

International Conference on Muon Catalyzed Fusion and Related Topics

μCF - *0*7

Dubna, 18 - 21 June 2007

THE HYPERFINE STRUCTURE OF ANTIPROTONIC HELIUM AND THE ANTIPROTON MAGNETIC

Eberhard Widmann

Stefan Meyer Institute for Subatomic Physics

ASACUSA COLLABORATION @ CERN-AD

Asakusa Kannon Temple by Utagawa Hiroshige (1797-1858)

Spokesman: R.S. Hayano, University of Tokyo

Atomic Spectroscopy And Collisions Using Slow Antiprotons

- University of Tokyo, Japan
 - College of Arts and Sciences, Institute of Physics
 - Faculty of Science, Department of Physics
- RIKEN, Saitama, Japan
- SMI, Austria
- Aarhus University & ISA, Denmark
- Niels Bohr Institute, Copenhagen, Denmark
- Max-Planck-Institut f
 ür Kernphysik, Heidelberg, Germany
- KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary
- University of Debrecen, Hungary
- Brescia University & INFN, Italy
- University of Wales, Swansea, UK
- The Queen's University of Belfast, Ireland

~ 44 members

PHE+ "ATOMCULE" - A NATURALLY OCCURRING TRAP FOR ANTIPROTONS

short-lived states (Auger decay) $\tau \leq 10 \text{ ns}$

PHE+ "ATOMCULE" - A NATURALLY OCCURRING TRAP FOR ANTIPROTONS

PRECISION SPECTROSCOPY

UAW

PRECISION SPECTROSCOPY

pairs of metastable - shortlived state

- laser spectroscopy
- forced annihilation
- determine mass, charge of antiproton

OAW

PRECISION SPECTROSCOPY

CPT TESTS - PDG

Tests of particle/antiparticle symmetry properties

- Inconsistent definition of figure of merit: comparison difficult
- Pattern of CPT violation unknown (P: weak interaction, CP: mesons)

CPT TEST - SYSTEMATIC COMPARISON

- Standard Model Extension: V.A. Kostelecky et al.
 - parameters of extended Dirac equ: dimension of energy

absolute accurace (GeV)

$$(i\gamma^{\mu}D^{\mu} - M - a_{\mu}\gamma^{\mu} - b_{\mu}\gamma_{5}\gamma^{\mu} - \frac{1}{2}H_{\mu\nu}\sigma^{\mu\nu} + ic_{\mu\nu}\gamma^{\mu}D^{\nu} + id_{\mu\nu}\gamma_{5}\gamma^{\mu}D^{\nu})\psi = 0$$

relative accuracy

ANTIPROTON DECELERATOR @ CERN

- + AD
- Modification of the AC ring
- + 1 ring for 3 tasks
 - Antiproton capture
 - deceleration
 - cooling
- start operation in 2000

OAW

Analog Measurement of Delayed Annihilation using Cerenkov counters and digital oscilloscope

TOP VIEW

5.3 MeV antiprotons are stopped in ~ 6 K 0.5 – 3 bar He gas

Analog Measurement of Delayed Annihilation using Cerenkov counters and digital oscilloscope

TOP VIEW

5.3 MeV antiprotons are stopped in ~ 6 K 0.5 – 3 bar He gas

Analog Measurement of Delayed Annihilation using Cerenkov counters and digital oscilloscope

TOP VIEW

5.3 MeV antiprotons are stopped in ~ 6 K 0.5 – 3 bar He gas

Analog Measurement of Delayed Annihilation using Cerenkov counters and digital oscilloscope

TOP VIEW

5.3 MeV antiprotons are stopped in ~ 6 K 0.5 – 3 bar He gas

HYPERFINE STRUCTURE OF P4HE+

^vSHF sensitive to magnetic moment of pbar (known to $3x10^{-3}$) vHF tests **orbital** angular moment: g_l Interactions of magnetic moments:

electron: $\vec{\mu}_e = g\mu_B S_e$ pbar: $\vec{\mu}_{\bar{p}} = [g_s(\bar{p})\vec{S}_{\bar{p}} + g_l(\bar{p})\vec{L}_{\bar{p}}]\mu_N$

CURRENT KNOWLEDGE OF HP

- Kreissl, Daniel, v. Egidy, Hartmann et al. PRC 37 (1988) 557
- fine structure of x-Rays of antiprotonic lead
 - ²⁰⁸Pb to avoid HFS
- + results (PDG):

P MAGNETIC MOMENT

A few early results have been omitted.

LEAR, E. W. et al. PLB 404 (1997) 15-19

- + 1.75 GHz is difference of HF splitting of (37,35) and (38,34) state
- + SHFS transitions cannot be observed due to Doppler broadening & laser bandwidth

12

Peak to total Ration (arb. units)

()AW

12

E. Widmann, Antiprotonic helium HFS

Peak to total Ration (arb. units)

()AW

Peak to total Ration (arb. units)

()AW

Peak to total Ration (arb. units)

()AW

12

Peak to total Ration (arb. units)

OAW

MEASUREMENT

- cavity for 13 GHz at < 10 K to reduce Doppler broadening
- Meshes to allow pbar and laser light to enter
- low Q (~100) to avoid mechanical tuning
- tuning via synthesizer and stub tuner

FIRST OBSERVATION OF HFS TRANSITION

Experimental accuracy: $\sim 3 \times 10^{-5}$

ν_{HF}^{+}	12.895 96(34) GHz	27 ppm
v_{HF}^{-}	12.924 67(29) GHz	23 ppm

E.W. et al. PRL 89 (2002) 243402

FIRST OBSERVATION OF HFS TRANSITION

Experimental accuracy: ~ 3×10^{-5}

ν_{HF}^+	12.895 96(34) GHz	27 ppm
v_{HF}^{-}	12.924 67(29) GHz	23 ppm

E.W. et al. PRL 89 (2002) 243402

FIRST OBSERVATION OF HFS TRANSITION

Experimental accuracy: $\sim 3 \times 10^{-5}$

$v_{\rm HF}^+$	12.895 96(34) GHz	27 ppm	
v_{HF}^{-}	12.924 67(29) GHz	23 ppm	

E.W. et al. PRL 89 (2002) 243402

- Comparison to theory favours most recent results of both groups
 - ✤ Korobov & Bakalov JPB 34 L519 2001
 - ✦ Kino et al. Proc. APAC 2001
- Difference < 6 x 10^{-5}
- Corresponds to theoretical uncertainty
 Omission of terms O(α²)~5x10⁻⁵

DETERMINATION OF $\mu_{\bar{p}}$

v_{MW} (GHz)

- v_{SHF}^+ , v_{SHF}^- most sensitive, but impossible to measure (power requirement)
- $\Delta v_{HF} = v_{HF}^{-} v_{HF}^{+} = v_{SHF}^{+} v_{SHF}^{-}$: sensitive to $\mu_{\bar{p}}$
- sensitivity factors from theory (D. Bakalov and E.W., PRA in print)
 - + $S(F,J) = \partial E_{nFLJ} / \partial \mu_{\bar{p}} | \mu_{\bar{p}} = -\mu_{p}$
 - + $S(v_{HF}^{+}) = S(F^{-}J^{--}) S(F^{+}J^{+-})$

E. Widmann, Antiprotonic helium HFS

OAW

DETERMINATION OF $\mu_{\bar{p}}$

v_{MW} (GHz)

- v_{SHF}^+ , v_{SHF}^- most sensitive, but impossible to measure (power requirement)
- $\Delta v_{HF} = v_{HF}^{-} v_{HF}^{+} = v_{SHF}^{+} v_{SHF}^{-}$: sensitive to $\mu_{\bar{p}}$
- sensitivity factors from theory (D. Bakalov and E.W., PRA in print)
 - + $S(F,J) = \partial E_{nFLJ} / \partial \mu_{\bar{p}} | \mu_{\bar{p}} = -\mu_{p}$
 - + $S(v_{HF}^{+}) = S(F^{-}J^{--}) S(F^{+}J^{+-})$

E. Widmann, Antiprotonic helium HFS

OAW

IMPROVEMENTS OF Hp

- + error of known value of $\mu_{\bar{p}}$: $\delta_{\mu} = 3 \times 10^{-3}$
- limitation for pHe⁺: theoretical accuracy
 - + for Δv_{HF} : $\Delta_q \sim O(10^{-3})$ conservative!
 - + max. improvement from ratio: factor $\Delta_q/\Delta_\mu = 3 9$

+ (37,35): factor 3 improvement in $\mu_{\bar{p}}$: factor 10 in exp. accuracy

	(35,33)	(37,34)	(39,35)	(33,32)	(36,34)	(37,35)	(35,34)	(34,33)	(38,35)
$\Delta_q \times 10^4$	6	11	3	8	23	12	6	4	5
δ _μ kHz	180	90	270	510	50	90	210	360	190
Δ_q/Δ_μ	5.0	2.7	8.9	3.6	1.3	2.7	5.4	8.4	6.0
δ _{exp} kHz	36	33	30	142	38	33	39	43	32

D. Bakalov & E.W., submitted

REDUCTION OF LINE WIDTH

+ possible sources of line width: ~ 6 MHz @ Δt =160 ns

- collisional broadening
- + Fourier limit

+ $\Delta f \approx 1/\Delta t$:

- + 160 ns: Δf≈ 6 MHz
- + 350 ns: Δf≈ 3 MHz

MW pulse length:

Red = 150 ns Blue = 350 ns Green = 700 ns

NEW MEASUREMENTS IN 2006: LASER SCANS

improved laser system

- laser band width < Doppler broadening
- seeded by cw laser
 - much higher frequency stability
- Ionger pulse length
 - higher depletion efficiency
 - higher signal-to-noise
- HF doublets completely separated
 - no cross talk
- first test experiments
 - factor ~5 improved accuracy (PRELIMINARY)

COLLISIONAL RELAXATION

- + relaxation time constant: $\tau_{exp} \sim 660 \pm 69$ ns
- theory

τ_{max} ~ 325 ns

G.Ya. Korenman and S.N. Yudin, J. Phys. B 39, 1473 (2006)

E. Widmann, Antiprotonic helium HFS

NEW MEASUREMENTS IN 2006: MICROWAVE SCANS

- ~ 3x narrower line width
- ~ 3x larger S/N
- ~ 5x better accuracy (PRELIMINARY)

- more systematic tests necessary (2007)
 - density dependence (very small according to theory)
 - MW power dependence

NEW MEASUREMENTS IN 2006: MICROWAVE SCANS

- ~ 3x narrower line width
- ~ 3x larger S/N
- ~ 5x better accuracy (PRELIMINARY)

()AW

SUMMARY & OUTLOOK

- antiprotonic helium offers one of best CPT tests in the hadronic sector
- big impact on development of 3-body bound-state QED
- many results for atomic (collision) physics
- further improvements expected
 - factor 3-9 possible over PDG for magnetic moment

