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Usual close-coupling method for 2-body collisions

A()+B= A() + B:

expansion of the total wave function W (R, &) in terms of inner
stationary states ¢ (&) of colliding subsystems,

V(R, &) =) or(Ovr(R),
k

+ standard boundary conditions for ¢.(R) at R — oo (incoming and
outgoing waves in open channels, and damping in closed channels).
But: In real quantum systems (atoms, nuclei, etc.) any excited
state has a finite life time 7, = A/, < 0.

When the state can be considered as a stationary during collision?
Evident condition:

life time is large as compare with a collision time,

Tk > Teoll ~ Ri/v,
(R; is an interaction radius).



The parameter v, = 7¢,;;/7 = . R;/hv gives a criterion of the state
stationarity during collisions: at v, < 1 the state non-stationarity
during collision can be neglected.

The condition v, < 1 is fulfilled for the most of atomic and nuclear
states.

However the states of hadronic atoms with low angular momenta
(ns, np) have large annihilation (nuclear absorbtion) widths I",,; and
small life times r,,; = h/I,;, .. the condition v, < 1 can be violated.
The state with v, 2 1

¢ can not be a state of incoming channels,

¢ can disappear during collision, being admixed to other states.

w PROBLEM:
How to take into account effects of very short-lived (annihilating)
states on collisions of hadronic atoms with environment atoms?
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EXxisting approaches:

¢ Semiclassical approximations with regard to annihilation (nuclear
absorbtion) during collisions

(M. Leon and H.A. Bethe, Phys. Rev. 127 (1961) 636,

T.P. Terada and R.S. Hayano, Phys. Rev. C 55 (1997) 73; ...).
holds for "hot” hadronic atoms: ka > 1(F 2> 1 eV for (pp),,; + H)

o Quantum close-coupling method

The single attempt within the quantum close-coupling method:
T.S. Jensen and V.E. Markushin (Eur. Phys. J. D 19 (2002) 165)
taken into account nuclear absorbtion in ns-states for the collisions
(7" p)y + H.

However the authors use an artificial assumption that the [,; is
turned off at distances between two atoms R > Rp = bag that
contradicts to the physical reality.



OUR AIM:
Extended close-coupling method to include short-lived (annihilating)
states into the basis set with correct asymptotic conditions

General consideration
For definiteness we consider collisions of hadronic atom (or ion)
(pZ),,; with a neutral atom B

(PZ)mi + B — (pZ)y + B,

where Z is a bar nucleus (e.g., p or HeTT). Heavy particles (nuclei
and antiproton) are slow (v, < ve),

.". electronic variables can be separated out within adiabatic approx-
imation reducing the problem to the 3-body (p — Z — B).



Total effective 3-body hamiltonian:
H =Tg+ V(R,r) + h(r),
h and r are inner hamiltonian and coordinates of (pZ2),
T = (—1/2m)V3,

R and m are the Kkinetic energy operator, relative coordinates and
reduced mass of colliding subsystems,
V(R,r) is an operator of the interaction potential between antipro-

tonic and ordinary atoms.



Model of Hadronic Atom:

h = ho+ Uopt(r)a

ho is @ hamiltonian of hydrogen-like atom with the nucleus charge
Z and the reduced mass pu,

Uopt(r) is a short-range complex optical potential of the p-nucleus
interaction, and ImUy,(r) <0

that has to be taken into account for s and p-states.

For | > 2: Uypy(r) is negligible, h = hg, eigenfunctions ¢,,,,,(r) and

eigenvalues e, = —uZ?2/2n? of h are hydrogen-like.
For s and p-states: eigenvalues are complex, E,,; = en+AFE,;, where
AFE, = —e,; — il,;/2. Eigenfunctions ¢,,;,,(r) are in general differ

from hydrogen-like.



Coupled channels approach:
Basis for close-coupling expansion:

®,(r,2r) = (¢u(r) @YL(QR)) s>

where L and J are relative and total angular momenta.

Total wave function: W;(R,r) = 3; ®,;(r,Qg)v;;(R)/R,
where 7 is a number of an incoming channel
System of coupled-channel equations:

Whi(R) + k7 — Li(Lj + 1)/R?| v55(R) = 2m Y Vj(R) ¥ (R)
k

]C2 _ Qm(E — en) . if l] = 2 (real k]),
J 2m(E —en+ ey +50y)  ifl; <1(ImkE; > 0).



BOUNDARY CONDITIONS:

Pji(R) ——

Y (R) =0 at [; <1, all j,any R

\‘;Liexp[ i(k;R — L;w/2)] — \/—exp[l(k R — Ljm/2)]5;
at lj, li Z 2
%z(R) Too> \

_ﬁ expli(k;R — L;m/2)] ~ exp[-Im(k;R)]
at 1; < 1,1; > 2

(standard conditions in the channels with lj, l; 2 2, but in the chan-

nels with [; < 1,1; > 2 ¢;;(R) —~ exp(— Im(kj)R), and ¢;;(R) = 0
at [; < 1)



In order to solve close-coupling equations with the above-mentioned
boundary conditions, we divide the total space of N channels into
the subspace o of the stationary states (I > 2) and the subspace
B of the annihilating states (I = 0, 1) and construct two types of
the (N x N) matrix solutions X(r) and Y (r), which are defined by
the asymptotic forms at r — oco: Xj;, Y;; — 0 at @« # j, X;; and Yy,
at + € o tend to ordinary incoming and outgoing waves, whereas at
i€ 3 X;(R) =0, and Y;,(R) tends to damping outgoing wave. Total
matrix of solutions with the correct asymptotic behaviour is

F(r) =[X({r) - Y (r)C].

At a small r = rg it has to be sewed with the (N x N) matrix
of regular solutions U(r)A, where U(r) is obtained by a standard
way with account for the complex energy shifts in the annihilating
channels, and A is an arbitrary matrix.



This procedure yields the (N x N) matrix

. Caa O
©= (Cﬁa 0)

The submatrix Copo = S is the S-matrix of the transitions between
the states in the subspace «, whereas other elements (Cﬁa) don’t
have a real physical meaning.

The S-matrix is not unitary, because the hamiltonian of the problem
IS non-hermitian. The 'unitary defect’

(131849
JEQ
might be used to obtain the cross section of induced annihilation
for the initial state 7 € «.
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EXAMPLE OF APPLICATION:
Stark transitions and annihilation in collisions (pHet™T),; + He at

E~10 K
Potential V(R,r) can be calculated by quantum-chemistry methods.
But in our problem: (r) ~n?/u~0.3, Rsr 2 1 a.u., ..

VR,r) 2 Vo(R)+ (d-VR)Vo(R) + ...

Vo(R) is an adiabatic potential of interaction between He atom and
single positive charge of the ion, d is a dipole operator of (ﬁHe++)
that can mix nl states.

Analytical approximation of the numerical potential (J.Russel, J.Cohen):

Vo(R) = Vir(R) + Vp(R),
VM (R) = Do (exp[-28(R — Re)] — 2exp[-B8(R — Re)]) (Morse),
Vo(R) = _zi}z‘l[l — exp(—(R — Re)* at R > Re
(polarization long-range interaction)
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Parameters:
Do = 0.075, Re = 1.46, 8 = 1.65, a = 1.383, v = 0.005 a.u.

For ns- and np-states:

32(n?2—1)

3n°

For p —% He:

M~ 11keV, T[o,~36eV, ey~ 0.3,



Some technical details of the numerical solution of the system of
differential equation:

¢ The solutions X(R) and Y (R) are taken in the asymptotic form
(i.e., are reduced to Hankel-Riccatti function) for 'normal’ channels
at R > 150 a.u.

Matrix elements of channel coupling

Vik(R) = (P(r, 2r) |V (R, 1)|P(r, 2R))
are taken into account
¢ up to R =150 a.u. for L, I, = 2,
¢ up to R =10 a.u. for (I, lx) =(1, 2) or (2, 1), andup to R=5
a.u. for (I, ) =(0, 1) or (1, 0), because of large complex energy
shifts as compare with V;.(R) at these distances.
¢ In addition, the matrix elements V;,.(R) are calculated with H-like

wave functions for all the states, because the wave functions of the
annihilating states are disturbed by a strong interaction only at very

small distances (~ 10~13 cm).
Note: Jensen& Markushin supposed [,;, = 0 at R > Rgo. Instead, we have
Vas(R) — O at some R.
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Dependence of total Stark and induced annihilation cross section
on initial state (n = 30, £ = 10K)

1000 —

ross section (a.u.)

1 - og; without annihilation, 2 - og; with account for annihilation, 3 - o4unin
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CONCLUSION

¢ We have formulated extended quantum close-coupling method
with account for short-lived (annihilating) states in the basis set
with correct asymptotic conditions in the annihilating channels.

¢ The method is applied to calculations of Stark transition and
induced annihilation in the collisions (pHe™T),; + He at E ~ 10 K

¢ This approach can be applied to collisions of many other hadronic
atoms with ordinary atoms in media
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