Pseudo-spin symmetry in nuclei

R.V.Jolos
Joint Institute for Nuclear Research
Dubna

Content

-- Introduction. Symmetries of the nuclear
mean field.

-- Nuclear shell model

-- Pseudo-spin symmetry in spherical and
deformed nuclei

-- Transformation from normal-oscillator
to pseudo-oscillator basis

-- Origin of the pseudo-spin symmetry

-- Identical bands

-- Summary



Introduction

The mean—field theory of the
nucleonic interaction plays a role of the
microscopic reference theory. Several mo-
re specific advanced theories can be built
after having introduced the single-nucleo-
nic mean field solutions as a basis. It is.
therefore, of fundamental importance to
the whole field of the nuclear structure
physics to discover, examine and use the
consequences of the underlying symmet-
ries, even if they are approximate.

Symmetries imply the existence of the
characteristic multiplet structures. From
the physics point of view, however, the
fact that the nuclear single-particle multi-
plets exist in the realistic spectra is an
intriguing result. Indeed, let us recall that
the nuclear mean field is a potential corres-
ponding to the averaging of the nucleon—
nucleon interactions over many occupied
single-nucleonic configurations.



And 1f at the end it resembles any simple-
looking function it is either incidental or a
result of a symmetry. At small deforma-
tions the geometrical characteristics such
as nucleonic probability distribution in
space are very different from those at
moderate and large deformations.
However, the small energy-spread of the
multiplets is nearly independent of the
deformation. This result is remarkable. It
signifies the existence of the symmetry of
the two-body interactions.



Nuclear shell model

The fundament of Nuclear physics is the
shell model. Since its discovery the shell
model made enormous impact on almost
all aspects of Nuclear physics.

The shell model is marvelous creation,
especially when we realize it exists in spite
of relatively strong nucleon-nucleon
forces.

The shell model in its simplest form 1s
a description of protons and neutrons mo-
ving independently in the potential well
which is a result of the average action of
all nucleons on one. So, this potential well
is called a nuclear mean field. It 1s clear
that the mean field should be determined
selfconsistently and is in fact a selfconsis-
tent mean field.

We now realize that this mean field
feature is a characteristic of many complex
systems and is relatively independent of
the character of the interparticle forces.



[n the history of the nuclear shell
model there was period of the initial
intensive development and then the period
when the majority of nuclear physicists
thought that the shell model has no relation
to nuclear structure.

The renaissance of the nuclear shell
model began by the paper of Maria
Goppert-Mayer (1948). She presented
strong experiment evidence for the reality
of magic numbers 20, 50, 82 and 126 (for
neutrons). She based her conclusion not
only on binding energies but also on
isotopic abundance. Her paper drew
attention of nuclear physicists to existence
of magic numbers in heavy nuclei. Some

of them tried to obtain shell closures at 50,
82 and 126.



The paper of M.Goppert-Mayer was
published in August 1948. On December
of 1948 already two manuscripts were
received in Physical Review. Both presen-
ted level schemes which reproduce the
magic numbers 50 and 82. However, their
schemes suggest also shell closure at 18,
32, 60 or have other problems. Thus, the
problem of the construction of the mean
field potential describing correctly all
magic numbers was not solved.

Up to this moment people believe in
LS-coupling, i.e. in the scheme where L, L,
S, S; are good (conserving) quantum
numbers. With this assumption it was
difficult to find a level scheme with shell
closure at 50, 82 and 126.

In the papers of M.GoOppert-Mayer and
J.H.D.Jensen et al. (1949) the strong spin-
orbit interaction has been introduced
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which give rise to the modern level
scheme reproducing all magic numbers.
This version of the shell model explains
angular and magnetic momenta of odd
nuclei. electromagnetic transitions and
“islands of isomerism™ near shell closures
where single particle states may have
widely different j-values.

The simplest potential which can be
used to describe nuclear mean field is a

harmonic usmllatﬂr Eﬂtﬂﬂtlﬂl
i m w2

And the Schmdmger equation looks as
CEA +fm )y Y
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Ficure 2-23 Sequence of one-particle orbits. The figure is taken from M. G. Mayer and
1. 1. D. Jensen, Elementary Theory of Nuclear Shell Siructure, p. 58, Wiley, New York, 1953,
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Twenty years later, i.e. 35 years ago a
quasidegeneracy was observed , at first for
spherical nuclei, (Arima, Harvey,... and
Hecht , Adler — 1969):

Single-particle states withJ=1+ % and
J=(1+2)- 4 lie very close in energy.

It is convenient to label them as
pseudospin doublets with the following

quantum numbers
N=AN=1 i
i PRk
. ‘fi?:k{ LJ';E*.!,

This introduction of the pseudospin and

pseudoorbital momenta is always possible

mathematically
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About two years ago | resxamined these pseudospin doublets, the origin of which remained
a mystery, and I discovered that they are a consequence of a relativistic symmetry [6,7]. I discussed
this revelation with Dick and he suggested that this symmetry may have some connection with
chiral symmetry. In this paper I would like to discuss the progress that has been made in
understanding pseudospin symmetry, including an enticing connection with chiral symmetry via
QCD sum rules.

1. Pseudospin symmetry

The spherical shell model orbitals that were observed to be quasi-degenerate have non-
relativistic quantum numbers(n, £, j=¢ +8Hand(n, — 1, £ + 2 j=¢ +3) where n, ¢/, and [ are
the single-nucleon radial, orbital, and total angular momentum guantum numbers, respectively
[4,5]. This doublet structure is expressed in terms of a “pseudo™ orbital angular momentum
£ = ¢ + 1, the average of the orbital angular momentum of the two states in doublet and “psendo”™
spin, ¥ = 4 For example, (nsy, (n, — 1)dy) will have =1, (repy {n, — 1) fi) will have 7 =2, etc, These
doublets are almost degenerate with respect to pseudospin, since j = ¢ £ 5 for the two states in the
doublet; examples are shown in Fig. 1. Pseudospin “symmetry” was shown to exist in deformed
nuclei as well [8,9] and has been used to explain features of deformed nuclei, including superdefor-
mation [10] and identical bands [11,12]. However, the origin of pseudospin symmetry remained
a mystery and “no deeper understanding of the origin of these (approximate) degeneracies” existed
[13]. A few years ago it was shown that relativistic mean field theories gave approximately the
correct spin-orbit splitting to produce the pseudospin doublets [14]. In this paper we shall review

Examples of Pseudospin Doublets

(ne 2fi(n-—1)2 42,7 +1)

§ pseudo-orbital angular momentum, § pseudo-spin
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Fig. 1. Examples of pscudospin doublets in the **Pb region. i, is the radial quantum number of the stute, £ 15 the orttal
angular momentum,  the total angular momentum.
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Of main importance, however, 1s to
determine if such a scheme helps to
classify physically observable states.

The first question is: why pseudo spin-
orbital coupling scheme should be
seriously considered.
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Approximation

IR“E Rn‘ﬂ' 12_# ﬂ('l -2 C.U?Z.Si'

In this case interaction matrix elements
depend only on j, j* and we can replace
=l and =(1-2)+ £ orbitals by
}=I+ 7 and =1 £ without changing
any matrix elements of the effective
interaction. This replacement means
transformation to 1.8 coupling scheme.
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Fgure 5-2 Proton orbits in prolate potential (50< Z < 82). The spectra in this and the
following figures (Figs. 5-2 to 5-5) are taken from C. Gustafson, . L. Lamm, B. Nilsson, and
5. G. Nilsson, Arkie Fesik 36, 613 (1967). The orbits are labeled by the asymptotic quantum
numbers [NmyAfl]. Levels with even and odd parity are drawn with solid and dashed lines,
respectively. (Erratum: The orbit [301 3/2] is incorrectly labeled [301 1/2] at bottom of
figure.)
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It 1s seen that splitting of the doublets
increase with deviation of ¥ from ¥ =0.
This disappearance of the near degeneracy
of the pseudo spin-orbit doublets with
increasing triaxiality could be simply a re-
sult of the loss of the axial symmetry
because j =X isno longer a good
quantum number. Or it could be more fun-
damental , i.e. the trixiality actually
destroys the pseudo-spin symmetry.

T'o determine whether pseudo-spin
symmetry is a physically significant con-
cept for nonaxial systems requires a
nonspectral measure which can be a corre-
lation coefficient

%= < U-hk-br> _LhE> ~£-£ ,
Jeuhs <ubis  Jadbvs-bs

<< >> denotes the trace over the model
space &Rk> = Efu kL

k=<<k>>/d, d is a dimension of the model
space.



Clearly,ifk=h §=+1.If ¥ =0 the
operators are uncorrelated. Thus, the state-
ment that the pseudo-spin scheme is valid
for triaxial nuclei means that the correla-
tion coefficient between h=h .0 and k=1-s
must be small. The correlation coefficient
can not be small 1f the spectrum displays
large 15 splitting.

The calculated results show that ¥
for .S is much smaller by about a factor of

10 than ¥ for Is.
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states of the snisotropic oscillator when there is no spin—orbit (1 - &) or orbit-arbit (17}
interaction; in the general case, the deviation of (A) from »n provides a pood measure
for the mixing generated by the spin-orbit ({ - 5} or arbit-arbit (17} interactions.

The generalized Nilsson Hamiltonian, Eq. (7). was also diagonalized in the spherical
basis | 14] so the cigenstates |i) in BEg. (10) were obtained as

1) = 3 Cmm, Injms}, ()

sy

where the [njm;) are the cigenfunctions of the tsotropic oscillator with the mixing 1o
higher shells explicitly included. In this representation the pseudo transformation (5)
can be achieved by simply relabeling the spherical basis states and thus il i5 & convemient
hawis to evaluste Bq. (10) when & is an operator defined in the spherical pseudo-spin
reposentation, as [+ 7 and T are.
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5. Resulis

The valves for C and D of Bq. (7) that were used in the calculations are typical
numbers for actinide nucled [16], namely, C = 0.1274 and O = 0.0382, or D =
0.0267 for protons or neutrons, respectively. To have a seale for companson, correlation
coefficients of the generalized Nilsson Hamiltonian, Eq. (7), with the pseudo (F - F) as
well as the normal (1 - 5} spin-orbit operators were calculated, The results are shown
in Figs. 2 and 3.

The valise of { for 40 = C, which corresponds 1o exact pseudo-spin symmetry {no
F+7 term in the Hamiltonian) in the spherical limit, is very interesting because it
provides an independent measure of pseudo-spin splitting induced by the deformation
ltself. Specifically, for = 0, the [ F term drops out (4D = €) of the Hamiltonian,
Eej. (2} This yields » correlation coefficient { = 0 which, in this case, Is & consequence
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The interesting fact is the relation of
the transformation from the normal-oscil-

lator to the pseudo-oscillator basis to the
superalgebra Osp(1/2).

The ﬂperatnrs
Ki= 577
K, = 5(7-

K_= 4%
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Origin of the pseudo-spin symmetry

The origin of the T term in the single
particle harmonic oscillator Hamiltonian is
a flatness of the mean field in the interior
region as compared w1th the quadratic
form V(r)=4*Mw’ r*. If this spherical
potential is replaced by one with an infini-
te depth the single particle energies are gi-
ven by :

E,. h_
where M is the nucleon mass, R is the
radius of the well and the x,, are zeroes of
the spherical Bessel functions.

= 2MR* D:'

Approximately
Table
n 1 X/ Xp-Xpe  l(I+1)
4 0 3.000 0.00 0
4 2 2.895 6.11 6
4 4 2.605 21.85 20

The results show that splitting follows an
I(1+1) rules. Therefurf-



Next consider the strength of the spin-
orbit coupling. It follows from Dirac
equation and using a nonrelativistic
reduction thﬂt

exan ® a!'?-(A E;mn)g'g

In this expression @ and £, are
respectively the nucleon density at radius T
and the nuclear matter density. The
quantity B i1s related to the strength of the
scalar and vector coupling constants. The
spin-orbit strength V¢ can be obtained
from the average of Veg  over the region
inside radius R

To obtain M =0.5 requires B=0.4.



In the simplest version of the theory
= 3 (B +By )

With its scalar and vector components
given by

=88/ MC

Where M. and &, . respectively denote
meson masses and coupling constants. The
Numbu-Jona-Lasinio model which starts
with massless quarks and generate hadron
masses by spontaneous symmetry breaking
gives

Other models give M=0.447 (Walecka)
and [t = 0.635.

The splitting of the degenerate pairs
followsa 1 I+1) rule. Empirically,

[=04,  [=06.

T



Later J.Ginocchio has shown that
pseudo-spin symmetry in nuclei arise from
nucleons moving in a relativistic mean
field which has an attractive scalar and
repulsive vector potential nearly equal in
magnitude.

The Dirac equation with external
scalar, Vg . and vector, V,, , potentials 1s
given by

[edf ¢ p(ms™ +Ve )+ V, 1Y -EY

where & and f are the usual Dirac
matrices. In the case of spherical
symmetry scalar and vector potentials
depend only on the radial coordinate. In
this case the orbital angular momentum is
not a coserved quantity in general. Instead
a nucleon moving in a spherical relativistic
field is labeled by a radial quantum num-
ber N, . total angular momentum ], its
projection m, and k=-B(64 +1)
The eigenvalues of k are k=* (J+ %),
- for aligned spin and + for unaligned
spin.

(X ¢ ) :
P-J:‘I);J"= B

%0



- Thus, the quantum numbe d the
radial quantum number are suffi-

- cient to label orbitals. Thespherically
symmetric Dirac wave function can be
written in terms of upper and lower com-

s e =&~
'1{“..,“ : Lgﬂ [.Y:}L]i"! i; E'f“ ['?E""I]J"' f)

= b+ (= L4
Ve (A 001 1y, 202

where g, . I, are the radial wave
functions

[ﬁ,, %E]J“CE—E—VM) £, O
IS A TRICROL I
2

where r is the radial coordinate in units of
hc/me®,  \V (r)F[VW® —V,)]/mc’
and E is the binding energy of the nucleon

in units of the free nucleon mass.
AL = [ Vs + V, ] / mC*



In the limit of equality of the
magnitude of the of the vector and scalar
potentials, A (r)=0, the pseudo-spin is
exactly conserved. We solve for g, in Eq.
(2) and substitute into Eq. (1)

{j‘j r i i':r. - e LLet) + QVL'L) ”2+E)}£;9 (3)

a
) &xL

where x= ‘[/E_" r. and
E =K""‘f; K}U

~

7 =-k , KLO

which agrees with original definition of
the pseudo-orbital angular momentum.
The physical significance is revealed: "It is
the orbital angular momentum™ of the
lower component of the Dirac wave
function and. in this limit , it1s a
conserved quantum number.



The Schrodinger Eq.( 3 ) with an
attractive potential V depends only on the
pseudo-orbital angular momentum 1
and not on k. Hence the eigenenergies do
not depend on k but only on 1. Thus, the
doublets with the sameT but different k
will be degenerate producing pseudo-spin
symmetry. However, in the limit A =0
there will be no bound Dirac valence
states. For small A there will be -
approximate pseudo-spin symmet VL,
alz,ll,{ WI:,;Q ME,&; of K’Lm{ Dirax
valence stats fon neelel.



Such a near equality of the scalar and
vector mean fields has been obtained
-in relativistic field theories with interac-

ting nucleons and mesons;
-in relativistic field theories with nucleons
interacting via Skyrme-type interactions.
Probably this result is a general feature of
any relativistic model which fits nuclear
binding energies.

The energy splitting between states
with the same pseudo-orbital angular
momentum decreases as the binding
energy decreases ans as T decreases.



Applying QCD sum rules in nuclear
matter, the ratio of the scalar and vector
selfenergies were determined to be

{,1 = —Ei y Mmg=F(m rmy)
v 2 6y = 1510 MeVv
where 6, is the sigma term which
arises from the spontaneous breaking of
chiral symmetry. For reasonable values of
6y and quark masses, this ratio is close
to —1. The implication of these results is
that chiral symmetry breaking is
responsible for a scalar field being
approximately equal in magnitude to the
vector field, thereby producing pseudo-

Spin symmetry.
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Table. Experimental (Exp) and relativis-

tic mean field (RMF) pseudo-spin

energy splittinﬁs for various
doublets in 4"® pp,

)i Exp RMF

doublde ey (MeV)
4 ohy-tly 1.073 2.575
3 0 34, ~ 1dsz, 1.791 4.333
2 1lg-2Py, 0328 0.697
1

——-H—--h—--—‘-h—--&—q--—q-h—-h—q-uq-h—-ﬂ—



Table. The binding energies of the
pseudo-spin partners in
8 7r and "9 7r.

.11 120

. % o :
nlj Zr Zr nlj Zr Zr

11

254 -31.40 -31.62 2p,, -16.36 -18.8]
ldy, -33.40 -33.23 1fs, -18.85 -20.95
3sg -1.53  -6.00 2ds -3.73 -7.39
2dy -160 586 1g, -4.54 -8.52
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The relative weakness of the pseudo-
spin-orbit coupling implies that pseudo-
orbital angular momenta of the
quasiparticles are strongly coupled to the
deformation forming, together with the
core, a rotating system with angular
momentum

T=R+T
T'he pseudo-spins are then added to form

the total angular momentum
J=T +5%.



Identical bands

The consequence of the pseudo-spin
symmetry: the appearance of identical
bands. Strong deformation in the

pseudo- -space part of the many-particle
basis gives rise to L (L + 1) rotational
sequences for each of the (25 +1)
orientations of the pseudo-spin. A
prediction of the theory is that additional,
strongly deformed bands should be found.
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Table. Comparison of the identical bands
gsf Tb (yrast) and 52 Gd™

in

(excited). B
151 152

| Th | Gd
133/2 1380.7 66 1378.0
129/2 1330.0 64 1337.0
125/2 1278.5 62 1277.0
121/2 1228.5 60 1229.0
117/2 1178.9 58 1180.0
113/2 1130.2 56 1130.0
109/2 1082.5 54 1082.0
105/2 1034.9 52 1036.0
101/2 088.7 50 990.0
97/2 042.8 48 944.0
93/2 898.0 46 900.0
89/2 854.0 44 856.0
85/2 811.3 42 813.0
81/2 769.2 40 770.0




Table. Comparison of the identical
superdeformed bands in

752 Dy (yrast) and T Th

(excited).
152 157

I Dy I Tb

59 1353.0 119/2 1353.0
57 1304.7 115/2 1305.0
33 1256.6 111/2 1256.0
53 1208.7 107/2 1207.0
51 1160.8 103/2 1158.0
49 1112.7 99/2 1112.0
47 1064.8 95/2 1063.0
435 1017.0 91/2 1016.0
43 970.0 87/2 970.0
41 923.1 83/2 922.0
39 876.1 79/2 976.0
37 829.2 75/2 828.0
35 783.5 71/2 783.0
33 137.5 67/2 738.0
31 692.2 63/2 692.0
29 647.2 59/2 647.0




Thus,

1. Pseudo-spin symmetry is an
approximate relativistic symmetry of the
nucleus as demonstrated by
experimental data. This symmetry
follows from the fact that the vector and
scalar potentials of nucleons moving in
a relativistic mean field are
approximately equal in magnitude and
opposite in sign. QCD sum rules in
nuclear matter support this conclusion.
Such an observation suggests a
fundamental reason for pseudo-spin
symmetry.

2. The pseudo-spin symmetry improves as
the pseudo-orbital angular momentum |

decreases and as the binding energy
decreases.
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FIG. 2. The single proton levels near the Fermi energy for the
isolopes of Z=120 versus the neutron number, computed with
Skll. Due to minimal relative changes of the single proton levels
the proton gap at Z= 120 vanishes in the vicinity of N= 184, the
neutron number where the proton shell gap &3, 15 lowest, see Fig. 1.
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Summary

1. We have seen that the pseudo-spin
symmetry is supported by the
experimental data for nuclei belonging
to the traditionally investigated regions
of the nuclide chart.

2. Pseudo-spin symmetry is justified
theoretically.

3. It is interesting will it be confirmed by
experimental data for exotic nuclei, for
instance, for superheavy nuclei.
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