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1. Contents of review

1. A new effective method of calculating wave functions of discrete and continuous
spectra of a hydrogen atom in a strong uniform magnetic field is developed based
on the adiabatic approach, known in mathematics as the Kantorovich method, to
parametric boundary problems in spherical coordinates 2.

2. The two-dimensional boundary problems for the Schrödinger equation at a fixed
magnetic quantum number and a spatial parity is reduced to a spectral
parametric problem for a one-dimensional equation by the angular variable for the
angular oblate spheroidal functions and to boundary problems for a finite set of
the ordinary second-order differential equations by the radial variable with
effective potentials.

3. All needed asymptotics of set of adaptive basis functions, matrix elements of
radial coupling and radial solutions are calculated in an analytic form to reduce
interval of integration in the corresponded boundary problems and to achieve
economy of computer resources.
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4. The rate of convergence is investigated firstly numerically and is illustrated with a
number of typical examples.

5. The method is applied to calculations of the photo-ionization cross-sections of a
hydrogen atom in the magnetic field that will be provide a true threshold
behavior.

6. Further applications of the method to the photo-ionization and -recombination of
a hydrogen-like atom in the magnetic field 3, and channeling of atoms or ions in a
confinement potential 4 are briefly discussed.

3V.V. Serov, V.L. Derbov, and S.I. Vinitsky, Laser-stimulated recombination of antihydrogen in
magnetic field via quasistationary state. Opt.&Spectr. 102 (2007).
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Experimental Apparatus and Coordinate system for a simplest model

FIG. 1. Antiprotons are loaded from below (left), into the
trap electrodes below the rotatable electrode. Positrons are
simultaneously loaded from above (right) into the electrodes
above the rotatable electrode.

ATRAP Apparatus
G. Gabrielse et al (ATRAP Collaboration),
PRL 93, 073401 (2004)
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Projections of cylindrical and spherical
coordinate systems in the zx plane for a
hydrogen atom or scattering of an electron
with a proton in a homogeneous magnetic
field �B = (0, 0, B).



2. Statement of the problem in cylindrical coordinates

In cylindrical coordinates (ρ, z, ϕ) the wave function

Ψ̂(ρ, z, ϕ) = Ψ(ρ, z)
exp(ımϕ)√

2π
(1)

of a hydrogen atom in an axially symmetric magnetic field �B = (0, 0, B) satisfies the
2D Schrödinger equation

− ∂2

∂z2
Ψ(ρ, z) +

(
Âc − 2Z√

ρ2 + z2

)
Ψ(ρ, z) = εΨ(ρ, z), (2)

Âc = −1

ρ

∂

∂ρ
ρ
∂

∂ρ
+
m2

ρ2
+mγ +

γ2ρ2

4
, (3)

in the region Ωc: 0 < ρ <∞ and −∞ < z <∞.
Here m = 0,±1, . . . is the magnetic quantum number, γ = B/B0, B0

∼= 2.35× 105 T
is a dimensionless parameter which determines the field strength B.
We use the atomic units (a.u.) � = me = e = 1 and assume the mass of the nucleus
to be infinite.
In these expressions ε = 2E, E is the energy (expressed in Rydbergs,
1Ry = (1/2) a.u.) of the bound state |mσ〉 with fixed values of m and z-parity
σ = ±1, and Ψ(ρ, z) ≡ Ψmσ(ρ, z) = σΨmσ(ρ,−z) is the corresponding wave
function.



The boundary conditions in each mσ subspace of the full Hilbert space have the form

lim
ρ→0

ρ
∂Ψ(ρ, z)

∂ρ
= 0, for m = 0, (4)

Ψ(0, z) = 0, for m �= 0, (5)

lim
ρ→∞Ψ(ρ, z) = 0. (6)

The wave function of the discrete spectrum obeys the asymptotic boundary condition.
Approximately this condition is replaced by the boundary condition of the first type at
large, but finite |z| = zmax � 1, namely,

lim
z→±∞Ψ(ρ, z) = 0 → Ψ(ρ,±zmax) = 0. (7)

These functions satisfy the additional normalization condition

zmax∫
−zmax

∞∫
0

|Ψ(ρ, z)|2ρdρdz = 1. (8)

The asymptotic boundary condition for the continuum wave function will be
considered below.



2.1. Galerkin expansion

Consider a formal expansion of the partial solution ΨEmσ
i (ρ, z) of Eqs. (2)–(6)

corresponding to the eigenstate |mσi〉, in terms of the finite set of one-dimensional
basis functions {Φ̃m

j (ρ)}jmax
j=1 (Landau orbitals)

ΨEmσ
i (ρ, z) =

jmax∑
j=1

Φ̃m
j (ρ)χ̃

(mσi)
j (E, z). (9)

In the Galerkin approach the wave functions Φ̃j(ρ) = Φ̃m
j (ρ) and the potential curves

Ẽj (in Ry) are determined as the solutions of the following one-dimensional
eigenvalue problem

ÂcΦ̃j(ρ) = ẼjΦ̃j(ρ), (10)

with the boundary conditions

lim
ρ→0

ρ
∂Φ̃j(ρ)

∂ρ
= 0, for m = 0, (11)

Φ̃j(0) = 0, for m �= 0, (12)

lim
ρ→∞ Φ̃j(ρ) = 0. (13)



The above eigenvalue problem has the exact solution 5 at fixed m

Φ̃j(ρ) =

√
γ Nρ!

(Nρ + |m|)! exp

(
−γ ρ

2

4

) (
γ ρ2

2

) |m|
2
L
|m|
Nρ

(
γ ρ2

2

)
,

Ẽj = γ(2Nρ + |m|+m+ 1), (14)

where Nρ = j − 1 is the transversal quantum number and L|m|Nρ
(x) is the associated

Laguerre polynomial. Note, that Galerkin expansion follows from Kantorovich
expansion at z →∞, i.e., parametric basis functions Φ̂j(ρ; z) and corresponding
potential curves Êj(z) transform into the above basis functions and eigenvalues

Φ̃j(ρ) = lim
z→±∞ Φ̂j(ρ; z),

lim
z→±∞ Êj(z) = Ẽj = εthmσj(γ) = γ(2Nρ + |m|+m+ 1). (15)

5L.G.Mardoyan, G.S.Pogosyan, A.N.Sissakian and V.M.Ter-Antonyan. The quantum systems with
hidden symmetry. Interbasis expansions, Dubna, JINR, 2004.



Therefore we transform the solution of the above problem into the solution of an
eigenvalue problem for a set of jmax ordinary second-order differential equations that
determines the energy ε and the coefficients χ̃(i)(z) of the expansion (9)(

−I
d2

dz2
+ Ũ(z)

)
χ̃(i)(z) = εi Iχ̃

(i)(z), (16)

and the matrix Ũ(z) = Ũ(−z) is expressed as

Ũij(z) =
Ẽi + Ẽj

2
δij −

∫ ∞
0

Φ̃i(ρ)
2Z√
ρ2 + z2

Φ̃j(ρ)ρdρ. (17)

The discrete spectrum solutions obey the asymptotic boundary condition and the
orthonormality condition

lim
z→±∞ χ̃(i)(z) = 0 → χ̃(i)(±zmax) = 0, (18)∫ zmax

−zmax

(
χ̃(i)(z)

)T
χ̃(j)(z)dz = δij . (19)

The asymptotic boundary condition for the continuum wave function will be
considered below.



2.2. Relation between the parity functions and the functions having
physical scattering asymptotic form in cylindrical coordinates6

The asymptotic form of the coefficients χ̂(n)(z) of the Galerkin expansion (9) with
fixed m, σ and ε = 2E for n-th solution in open channels is

χEmσn′n(z → ±∞) =




a+1n′n√
pn′

cos
(
pn′z + Z

pn′
z
|z| ln(2pn′ |z|) + z

|z|δ+1n

)
,

σ = +1,

a−1n′n√
pn′

sin
(
pn′z + Z

pn′
z
|z| ln(2pn′ |z|) + z

|z| δ−1n

)
,

σ = −1,

(20)

where pn =
√

2E − εthmσn ≥ 0 and n, n′ = 1, . . . , No, δσn = δσ
n + δc

n − (σ + 1)π/4
are the phase shifts, δσ

n and δc
n are the eigenchannel short-range and Coulomb phase

shifts, aσn′n = Cσ
n′n are the amplitudes or mixed parameters and

No = max(n : 2E ≥ εthmσn) is the number of open channels, i.e. No is the number of
Landau thresholds open at the energy E.

6O. Chuluunbaatar et al, Proc. SPIE 6537 (2007)



2.2.1. Eigenchannel solutions
Eq. (20) is rewritten in the matrix form so that

χEσ(z → ±∞) =







1
2
X(+)(z)A+1 + 1

2
X(−)(z)A∗+1,

σ = +1,

1
2ı

X(+)(z)A−1 − 1
2ı

X(−)(z)A∗−1,
σ = −1,

z > 0,




1
2
X(+)(z)A∗+1 + 1

2
X(−)(z)A+1,

σ = +1,

1
2ı

X(+)(z)A∗−1 − 1
2ı

X(−)(z)A−1,
σ = −1,

z < 0,

(21)

where

X
(±)
n′n(z) = p

−1/2
n′ exp

(
±ıpn′z ± ı

Z

pn′

z

|z| ln(2pn′ |z|)
)
δn′n, (22)

Aσn′n = aσn′n exp(ıδσn).
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(a) (b)
The wave functions Ψ1 and Ψ2 of first (a) and second (b) open channels of the
continue spectrum states haven asymptotic (20–22) for σ = −1, Z = 1, γ = 1 and
m = 0 with energy E = 1.7 a.u. above second threshold 1/2εthm2 = 1.5.



2.2.2. asymptotic form ”incident wave + waves going out from the center”
On the other hand, the function that describes the incidence of the particle and its
scattering, having the asymptotic form “incident wave + waves going out from the
center”, is

χ
(+)
Ev̂ (z → ±∞) =




{
X(+)(z)T̂, z > 0,

X(+)(z) + X(−)(z)R̂, z < 0,
v̂ =→,{

X(−)(z) + X(+)(z)R̂, z > 0,

X(−)(z)T̂, z < 0,
v̂ =←,

(23)

where T̂ and R̂ are the transmission
and reflection amplitude matrices,
T̂†T̂ + R̂†R̂ = Ioo, v̂ is marked the
initial direction of the particle motion
along the z axis, and Ioo is the unit
No×No matrix. Note, that due to the
symmetry of the scattering potential
the transmission and reflection
coefficients are independent of the
direction of the incident wave vector.



This wave function may be presented as a linear combination of the solutions having
positive and negative parity

χ
(+)

E
→←(z) = χE,+1(z)B+1 ± ıχE,−1(z)B−1. (24)

It is easy to show that Bσ = [A∗σ]−1, and the transmission T̂ and reflection R̂
amplitude matrices take the form

T̂ =
1

2
(A+1B+1 + A−1B−1) =

1

2
(−Š+1 + Š−1), (25)

R̂ =
1

2
(A+1B+1 −A−1B−1) =

1

2
(−Š+1 − Š−1),

where Šσ is the scattering matrix at fixed σ.



2.2.3. asymptotic form “waves going into the center + outgoing wave”
However, to calculate the ionization cross section it is necessary to use the function
having the asymptotic form “waves going into the center + outgoing wave”, that is

χ
(−)
Ev̂ (z → ±∞) =




{
X(+)(z) + X(−)(z)R̂†, z > 0,

X(+)(z)T̂†, z < 0,
, v̂ =→,{

X(−)(z)T̂†, z > 0,

X(−)(z) + X(+)(z)R̂†, z < 0,
, v̂ =←,

(26)

or χ
(−)

E
→←(z)=χE,+1(z)B

∗
+1±ıχE,−1(z)B

∗
−1. Note, that

(
χ

(−)

E
→←(z)

)∗
= χ

(+)

E
←→(z).

The functions are normalized so that

jmax∑
n′′=1

∫ ∞
−∞

(
χ

(±)
E′mv̂′n′′n′ (z)

)∗
χ

(±)
Emv̂n′′n(z)dz = 2πδ(E′ − E)δv̂′v̂δn′n. (27)
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Profiles of total wave functions |Ψ(−)

Em→| (a,c) and |Ψ(−)
Em←| (b,d) in the zx plane of

the continuous spectrum with Z = 1, m = 0 and γ = 1× 10−1. The states with the
energy E = 0.05885 a.u. (a,b) correspond to the resonance transmission (|T |2 = 1,
|R|2 = 0), while those with the energy E = 0.11692 a.u. (c,d) correspond to the total
reflection (|T |2 = 0, |R|2 = 1).
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(a) (b)
Squared modulus of the matrix element Ť11, multiplied by 7/4, odd phase shift δo
multiplied by 14/π and cross-section σd(ω) (72) of photoionization from the initial
state 1s0 versus the energy E (a) and (Ẽ2 − 2E)−1/2 (b) for the final scattering state
with σ = −1, Z = 1, m = 0 and γ = 1× 10−1.
The finite element grids of r̂ =

√
γr have been chosen as 0 (200) 3 (200) 20 (200)

100 for the discrete spectrum and 0 (200) 3 (200) 20 (200) 100 (1000) 1000 for the
continuous one. The numbers in parentheses are the numbers of finite elements of the
order k = 4 in each interval. The number of nodes in the grids is 2400 and 6401, so
that the maximum number of unknowns in Eqs. (49) is 24000 and 64010, respectively.



2.2.4. Ŝ-matrix
The Ŝ-matrix may be composed of the transmission and reflection amplitudes7

Ŝ =

(
T̂ R̂

R̂ T̂

)
, S†S = SS† = Ioo. (28)

This matrix is unitary, since T̂†T̂ + R̂†R̂ = Ioo and R̂†T̂ + T̂†R̂ = 0.
To calculate the ionization it is convenient to use the function renormalized to
δ(E′ −E), i.e., divided by

√
2π

|Ev̂mNρ〉 = exp(ımϕ)

2π

jmax∑
n′=1

Φ̃n′ (ρ)χ̃
(−)
Emv̂n′n(z) (29)

or

|Ev̂mNρ〉 = exp(ımϕ)

2π

jmax∑
n′=1

Φ̂n′(ρ; z)χ̂
(−)
Emv̂n′n(z), (30)

where Nρ = n− 1.

7V.V. Kostrykin , A.A. Kvitsinsky and S.P. Merkuriev J. Phys. A 28. 3493 (1995)
O. Chuluunbaatar et al, Proc. SPIE 6537 (2007)



2.2.5. Photoionization cross section
The expression for the cross section of ionization by the light linearly polarized along
the axis z is

σion = 4π2αω

No−1∑
Nρ=0

∑
v̂

|〈Ev̂mNρ|z|Nlm〉|2a20. (31)

In the above expressions ω = E −ENlm is the frequency of radiation, ENlm is the
energy of the initial bound state |Nlm〉 specified by the spherical quantum numbers
N , l, m, α is the fine-structure constant, a0 is the Bohr radius.
For the light circularly polarized in the plane xOy the above expressions read as

σion = 4π2αω

No−1∑
Nρ=0

∑
v̂

|〈Ev̂m± 1Nρ|�e±�r|Nlm〉|2a20, (32)

where the complex unit vectors are �e± = 1√
2
�i± ı√

2
�j.
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(a) (b)
Cross-sections of photoionization from the states 1s0 (a) and 3d0 (b) versus the
energy for γ = 1× 10−1, and for the final state with σ = −1, Z = 1, m = 0. The
arrows indicate the successive Landau thresholds Ej = 1/2εthmj .



2.2.6. The rate of recombination induced by the light
For the recombination the wave function should be renormalized to one particle per
the unit of length in the incident wave

|vmNρ〉 =
√
pn

exp(ımϕ)√
2π

jmax∑
n′=1

Φ̃n′ (ρ)χ̃
(+)
Emv̂n′n(z) (33)

or

|vmNρ〉 = √pn
exp(ımϕ)√

2π

jmax∑
n′=1

Φ̂n′ (ρ; z)χ̂
(+)
Emv̂n′n(z), (34)

where v = v̂pn and Nρ = n− 1.



The expression for the rate of recombination induced by the light linearly polarized
along the axis z for the particle, initially moving in the channel Nρ with the velocity v
has the form

λrec
Nρ

(v) = 4π2αI

N−1∑
l=0

0∑
m=−l

|〈Nlm|z|vmNρ〉|2δ(E − ENlm − ω)a20, (35)

I being the intensity of the incident light.
For the light circularly polarized in the plane xOy the above expressions read as

λrec
Nρ

(v) = 4π2αI

N−1∑
l=0

0∑
m=−l

|〈Nlm±1|�e±�r|vmNρ〉|2δ(E−ENlm−ω)a20, (36)

where the complex unit vectors are �e± = 1√
2
�i± ı√

2
�j.



3. Statement of the problem in spherical coordinates

In spherical coordinates (r, θ, φ) the Eq. (2) can be rewritten as follows8(
− 1

r2
∂

∂r
r2

∂

∂r
+

1

r2
Â(p)− 2Z

r

)
Ψ(r, η) = εΨ(r, η), (37)

in the region Ω: 0 < r <∞ and −1 < η = cos θ < 1. Here Â(p) is the parametric
Hamiltonian

Â(p) = − ∂

∂η
(1 − η2)

∂

∂η
+

m2

1− η2 + 2pm+ p2(1− η2), (38)

and p = γr2/2, and Ψ(r, η) ≡ Ψmσ(r, η) = σΨmσ(r,−η).
The sign of z-parity, σ = (−1)Nη , is defined by the number of nodes Nη of the
solution Ψ(r, η) with respect to the variable η. We will also use the scaled radial
variable r̂ = r

√
γ, the effective charge Ẑ = Z/

√
γ, and the scaled energy ε̂ = ε/γ or

Ê = E/γ.
Practically it means replacing γ with 1 and multiplying Z by 1/

√
γ and ε or E by 1/γ

in all equations above.

8M.S. Kaschiev, S.I. Vinitsky and F.R. Vukajlovic Phys. Rev. A 22 557 (1980)



Boundary conditions
The boundary conditions in each mσ subspace of the full Hilbert space have the form

lim
η→±1

(1 − η2)
∂Ψ(r, η)

∂η
= 0, for m = 0, (39)

Ψ(r,±1) = 0, for m �= 0, (40)

lim
r→0

r2
∂Ψ(r, η)

∂r
= 0. (41)

The wave function of the discrete spectrum obeys the asymptotic boundary condition.
Approximately this condition is replaced by the boundary condition of the first type at
large, but finite r = rmax, namely,

lim
r→∞ r

2Ψ(r, η) = 0 → Ψ(rmax, η) = 0. (42)

In the Fano-Lee R-matrix theory9 the wave function of the continuum Ψ(r, η) obeys
the boundary condition of the third type at fixed values of the energy ε and the radial
variable r = rmax

∂Ψ(r, η)

∂r
− µΨ(r, η) = 0. (43)

Here the parameters µ ≡ µ(rmax, ε), determined by the variational principle, play the
role of eigenvalues of the logarithmic normal derivative matrix of the solution of the
boundary problem (37)–(41), (43).

9U. Fano and C.M.Lee, Phys. Rev. Lett. 31, 1573 (1973);
C.M.Lee Phys. Rev. A 10, 584 (1974)



3.1. Kantorovich expansion10

Consider a formal expansion of the partial solution ΨEmσ
i (r, η) of Eqs. (37)–(41) with

the conditions (42), (43), corresponding to the eigenstate |mσi〉, in terms of the finite
set of one-dimensional basis functions {Φmσ

j (η; r)}jmax
j=1

ΨEmσ
i (r, η) =

jmax∑
j=1

Φmσ
j (η; r)χ

(mσi)
j (E, r). (44)

In Eq. (44) the functions

χ(i)(r) ≡ χ(mσi)(E, r), (χ(i)(r))T = (χ
(i)
1 (r), . . . , χ

(i)
jmax

(r))

are unknown, and the surface functions

Φ(η; r) ≡ Φmσ(η; r) = σΦmσ(−η; r), (Φ(η; r))T = (Φ1(η; r), . . . ,Φjmax (η; r))

form an orthonormal basis for each value of the radius r which is treated as a
parameter.

10M.G. Dimova, M.S. Kaschiev and S.I. Vinitsky, J. Phys. B 38 2337 (2005)



In the Kantorovich approach the wave functions Φj(η; r) and the potential curves
Ej(r) (in Ry) are determined as the solutions of the following one-dimensional
parametric eigenvalue problem for oblate angular spheroidal functions 11

Â(p)Φj(η; r) = Ej(r)Φj(η; r), (45)

with the boundary conditions

lim
η→±1

(1− η2)
∂Φj(η; r)

∂η
= 0, for m = 0 (46)

Φj(±1; r) = 0, for m �= 0. (47)

Since the operator in the left-hand side of Eq. (45) is self-adjoint, its eigenfunctions
are orthonormal〈

Φi(η; r)

∣∣∣∣Φj(η; r)

〉
η

=

∫ 1

−1
Φi(η; r)Φj(η; r)dη = δij . (48)

11M. Abramovits and I.A. Stegun, Handbook of Mathematical Functions, Dover, New York, 1965
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3.1.1. Boundary problems for a set of the radial equations
From here we transform the solution of the problem (37) into the solution of an
eigenvalue problem for a set of jmax ordinary second-order differential equations that
determines the energy ε and the coefficients (radial wave functions) χ(i)(r) of the
expansion (44)
(
−I

1

r2
d

dr
r2

d

dr
+

U(r)

r2
+ Q(r)

d

dr
+

1

r2
d r2Q(r)

dr

)
χ(i)(r) = εi Iχ

(i)(r), (49)

lim
r→0

r2

(
dχ(i)(r)

dr
−Q(r)χ(i)(r)

)
= 0. (50)

Here U(r) and Q(r) are the jmax × jmax matrices whose elements are expressed as

Uij(r) =
Ei(r) + Ej(r)

2
δij − 2Zrδij + r2Hij(r),

Hij(r) = Hji(r) =

∫ 1

−1

∂Φi(η; r)

∂r

∂Φj(η; r)

∂r
dη, (51)

Qij(r) = −Qji(r) = −
∫ 1

−1
Φi(η; r)

∂Φj(η; r)

∂r
dη.

The calculations of the above matrix elements and there asymptotic forms were
performed using the combined codes EIGENF, MATRM and MATRA implemented in
MAPLE 8 and FORTRAN12.

12O. Chuluunbaatar et al, submitted to Comput. Phys. Commun. (2007)



The discrete spectrum solutions obey the asymptotic boundary condition and the
orthonormality conditions

lim
r→∞ r

2χ(i)(r) = 0 → χ(i)(rmax) = 0, (52)∫ rmax

0
r2
(
χ(i)(r)

)T
χ(j)(r)dr = δij . (53)

The continuous spectrum solution χ(i)(r) satisfies the third-type boundary conditions

dχ(r)

dr
= Rχ(r), R = R+ Q. (54)

Here the nonsymmetric matrix R is determined via symmetric matrix R that is
calculated using the method of 13.

13O. Chuluunbaatar et al, Proc. SPIE 6165, 66 (2006)



3.2. four steps of Kantorovich method
Thus, within the framework of the Kantorovich approach the original problem is
reduced to the following steps:

• Calculation of the potential curves Ej(r) and eigenfunctions Φj(θ; r) of the
spectral problem (45)–(48) for a given set of r ∈ ωr at fixed values m and γ = 1.

• Calculation of the derivatives ∂Φ(θ; r)/∂r and computation of the corresponding
integrals (see (51)) necessary for obtaining the elements of the radial coupling
matrices U(r) and Q(r).

• Calculation of the scaled energies ε̂ and the radial wave functions χ(i)(r) as
solutions of the one-dimensional eigenvalue problem (49)–(51) with (53) at fixed
m, γ = 1 and the effective charge Ẑ = Z/

√
γ, examination of the convergence of

these solutions depending on the number of channels jmax and recalculation the
scaled energies to the initial ones ε = ε̂γ or E = Êγ.

• Calculation of the matrix R and the reaction matrix K (Eqs. (54), (65))
corresponding to the radial wave functions χ(i)(r) as the solutions of
one-dimensional eigenvalue problem (49)–(51) with the boundary condition (54)
at fixed m, the effective charge γ = 1, Ẑ = Z/

√
γ, and the scaled energy ε̂ or Ê;

examination of the convergence of the solutions depending on the number of
channels jmax.
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4.1. Asymptotics of matrix elements of radial coupling at large r
At large r asymptotics of matrix elements by inverse power of r (i.e., without
exponential terms) is of the analytical form 14 up to an finite order kmax = 8

r−2Ej(r) = E
(0)
j +

kmax∑
k=1

r−2kE
(2k)
j , Hjj′ (r) =

kmax∑
k=1

r−2kH
(2k)
jj′ ,

Qjj′ (r) =

kmax∑
k=1

r−2k+1Q
(2k−1)
jj′ , r � max(nl, nr)γ/2. (55)

Here

E
(0)
j = γ(2n + |m|+m+ 1),

E
(2)
j = −2n2 − 2n− 1− 2|m|n− |m|, (56)

H
(2)
jj′ = (2n2 + 2n+ 2|m|n+ |m|+ 1)δ|nl−nr |,0

−√n+1
√
n+|m|+1

√
n+2

√
n+|m|+2δ|nl−nr |,2,

Q
(1)
jj′ = (nr − nl)

√
n+1

√
n+|m|+1δ|nl−nr |,1,

In these formulas asymptotic quantum numbers nl, nr denote transversal
quantum numbers Nρ, N ′ρ, that connected with the unified numbers j, j′ by the
above mentioned formulas nl = j − 1, nr = j′ − 1 and n = min(nl, nr).

14for details, see A.A. Gusev et al, Lecture Notes in Computer Science 4194, 205 (2006)



4.2. Asymptotics of radial solution at large r At large r > rmax and rpio � 1 the

asymptotics of the regular solutions χ(io)
j (r) ≡ χjio (r), j = 1, . . . , jmax,

io = 1, . . . , No ≤ jmax of Eq. (49) are sought as expansions in powers of r up to an
finite order kmax = 16 in the analytical form 15

χjio (r) = R(r)φjio (r) +
dR(r)

dr
ψjio (r),

φjio (r) =

kmax∑
k=0

φ
(k)
jio
r−k, ψjio (r) =

kmax∑
k=0

ψ
(k)
jio
r−k.

φ
(0)
ioio

= 1, ψ
(0)
ioio

= 0,

φ
(1)
io−1io

=0, ψ
(1)
io−1io

=

√
io −1

√
io+|m|−1

γ
=−1

2
〈io − 1|ρ2|io〉,

φ
(1)
ioio

=0, ψ
(1)
ioio

=−2io + |m| − 1

γ
=−1

2
〈io|ρ2|io〉 (57)

φ
(1)
io+1io

=0, ψ
(1)
io+1io

=

√
io
√
io+|m|
γ

=−1

2
〈io + 1|ρ2|io〉,

where R(pio , r) = ı F (pio , r) +G(pio , r); F (pio , r), G(pio , r) are the Coulomb
regular, irregular functions 16.

15S.I. Vinitsky, V.P. Gerdt, A.A. Gusev, et al Programming and Computer Software 33 105–116 (2007)
16M. Abramovits and I.A. Stegun Handbook of Mathematical Functions (New York: Dover,

1972)



4.3. Correspondence of asymptotic solutions in spherical coordinates to cylindrical ones

Taking into account of orthogonality 〈j|io〉 = 〈Φ̃m
j (ρ)|Φ̃m

io
(ρ)〉 = δjio and

completeness
∑

j |Φ̃m
j (ρ′)〉〈Φ̃m

j (ρ)| = δ(ρ′ − ρ) of basis functions, the asymptotic of
the total wave function can be written in the form for the region pioρ

2/(2r)� 1

Ψmv̂(r, η) = r
∑

j

|Φ̃m
j (ρ)〉

[
〈Φ̃m

j (ρ)|Φ̃m
io

(ρ)〉 − 1

2r
〈Φ̃m

j (ρ)|ρ2|Φ̃m
io

(ρ)〉 d
dr

]
χ

(as)
ioio

(pio , r)

= r
∑

j

|Φ̃m
j (ρ)〉〈Φ̃m

j (ρ)|
[
|Φ̃m

io
(ρ)〉 − 1

2r
ρ2|Φ̃m

io
(ρ)〉 d

dr

]
χ

(as)
ioio

(pio , r) (58)

≈ rΦ̃m
io

(ρ)χ
(as)
ioio

(
pio , r(1− ρ2/(2r2))

) ≈ 1

2
Φ̃m

io
(ρ)X

(+)
ioio

(|z|) exp(ı δc
io

).

In last transformation we use |z| = r(1− ρ2/(2r2)) +O(r−2) and definitions (15) and
(22). Thus, we show that the matrix of coefficients (57), corresponds to an overlap
matrix between asymptotic of fundamental solutions (2) in cylindrical coordinates
z = r cos θ, ρ = r sin θ, at large values of |z|, and asymptotics of basis functions of
independent variable, η = cos θ at large values of r.



5. The scattering states and the photoionization cross sections

We express the eigenfunction of the continuum spectrum ΨEmσ
i (r, η) with the energy

ε = 2E describing the ejected electron above the first threshold
εthmσ1(γ) = εthmσ(γ) = γ(|m|+m+ 1) as follows

ΨEmσ
i (r, η) =

jmax∑
j=1

Φmσ
j (η; r)χ̂

(mσ)
ji (E, r), i = 1, . . . , No, (59)

where solution χ̂(mσ)(E, r) is the radial part of the “incoming” or eigenchannel wave
function. In this case the eigenfunction ΨEmσ

i (r, η) is normalized by the condition

〈
ΨEmσ

i (r, η)

∣∣∣∣ΨE′m′σ′
i′ (r, η)

〉
=

jmax∑
j=1

∫ ∞
0

r2dr
(
χ̂

(mσ)
ji (E, r)

)∗
χ̂

(m′σ′)
ji′ (E′, r)

= δ(E −E′)δmm′ δσσ′δii′ . (60)



5.1. Eigenchannel function

The radial of the eigenchannel function χ̂(mσ)(E, r) is calculated by formula

χ̂(mσ)(E, r) =

√
2

π
χ(p)(r)Ccos δ. (61)

Here a numerical solution χ(p)(r) of the (49) that satisfies the “standing” wave
boundary conditions (54) and has the standard asymptotic form 17

χ(p)(r) = χs(r) + χc(r)K, KC = Ctan δ, CCT = CT C = Ioo. (62)

where χs(r) = 2�(χ(r)) and χc(r) = 2�(χ(r)), χ(r) is the asymptotic solution,
K ≡ Kσ is the numerical short-range reaction matrix, tan δ and C are the eigenvalue
and the orthogonal matrix a set of the corresponded eigenvectors.
In the latter case the regular and irregular functions satisfy the generalized Wronskian
relation at large r

Wr(Q(r); χc(r),χs(r)) = Ioo. (63)

17O. Chuluunbaatar et al, submitted to CPC



5.2. reaction matrix
Using R-matrix calculation18 , we obtain the equation for the reaction matrix K
expressed via the matrix R at r = rmax(

Rχc(r)− dχc(r)

dr

)
K =

(
dχs(r)

dr
−Rχs(r)

)
. (64)

When some channels are closed, the matrices in Eq. (64) are rectangular. Therefore,
we obtain the following expression for the reaction matrix K

K = −X−1(rmax)Y(rmax), (65)

where

X(r) =

(
dχc(r)

dr
−Rχc(r)

)
oo

, Y(r) =

(
dχs(r)

dr
−Rχs(r)

)
oo

, (66)

are the square matrices of dimension No ×No depended on the open-open matrix
(channels).

18O. Chuluunbaatar et al, Proc. SPIE 6165, 66 (2006)



5.3. “incoming” wave function
The radial part of the “incoming” wave function is expressed via the numerical
“standing” wave function and short-range reaction matrix K by the relation

χ̂(mσ)(E, r) =

√
2

π
χ−(r) = ı

√
2

π
χ(p)(r)(Ioo + ıK)−1, (67)

and has the asymptotic form

χ̂(mσ)(E, r) =

√
2

π
(χ(r)− χ∗(r)S†), (68)

where S is the short-range scattering matrix, depends on the scattering matrix Šσ

(25) and Coulomb phase shift δc,

S ≡ Sσ = exp(−ıδc) Šσ exp(−ıδc), S†S = SS† = Ioo, (69)

K = ı(Ioo + S)−1(Ioo − S), S = (Ioo + ıK)(Ioo − ıK)−1. (70)

The total wave function having the asymptotic form “waves going into the center +
outgoing wave”,

Ψ
(−)
Emv̂(r, η) ≡ Ψ

(−)

Em
→←(r, η) =

1√
2

(
ΨEmσ=+1(r, η) ±ΨEmσ=−1(r, η)

)
exp(−ıδc), (71)

that corresponds to function (29).



5.4. the photoionization cross section
In terms of the above definitions σ(ω) by the light linearly polarized along the axis z
(31) is expressed as

σ(ω) = 4π2αω

No∑
i=1

∣∣∣∣Dmσσ′
i,N|z|,Nρ

(E)

∣∣∣∣2a20, (72)

where Dmσσ′
i,N|z|,Nρ

(E) are the matrix elements of the dipole moment

Dmσσ′
i,N|z|,Nρ

(E) =

〈
ΨEmσ=∓1

i (r, η)

∣∣∣∣rη
∣∣∣∣Ψmσ′=±1

N|z|,Nρ
(r, η)

〉

=

jmax∑
j=1

∫ rmax

0
r2drχ̂

(mσ=∓1)
ji (E, r)d

(mσσ′)
j (r), (73)

and d(mσσ′)
j (r) are the matrix elements of the partial dipole moments

d
(mσσ′)
j (r) =

jmax∑
j′=1

〈
Φmσ=∓1

j (η; r)

∣∣∣∣rη
∣∣∣∣Φmσ′=±1

j′ (η; r)

〉
η

χ
(mσ′=±1)
j′ (r). (74)



In the above expressions ω = E −E(N|z|, Nρ, σ′,m) is the frequency of radiation,

ENlm ≡ E(N|z|, Nρ, σ′,m) is the energy of the initial bound state Ψmσ′
N|z|,Nρ

(r, η),
and N|z| = Nr = N − l − 1.
The continuum spectrum solution χ(p)(r) having asymptotic of “standing” wave
conditions and reaction matrix K required for calculating (61) or (68), and discrete
spectrum solution χ(r) and eigenvalue E can be calculated with help of the program
KANTBP19.
One can see that using (61) or (68) for calculation of absolute value in formula (72)
yields the same result as well as, with function (71) performing summation by v̂ in
accordance with formula (31).
Therefore, (61) is preferable for using real arithmetics.
For the light circularly polarized in the plane xOy the similar expression can be written
for formula (32) using expression (�e±�r) = r√

2

√
1− η2 exp(±ıϕ).

In the calculations we used the following values of the physical constants:
1 cm−1 = 4.55633 × 10−6 a.u., the Bohr radius a0 = 5.29177 × 10−11m and the
fine-structure constant α = 7.29735 × 10−3.

19O. Chuluunbaatar et al, submitted to CPC
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6. Conclusions

1. A new efficient method of calculating both the discrete and the continuous
spectrum wave functions of a hydrogen atom in a strong magnetic field is
developed based on the Kantorovich approach to the parametric eigenvalue
problems in spherical coordinates.

2. The two-dimensional spectral problem for the Schrödinger equation with fixed
magnetic quantum number and parity is reduced to a one-dimensional spectral
parametric problem for the angular variable and a finite set of ordinary
second-order differential equations for the radial variable.

3. The rate of convergence is investigated firstly numerically and is illustrated with a
number of typical examples.

4. It is shown that the calculated photoionization cross-sections has the true
threshold behavior and recombination cross-sections can be recalculated using
presented relations.

5. The presented recurrence relations for calculation of the coefficients of
asymptotic expansions of fundamental solutions of a set of the radial equations or
the overlap matrix open the door in the study of threshold phenomena using the
known asymptotic expansion of Coulomb functions 20.

20V.V. Pupyshev, J. Phys. A 28 3305 (1995)
V.V. Pupyshev, PEPAN 28 1457 (1997)



6. The main goal of the elaborated approach consists in the following. The
calculations on all steps of Kantorovich approach are realized with help of stable
calculation schemes and with a prescribed accuracy.

7. The economy of computer recourses is achieved with help of calculated all needed
asymptotics of set of adaptive basis functions, matrix elements of radial coupling
and radial solutions in analytic form to reduce interval of integration of the
corresponded boundary problems.

8. The approach developed provides a useful tool for calculations of threshold
phenomena in the formation and ionization of (anti)hydrogen-like atoms and ions
in magnetic traps21, quantum dots in magnetic field 22, channeling processes23

and potential scattering with confinement potentials 24.

21A. Rotondi, M. Amoretti, et al, AIP Conference Proceedings 796 285 (2005)
W. Bertsche, A. Boston, et alAIP Conference Proceedings 796 301 (2005)

M.V. Ryabinina and L.A. Melnikov, Nucl. Instr. Meth. Phys. Res. B 214 35 (2004)
V.V. Serov, V.L. Derbov and S.I. Vinitsky, Optics and Spectroscopy 102 (2007)

22H.A. Sarkisyan Mod. Phys. Lett. B 16 835 (2002)
23Yu.N. Demkov and J.D. Meyer Eur. Phys. J. B 42 361 (2004)

see also in: selected papers of seminar Symmetries and Integrable Systems: Selected Papers of Seminar
(2000-2005) / Ed. A.N. Sissakian, Dubna: JINR, 2006. v.1, ISBN 5-9530-0129-0

24J.I. Kim, V.S. Melezhik and P. Schmelcher Phys. Rev. Lett. 97 193203 (2006)


