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Motivation (Phase diagram) I
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Motivation (The order of phase transition)
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Motivation (Why 3-fluid hydro ?)

# Conservation laws (Gauss theorem) = Fluid dynamics

O, J" = 0 net charge conservation 4

0, T = (0 energy momentum conservation |10
m gy

® Tensor decomposition of the charge current J* and energy-momentum tensor

TH with respect to 4-velocity u”

JE = nut + ...

T = e¢ulu” — P (¢" —ul'u”)+ ...

perfect hydro |6

e Perfect hydro in local thermodynamical equilibrium | + EoS

e First order dissipative corrections (viscosity, heat capacity) = acasuality

e Second order corrections = + 14 Grad equations

Spatial-temporal variation of the macro fields have to be SMALL



Multi-fluid approximation

& Multi-fluid dynamics
(starting from the relativistic Boltzmann equation to that for moments of

distribution function)

L (eq)
f($7p>zz qu<xap)
j

target projectile

fireball

A single fluid may consist of several

particle species. Different fluids may

distribution function

be of the same particle species.

momentum along beam



3-fluid hydro equations

projectile

I target I
K + ) R

fireball-fluid —

overlaped fluids L

TARGET-LIKE FLUID: 0, J!" =0 0, 1¢" =—Fy, + I,

Lead. particles carry b-charge  exchange/emission

PROJECTILE-LIKE FLUID: OuJf =0, 0, )" =—F, + F%,
FIREBALL FLUID: Ji =0, 0T1¢" =F}, + Fi) I — I,
Baryon-free fluid Source term Exchange

The source term is delayed due to a formation time 7 ~ 1 fm/c

Total energy-momentum conservation: Ou(Th + T/ +T5") =0



Friction

PROJECTIVE-TARGET FRICTION:

EoS dependent

FVt — PpPt K Ut) Dp + ( + uty) DE} S%L(Spt)

enhancement factor &7 (s,

heating fireball production

. - scalar density of & fluid; Dp/p_my V) op/x(s,) ; my - nucleon mass:
P y / rel / p

Spt = M (u” + uy )2 - mean invariant energy squared of colliding p- and t-fluids;
VP = [5,0(s, — 4m3%)]Y? /2m3; - mean relative velocity of the p- and t-fluids;

op/r(spt) - hadron-hadron cross sections integrated with certain weights

ey

rel

< thermal or Fermi velocity = Unification of p and t fluids (equilibrium)

PROJECTIVE(TARGET)-FIREBALL FRICTION:

Absorption of a fireball matter by baryon-rich fluids

T}eq)Ol/ B
F;P: Pp u? Dy, where Dy, = Vel Utmgr_> (Sfp)-



Hadronic equation of state

5(”BaT) — ?gas(nBaT)j + W(nB)

————

Energy density: o
gas of free hadrons mean field

dW(nB)
Pressure: P(np,T) = Pgas(ﬁB’ T), TnB dng W
gas of free hadrons o fiold

O
O
T

W(nB) = npmpy

) ()]

W (np) saturates the cold nuclear matter at
no = 0.15 fm™ and e(ng, T = 0)/ng—my = -
16 MeV, and provides incompressibility of nu-
clear matter K = 235 MeV. (

Science 298, 1592 (2002))

Pressure [MeV/fm?]

Ng/ N

2 -1
To preserve causality at high npg e(np, T =0) =nomy [A (n—B) +C+B<n—B) ] , mp > ne R~ b6ng
no no

Parameters are determined on the condition that e(ng,T = 0) and its two first derivatives are continues at n..



Freeze-out

e Criteria: Local proper energy density of matter
— — - ~- g
(at  position) (in local rest frame) (summed over all fluids)

is less than | €4,

e Shock-like fr.:
Thydro and pipyaro are mapped to T,,s and s proceeding

from exact baryon, energy and momentum conservation.

e Freeze-out a la Milekhin  F d—N — /fgas z,p) pldo, , do, = uu(d%)pmper

u, =hydro 4-velocity  (proper = in the frame, where u, = (1,0,0,0) )

o In “space-like regions” it is very similar to Cooper-Frye

o In “time-like regions” there is no problem with energy conservation, because

P = 0 on the system boundary

o In fact, there is no “time-like freeze-out” in the code. Only tiny fireballs are

frozen out.
o Problem of shadowing still persists

o Further study of Freeze-out is needed !



Kinematical variables

Notation

Longitudinal rapidity
S P |
y=5

& additive at the Lorentz transformation
& ultrarelativistic limit: if B — p, y — Intan6/2

& [nvariant cross section

Ed_a_ do B do
Bp  2rpidp, dy 2 midm, dy

with the transverse mass : m, = \/m2 +p1



Proton and (p — p) rapidity distributions
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3-Fluids: hadronic gas EoS

b = 2 fm for Au+Au(10 AGeV) and b = 2.2
fm for Pb+Pb(158 AGeV) are experimental
estimates.

Transport models: H. Weber, E.L. Bratkov-
skaya, W. Cassing and H. Stocker, Phys.
Rev. C67 (2003) 014904

E802: Phys. Rev. C60 (1999) 064901
E877: Phys. Rev. C62 (2000) 024901
E917: Phys. Rev. Lett. 86 (2001) 1970

NA49-1: Phys. Rev. Lett. 82 (1999) 2471
NA49-2(preiminary): Nucl. Phys. A661
(1999) 362c



Proton and (p — p) rapidity distributions
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Transverse mass distributions of protons
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U/ dy

U/ dy

UN/ Uy

Pion rapidity spectra
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Rapidity distributions for rare particles
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Decays of anti-hyperons are included.




Nuclear flow




Nucleon flow/ AGS data

Projection of the hadron trans-
verse momenta on the reaction

plane

) () = d*pr pa (dAN/dy d’pr)
' | d*pr (dN/dy d*pr)

Resonances are included

E877:  Phys. Rev. C56 (1997)
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Directed and elliptic flow (definitions)

Directed flow

= [ d° d > < >
v1(y) / pr or dy Ppr // pr &y pr Sin @
Elliptic flow
2 2
p,—Dp, dN dN ,
= [ d°pp d’ > < sin2¢ >
v2(y) / pr 02 dy dpy / / pr &y pr sin 2¢



Directed and elliptic flow / SPS data
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elliptic, vq
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J.-Y.Ollitrault, Phys. Rev. C93 (2001) 054906 )
NA49: Phys. Rev. Lett. 80 (1998) 4136 NA49: Phys. Rev. C68 (2003) 034903

3-Fluids: Hadron gas EoS is too hard
Pion shadowing (?7)



Multiplicity

non-strange strange multi-strange
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3F-hydro: Hadron gas EoS, b=2.2 fm, grand canonical ensemble, unique freeze-out




Baryon density evolution
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Temporal evolution of thermodynamic quantities

Baryon density Energy density
[ T T T T T T T ™ [ T T T T T T T T ]
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10 _ = = E =105 AsGeV, b=2.fm i & 10 _ == E=10.5 AsGeV, b=2.fm i
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where W (z) = np(x)



Phase diagram

central Pb+ Pb, Hadron gas EoS
300 . , . , | 300
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* Critical end-point: Z.Fodor, S.D.Katz, hep-lat /0402006.
Freeze-out curve: J.Cleymans, K.Redlich, Phys. Rev. Lett. 81 (1998) 5284.



Invariant 4-volume

How long and in which volume a quantity () exceeds a (), value

Vi(Q) = [ d*z ©(q - Q)

ol Pb+Pb(E,) b=2.2 fm | N
s | 1
€
= 102k =
q) - -
S [ i
-
2 I ]
° < i )
j o Lo ; e R e—e—0 10N, (noneq.)
- E,’/ / W o e ©6n; (eq.) I
ZE \ \ Y ,’I, Jow oy el ,,: 10 [ | 1 1 11 13091
12 5 10 20 50 100 10 100
Ep [A:GeV] Eiap [AGeV]

1. Q = np = baryonic density (solid lines)
2. () = ng(ﬁ = baryonic density of thermalized (unified) matter
sorentz-contracted cylinder: Vi(E,,) = mR* (2R/%en) - 0t with R4 fm, 63 fm/c



Summary and outlook

e All observables considered here (be- 5 ——T——T——T——
side flows) are reasonably reproduced -
by 3F-hydro with a simple hadronic we [

FoS, provided the friction is enhanced

as follows 2
1 20 Eiab [GeV] 160 -
1 |T 1 |T 1 1 1 1 1 T|
(0] 4 8 12 16 20
Sl/2 [GeV]

e [s this enhancement reasonable in view of model uncertainties?

(medium effects, multiparticle collisions, poor knowledge of various o)
At T ~ T, masses — 0 and the scattering length for ¢ — ¢, (quasi-)mesons and
gluons goes through oo 7 (at RHIC the enhancement factor 10 — 10? is needed for partonic o !;
E.Shuryak and I.Zahed, Phys.Rev. C70 (2004) 021901; "sticky molasses" : G.E.Brown, C.-H.Lee,
M.Rho, hep-ph/0402207)

e Different EoS (with different order of phase transition) should be probed
e Dilepton probes are very promising to disentangle EoS

o [, ~ 20 GeV /nucleon is preferable for production of thermalized matter with

nyg > 6ng
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Introduction

e in medium effects

d?Nee d®Nee(T(x), M, n, p7)
= d /d x/ d / d| Acc(M, n,
ddn Doy / n ® T (M, n, pr)

oneev and V. Skokov Dilepton production from hydrodynamically expanding fireball



Introduction

Dilepton
production R. Rapp and J. Wambach, Eur. Phys. J. A 6 (1999) 415
from hydrody-
namically [arXiv:hep-ph/9907502]
expanding 107
fireball

CERES/NA45 Pb(158AGeV)+Au

V. Toneev

|V p>0.2GeV <N,>=250
‘S“k]:)km-/ 10° 1 2.1<n<2.65 9
0,,>35mrad ---- free mm

—— in-med. Tt

Introduction

(d*N,,/dndM)/(dN,,/dn) [100MeV/c’]"

10 : : ‘
00 02 04 06 08 1.0 12

e in medium effects M, [GeV]
d?Nee M 4 2 oo d®Nee (T (x), M, 77, pT)
= dn [ d d dpy LR X T PT) (M, g,
dMdn — Dre, / "/ X/o ¢>/0 prapT dx dp cc(M. . pr)

oneev and V. Skokov Dilepton production from hydrodynamically expanding fireball



Initial conditions, entropy creation

Dilept?n
f,SL?i‘;Z‘JEEy. Entropy creation and
:f;;if;',:é fireball formation are
L Calculated within the
Vo transport code: QGSM
ke (quark-gluon string
model) that defines an
initial state for

subsequent hydro stage

Initial conditions

df X p) cham Zlelpss

(i=N,A, ... hyperons,m,K,n,p,w...)
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Initial conditions, entropy creation

Dilepton
production

e Entropy creation and for participants (central collision)
namically

pommslll fircball formation are 50 —— . . . .

fireball . .
calculated within the
V. Toneev 45 - Pb-Pb 158 A GeV

and V. transport code: QGSM

Skokov

(quark-gluon string
model) that defines an
initial state for
subsequent hydro stage

Initial conditions 30

df (x p) Z Cgam Z Closs

I
o
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R [fm]
_ relative nuclei distance
(i=N,A,... hyperons, 7, K,n,p,w
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Expansion
dynamics

Hydrodynamic equations

Isentropic expansion of the formed fireball is described by
3D relativistic hydrodynamics using calculated energy and
baryon densities as well as velocity profile (Flux corrected

SHASTA is applied)

V. Toneev and V. Skokov
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Hydrodynamic equations

DIz Isentropic expansion of the formed fireball is described by

production

BURLEL 3D relativistic hydrodynamics using calculated energy and

namically

expanding baryon densities as well as velocity profile (Flux corrected
SHASTA is applied)

V. Toneev
and V.

Skokov e Energy-momentum conservation

oTw
OxH

=0 with T" = (e + P) u'u” — P g

Expansion
dynamics
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Expansion
dynamics

Hydrodynamic equations

Isentropic expansion of the formed fireball is described by

3D relativistic hydrodynamics using calculated energy and
baryon densities as well as velocity profile (Flux corrected

SHASTA is applied)

e Energy-momentum

oTw
OxH

conservation

=0 with T" = (e + P) u'u” — P g

e Baryon number conservation

oL

OxH

V. Toneev and V. Skokov

=0 with J§=ng vt
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Hydrodynamic equations

DIz Isentropic expansion of the formed fireball is described by

production

BURLEL 3D relativistic hydrodynamics using calculated energy and

namically

expanding baryon densities as well as velocity profile (Flux corrected
SHASTA is applied)

V. Toneev
and V.

Skokov e Energy-momentum conservation

oTw
OxH

=0 with T" = (e + P) u'u” — P g

e Baryon number conservation

Expansion
dynamics

OJE
8—)(520 with Jg = ng u”

e Equation of state (EoS)

P = P(g, ng).
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Dilepton
production
from hydrody-
namically
expanding

fireball Statistical quark-hadron mixed phase EoS

V. Toneev (V.D. Toneev et al., J. Phys. G 27 (2001) 827 [nucl-th/0011029])
and V.
Skokov .

Hadronic sector T—0

generalized Zimanyi mean-field
model, (Nudl. Phys. Ad84, 647 (1988))

N
o
o

[IDanielewicz’s constraint
L Mix Phase EoS

e Saturation properties of ~== ideal Resonance Gas

n
o
o

nuclear matter (8inding energy, £ tsop
()
pressure, incompressibility at normal density) 2 100}
a
e Danielewicz's constraint sof g

(P. Danielevicz, R. Lacey, and W.G. Lynch,

0 e n 1 1 1 1
20 25 3.0 35 40 45 50

Science 298, 1592 (2002) [nucl-th/0208016]) ne/Ny
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Quark-gluon sector
Quasiparticle gas of interacting
quarks and gluons

e Asymptotic of quark masses
in HTL approximation (!)

e Comparison with lattice
QCD results for N, =2 +1
( Z. Fodor and S.D. Katz, JHEP 203, 14 (2002)
[hep-lat/0106002]; JHEP 404, 50 (2004)

[hep-lat/0402006])

AP = 'D(Ta.LLB) - P(TMU'B = O)
s = 100, 210, 330, 530 MeV/
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Time evolution of the fireball energy density

Dilepton
production t=20.0 fm/C,
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namically
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evolution
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Dileptons; comparison with CERES data
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