Temperature dependence of muon transfer rates from t μ to ³He in solid T₂

<u>T. Matsuzaki^a</u>, K. Ishida^a, H. Imao^a, Y. Matsuda^a, N. Kawamura^b, M. Iwasaki^a and K. Nagamine^{a,b,c}

a RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
b KEK 1-1 Oho, Tukuba, Ibaraki, 305-0801 Japan
^c University of California Riverside, Riverside, California 92521, U.S.A.

International Conference on Muon Catalyzed Fusion and Related topics

(μCF-07) Dubna, 18-21 June 2007

(The ³He, decay product of tritium, is accumulated in solidT₂, not in liquid T₂.)

Competing processes of $t\mu^{-}$ in solid T_2

(1) t-t μ CF process: t + t + $\mu^{-} \rightarrow tt \mu^{-} \rightarrow \alpha + n + n + \mu^{-} + Q$ (11.33 MeV) ----- (1) $\rightarrow \alpha \mu^{-} + n + n + Q$. ----- (2)

 $t\mu^- + T_2 \rightarrow [(tt\mu)_{J\nu}t e^-] + e$

(2) muon transfer process:

$$t\mu^{-} + {}^{3}\text{He} \rightarrow \mu^{-}t^{3}\text{He}^{*} \rightarrow t + {}^{3}\text{He}\mu^{-} + \gamma (6.76 \text{ keV})$$
 ----- (3)

The muon transfer rate is determined by measuring the time dependent change of neutron disappearance rates (λ_n) and the 6.8 keV photon yields.

Muon Transfer from $t\mu^-$ to ³He in solid T₂

(The ³He, decay product of tritium, is accumulated in solidT₂, not in liquid T₂.)

1. Direct μ^{-} capture to ³He: ³He concentration is small

 μ^{-} + ³He $\rightarrow \mu^{-3}$ He

- 2. Direct transfer from tµ⁻ to ³He: rate ~ 10⁵⁻⁶/sec tµ⁻ + ³He \rightarrow t + µ⁻³He
- 3. μ^{-} transfer from t μ to ³He through $\mu^{-}t^{3}$ He molecule: rate ~ 10⁹/sec $t\mu^{-} + {}^{3}$ He $\rightarrow (\mu^{-}t^{3}$ He)* $\rightarrow t + \mu^{-}t^{3}$ He + γ (6.8KeV) (dominant for $t\mu^{-}+{}^{3}$ He) $\rightarrow t + \mu^{-}t^{3}$ He + K.E. (M.Kamimura,Y.Kino) $\rightarrow t + \mu^{-}t^{3}$ He + Auger electron

History of "Muon Transfer mechanism from $d\mu$ to ⁴He

through µd⁴He molecular formation"

 $d\mu + {}^{4}He \rightarrow \mu d^{4}He \rightarrow d + {}^{4}He\mu + \gamma (6.8 \text{KeV})$

A.V. Kravtzov et al., Phys. Lett.83A (1984)379

The first observation of radiative transition photons (6.8 keV) associated with muon transfer from $d\mu$ to ⁴He through μ d⁴He molecular formation (KEK-MSL 1987)

Presented by T.Matsuzaki in µCF-87 at Gatchina Reference:T.Matsuzaki et. al.,Muon Catalyzed Fusion 2(1988)217

Theoretical calculation of μ t³He molecular formation rate vs Temperature

A.V. Kravtzov et al., Z. Phys. D29 (1994) 49

Rutherford Appleton Laboratory

µCF at RIKEN-RAL Muon Facility

- **RIKEN-RAL Muon at ISIS** (1995~)
- Intense pulsed muon beam (double pulse)
- (70ns width, 50 Hz)
- 800MeV x 200µA proton (up-graded to 300 µA, 2007)
- 25~150MeV/c
- µ⁺/µ⁻ muon (decay and surface muon beam)
- 5 x 10⁴ µ⁻/s (55 MeV/c)

Muon catalyzed fusion experiment facility at the RIKEN-RAL

Reference: T. Matsuzaki et. al.,Nuclear Instruments & Methods A480(2002)814

t-t µCF target and detectors

- Cryogenic target : 0.5 cc solid T₂ (1.5 kCi)
- Detectors with the calibration
- fusion neutrons, X-rays, μ-e decay
- 60 (solid) and 30 (liquid) muon stops per pulse

Photon energy spectrum for t-t μ CF experiment

Reference: T. Matsuzaki et al., Phys. Lett. B527(2002)43

Neutron energy and time spectrum for t-t μ CF experiment

Reference: T. Matsuzaki et al., Phys. Lett. B557(2003)176

Time dependence of t-t μ CF neutron disappearance rate (λ_n) in solid T₂

Muon transfer process:

Neutron disappearance rate $\lambda_n(\tau)$ vs. Time $\lambda_n(\tau) = \lambda_0 + \phi W \lambda_c + \phi C_{3He}(\tau) \lambda_{t3He\mu}$

 $\lambda_{n}(0) = \lambda_{0} + \phi W \lambda_{c}$ (constant term)

 $\mathbf{C}_{3\text{He}}(\tau) = \mathbf{C}_t \,\lambda_t \,\tau$

 $C_t = 0.994, \ \lambda_t = 1.54 \ x 10^{-4} \ /day$

t-t μ CF process:

Neutron data: $\lambda_{c} = Y_{n} \lambda_{n} (0) / \phi$

 $Y_{n} = \phi \ \lambda_{c} / \lambda_{n} (0)$

 $W = (1 - \lambda_0 / \lambda_n (0)) / Y_n$

 λ_c : muon cycling rate W: muon loss λ_0 : muon decay rate Y_n : neutron yield ϕ : target density Muon transfer rates from t μ to ³He in solid T₂ vs. Temperature

Reference: T. Matsuzaki et.al., Phys. Lett. B 527 (2002) 43

 λ_{n0} (constant term) vs. Temperature

Observed phenomena:

Higher temperature region (>13K)

Good reproducibility of $\lambda_n(t)$ to the final state at temperature change (17-14K,14-13K,11-14-11K).

Lower temperature region (<10K)

Good reproducibility of $\lambda_n(t)$ to the final state at temperature change (6-10K).

Intermediate temperature region (10-13K)

To reproduce $\lambda_n(t)$ to the final state at temperature change, it took longer time. (13-12-10K) Possible scenario:

- 1. $t\mu^{-}$ thermalization
- 2. Two ³He sites in solid T_2 at high and low temperature regions
- 3. Lattice structure of solid T_2

Assumed tu- energy vs. Temperature

Two ³He sites model:

1. Two ³He sites in solid T_2 :

He((L) in low temperature and He(H) in high temperature

- 2. Muon transfer rate is reduced in He(L) by A_{eff}
- 3. No 3 He diffusion from He(L) to He(H)
- 4. Diffusion from He(H) to He(L) depends on temperature.

Diffusion at higher temperature region (> 13K) is zero at He(H).

Diffusion from He(H) to He(L) is very fast

at lower temperature region (< 11K)

5. Diffusion probability from He(H) to He(L) after 1 hour : f(T)

 $f(T) = 1 / (1 + \exp(T - T_s) / dT)$

- 6. Fitting to data with free parameters (A_{eff}, T_s and dT)
- 7. Result: A_{eff} = 0.59 +/-0.06

T_s = 11.8 K dT = 0.59 K λ_n increase rate (μ s⁻¹/hr) vs. Temperature by two sites model

t-t μ CF fusion cycling rate vs. Temperature

Reference: $\lambda_{t\mu t}$ = 1.8 +/-0.6 /µs Bruenlich et. al., Muon Catalyzed Fusion1(1987)121 λ_{f} = 15 +/-2 /µs

Total muon loss (W) vs. Temperature

Reference: $\omega_f = 0.14 + -0.03$ Bruenlich et. al., Muon Catalyzed Fusion1(1987)121

Summary:

Muon transfer rate

Moun transfer rates in solid T_2 were obtained by observing the time dependent changes of t-t μ CF neutron disappearance rates.

The temperature dependence was obtained in the region from 5K to 20K, and showed an interesting structure.

Possible scenario: 1. $t\mu$ - thermalization

- 2. Two ³He sites in solid T_2 at high and low temperature regions
- 3. Lattice structure of solid T_2

An interesting structure was analyzed by the two ³He sites model, and a smooth temperature dependence, which was theoretically predicted, was well reproduced.

The origin of the interesting temperature dependence is still unclear, and be studied further.

Muon Catalyzed t-t fusion

The temperature dependences of t-t μ CF cycling rates and total muon loss were obtained.

No prominent temperature dependences were observed.

Non resonant tt μ formation in the t-t μ CF cycle

The obtained cycling rate was in agreement with the PSI data.

Thank you for your attention.

$$(t\mu) + T_2 \longrightarrow [(tt \mu)_{J_V} te]^+ + e$$

Scheme of cascade processes in $dt\mu$ and $dd\mu$ molecules after resonant molecular formation in the (1, 1) state, calculated by Bogdanova *et al.* (1982).