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ASACUSA EXPERIMENT - 2005:

First observation of cold, long-lived antiprotonic helium ions

(p̄ 4He++) and (p̄ 3He++):

M.Hori, J.Eades, R.S.Hayano, et al. Phys. Rev. Letters 94, 063401

(2005)

Target: T ∼ 10K, ρ = (0.3÷ 20) · 1017 cm−3

Measured values:

Decay rates of annihilation signals vs. target density, γn(ρ),

for the circular orbits (l = n− 1)

at n = 28, 30, 31, 32 in 4He

and n = 28, 29, 30, 31 in 3He .

1



Qualitative peculiarities of the experimental results:

• Decay rates γn ∼ ρ at ρ . 1018 cm−3.

• dγ/dρ (per-atom collisional part of the rate) increases with n

and greater for 3He as compare with 4He.

• dγ/dρ ∼ (1÷ 3) · 10−16 MHz · cm3,

∴ effective cross sections are huge,

σ ∼ (4÷ 10) · 10−15 cm2 = (140÷ 360) · a2
0,

depending on n and isotope.
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How to explain these results?

Full theory has consider a time-dependent cascade of the transition.
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Elementary processes in the cascade:

I radiative transitions (p̄He++)nl → (p̄He++)n′l′ + γ,

I Stark transitions (p̄He++)nl + He → (p̄He++)nl′ + He,

I external Auger process (Penning ionization)

(p̄He++)nl + He → (p̄He++)n′l′ + He+ + e,

I p̄ - annihilation,

I Coulomb (collisional) de-excitation,

etc.

Collisional Stark transitions (p̄He++)nl + He → (p̄He++)nl′ + He,

are the most important for the first step processes: they change

the inner angular momentum of the antiprotonic ion and open a

possibility for other processes to be more fast.
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Theoretical approach:

heavy particles (helium nuclei and antiproton) are slow (vhp ¿ ve),

∴ electronic variables can be separated out within adiabatic approx-

imation reducing the problem to the 3 body (p̄−He++ −He).

Total effective 3-body hamiltonian:

H = h + T + V (R, r)

h and r are inner hamiltonian and coordinates of (p̄He++),

T = (−1/2m)∇2
R, R and m are the kinetic energy operator, relative

coordinates and reduced mass of colliding subsystems,

V (R, r) is the potential energy of interaction between antiprotonic

and ordinary atoms.
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At l > 2 and large n: Eigenfunctions φnlm(r) and eigenvalues Enl of

h for the isolated (p̄He++) are hydrogen-like, with

Enl = en ≡ −µZ2/2n2 degenerated in l.

For ns- and np-states: Enl = en + ∆Enl.

Complex shift of antiprotonic levels ∆Enl = −εnl − iΓnl/2

is produced, mainly, by strong p̄-nucleus interaction, including anni-

hilation.

n - dependence:

∆Ens = ∆E1s/n3, ∆Enp = ∆E2p ·
32(n2 − 1)

3n5

For p̄−4 He:

Γ1s ' 11keV, Γ2p ' 36eV, εnl ' 0.3Γnl
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Coupled channels approach:

Basis set at a fixed n: |j〉 ≡ |nl, L : JM〉 = (φnl(r)⊗ YL(ΩR))JM .

Total wave function: Ψi(R, r) =
∑

lL |j〉ψji(R)/R.

System of coupled-channel equations:

ψ′′ji(R) +
[
k2
j − Lj(Lj + 1)/R2

]
ψji(R) = 2m

∑

k

Vjk(R)ψki(R)

k2
j =




2m(E − en) (real) if l > 2,

2m(E − en + εnl +
i
2Γnl) (complex) if lj 6 1.

∴ Boundary conditions in the channels with lj, li > 2 are standard,

but in the channels with lj 6 1, li > 2 ψji(R) →∼ exp(−Im(kj)R),

and ψji(R) = 0 at li 6 1.
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Potential V (R, r) can be calculated by quantum-chemistry methods.
In our problem: 〈r〉 ∼ n2/µ ∼ 0.3, Reff & 1 a.u., ∴

V (R, r) ' V0(R) + (d · ∇R)V0(R) + (Q2(r) · C2(R̂))V ′′0 (R) + . . .

V0(R) is adiabatic potential of interaction between He atom and
single positive charge of the ion, d and Q2µ are dipole and quadruple
operators of (p̄He++) that can mix degenerated nl states.

Analytical approximation of numerical potential (J.Russel, J.Cohen):

V0(R) = VM(R) + Vp(R),

VM(R) = D0 (exp[−2β(R−Re)]− 2exp[−β(R−Re)]) (Morse),

Vp(R) = − α

2R4




0 at R < Re,

[1− exp
(
−γ(R−Re)4

)
] at R > Re,

(polarization long-range interaction)

Parameters: D0 = 0.075, Re = 1.46, β = 1.65, α = 1.383,
γ = 0.005 a.u.
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RESULTS

Relative importance of different terms in interaction:

Total cross sections of the Stark transitions from the circular state

with n = 30 at E = 10 K.

Elastic int. V0 VM VM + Vp

Inelastic int. dipole dip. dip. + quadruple dip. + annih.
σStark 116.9 619.6 620.4 619.6
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Dependence of total Stark and induced annihilation cross section
on initial l-state (n = 30, E = 10 K)
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1 - σSt without annihilation, 2 - σSt with account for annihilation, 3 - σannih
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Energy dependence of the Stark cross section for the circular orbit

with n = 30
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Principal quantum number n and isotope dependence of the Stark

cross section for the circular orbit

n
isotope 28 29 30 31 32

4He 573.5 598.2 619.6 636.5 649.0
3He 539.3 566.5 583.4 597.0 605.1
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Partial Stark cross section σSt(nl → nl′) for 4He at E = 10 K
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Per-atom rates of Stark transitions from circular orbits, averaged

over thermal motion, κ = 〈vσ〉
(units: vaa3

0 = 6.126× 10−9 cm3/s = 6.126× 10−15 MHz · cm3)

n
isotope 28 30 32 units

0.0615 0.0678 0.0729 a.u.
4He 3.77 4.15 4.46 10−16 MHz · cm3

0.0728 0.0786 0.0818 a.u.
3He 4.46 4.82 5.01 10−16 MHz · cm3

Experiment: dγ/dρ ∼ (1÷ 3) · 10−16 MHz · cm3
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CONCLUSION

We have considered collisional Stark transitions and induced anni-
hilation of antiproton in the high states (n ∼ 30) of antiprotonic
helium ion at very low energy (∼ 10 K).

The processes are considered in the framework of quantum coupled-
channels method taking into account all the states with different l at
given n (∼ 30). The most important contribution to the processes
comes from the long-range polarization interaction. Admixtures of
the s- and p-states to the states with higher l during collisions induce
the effective annihilation cross sections for the initial l up to 15, but
don’t affect the Stark cross sections for the initial states nearly to
circular orbits.

Total rates of the Stark transitions from the circular orbits with
n = 28÷32, averaged over the thermal motion, are compatible with
the ASACUSA data. The dependence on n as well as isotope effect
are also qualitatively agree with the experiment.
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