International Conference on Muon Catalyzed Fusion and Related Topics (muCF07), June 18-21, 2007, Dubna

The formation of deeply-bound K⁻pp state in ³He (In-flight K⁻, n) reaction spectrum

Ref: T. Koike and T. Harada, arXiv:nucl-th/0703037.

Takahisa Koike RIKEN Nishina center

> Toru Harada Osaka E.C. Univ.

Theoretical calculations for K⁻pp deeply-bound state

Theoretical calculations for K pp deeply-bound state

- Yamazaki & Akaishi First quantitative few-body calculation by using ATMS method B.E. = 48 MeV, $\Gamma = 61$ MeV PLB535(2002)70.
- Shevchenko, Gal & Mares KNN- $\pi\Sigma$ N coupled channel Faddeev calculation B.E. = 55-70 MeV, Γ = 95-110 MeV PRL 98(2007)082301.
- Ikeda & Sato: KNN- $\pi\Sigma$ N c.c. Faddeev calculation B.E. = 80 MeV, Γ = 73 MeV arXiv:0704.1978 [nucl-th]
- Dote & Weise: AMD calculation arXiv:nucl-th/0701050
- Nishikawa & Kondo: Skyrmion model arXiv:hep-ph/0703100
- Arai, Yasui & Oka: Λ* N model arXiv:0705.3936 [nucl-th]

Many calculations support the existence of K⁻pp deeply-bound state, although B.E. and Γ are not converged theoretically.

Experimental search for K⁻pp deeply-bound state

- FINUDA collaboration at DAΦNE: PRL94 (2005) 212303.
 First experimental evidence of K⁻pp bound state from "K⁻pp" → Λ + p invariant-mass spectroscopy using stopped K⁻ reaction on ⁶Li, ⁷Li, ¹²C.
 Reported: B.E. = 115 MeV, Γ = 67 MeV
- Magas, Oset, Ramos & Toki : critical view; PRC74 (2006)025206. NOT "K⁻pp" bound state, BUT FSI after two-nucleon absorption. K⁻ + "pp" → Λ + p ↓ p + N → p' + N'

... still controversial.

New measurement for searching "Kpp"

M. Iwasaki, T. Nagae *et al.*, **J-PARC E15 experiment**

³He(In-flight K⁻, n) "K⁻pp" missing-mass spectroscopy Simultaneous mesurement "K"pp" $\rightarrow \Lambda p \rightarrow \pi$ "pp invariant-mass spectroscopy **Our purpose: theoretical calculation of the expected** ³He(In-flight K⁻, n) inclusive/semi-exclusive spectra in order to examine whether the signal of K⁻pp formation can be observed.

Distorted-Wave Impulse Approximation (DWIA)

Green's function method

$$S(E) = -\frac{1}{\pi} \operatorname{Im}\left[\sum_{\alpha,\alpha'} \int d\boldsymbol{r} d\boldsymbol{r}' f_{\alpha}(\boldsymbol{r}) G_{\alpha,\alpha'}(E;\boldsymbol{r},\boldsymbol{r'}) f_{\alpha'}(\boldsymbol{r'})\right]$$

Green's function with K⁻-"pp" optical potential.

$$G_{\alpha,\alpha'}(E; \boldsymbol{r}, \boldsymbol{r'}) = \langle \alpha | \psi_{K^-}(\boldsymbol{r}) \frac{1}{E - H_{K^-pp}^{\text{opt.}} + i\epsilon} \psi_{K^-}^{\dagger}(\boldsymbol{r'}) | \alpha' \rangle$$
recoil effect
$$f_{\alpha}(\boldsymbol{r}) = \chi^{(-)*} \left(\boldsymbol{p}_{n}, \underbrace{M_{pp}}{M_{3He}} \boldsymbol{r} \right) \chi^{(+)} \left(\boldsymbol{p}_{K^-}, \frac{M_{pp}}{M_{3He}} \boldsymbol{r} \right) \langle \alpha | \psi_n(\boldsymbol{r}) | i \rangle$$
distorted wave for
incoming(+)/outgoing(-) particles
neutron hole wave function

 $\{(\omega - V_{\text{Coul.}}(\boldsymbol{r}))^2 + \boldsymbol{\nabla}^2 - \mu^2 - 2\,\mu\,\underline{U_{K^--pp}^{\text{opt.}}(\boldsymbol{r})}\}\,G(\omega;\boldsymbol{r},\boldsymbol{r'}) = \delta^3(\boldsymbol{r} - \boldsymbol{r'})$

\bullet **K**N elementary cross sections in lab. system

Distorted waves of incoming/outgoing particles - Eikonal approximation

$$\begin{cases} \chi^{(-)*}(\boldsymbol{p}_n,\boldsymbol{r}) = \exp\left[-i\boldsymbol{p}_n\boldsymbol{r} - \frac{i}{v_n}\int_z^{+\infty}U_n(\boldsymbol{b},z')dz'\right] \\ \chi^{(+)}(\boldsymbol{p}_K,\boldsymbol{r}) = \exp\left[+i\boldsymbol{p}_K\boldsymbol{r} - \frac{i}{v_K}\int_{-\infty}^zU_K(\boldsymbol{b},z')dz'\right] \\ U_X = -i\frac{v_X}{2}\bar{\sigma}_{XN}^{\text{tot}}\left(1 - i\alpha_X\right)\rho(r), \quad X = K \text{ or } n \end{cases} \qquad \bar{\sigma}_{K}^{\text{tot}} = \bar{\sigma}_{nN}^{\text{tot}} = 40 \text{ mb}$$

◆ ³He wave function - (0s)³ harmonic oscillator model $\phi_{2N-N}(r) \propto \exp(-r^2/2a^2), a = b\sqrt{3/2}$

 $b = 1.297 \text{ fm} \iff \sqrt{\langle r^2 \rangle} = 1.94 \text{ fm}$: r.m.s charge radius of ³He

I. Angeli, Atomic Data and Nuclear Data Tables 87 (2004) 185.

,

Decomposition of strength function into K⁻ escape / K⁻ conversion part

Im $G = (1 + G^{\dagger}U^{\dagger})(\operatorname{Im} G_0)(1 + UG) + G^{\dagger}(\operatorname{Im} U)G$, where $G = G_0 + G_0 U G$, G_0 ; Free Green's function

$$S = S^{\text{esc}} + S^{\text{conv}}$$

$$\begin{cases} S^{\text{esc}} = -\frac{1}{\pi} F^{\dagger}(1 + G^{\dagger}U^{\dagger})(\operatorname{Im} G_{0})(1 + UG)F ; \mathbf{K}^{\bullet} \text{ escape} \\ S^{\text{con}} = -\frac{1}{\pi} F^{\dagger}G^{\dagger}(\operatorname{Im} U)GF ; \mathbf{K}^{\bullet} \text{ conversion} \end{cases}$$

 \star K⁻ conversion spectrum is actually measured.

Further decomposition of conversion spectrum introducing phase space factor

- 1-body absorption (~80%) $f_1(E) : \mathbf{K} \to \Sigma + \pi$
- 2-body absorption (~20%) $f_2(E) : \mathbf{K}^- + \text{``NN''} \rightarrow \Sigma + \mathbf{N}$

Ref: Mares, Friedman and Gal, Phys. Lett. **B606** (2005) 295.

$$\begin{cases} S^{1-\text{body abs.}} = -\frac{1}{\pi} F^{\dagger} G^{\dagger} (\operatorname{Im} U \times \mathbf{0.8} f_{1}) GF \\ S^{2-\text{body abs.}} = -\frac{1}{\pi} F^{\dagger} G^{\dagger} (\operatorname{Im} U \times \mathbf{0.2} f_{2}) GF \end{cases}$$

- Calculation of ³He(In-flight K⁻, n) reaction inclusive and semi-exclusive spectra at p_{K-} = 1.0 GeV/c and θ_n = 0° within the DWIA framework using Green's function method, employing optical potential between K⁻ and "pp".
- Decomposition of spectrum into several different components.
 partial waves
 - K⁻ conversion/escape
 - one-/two-body absorption
- Necessary condition to observe a distinct peak of K⁻pp bound state; $V_0 < \sim -100$ MeV and $W_0 > \sim -100$ MeV.

- The Faddeev calculation by Shevchenko, Gal and Mares stands on edge of the peak observation in terms of the width.