$\mu CF - 07$

SUMMARY TALK

Leonid I. Ponomarev

RRC "Kurchatov Institute" and MUCATEX

73 participants
54 talks
27 laboratories
14 states

- 1937 muon discovery
- **1947** prediction of μ catalysis
- **1957** observation of μ catalysis
- **1967** discovery of $d\mu d$ resonance formation
- **1977** prediction and observation of $d\mu t$ resonance formation
- **1987** μCF conference in Gatchina, where μCF community was finally established.

Today the essential part of the μCF – community is involved in the different activities, but it is alive and still remembers those exciting time when we were much more younger.

µCF – meetings:

1984 – Jackson Hall, Wyoming,	USA
1986 – Tokyo,	Japan
1987 – Gatchina,	Russia
1988 – Sanibel Island, Florida,	USA
1989 – Oxford,	UK
1990 – Wienna,	Austria
1992 – Uppsala,	Sweden
1995 – Dubna,	Russia
1998 – Ascona,	Switzerland
2001 – Shimoda,	Japan
2004 – Vienna,	Austria
2007 – Dubna,	Russia

3

RUSSIA

KIAE Moscow PNPI Gatchina Moscow Univ. St.-Petersburg Univ. JINR Dubna ITEP Moscow INR Troitsk IHEP Protvino IATE Obninsk RFNC Arzamas

USA

Berkeley Los Alamos BNL BYU William&Mary California St. Univ. Delaware Univ. Florida Univ.

UK

RAL Nottingham Univ. *JAPAN* RIKEN KEK Tokyo Univ. Kushu Univ. **SWITZERLAND** PSI Fribourg Univ. Neuchatel Univ.

ITALY INFN & ENEA Bologna

GERMANY

TUM Munich

CANADA

TRIUMF Vancouver

AUSTRIA

IMEP Vienna

SWEDEN

Uppsala Univ.

POLAND

INP Krakow

BULGARIA INRNE Sofia

BELGIUM

Delft Tech. Univ.

J-PARC Facility

MuCap

Measurement of the Rate of Muon Capture in Hydrogen Gas and Determination of the Proton's Pseudoscalar Coupling g_p

V.A. Andreev,¹ T.I. Banks,² T.A. Case,² D.B. Chitwood,³ S.M. Clayton,³ K.M. Crowe,² J. Deutsch,⁴ J. Egger,⁵ S.J. Freedman,² V.A. Ganzha,¹ T. Gorringe,⁶ F.E. Gray,² D.W. Hertzog,³ M. Hildebrandt,⁵ P. Kammel,³ B. Kiburg,³ S. Knaack,³ P.A. Kravtsov,¹ A.G. Krivshich,¹ B. Lauss,² K.L. Lynch,⁷ E.M. Maev,¹ O.E. Maev,¹ F. Mulhauser,^{3, 5} C.S. Özben,³ C. Petitjean,⁵ G.E. Petrov,¹ R. Prieels,⁴ G.N. Schapkin,¹ G.G. Semenchuk,¹ M.A. Soroka,¹ V. Tishchenko,⁶ A.A. Vasilyev,¹ A.A. Vorobyov,¹ M.E. Vznuzdaev,¹ and P. Winter³

(MuCap Collaboration)

¹ Petersburg Nuclear Physics Institute, Gatchina 188350, Russia
 ² University of California, Berkeley, and LBNL, Berkeley, CA 94720, USA
 ³ University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
 ⁴ Université Catholique de Louvain, B-1348, Louvain-la-Neuve, Belgium
 ⁵ Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
 ⁶ University of Kentucky, Lexington, KY 40506, USA
 ⁷ Boston University, Boston, MA 02215, USA
 (Dated: April 16, 2007)

$$\Lambda_{\rm S}^{\rm MuCap} = 725.0 \pm 13.7_{\rm stat} \pm 10.7_{\rm sys} \, {\rm s}^{-1}$$

Average of HBChPT calculations of Λ_s : $(687.4 \text{ s}^{-1} + 695 \text{ s}^{-1})/2 = 691.2 \text{ s}^{-1}$ Apply new rad. correction (2.8%): $(1 + 0.028)691.2 \text{ s}^{-1} = 710.6 \text{ s}^{-1}$ further sub percent theory required

$$\bullet \Lambda_S^{theory} = 710.6 \text{ s}^{-1}$$

"A young woman is attractive by her beauty, a grown lady is interesting by her children." R. Feynman

μCF beauty is well known now:

This is a unique phenomenon which allows to regulate the yield of nuclear synthesis by variations of macroscopic parameters – temperature, density, hydrogen isotope concentration, and it is already included in some textbooks.

μCF application in Fundamental Physics and Nuclear Technology

µCF-applications in fundamental physics

- effective numerical codes;
- weak interaction physics;
- nuclear physics and astrophysics;
- p-physics.

Effective numerical codes and p-physics

The accuracy of calculations achieved in the quantum three-body problem with Coulomb interaction is $10^{-8} - 10^{-9}$.

This is 1000 times more than the precision of the world constant.

It allows to calculate transition energies in the $\overline{p}He^+$ system with the spectroscopic precision.

Nuclear physics and astrophysics Measurements of nuclear fusion rates

- "at rest";
- from a definite initial state.

(PSI-PNPI-IMEP-LBNL-TUM-RRC KI– collaboration)

Muon catalyzed dd radiative capture $dd\mu \rightarrow {}^{4}He + \mu + \gamma$

•

Reaction $dd\mu \rightarrow ^{4}He + \mu + \gamma$ was never studied.

- Cross section of dd radiative capture is small, relative yield with respect to main fusion channels is $\Gamma_{\gamma}/\Gamma_{p,n} \approx 10^{-7}$.
- Cross section energy and angular dependencies are extremely sensitive to ⁴He structure.
- Low–energy data are needed for astrophysical calculations and plasma diagnostics.
- Indications to a p-wave transition forbidden by isotopic invariance of nuclear forces were obtained from in-flight measurements.
- We use properties of $dd\mu$ molecule resonance formation to study this reaction in the p-wave to pin down a forbidden transition.

S-factor for $d(d,\gamma)^4$ He

5 - magnetic mirrors; 6 - synthesizer; 7 - specimens area; 8 - systems of tritium fuel loop;
9 - insert of synthesizer; 10 - shielding; 11 - magnetic screen

Intensity I $\approx 10^{17}$ n/s;

Flux $\Phi \approx 10^{14} \text{ n/s} \cdot \text{cm}^2$

Fusion-Fission Hybride

Fission

$n + U \rightarrow fragments + 200 MeV$

Fusion

 $t + d \rightarrow {}^{4}He + n + 17.6 MeV = {}^{4}He (3.5 MeV) + n (14.1 MeV)$

Tritium Production

 $n + {}^{6}Li \rightarrow t + {}^{4}He$

One neutron is necessary to produce one tritium nucleus. 14 MeV neutron takes ~200 MeV, but it is very productive: in the hot fusion reactor it can produce t + 1 fission +1.6 ²³⁹Pu, i.e. ~700 MeV; in the μ CF-breeder n (14.1 MeV) + U + ⁶Li \rightarrow t +1 fission + 3 ²³⁹Pu = t + 1000 MeV.

SUMMARY:

Fusion	17.6	MeV;
Fission	200	MeV;
Hot fusion breeder		
μCF - breeder	1000	MeV;
Tritium production	200	MeV.

Main Characteristics of µCF-cycles .*^{*i*}

Цикл	Реакции	$\lambda_{\rm m}, {\rm c}^{-1}$	$\lambda_{\rm f}, { m c}^{-1}$	ω _s	λ_{ab}, c^{-1}
pd	$p\mu \xrightarrow{\lambda_{pd}} d\mu \xrightarrow{\lambda_{pd\mu}} pd\mu \xrightarrow{\lambda_f} \mu^3 He + \gamma$	5.8 · 10 ⁶	2.6 · 10 ⁵	0.99	1.7 · 10 ¹⁰
pt	$p\mu \xrightarrow{\lambda_{pt}} t\mu \xrightarrow{\lambda_{pt\mu}} pt\mu \xrightarrow{\lambda_f} \underbrace{\mu^4 He + \mu^-}_{\omega_s}$	6.8 · 10 ⁶	0.7 · 10 ⁵	0.94	0.7 · 10 ¹⁰
dd	$d\mu \xrightarrow{\lambda_{d\mu d}} dd\mu \xrightarrow{\lambda_{f}} \qquad $	$\sim 3 \cdot 10^6$	4.3 · 10 ⁸	0.12	-
dt	$d\mu \xrightarrow{\lambda_{dt}} t\mu \xrightarrow{\lambda_{dt\mu}} dt\mu \xrightarrow{\lambda_f} \underbrace{\mu^4 He + n + \mu^-}_{\omega_s}$	$\sim 3 \cdot 10^8$	1.2 · 10 ¹²	0.0057	2.8 · 10 ⁸
tt	$t\mu \xrightarrow{\lambda_{ff}} tt\mu \xrightarrow{\lambda_{f}} \mu^{4}He + 2n + \mu^{-}$	3 · 10 ⁶	1.5 · 10 ⁷	0.14	-

*) $\lambda_{\theta} = 0.46 \cdot 10^6 c^{-1}$ - is the muon decay rate ($\mu \rightarrow e + v_{\mu} + \tilde{v}_e$);

 $\lambda_m = \lambda_{pd\mu}, \lambda_{dd\mu}$ - are the mesic molecules formation rates ($\lambda_{dd\mu}$ и $\lambda_{dt\mu}$ depend on temperature);

 λ_f – is the nuclear synthesis rate;

 ω_s – is the sticking probability;

 λ_{ab} – isotope exchange rate $a\mu + b \rightarrow b\mu + a$;

All data are reduced to 300 K and density of liquid hydrogen $n_0 = 4.25 \cdot 10^{22} \ cm^{-3}$.

Relativistic and other corrections (meV) to the nonrelativistic energies ϵ_{11}^{NR} of muonic molecular ions

	1992		2001	
	ddµ	dtµ	ddµ	dtµ
Nonrelativistic energy	-1974.82	-660.17	-1974.985	-660.336
Vacuum polarization	8.7	16.6	8.660	16.605
Electromagnetic structure of nuclei	-1.5	13.3	-1.675	13.183
Relativistic shift	1.4	0.1	1.660	0.853
Finite size corrections (<i>Ke</i>)	1.0	0.3	1.46	0.50
Nuclear polarization	0.0	-1.7	0.0	-1.7
Total shift	9.6	28.4	10.1	29.4
Total energy	-1965.3	-631.8	-1964.9	-630.9

The accuracy 0.1 meV is equivalent $\Delta T \sim 1K$.

Binding energy of the weakly bound $dt\mu(11)$ molecular ion

	year	N	E_{nr}
Vinitsky <i>et al</i>	1980	adiab	0.64(5)
Gocheva <i>et al</i>	1984	adiab	0.656
Frolov, Efros	1985	400	0.60719
Hu	1986	500	0.628
Korobov	1986	1286	0.65889
Korobov	1987	2084	0.65968
Szalewicz	1987	3063	0.66001
Kamimura	1988	2662	0.660104
			0.660264^{*}
Haywood, Monkhorst, Alexander	1991	2600	0.660178
Frolov	1994	1900	0.660332^{*}
Korobov	2000	2000	0.66017864
			0.66033840^{*}
			0.66033550**

* calculated with CODATA-86 recommended values;

** calculated with CODATA-98 recommended values.

$dd\mu$ resonant formation rates

(PSI-PNPI-IMEP-LBNL-TUM-RRC KI – collaboration)

23

 $\mu\text{-molecule nonrelativistic binding energies } \varepsilon_{Jv}, \mbox{ eV}$ of the states $(Jv)^*$

Molecule (Jv)	(00)	(01)	(10)	(11)	(20)	(30)
$p\mu p$	253.152	-	107.256	-	-	-
$p\mu d$	221.549	-	97.498	-	-	-
$p\mu t$	213.840	-	99.127	-	-	-
$d\mu d$	325.074	35.844	266.682	1.975	86.434	-
$d\mu t$	319.140	34.834	232.472	0.660	102.643	-
$t\mu t$	362.910	83.771	289.142	45.206	172.526	48.70

* The total binding energies of the loosely bound states (J=v=1) of muonic molecules $d\mu d$ and $d\mu t$, taking into account all the relativistic and other corrections are equal $\varepsilon_{11}(dd\mu) = 1.965$ eV and $\varepsilon_{11}(dt\mu) = 0.631$ eV.

Rates	Numerical value,		
Rates	value,	E .	D 1
· ·	1 1	Reaction	Remarks
	$\lambda, 10^6 \cdot s^{-1}$		
,	at $\varepsilon = 0.04 \text{eV}$		
λ_a	$\sim 10'$	$\mu^- + H_2 \to p\mu + H + e^-$	Collision energy dependent:
λ_{pd}	$1.6 \cdot 10^4$ 7.1 103	$p\mu + d \rightarrow d\mu + p$	at $\varepsilon > 1 \text{eV}$
λ_{pt}	$7.1 \cdot 10^{2}$ 2.5 10^{2}	$p\mu + t \rightarrow t\mu + p$	at $\varepsilon > 1 \text{ev}$ at $\varepsilon > 0.1 \text{eV}$
λdt	$2.3 \cdot 10$ 1.7.10 ⁴	$a\mu + \iota \rightarrow \iota\mu + a$ $(n\mu)n \rightarrow + n \rightarrow (n\mu)n \rightarrow + n$	at $\varepsilon > 0.16V$
λ_p	37	$(p\mu)_{F=1} + p \rightarrow (p\mu)_{F=0} + p$ $(du)_{F=0} + d \rightarrow (du)_{F=0} + d$	at $\varepsilon > 0.1 \text{ oV}$
λ_d	$1.2 \cdot 10^3$	$(u\mu)_{F=3/2} + u \rightarrow (u\mu)_{F=1/2} + u$ $(t\mu)_{F=1} + t \rightarrow (t\mu)_{f=0} + t$	at $\varepsilon > 1 \text{eV}$
λ_{nun}	1.8	$(b\mu)_{F=1}^{F=1} + b^{-1} \cdot (b\mu)_{f=0}^{F=0} + b^{-1}$ $m\mu + H_2 \rightarrow [(m\mu)_{Pe}]^+ + e^{-1}$	
λ_{pud}	5.6	$d\mu + H_2 \rightarrow [(p\mu d)pe]^+ + e^-$	
λ_{put}	6.4	$t\mu + H_2 \rightarrow [(p\mu t)pe]^+ + e^-$	
λ_{tut}	2.6	$t\mu + T_2 \rightarrow [(t\mu t)te]^+ + e^-$	
λ_{dud}^{nr}	~ 1	$d\mu + D_2 \rightarrow [(d\mu d)de]^+ + e^-$	
λ_{dut}^{nr}	~ 8	$t\mu + D_2 \rightarrow [(d\mu t)de]^+ + e^-$	
$\lambda_{d\mu d-p}$		$d\mu + HD \rightarrow [(d\mu d)pee]^*$	
$\lambda_{d\mu d-d}$	2.7	$d\mu + D_2 \rightarrow [(d\mu d)dee]^*$	Temperature and energy dependent
$\lambda_{d\mu d-t}$		$d\mu + DT \rightarrow [(d\mu d)tee]^*$	
$\lambda_{d\mu t-p}$		$t\mu + HD \rightarrow [(d\mu t)pee]^*$	
$\lambda_{d\mu t-d}$	$\sim 3 \cdot 10^2$	$t\mu + D_2 \rightarrow [(d\mu t)dee]^*$	
$\lambda_{d\mu t-t}$		$t\mu + DT \rightarrow [(d\mu t)tee]^*$	
$\lambda_{p\mu d}^{J}$	0.26	$p\mu d \rightarrow \mu^3 H e + \gamma$	
ω_{pd}	0.86		
$\lambda_{p\mu t}^{f}$	0.07	$p\mu t \rightarrow \mu^4 H e + \gamma$	
ω_{pt}	0.94		
$\lambda_{d\mu d}^{f}$	430	$d\mu d \rightarrow \mu^3 H e + n$	Branching ratio of mirror channels
ω_{dd}^n	0.132		$\beta = \frac{{}^{3}He+n}{t+n} = 1.46 \text{ at } T > 150 \text{ K}$
λ_{dud}^{f}	430	$d\mu d \rightarrow \mu t + p$	The effective striking probability
ω_{dd}^p	$< 10^{-3}$, , , ,	$\omega_{dd}^0 = \frac{\beta}{1+\beta} \omega_{dd}^n = 0.078$
λ^{f}	$1.1 \cdot 10^{6}$	$dut \rightarrow u^4 He + n + n$	aa 1+p aa
$\cap d\mu t$ ω_{A}	$0.46 \cdot 10^{-2}$		
λ^{f}	15	$t\mu t \rightarrow \mu^4 He + n + n$	
Λtµt ω _t	0.12		
		$2\pi t$	
R_{dd}	0.05	$\mu^{3}He + d \rightarrow \sqrt{3}He + d\mu$	at liquid hydrogen density
R_{dt}	0.3	$\mu^{4}He + d \rightarrow \overset{\sim}{\searrow} \overset{4}{} \overset{4}{} He + d + \mu^{-} \\ \overset{4}{} He + d \mu$	

 * All the rates are normalized to the liquid hydrogen density $\varphi_0 = 4.25 \cdot 10^{22} cm^{-3}$

IABLE V. F	tesuits of the fit to $\lambda_{1/2}$	and	$x_{3/2}$ and theoretical values.		
Quantity	Fit		Calculation	Ref.	
ε_{11} (meV)	-1966.1(2)		-1966.2ª	[34]	
$\lambda_1 (\mu s^{-1}) \\ \lambda_2 (e V^{-1} \mu s^{-1})$	0.044(5)▲ ≲1.0	TAE non- in th	BLE XIII: Relativistic and other corrected relativistic binding energy ε_{11}^{nr} of the dd μ molecule [50].	ections (meV) t e (J= 1, $\nu = 1$)	o th leve
$\tilde{\lambda}_f \ (\alpha = 1.0)$	314(33)		Vacuum polarization	8.720	1
$\lambda_f (\alpha = 0.5) (\mu s^{-1})$	386(51)		Electromagnetic structure of nuclei	-1.675	1
$\lambda_f (\alpha = 0.36)$	461(87)		Relativistic	1.650	1
^a Includes an estimated $dd\mu$ finit	te-size correction of + (Finite size correction	1.46	
			Nuclear polarization	0	
0-7 of muonic Dudh			Total shift	10.16	1
o of muonic Kyabo	erg energy:		Non-relativistic energy ε_{11}^{nr}	-1974.985 [26]	1
			Total energy ε_{11}	-1964.83	1

Rates for LH₂ density

27

Finite size correction

$\Delta E^{\rm FS} = E^{dt\mu e} - \epsilon$	$\mathcal{E}_{11}^{dt\mu} - \mathcal{E}_{1s}^{(dt\mu)-e}$	
Authors	ΔE^{FS} (meV)	Syste
Harston, Hara, Kino, Shimamura, Kamimura	0.50 ($E^{(1)}+E^{(2)}=18.253-$ 17.752) 1.46 ($E^{(1)}+E^{(2)}=11.577-$	(dtµ) (ddµ)
This Work		(.11
	0.25	(atµ
	<u>2.31</u>	(dtµ
	0.30	(ddµ
	1.70 28	(dd)

In μ CF-cycle nuclei approach each other during 10⁻⁹ s to the distance ~10¹¹cm (what is equivalent to temperature 10⁸ K in hot fusion) and fusion takes place without heating and any macroscopic fields.

CONCLUSION

- μCF is a nice and beautiful physics and obtained μCF knowledge should not disappear;
- μCF community have to prepare the book with the description of μCF physics, methods, results and applications;
- I am waiting for the contributions from the authors of this book chapters latest in October 2007;
- I wish the body health and soul equilibrium to all μCF community.

Good by!