 23 the Euler-Lagrange
equations of the model are written as modified Maxwell’s
equations:

0S(A . . |
% = 0, F"" + (153”5917590(;1?3) = ().

We solve them using the Fourler transform over coordi-
nates xg., r1. xo for the vector-potential A,:

1 -
Aylxr)= - /e*p‘rﬂﬂ(rgjp)dﬁ,
2m)}
— 1 —ipT
A (x3.p) = ; /e PPA ), (x)dx.
(2m)}

Here and later we use the notation p for vector p =
e T 2 — 12 2 2 P — . _—
(Po: P1.P2), P° = Py — P1 — P3, PT = PoTo — P11 — Paa.



It follows from A () = Aj(x) that A*(x3,p) = Alxs, —p).

Using this relation we can obtain an 111tegml represen-
tation

2R ipT -
Aulz) = (27) / 0(po) €7 Au(as. P)] dp

where Jt denotes the real part.

We make calculations in the temporal gauge Ay =0,
where electric and magnetic fields E. H are expressed
through the vector- potentml A = ({J,ff) by relations

E=0A H=0x A



Scattering on plane

For the wave lalling on the plane [rom the hall space
with negative coordinate x3 we should have in a hall
space r3 > 0 only the transmitted wave. moving [rom
the plane x5 = 0 in positive direction of the third axis.



For the intensities I;,, I, I of the incident. reflected

and transmitted waves we have

L M0 _JA®)E | A@)P
171 2’]‘1’3 3 r 27 3 tr 2}"]'3
Therelore
a? 1
[, =——-I. . L, =—-I..
| +q2 "™ 1 + a?

Hence. the reflection K, = I,./1;, and transmission co-
{-"Hl{'ll-"ll s Ky = 1,./1;, Tor flat waves scattering on the
plane does not depend on the frequency and incidence
angle and can be expressed through the characterizing
the scattering material coupling constant a

a’ 1

Kr=—— Ky =—.
T 14a T 1+



Consider the movement ol waves along the axis x3.

In this case py =po =0, p = py and

— — 1 —

Eé-n Sm 713 0 3 E r —E
Po(—Bins @i, 0), E; 1 + a? 1+4HQ

Q = p?](ﬂféna .‘31'?13 O)a

3

= apy ,

ET' — —2(_:51"&- - &I-r? &:rﬂl - I.llg-r? [})j
1 4+ a

and replacing in E,. sign of o3 on the opposite we obtain

TE—:‘ — —Eiﬂ — T . o9
1+ a? L+MQ

We see that by the scattering ol waves moving perpen-
dicular to the plane. apart from the usual for process

ol scattering waves. there are waves with electric hield

rotated by an angle 7/2 (E;,Q = 0).



For the case of a monochromatic plane wave with ar-
bitrary polarization the vectors ol electric and magnetic
fields ol the reflected and transmitted waves, and also
the transmission and reflection coellicients are obtained
i an explicit form. The transmission and reflection co-
ellicients are expressed through coupling constant a and
do not depend on the wave requency and fall angle. For
waves propagating in the orthogonal to the plane direc-
tion by small a, the electric field vector ol the reflected
wave 1s rotated on the close to m/2 angle with respect
to 1ts direction lor the case ol a perfectly conducting
plane (a — 00).



Conclusion

In the proposed model the interaction of photon fields with sharp boundary is
presented by Chern-Simons potential with one dimensionless coupling constant.

It brooks space parity and time inversion symmetries.

All the effects of interaction of boundary with QED fields can by described in
the framework of one model.

In the limit of infinite coupling constant one obtains the known results of models
with boundary conditions.

By finite value of coupling constants the model predicts unusual effects which
could be important for micro-mechanics, nano-electronics, constructing of new
materials, interpretations of the astronomical dates.
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