Construction of the Super Omega Muon Beamline at J-PARC

Kazutaka Nakahara

μCF2007

KEK: Y. Miyake, K.Shimomura,P.Strasser, K.Nishiyama, N. Kawamura,H. Fujimori, S.Makimura, A. Coda,K.Nagamine, T. Ogitsu, A. Yamamoto,K.Sasaki, K.Tanaka, T.Adachi

RIKEN: K.Ishida, Y.Matsuda

- The Super Omega Beamline
- \succ Potential for μ CF
- Current Status

J-PARC/MSL

- RIKEN/RAL: $\sim 10^5$ /s
- Higher intensity negative muons \rightarrow better S/N (especially for K_{β})

Capture Solenoid

- 400mSr
- Four solenoids designed through TOSCA
- Tunable for different momenta

Transport Solenoids

- Superconducting curved solenoid
- Two 45° bends
 - Separates μ^+ and μ^-
 - Background rejection
- 2T field
- Currently under design:
 - Cryogenics
 - Transport Efficiency

Trajectory/Transport Efficiency

- Transport efficiency calculated through GEANT4 (30 MeV/c)
- Most beamloss occurs at bend dependent on segmentation

Efficiency stabilizes ~7 segments

Rate vs Segmentation for constant coil width

Muon Transportation Efficiency (%) ŧ Ŧ 0 2 4 6 8 10 Segmentation

EXERCISE Super Omega Axial Focusing Magnet

- Originally developed for the KEK muon beamline
- Designed for point to point focusing
- Can this be used at J-PARC? Compatibility with the capture and transport solenoids currently being considered

EXAMPLE X Super Omega Axial Focusing Magnet

- Four solenoids designed for axial focusing; compatibility with beamline calculated through GEANT4
- Goal: focus to 1×1cm²
- Current configuration allows for $\sim 1.8 \times 1.8 \text{ cm}^2$

- How many cloud muons can we capture?
 - Capture solenoid efficiency
 - Transport efficiency
 - Momentum dependence
- Measurements made at RIKEN/RAL → valuable in estimating cloud muon rates at J-PARC

Negative Muon Beam at RIKEN-RAL Port 4

Muon Source:	Decay Muon	Cloud Muon
Momentum:	27 MeV/c	27 MeV/c
→ Width (∆p/p):	~ 10 %	~ 7%
Intensity:	~ 5000 s ⁻¹	~ 15000 s⁻¹

→ Beam size: ~ Ø40 mm Cloud muons: ~4% of μ^+ production

- Cross Section parameterized 2.9GeV proton on Be (P.A. Pirone and A.J.S. Smith, Phys.Rev.148, 1315 (1966))
- Pion to surface μ^+ production efficiency $\rightarrow 8.4 \times 10^{-5}$
- Scaling from surface μ^+ production to cloud μ^- production $\rightarrow \sim 4\%$

Target Thickness	2cm
Beam Current	333 µA
Energy Spread	5%

• Momentum dependence of capture efficiency through GEANT4 (solenoids optimized for 30MeV/c)

- Optimize capture solenoids for 50 MeV/c → Proof of principle
- 4 coils (3 in series) → 2 current settings
- Rates 1~2×10⁷ should be possible

• Technical limitations are coolant to reduce heating of coils

Summary

- Super Omega beamline at J-PARC can expect $\times 10^{-100} \mu^{-100}$ compared to RIKEN/RAL.
- Capture solenoids under construction
- Transport solenoids and Super Omega magnet under design
- \succ Come use our facility for some μ CF!!