

Slow μ^- BEAMS: COOLING AND NEW SOURCE

1. Extension of the existing low energy $\mu^$ beam into an ultra-low energy μ^- beam for stopping of μ^- on first solid surface layers.

2. A new concept for a low energy μ^- source

D. Taqqu

Detection efficiency of muon entrance detectors: S1-PM1 : 85% S2-PM2 : 50% \rightarrow 80% Low energy (few keV) muon intensity : 400/s \rightarrow 600/s

Beam size : 0.6 cm x 1.4 cm

Detection efficiency of muon entrance detectors: S1-PM1 : 85% S2-PM2 : 80% Low energy (few keV) muon intensity : 600/s

Beam size : 0.6 cm x 1.4 cm

Timing precision : 2 ns

Ultra-low energy μ^- beam for study of surfaces of materials with monolayer resolution. Intensity: <u>500/sec</u> Energy: variable with <u>50 eV</u> resolution in 100 ns

AN INTENSE LOW ENERGY μ^- SOURCE BASED ON A $\mu^-\text{He}^{++}$ BEAM

μ[—] (20-60 keV)

AN INTENSE LOW ENERGY μ^- SOURCE BASED ON A μ^- He⁺⁺ BEAM μ⁻ (20-60 keV) μ[—] He⁺⁺ He⁺⁺ (3 MeV) mm μ⁻ beam μ⁻ He⁺⁺ N beam Target B = 10 T B = 0.1 T

SCALING OF EXISTING MEASUREMENTS

PAUL SCHERRER INSTITUT

M B Shah and H B Gilbody J. Phys. B15 (1982) 413

Figure 1. The cross sections $\sigma_i(\text{Li}^{q+})$ and $\sigma_c(\text{Li}^{q+})$ for ionisation and electron capture, respectively, in collisions of Li^{3+} , Li^{2+} and Li^+ ions with H atoms. \oplus , $\sigma_i(\text{Li}^{q+})$, present data; —, $\sigma_i(\text{Li}^{q+})$, Born approximation, McGuire (1981); —, $-, \sigma_i(\text{Li}^{q+})$, generalised Bethe approximation, Gillespie (1979); ..., $\frac{1}{2}$ (experimental cross sections for electron removal from H₂), Pivovar *et al* (1971); \Box , $\sigma_c(\text{Li}^{q+})$, Shah *et al* (1978).

I. D. Kaganovitch et al., New J. of Pysics 8(2006)278

Exp. \Box H⁺ \odot He²⁺ \bigtriangledown Li³⁺ \bigtriangleup C⁶⁺ \diamond C⁴⁺ \triangleleft O⁵⁺ Fit ---- BA- - Gillespie - R.& P. — new

Projectile: Fully stripped ion with charge Zp Target: Hydrogenic ion with charge Zt Experiments: Zt=1 Scaling law:

$$\sigma^{\text{ion}}(v, I_{nl}, Z_p) = \pi a_0^2 \frac{\overline{Z_p^2}}{(Z_p/Z_T + 1)} N_{nl} \frac{\overline{E_0^2}}{\overline{I_{nl}^2}} G^{\text{new}} \left(\frac{v}{\overline{v_{nl}}\sqrt{Z_p/Z_T + 1}} \right) \\ \sim Z_T^4 \sim Z_T$$

 $\sigma(Z_P=6,Z_T=2,v)=(1/4)\sigma(Z_P=3,Z_T=1,v/2)C^{6+} + He^+$ C⁶⁺ + μ^- He⁺⁺

Energy:
$$E(x) = E_{initial} - \int_0^x \frac{dE}{dx} dx$$

Population: $P(x) = \exp\left(-\int_0^x N\left(\sigma_{ionization}(E(x)) + \sigma_{capture}(E(x))\right)dx\right)$
Ionization: $P_{ionization} = \int_0^x N\sigma_{ionization}(E(x))P(x)dx$

Figure 1. The drift velocity \hat{v} of negative ions moving through He II under the influence of an electric field of 2.7 MV m⁻¹, plotted as a function of pressure P for two different temperatures.

→Velocity of electron bubbles at high field : v = 50 m/s →Velocity of positive ion snowballs at high field: v = 50 m/s

Momentum conservation \rightarrow Velocity of neutral atom: v = 50 m/s

Superfluid helium excitation spectrum and muonic atom motion

 \rightarrow any µHe (neutral) atom approaching the helium surface is kicked into vacuum with an excess kinetic energy of 0.9 K

For μ He atoms having a velocity of 50 cm/s or an energy of 1.3 K the total energy after emission will be 2.2 K

Hydrogen Isotope and ³He Impurities in Liquid ⁴He

LASER IONIZATION OF μ He ATOMS

LASER IONIZATION OF μ He ATOMS

CONVERSION PROCESSES

CONCLUSIONS

- 1. A μ^{-} beam of 10 100 eV is feasible.
- 2. Achievable by adding a final stage to existing PSI beam. Intensity: 300 500 /s.
- 3. A new concept for intense low energy μ^{-} source in pulsed mode is proposed.
- 4. The basic property, the emission of $\mu^{-}He^{++}$ from Helium II into vacuum can be experimentally tested.