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Usual close-coupling method for 2-body collisions

A(i) + B ⇒ A(j) + B :

expansion of the total wave function Ψ(R, ξ) in terms of inner
stationary states φk(ξ) of colliding subsystems,

Ψ(R, ξ) =
∑

k

φk(ξ)ψk(R),

+ standard boundary conditions for ψk(R) at R →∞ (incoming and
outgoing waves in open channels, and damping in closed channels).
But: In real quantum systems (atoms, nuclei, etc.) any excited
state has a finite life time τk = ~/Γk < ∞.
When the state can be considered as a stationary during collision?
Evident condition:
life time is large as compare with a collision time,

τk À τcoll ∼ Ri/v,

(Ri is an interaction radius).

1



The parameter νk = τcoll/τk = ΓkRi/~v gives a criterion of the state

stationarity during collisions: at νk ¿ 1 the state non-stationarity

during collision can be neglected.

The condition νk ¿ 1 is fulfilled for the most of atomic and nuclear

states.

However the states of hadronic atoms with low angular momenta

(ns, np) have large annihilation (nuclear absorbtion) widths Γnl and

small life times τnl = ~/Γnl, ∴ the condition νk ¿ 1 can be violated.

The state with νk & 1

¦ can not be a state of incoming channels,

¦ can disappear during collision, being admixed to other states.

F PROBLEM:

How to take into account effects of very short-lived (annihilating)

states on collisions of hadronic atoms with environment atoms?
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Existing approaches:

¦ Semiclassical approximations with regard to annihilation (nuclear

absorbtion) during collisions

(M. Leon and H.A. Bethe, Phys. Rev. 127 (1961) 636;

T.P. Terada and R.S. Hayano, Phys. Rev. C 55 (1997) 73; . . . ).

holds for ”hot” hadronic atoms: ka À 1 (E & 1 eV for (pp̄)nl + H)

¦ Quantum close-coupling method

The single attempt within the quantum close-coupling method:

T.S. Jensen and V.E. Markushin (Eur. Phys. J. D 19 (2002) 165)

taken into account nuclear absorbtion in ns-states for the collisions

(π−p)nl + H.

However the authors use an artificial assumption that the Γnl is

turned off at distances between two atoms R > R0 = 5a0 that

contradicts to the physical reality.
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OUR AIM:

Extended close-coupling method to include short-lived (annihilating)

states into the basis set with correct asymptotic conditions

General consideration

For definiteness we consider collisions of hadronic atom (or ion)

(p̄Z)nl with a neutral atom B

(p̄Z)nl + B → (p̄Z)n′l′ + B,

where Z is a bar nucleus (e.g., p or He++). Heavy particles (nuclei

and antiproton) are slow (vhp ¿ ve),

∴ electronic variables can be separated out within adiabatic approx-

imation reducing the problem to the 3-body (p̄− Z −B).
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Total effective 3-body hamiltonian:

H = TR + V (R, r) + h(r),

h and r are inner hamiltonian and coordinates of (p̄Z),

T = (−1/2m)∇2
R,

R and m are the kinetic energy operator, relative coordinates and

reduced mass of colliding subsystems,

V (R, r) is an operator of the interaction potential between antipro-

tonic and ordinary atoms.
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Model of Hadronic Atom:

h = h0 + Uopt(r),

h0 is a hamiltonian of hydrogen-like atom with the nucleus charge

Z and the reduced mass µ,

Uopt(r) is a short-range complex optical potential of the p̄-nucleus

interaction, and ImUopt(r) ≤ 0

that has to be taken into account for s and p-states.

For l > 2: Uopt(r) is negligible, h ⇒ h0, eigenfunctions φnlm(r) and

eigenvalues en = −µZ2/2n2 of h are hydrogen-like.

For s and p-states: eigenvalues are complex, Enl = en+∆Enl, where

∆Enl = −εnl − iΓnl/2. Eigenfunctions φnlm(r) are in general differ

from hydrogen-like.
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Coupled channels approach:

Basis for close-coupling expansion:

Φj(r,ΩR) = (φnl(r)⊗ YL(ΩR))JM ,

where L and J are relative and total angular momenta.

Total wave function: Ψi(R, r) =
∑

j Φj(r,ΩR)ψji(R)/R,

where i is a number of an incoming channel

System of coupled-channel equations:

ψ′′ji(R) +
[
k2
j − Lj(Lj + 1)/R2

]
ψji(R) = 2m

∑

k

Vjk(R)ψki(R)

k2
j =




2m(E − en) if lj > 2 (real kj),

2m(E − en + εnl +
i
2Γnl) if lj 6 1 (Im kj > 0).
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BOUNDARY CONDITIONS:

ψji(R) −−−→
R→0

0,

ψji(R) = 0 at li 6 1, all j, any R

ψji(R) −−−−→
R→∞





δij√
ki

exp[−i(kiR− Liπ/2)]− 1√
kj

exp[i(kjR− Ljπ/2)]Sji

at lj, li > 2

− 1√
kj

exp[i(kjR− Ljπ/2)] ∼ exp[−Im(kjR)]

at lj 6 1, li > 2

(standard conditions in the channels with lj, li > 2, but in the chan-
nels with lj 6 1, li > 2 ψji(R) →∼ exp(−Im(kj)R), and ψji(R) = 0
at li 6 1)
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In order to solve close-coupling equations with the above-mentioned

boundary conditions, we divide the total space of N channels into

the subspace α of the stationary states (l ≥ 2) and the subspace

β of the annihilating states (l = 0, 1) and construct two types of

the (N × N) matrix solutions X(r) and Y (r), which are defined by

the asymptotic forms at r → ∞: Xji, Yji → 0 at i 6= j, Xii and Yii

at i ∈ α tend to ordinary incoming and outgoing waves, whereas at

i ∈ β Xii(R) ≡ 0, and Yii(R) tends to damping outgoing wave. Total

matrix of solutions with the correct asymptotic behaviour is

F (r) = [X(r)− Y (r)C].

At a small r = rs it has to be sewed with the (N × N) matrix

of regular solutions U(r)A, where U(r) is obtained by a standard

way with account for the complex energy shifts in the annihilating

channels, and A is an arbitrary matrix.
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This procedure yields the (N ×N) matrix

C =

(
Cαα 0
Cβα 0

)

The submatrix Cαα = S is the S-matrix of the transitions between

the states in the subspace α, whereas other elements (Cβα) don’t

have a real physical meaning.

The S-matrix is not unitary, because the hamiltonian of the problem

is non-hermitian. The ’unitary defect’

(1−
∑

j∈α

|Sji|2)

might be used to obtain the cross section of induced annihilation

for the initial state i ∈ α.

10



EXAMPLE OF APPLICATION:
Stark transitions and annihilation in collisions (p̄He++)nl + He at
E ∼ 10 K

Potential V (R, r) can be calculated by quantum-chemistry methods.
But in our problem: 〈r〉 ∼ n2/µ ∼ 0.3, Reff & 1 a.u., ∴

V (R, r) ' V0(R) + (d · ∇R)V0(R) + . . .

V0(R) is an adiabatic potential of interaction between He atom and
single positive charge of the ion, d is a dipole operator of (p̄He++)
that can mix nl states.

Analytical approximation of the numerical potential (J.Russel, J.Cohen):

V0(R) = VM(R) + Vp(R),

VM(R) = D0 (exp[−2β(R−Re)]− 2exp[−β(R−Re)]) (Morse),

Vp(R) = − α

2R4
[1− exp(−γ(R−Re)

4] at R > Re

(polarization long-range interaction)
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Parameters:

D0 = 0.075, Re = 1.46, β = 1.65, α = 1.383, γ = 0.005 a.u.

For ns- and np-states:

∆Ens = ∆E1s/n3, ∆Enp = ∆E2p ·
32(n2 − 1)

3n5

For p̄−4 He:

Γ1s ' 11keV, Γ2p ' 36eV, εnl ' 0.3Γnl
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Some technical details of the numerical solution of the system of
differential equation:
¨ The solutions X(R) and Y (R) are taken in the asymptotic form
(i.e., are reduced to Hankel-Riccatti function) for ’normal’ channels
at R > 150 a.u.
Matrix elements of channel coupling

Vjk(R) = 〈Φj(r,ΩR)|V (R, r)|Φk(r,ΩR)〉
are taken into account
¨ up to R = 150 a.u. for lj, lk > 2,
¨ up to R = 10 a.u. for (lj, lk) =(1, 2) or (2, 1), and up to R = 5
a.u. for (lj, lk) =(0, 1) or (1, 0), because of large complex energy
shifts as compare with Vjk(R) at these distances.
¨ In addition, the matrix elements Vjk(R) are calculated with H-like
wave functions for all the states, because the wave functions of the
annihilating states are disturbed by a strong interaction only at very
small distances (∼ 10−13 cm).
Note: Jensen& Markushin supposed Γnl = 0 at R > R0. Instead, we have
Vαβ(R) → 0 at some R.
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Dependence of total Stark and induced annihilation cross section
on initial state (n = 30, E = 10K)
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1 - σSt without annihilation, 2 - σSt with account for annihilation, 3 - σannih
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CONCLUSION

¨ We have formulated extended quantum close-coupling method

with account for short-lived (annihilating) states in the basis set

with correct asymptotic conditions in the annihilating channels.

¨ The method is applied to calculations of Stark transition and

induced annihilation in the collisions (p̄He++)nl + He at E ∼ 10 K

¨ This approach can be applied to collisions of many other hadronic

atoms with ordinary atoms in media
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