
The TWIST Experiment: Testing the Standard Model with Muon Decay

The TRIUMF Weak Interaction Symmetry Test

- Tests Standard Model predictions for muon decay.
- Uses highly polarized μ⁺ beam (μ⁻ doesn't work!).
- Stops μ⁺ in a very symmetric detector.
- Tracks e+ through uniform, well-known field.
- Extracts decay parameters by comparison to detailed and verified simulation.

Michel parameter description

\square Muon decay parameters ρ , η , $\mathcal{P}_{\mu}\xi$, δ

- Michel, Kinoshita & Sirlin, and others.
- muon differential decay rate vs. energy and angle:

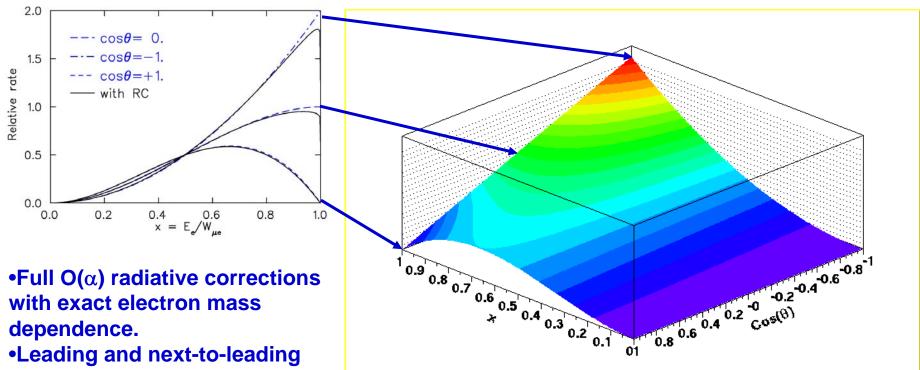
$$egin{array}{ll} rac{d^2\Gamma}{dx\;d\cos heta} &=& rac{1}{4}m_{\mu}W_{\mu e}^4G_F^2\sqrt{x^2-x_0^2}\,\cdot \ && \{\mathcal{F}_{IS}(x,{m
ho},{m\eta})+m{\mathcal{P}}_{m\mu}\cos heta\cdotm{\mathcal{F}}_{AS}(x,{m \xi},{m \delta})\}+R.C. \end{array}$$

Louis Michel

$$\mathcal{F}_{IS}(x, \rho, \eta) = x(1-x) + \frac{2}{9}\rho(4x^2 - 3x - x_0^2) + \eta x_0(1-x)$$

$$\left| \mathcal{F}_{AS}(x,oldsymbol{\xi},oldsymbol{\delta})
ight| = \left| rac{1}{3} \sqrt{x^2 - x_0^2} \left[oldsymbol{\xi} \left\{ 1 - x
ight\} + rac{2}{3} oldsymbol{\xi} \delta \left\{ 4x - 3 + \left(\sqrt{1 - x_0^2} - 1
ight)
ight\}
ight]
ight|$$

$$lackbox{ t and } lackbox{W}_{\mu e}=rac{m_{\mu}^2+m_e^2}{2m_{\mu}}, lackbox{x}=rac{E_e}{W_{\mu e}}, lackbox{x}_0=rac{m_e}{W_{\mu e}}. egin{array}{c} \overline{\mathsf{p}}_e \ \overline{\mathcal{P}}_e \ \hline \end{array}$$


Pre-TWIST decay parameters

☐ From the Review of Particle Physics (SM values in parentheses):

	$\rho = 0.7518 \pm 0.0026$ (Derenzo, 1969)	(0.75)
•	$\eta = -0.007 \pm 0.013$ (Burkard <i>et al.</i> , 1985)	(0.00)
•	$\delta = 0.7486 \pm 0.0026 \pm 0.0028$ (Balke <i>et al.</i> , 1988)	(0.75)
•	$P_{\mu}\xi = 1.0027 \pm 0.0079 \pm 0.0030$ (Beltrami <i>et al.</i> , 1987)	(1.00)
•	$\mathcal{P}_{}(\xi \delta/\rho) > 0.99682$ (Jodidio <i>et al.</i> , 1986)	(1.00)

The goal of \mathcal{TWIST} is to find any new physics which may become apparent by improving the precision of each of ρ , δ , and $\mathcal{P}_{\mu}\xi$ by at least one order of magnitude compared to prior experimental results.

Spectrum shape, graphically

- Leading and next-to-leading logarithmic terms of $O(\alpha^2)$.
- Leading logarithmic terms of $O(\alpha^3)$.
- Corrections for soft pairs, virtual pairs and an ad-hoc exponentiation.

Arbuzov et al., Phys. Rev. D66 (2002) 93003. Arbuzov et al., Phys. Rev. D65 (2002) 113006.

Anastasiou et al., hep-ph/0505069 to $O(\alpha^2)$ (not yet published, not implemented).

Michel parameters and coupling constants

☐ Fetscher and Gerber coupling constants (see PDG):

$$M \; = \; rac{4G_F}{\sqrt{2}} \sum_{\substack{\gamma = S, V, T \ arepsilon, \mu = R, L}} g_{arepsilon \mu}^{\gamma} \left\langle ar{e}_{arepsilon} \left| \Gamma^{\gamma}
ight| (
u_e)_n
ight
angle \left\langle (ar{
u}_{\mu})_m \left| \Gamma_{\gamma}
ight| \mu_{\mu}
ight
angle$$

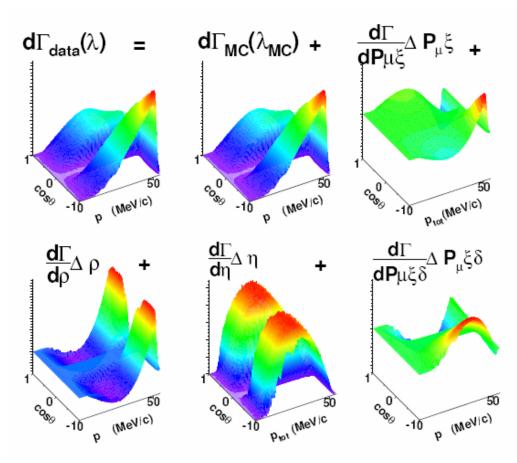
$$\begin{array}{ll} \rho & = & \frac{3}{4} - \frac{3}{4}[\left|g_{RL}^{V}\right|^{2} + \left|g_{LR}^{V}\right|^{2} + 2\left|g_{RL}^{T}\right|^{2} + 2\left|g_{LR}^{T}\right|^{2} \\ & + \mathbb{R}e\left(g_{RL}^{S}g_{RL}^{T*} + g_{LR}^{S}g_{LR}^{T*}\right)] \\ \eta & = & \frac{1}{2}\mathbb{R}e[g_{RR}^{V}g_{LL}^{S*} + g_{LL}^{V}g_{RR}^{S*} + g_{RL}^{V}(g_{LR}^{S*} + 6g_{LR}^{T*}) + g_{LR}^{V}(g_{RL}^{S*} + 6g_{RL}^{T*})] \\ \xi & = & 1 - \frac{1}{2}\left|g_{LR}^{S}\right|^{2} - \frac{1}{2}\left|g_{RR}^{S}\right|^{2} - 4\left|g_{RL}^{V}\right|^{2} + 2\left|g_{LR}^{V}\right|^{2} - 2\left|g_{RR}^{V}\right|^{2} \\ & + 2\left|g_{LR}^{T}\right|^{2} - 8\left|g_{RL}^{T}\right|^{2} + 4\mathbb{R}e(g_{LR}^{S}g_{LR}^{T*} - g_{RL}^{S}g_{RL}^{T*}) \\ \xi \delta & = & \frac{3}{4} - \frac{3}{8}\left|g_{RR}^{S}\right|^{2} - \frac{3}{8}\left|g_{LR}^{S}\right|^{2} - \frac{3}{2}\left|g_{RR}^{V}\right|^{2} - \frac{3}{4}\left|g_{LL}^{V}\right|^{2} - \frac{3}{4}\left|g_{LR}^{V}\right|^{2} \\ & - \frac{3}{2}\left|g_{RL}^{T}\right|^{2} - 3\left|g_{LR}^{T}\right|^{2} + \frac{3}{4}\mathbb{R}e(g_{LR}^{S}g_{LR}^{T*} - g_{RL}^{S}g_{RL}^{T*}) \end{array}$$

Coupling constants

Coupling constants $g^{\gamma}_{\epsilon\mu}$ can be related to handedness, *e.g.*, total muon right-handed coupling:

$$egin{array}{lll} Q_R^{\mu} &\equiv & Q_{RR} + Q_{LR} \ &= & rac{1}{4} |m{g}_{LR}^S|^2 + rac{1}{4} |m{g}_{RR}^S|^2 + |m{g}_{LR}^V|^2 + |m{g}_{RR}^V|^2 + 3|m{g}_{LR}^T|^2 \end{array}$$

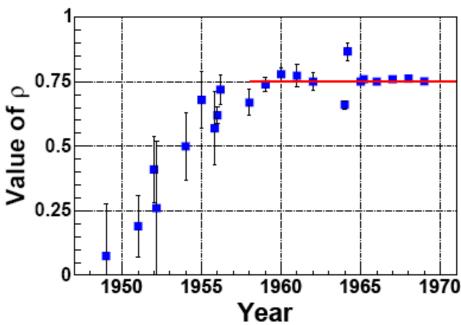
- Global analysis of μ decay (Gagliardi et al., PRD 72 (2005) 073002)
 - no existing similar analysis for other weak decays.


$$\begin{split} |g_{RR}^S| &< 0.066(0.067) & |g_{RR}^V| < 0.033(0.034) & |g_{RR}^T| \equiv 0 \\ |g_{LR}^S| &< 0.125(0.088) & |g_{LR}^V| < 0.060(0.036) & |g_{LR}^T| < 0.036(0.025) \\ |g_{RL}^S| &< 0.424(0.417) & |g_{RL}^V| < 0.110(0.104) & |g_{RL}^T| < 0.122(0.104) \\ |g_{LL}^S| &< 0.550(0.550) & |g_{LL}^V| > 0.960(0.960) & |g_{LL}^T| \equiv 0 \end{split}$$

- Neutrino mass implications at 10⁻⁷-10⁻⁴ for LR/RL:
 - Erwin et al., Phys. Rev. D 75 (2007) 033005 (hep-ph/0602240).

Fitting the data distributions

- Decay distribution is linear in ρ , η , $\mathcal{P}_{\mu}\xi$, and $\mathcal{P}_{\mu}\xi\delta$, so a fit to first order expansion is exact.
- ☐ Fit data to simulated (MC) base distribution with hidden assumed parameters,


 $\lambda_{MC} = (\rho, \eta, \mathcal{P}_{\mu} \xi_{|\mathcal{P}_{\mu} \xi \delta}, \mathcal{P}_{\mu} \xi \delta)$ plus MC-generated distributions from analytic derivatives, times fitting parameters ($\Delta \lambda$) representing deviations from base MC.

(graphic thanks to Blair Jamieson)

Blind analysis motivation

- Reduce "human" systematics, i.e., biases.
- Keep final result hidden until analysis is completed and systematic uncertainties evaluated.
- In fit procedure, the set of simulation parameters λ_{MC} is encrypted and unknown; results of fits are *differences* Δλ from hidden values.

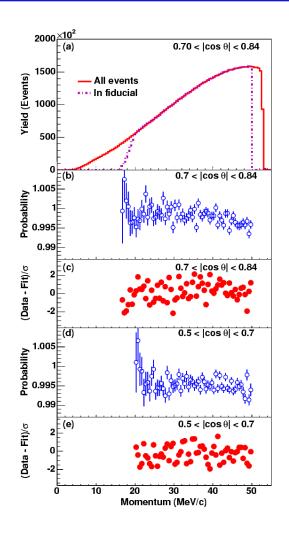
A. Gaponenko, Ph.D. thesis

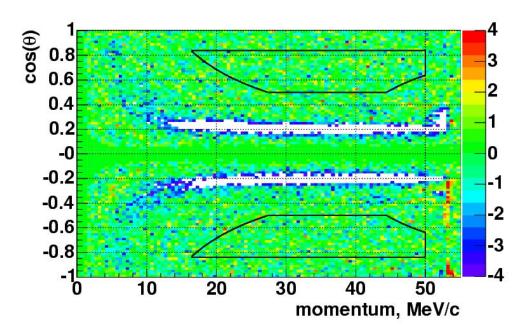
Evaluation of Systematic Uncertainties

- TWIST relies on a fit to simulation:
 - Simulation must be verified.
 - Reconstruction systematics eliminated if simulation is perfect.
- General method:
 - exaggerate a condition (in data or MC) which may cause error.
 - measure effect by fitting, using correlated sets where practical.
 - scale results according to variance in a data set.
 - Linearity? Double counting?

•Positron interactions:

- Energy smearing
- Multiple scattering
- Hard interactions
- Material in detector
- Material outside
- •Chamber response:
 - •DC and PC efficiencies
 - Dead zone
 - Long drift times
 - •HV variations
 - •Temperature, pressure
 - Chamber foil bulges
 - •Crosstalk
 - •Variation of t₀

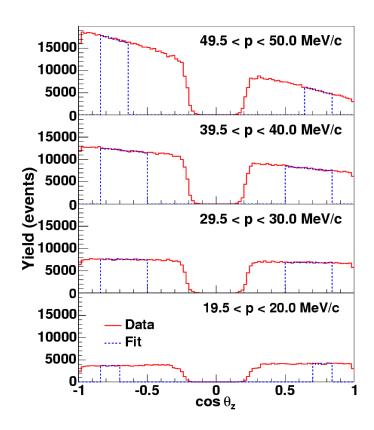

•Momentum calibration:

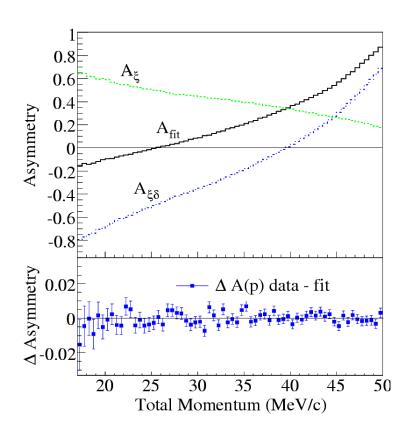

- End point fits
- •Field reproduction
- •Muon beam stability:
 - Stopping location
 - Beam intensity
 - Magnet stability

•Spectrometer alignment:

- Translations
- Rotations
- •Longitudinal
- •Field to detector axis

Fits to data distributions




Above: normalized residuals of fit, and fiducial region used for fit: p < 50 MeV/c, 0.50 < $|\cos\theta|$ < 0.84, $|p_z|$ > 13.7 MeV/c, p_T < 38.5 MeV/c.

Left: comparison of data to fit (MC) vs. momentum, also showing (MC reconstructed)/(MC thrown) comparisons and normalized residuals.

Fits to data distributions (cont.)

Angular distributions for restricted momentum ranges. Dashed lines show fiducial region of two-dimensional fit.

Dependence of asymmetry on momentum, its two contributions, and comparison of data and fit (MC)distributions.

Summary of results: ρ and δ

- \square ρ = 0.75080 \pm 0.00044(stat) \pm 0.00093(syst) \pm 0.00023(η)
 - 2.5 times better precision than PDG value.
 - Uncertainty scaled for $\chi^2/\text{dof} = 7.5/4$ (CL=0.11) for different data sets.
 - J.R. Musser et al., PRL **94** (2005) 101805, hep-ex/0409063.
- - 2.9 times better precision than PDG value.
 - A. Gaponeko et al., PRD 71 (2005) 071101(R), hep-ex/0410045.
- Using the above values of ρ and δ , with $\mathcal{P}_{\mu}(\xi\delta/\rho) > 0.99682$ (PDG) and $Q_{R}^{\mu} \geq 0$, we get
 - $0.9960 < P_{\mu}\xi \le \xi < 1.0040 (90\% \text{ c.l.})$
 - improves upon $\mathcal{P}_{\mu}\xi = 1.0027 \pm 0.0079 \pm 0.0030$.

Systematic uncertainties: ρ and δ

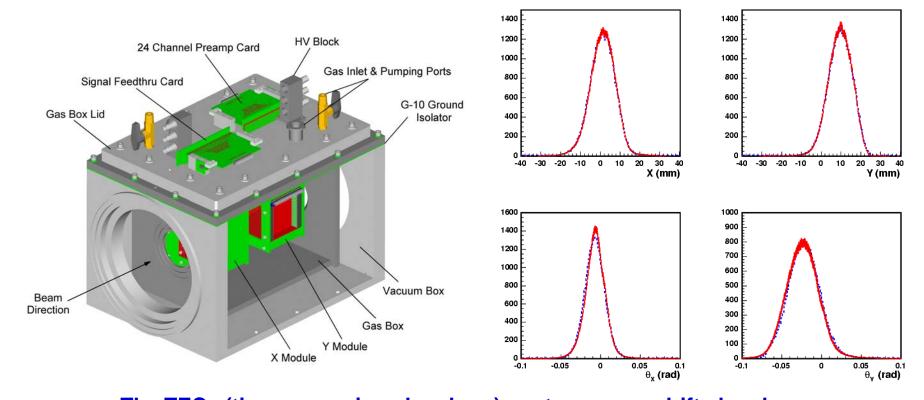
Systematic uncertainties	ρ (×10 ⁴)		δ (×10 ⁴)	
Systematic uncertainties	published	current	published	current
Chamber response (ave)	5.1	3.2	5.6	5.2
Stopping target thickness	4.9		3.7	Open-Association
Positron interactions	4.6	3.8	5.5	2.4
Spectrometer alignment	2.2	0.3	6.1	
Momentum calibration (ave)	2.0	111	2.9	2.2
Theoretical radiative correction	2.0	2.0	1.0	1.0
Muon beam stability (ave)	0.4	0.5	1.0	0.9
Track selection algorithm	1.1			
Asymmetric efficiencies			0.4	0.1
Total in quadrature	9.3	5.5	11.2	6.3

New data and analysis: thesis of R.P. MacDonald, in preparation.

Summary of results: $P_{\mu}\xi$

- $\Box \mathcal{P}_{\mu} \xi = 1.0003 \pm 0.0006 \text{(stat)} \pm 0.0038 \text{(syst)}$
 - 2.2 times better precision than PDG value (Beltrami et al.).
 - still not as precise as TWIST indirect result from ρ and δ .
 - B. Jamieson et al., PRD 74 (2006) 072007, hep-ex/0605100.

- Dominated by systematic uncertainty from spectrometer fringe field depolarization:
 - prospects for improvement are excellent.
 - data taken in 2004; new data with improved muon beam from data taken in 2006-07.


Systematic uncertainties: $\mathcal{P}_{\mu}\xi$

Systematic uncertainties	$\mathcal{P}_{\mu}\xi~(imes~10^3)$
Depolarization in fringe field (ave)	3.4
Depolarization in muon stopping material (ave)	1.2
Chamber response (ave)	1.0
Spectrometer alignment	0.3
Positron interactions (ave)	0.3
Depolarization in muon production target	0.2
Momentum calibration	0.2
Upstream-downstream efficiency	0.2
Background muon contamination (ave)	0.2
Beam intensity (ave)	0.2
Michel η parameter	0.1
Theoretical radiative correction	0.1
Total in quadrature	3.8

Improving the systematics

Systematic	Improvement	
positron interactions	precision target geometry, improved chamber spacing, simulation tuning	
momentum calibration	new techniques with reduced bias	
chamber response	online monitoring, improved instrumentation, drift time measurements	
fringe field	beam monitoring (TEC), beam alignment	
depolarization	and steering	
stopping target	aluminum and silver targets, depolarization	
depolarization	studies with μSR.	

Fringe field systematic improvement

The TECs (time expansion chambers) are transverse drift chambers operating at 0.08 bar, separated from beam vacuum by 6 μ m Mylar windows. Two modules measure x and y. Red lines show measurements of beam, dashed blue lines

es show measurements of beam, dashed blue lines show resulting simulation.

Left-right symmetric models

■ Weak eigenstates in terms of mass eigenstates and mixing angle:

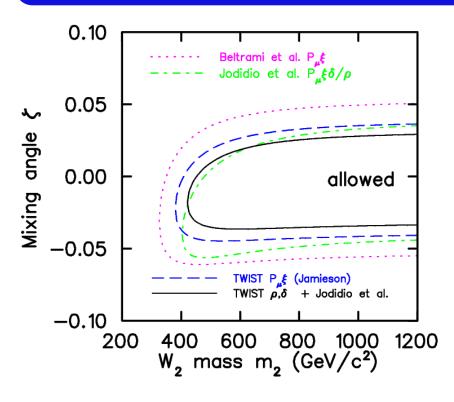
$$W_L = W_1 \cos \zeta + W_2 \sin \zeta, \quad W_R = e^{i\omega}(-W_1 \sin \zeta + W_2 \cos \zeta)$$

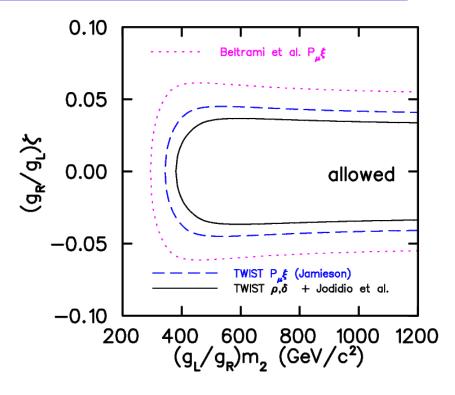
■ Assume possible differences in left and right couplings and CKM character.

Use notation:
$$t=rac{g_R^2m_1^2}{g_L^2m_2^2}, \qquad t_ heta=trac{|V_{ud}^R|}{|V_{ud}^L|}, \qquad \zeta_g=rac{g_R^2}{g_L^2}$$

■ Then, for muon decay, the Michel parameters are modified:

$$ho = rac{3}{4}(1-2\zeta_q^2), \qquad m{\xi} = 1-2(t^2+\zeta_q^2),$$


$$\mathcal{P}_{\pmb{\mu}} = 1 - 2t_{ heta}^2 - 2\zeta_g^2 - 4t_{ heta}\zeta_g^2\cos(lpha + \omega)$$


- "manifest" LRS assumes $g_R = g_L$, $V^R = V^L$, $\omega = 0$ (no CP violation).
- "pseudo-manifest" LRS allows CP violation $(\alpha \neq \mathbf{0})$, but $V^R = (V^L)^*$ and $g_R = g_L$.
- RS "non-manifest" or generalized LRS makes no such assumptions.
- Most experiments must make assumptions about LRS models!

Limits on LRS parameters: PDG06

Observable	m₂ (GeV/c ₂)	5	+	_	
$m(K_L - K_S)$	>1600		reach	(P)MLRS	
Direct W _R	>800 (D0)	00 (D0)		(P)MLRS	
searches	>786 (CDF)		clear signal	decay model	
CKM		<10 ⁻³	concitivity	(P)MLRS	
unitarity			sensitivity	heavy v _R	
0 doory	>310	>210	10 <0.040 both	both	(P)MLRS
β decay		<0.040	parameters	light v_{R}	
μ decay	>406	<0.033	model	light v	
(TWIST)	(>420)	(<0.030)	independence	light $ u_{R}$	

Muon decay LRS limits

Restricted ("manifest") LRS model

General LRS model

Exclusion (90% cl) plots for left-right symmetric model mixing angle and right partner boson W₂ mass m₂

Summary

- \Box *TWIST* has produced its first direct measurement of $\mathcal{P}_{\mu}\xi$, to add to previous results for ρ and δ.
- Analysis underway for second measurements for ρ and δ, representing further improvements by ~ 2 .
- Reduction of depolarization systematics for $\mathcal{P}_{\mu}\xi$ seems achievable, but it is not yet known by how much.
- In 2006-2008, TWIST will produce its final results: the goal remains the reduction of uncertainty by an order of magnitude compared to previous muon decay parameter experiments.

TWIST Participants

TRIUMF

Ryan Bayes *† Yuri Davydov **Jaap Doornbos Wayne Faszer Makoto Fujiwara David Gill** Alex Grossheim **Peter Gumplinger** Anthony Hillairet *† **Robert Henderson Jingliang Hu** John A. Macdonald § Glen Marshall **Dick Mischke** Mina Nozar Konstantin Olchanski Art Olin † **Robert Openshaw** Tracy Porcelli ‡ Jean-Michel Poutissou Renée Poutissou **Grant Sheffer** Bill Shin ‡‡

Alberta

Andrei Gaponenko **
Peter Kitching
Robert MacDonald *
Maher Quraan†
Nate Rodning §
John Schaapman
Glen Stinson

British Columbia

James Bueno *
Mike Hasinoff
Blair Jamieson **

Montréal Pierre Depommier

Regina

Ted Mathie Roman Tacik

Kurchatov Institute

Vladimir Selivanov Vladimir Torokhov

Texas A&M

Carl Gagliardi
Jim Musser **
Bob Tribble
Maxim Vasiliev

Valparaiso

Don Koetke
Paul Nord
Shirvel Stanislaus

- * Graduate student
- ** Graduated
 † also U Vic
 ‡ also Manitoba
 ‡‡ also Saskatchewan
 § deceased

Supported under grants from NSERC (Canada) and DOE (USA). Computing facilities of WestGrid are gratefully acknowledged.