Nuclear Muon Capture in Hydrogen and its Interplay with Muon Atomic Physics

Peter Kammel

Physics Context

> Historical: V-A and μ-e Universality

 $\mu^- + \mathbf{p} \rightarrow \nu_{\mu} + \mathbf{n}$

charged current

My Talk is Dedicated to the Pioneers

1969 Bologna-Pisa-CERN

$$\mu^{-}$$
 + p $\rightarrow \nu_{\mu}$ + n

1973 Dubna group

> Historical: V-A and μ-e Universality

 $\mu^- + \mathbf{p} \rightarrow \nu_{\mu} + \mathbf{n}$

MuCap

charged current

> Today: EW current key probe for

- Understanding hadrons from fundamental QCD
- Symmetries of Standard Model
- Basic astrophysics reactions

QCD
$$\mathcal{L}_{\mathbf{QCD}} = \bar{\psi} \left(i \gamma_{\mu} \mathcal{D}^{\mu} - \mathbf{m} \right) \psi - \frac{1}{4} \mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu}$$

• high q² (q > some GeV) short distance <0.1 fm

Weakly interacting quarks and gluons asymptotic freedom

• low q² (q << 1GeV)

QCD has chiral symmetry spontaneously broken π is Nambu-Goldstone boson, weakly interacting chiral effective theory ↔ Nuclear Physics

• Lattice QCD: ab initio calculations issues: continuum transition, etc. physical quark masses not reached

Formfactors and g_P

Muon Capture

$$\mu^- + p \rightarrow \nu_{\mu}^+ n$$
 rate Λ_{S} at q²= -0.88 m_µ²

$$\mathcal{M} = \frac{-iG_F V_{ud}}{\sqrt{2}} \overline{u}(p_{\nu})\gamma_{\alpha}(1-\gamma_5)u(p_{\mu})\overline{u}(p_f)\tau_{-}\left[V^{\alpha} - A^{\alpha}\right]u(p_i)$$

Formfactors

Lorentz, T invariance

$$V_{\alpha} = g_{V}(q^{2}) \gamma_{\alpha} + \frac{i g_{M}(q^{2})}{2 M_{N}} \sigma_{\alpha\beta} q^{\beta}$$
$$A_{\alpha} = g_{A}(q^{2}) \gamma_{\alpha} \gamma_{5} + \frac{\mathbf{g}_{P}(q^{2})}{m_{\mu}} q_{\alpha} \gamma_{5}$$

+ second class currents suppressed by isospin symm.

All form factors precisely known from SM symmetries and data.

CVC, n beta decay

$$rac{\delta\Lambda_S}{\Lambda_S}=0.46\%$$

apart from $g_P = 8.3 \pm 50\%$

$$rac{\delta\Lambda_S}{\Lambda_S} = 0.184 \; rac{\delta g_P}{g_P} \; pprox 9\%$$

N. Kaiser Phys. Rev. C67 (2003) 027002

- g_p basic and experimentally least known EW nucleon form factor
- solid QCD prediction via HBChPT (2-3% level)
- basic test of QCD symmetries

Recent reviews: *T. Gorringe, H. Fearing, Rev. Mod. Physics 76 (2004) 31 V. Bernard et al., Nucl. Part. Phys. 28 (2002), R1*

Muonic Processes Complicate Interpretation

Precise Theory vs. 45 Years of Exp. Efforts

MuCap

MuCap Experimental Strategy

- Lifetime method
 - 10¹⁰ $\mu \rightarrow ev\overline{v}$ decays measure $\tau_{\mu-}$ to 10ppm,
 - $\rightarrow \Lambda_{\rm S}$ = 1/ $\tau_{\mu -}$ 1/ $\tau_{\mu +}$ to 1%
- Unambiguous interpretation at 1% LH₂ density
- Clean µ stop definition in active target (TPC) to avoid wall stops
- Ultra-pure gas system and purity monitoring at 10 ppb level
- Isotopically pure "protium"

fulfill all requirements simultaneously unique MuCap capabilities

MuCap Detector

MuCap Muons stop in active TPC target

10 bar ultra-pure hydrogen, 1.16% LH₂
2.0 kV/cm drift field
~5.4 kV on 3.5 mm anode half gap bakeable glass/ceramic materials

Observed muon stopping distribution

3D tracking w/o material in fiducial volume

Time Spectra

0

μ-e impact parameter cut huge background suppression diffusion (deuterium) monitoring

blinded master clock frequency

MuCap

variety of consistency checks

MuCap Unique Capabilities: Impurities

rare impurity capture μ Z \rightarrow (Z-1)+n+ ν

 Λ_{z} (C, N, O) ~ (40-100) x Λ_{s}

~10 ppb purity required

Hardware

Circulating Hydrogen Ultrahigh Purification System

Gas chromatography

CRDF 2002, 2005

correction based on observed capture yield

(Dated: April 16, 2007)

accepted PRL

$$\Lambda_{\rm S}^{\rm MuCap}$$
 = 725.0 ± 13.7_{stat} ± 10.7_{sys} s⁻¹

Average of HBChPT calculations of $\Lambda_{\rm S}$: $(687.4 \text{ s}^{-1} + 695 \text{ s}^{-1})/2 = 691.2 \text{ s}^{-1}$ Apply new rad. correction (2.8%): $(1 + 0.028)691.2 \text{ s}^{-1} = 710.6 \text{ s}^{-1}$

further sub percent theory required

$$\bullet \Lambda_S^{theory} = 710.6 \text{ s}^{-1}$$

arXiv:0704.3968v1 [hep-ph] Czarnecki, Marciano, Sirlin

(MuCap 2007)

g_P Landscape after MuCap 06

Before MuCap experiments inconclusive and mutually inconsistent

MuCap

- MuCap result nearly model independent First precise and unambiguous result
 - Consistent with chiral prediction Does not confirm radiative muon capture (RMC) discrepancy
 - Final result ('06 and '07 data) will reduce error twofold

"Calibrating the Sun" via Muon Capture on the Deuteron $\mu + d \rightarrow n + n + v$

Goal

total µd capture rate to 1% precision

Motivation

- first precise measurement of basic EW reaction in 2N system, benchmark measurement with 10x higher precision
- impact on fundamental astrophysics reactions (SNO, pp)
- comparison of modern high precision calculations
- high precision feasible by μ Cap technique and careful optimization

MuSun Proposal planned 2007

measurement of absolute rate to <1%

μSun I: μCap technique, 1% LD₂, 300 K,

measure time spectra of capture neutrons

monitor populations with fusion and capture reactions

First measurement of polarization observables in μ +d capture?

μSun II: new cryo TPC

Kinetics requires optimized target conditions: T<50 K, >5% LD₂ density

G_F M_{7} α 0.0007 ppm 9 ppm 23 ppm

Mulan

 $rac{G_{
m F}}{\sqrt{2}} = rac{g^2}{8M_{
m er}^2} \left(1 + \Delta r(m_{
m t}, m_{
m H}, \ldots)
ight)$ Implicit to all EW precision physics

Uniquely related to muon decay

$$\frac{1}{\tau_{\mu^+}} = \frac{G_{\mathbf{F}}^2 m_{\mu}^5}{192\pi^3} \left(1+q\right)$$

0

Precision $G_{F} \rightarrow \tau$ relation no longer theory limited

$$\frac{\delta G_{\rm F}}{G_{\rm F}} = \frac{1}{2} \sqrt{\left(\frac{\delta \tau_{\mu}}{\tau_{\mu}}\right)^2 + \left(5\frac{\delta m_{\mu}}{m_{\mu}}\right)^2 + \left(\frac{\delta \text{theory}}{\text{theory}}\right)^2}$$
17 ppm 18 ppm 90 ppb 30 ppm

MuLan Experiment

MuLan

Improved Measurement of the Positive Muon Lifetime and Determination of the Fermi Constant

D.B. Chitwood,¹ T.I. Banks,² M.J. Barnes,³ S. Battu,⁴ R.M. Carey,⁵ S. Cheekatmalla,⁴ S.M. Clayton,¹ J. Crnkovic,¹ K.M. Crowe,² P.T. Debevec,¹ S. Dhamija,⁴ W. Earle,⁵ A. Gafarov,⁵ K. Giovanetti,⁶ T.P. Gorringe,⁴ F.E. Gray,^{1,2} M. Hance,⁵ D.W. Hertzog,¹ M.F. Hare,⁵ P. Kammel,¹ B. Kiburg,¹ J. Kunkle,¹ B. Lauss,² I. Logashenko,⁵ K.R. Lynch,⁵ R. McNabb,¹ J.P. Miller,⁵ F. Mulhauser,¹ C.J.G. Onderwater,^{1,7} C.S. Özben,¹ Q. Peng,⁵ C.C. Polly,¹ S. Rath,⁴ B.L. Roberts,⁵ V. Tishchenko,⁴ G.D. Wait,³ J. Wasserman,⁵ D.M. Webber,¹ P. Winter,¹ and P.A. Żołnierczuk⁴

(MuLan Collaboration)

¹Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA ²Department of Physics, University of California, Berkeley, CA 94720, USA ³TRIUMF, Vancouver, BC, V6T 2A3, Canada

⁴Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506, USA ⁵Department of Physics, Boston University, Boston, MA 02215, USA

⁶Department of Physics, James Madison University, Harrisonburg, VA 22807, USA ⁷Kernfysisch Versneller Instituut, Groningen University, NL 9747 AA Groningen, The Netherlands

The mean life of the positive muon has been measured to a precision of 11 ppm using a lowenergy, pulsed muon beam stopped in a ferromagnetic target, which was surrounded by a scintillator detector array. The result, $\tau_{\mu} = 2.197013(24) \ \mu$ s, is in excellent agreement with the previous world average. The new world average $\tau_{\mu} = 2.197019(21) \ \mu$ s determines the Fermi constant $G_F =$ $1.166371(6) \times 10^{-5} \text{ GeV}^{-2}$ (5 ppm). Additionally, the precision measurement of the positive muon lifetime is needed to determine the nucleon pseudoscalar coupling g_P .

arXiv:0704.1981v1 [hep-ex]

6/5/07 accepted PRL

$$au_{
m L}$$
(world) = 2.197 019(21) μ s (9.6 ppm)

 $G_{F} = 1.166 \ 371(6) \ x \ 10^{-5} \ GeV^{-2}$ (5 ppm)

Summary I: Relevant MCF issues

MuCap:

- Th/Exp: ortho-para rate λ_{OP}(φ)
- Exp: Precision measurement of formation rate ppµ–ortho planned
- Th: ppµ–para formation suppressed, S_{tot}=1/2 assumed
- Th/Exp: new experimental info on μp and μd scattering, theory cross sections and simulations
- Exp: measurements of µZ transfer and Auger effect
- Th: cross section for μ + diffusion

MuSun:

- Exp: dµ hyperfine transition at 300K
- Th/Exp: time evolution of dµ polarization
- Exp: d μ polarization observables in muon decay and capture
- Th/Exp: precision measurement dd \rightarrow ⁴He + γ ?

Summary II: Weak Interactions

MuLan:

- First G_F update in 23 years 2.5x improvement, no surprise in result
- Factor 10 additional improvement on the way

MuCap:

- First precise g_P measurement with clear interpretation
- Consistent with ChPT expectation, does not support RMC puzzle
- Factor 2-3 additional improvement on the way

MuSun

- muon-deuteron capture, needs g_P as input
- New benchmark in EW reactions in 2N system

G_F

MuLan

Uniquely defined by muon decay

$$\frac{1}{\tau_{\mu^+}} = \frac{{G_{\rm F}}^2 m_{\mu}^5}{192 \pi^3} \left(1+q\right) \label{eq:tau_prod} \mbox{QED}$$

Implicit to all EW precision physics

$$rac{G_{
m F}}{\sqrt{2}}=rac{g^2}{8M_{
m W}^2}\left(1+\Delta r(m_{
m t},m_{
m H},\ldots)
ight)$$

Mular Dramatic Progress in QED Calc.

Extraction of G_F from τ_{μ} **not theory limited**

Present $\delta \tau_{\mu} / \tau_{\mu}$ is 18 ppm and best single measurement is 27 ppm Lessons from History

Create a time-structured "surface" muon beam with flux of roughly $10^7 \mu^+$ Hz @ 28 MeV/c, (~ 4 MeV)

MuLan

Systematics

"Early-to-late" changes

Instrumental shifts
 Gain or threshold
 Time response
 Kicker and accidentals

Source	Size (ppm)
Extinction stability	3.5
Errant muon stops	2.0
Dead time correction	2.0
Gain stability	1.8
MTDC response	1.0
Repeated events $(+1 \text{ ppm shift})$	1.0
Multiple hit timing shifts	0.8
Queuing loss	0.7
Total	5.2

500 MHz WFD in 2005

Effective acceptance Residual polarization or precession

target: Arnokrome III (AK-3) internal ~4000 G symmetric detector stray muons studied

• Pileup leads to missed events

MuLan

Systematics

"Early-to-late" changes

Instrumental shifts
 Gain or threshold
 Time response
 Kicker and accidentals

Source	Size (ppm)
Extinction stability	3.5
Errant muon stops	2.0
Dead time correction	2.0
Gain stability	1.8
MTDC response	1.0
Repeated events $(+1 \text{ ppm shift})$	1.0
Multiple hit timing shifts	0.8
Queuing loss	0.7
Total	5.2

500 MHz WFD in 2005

Effective acceptance Residual polarization or precession

target: Arnokrome III (AK-3) internal ~4000 G symmetric detector stray muons studied

• Pileup leads to missed events

G_F and new physics

W. Marciano 1999

• RC O(α²)

$$R.C. = \frac{\alpha}{2\pi} \left(\frac{25}{4} - \pi^2\right) \left[1 + \frac{\alpha}{\pi} \left(\frac{2}{3} \ln \frac{m_{\mu}}{m_e} - 3.7\right) + \left(\frac{\alpha}{\pi}\right)^2 \left(\frac{4}{9} \ln^2 \frac{m_{\mu}}{m_e} - 2.0 \ln \frac{m_{\mu}}{m_e} + C\right) + \cdots\right]$$

Interesting physics reach

• Input

α (0)	= 1/137.035999710(96)	0.7 ppb
α(M _z)	= 1/127.918(18)	140 ppm
G _F	= 1.166 37(1) x 10 ⁻⁵ GeV ⁻²	9 ppm
M _z	= 91.1876(21) GeV	23 ppm
m _t	= 172.7(2.9) (0.6) GeV	
Mw	= 80.392(39) GeV	
sin²θ _w	= 0.23100(22) GeV	

But

• other GF determinations 100x poorer

$$g_{2_0}^e = g_{2_0}^\mu = g_{2_0}^\tau$$
$$\sin^2 \theta_W^0 = \frac{e_0^2}{g_{2_0}^2} = 1 - (m_W^0 / m_Z^0)^2$$

Note: Experimental limits on η (non SM) are largest uncertainty of Fermi constant

Access to η through transverse polarization measurement of outgoing positron

MuSun Axial Currents in 2N System

Reactions

 μ + d \rightarrow n + n + ν

basic solar fusion reaction

 $p + p \rightarrow d + e^+ + v$

key reactions for SNO

 $v + d \rightarrow p + p + e^{-}$ (CC) $v + d \rightarrow p + n + v$ (NC)

■ Theory SNPA – EFT (HBChPT, \EFT, hybrid)

- 1B NN description accurate
- 2B not well constrained by theory

EFT: Class of axial current reactions related by single parameter L_{1A}

Quest for L_{1A}

E_n (MeV)

theory: precise enough? reaction soft enough for L_{1A}? Ando, Park, Kubodera, Myhrer (2002) Chen, Inoue, Ji, Li (2005) experiment: 1% precision possible ? MuCap technique

 μ + ³He \rightarrow ³H + ν

Fig. 3. The change in the allowed region of the mixing parameter space using combined solar neutrino data and KamLAND as a function of L_{1A} . In the calculations leading to this figure the neutrino mixing angle θ_{13} is taken to be zero. The shaded areas corresponds to 90 %, 95 %, 99 %, and 99.73 % confidence levels.

Balantekin et al.

Concept stage II

	grid cath		grid an			gas	cath	
	mm	kV	kV/mm	mm	kV	kV/mm		mm
He TPC	14.3	40	2.80	0.8	3.5	4.38	120bar He	8
D TPC	40	100	2.50	0.8	4	5.00	50-100bar D	10

Recombination ?

Signal (Gain?)

Summary physics motivation

precision measurement of total μ d capture rate to 1% provides

- first precise measurement of charged-current reaction in 2N system
- first precise 2N experimental information relevant for absolute solar neutrino cross sections and flux.
- comparison of EFT/SNPA approach for space-like axial two-body current and 2N vs 3N constraints.
- a_{nn} information ? (needs study)

systematic measurement of μ d capture Dalitz Plot provides

- information on time-like axial two-body currents
- reduced rate Λ ', accessible to π EFT
- complementary g_P sensitivity, if MECs sufficiently under control (needs study)

first measurement of μd capture asymmetry and hfs effects provides

complementary g_p info (needs study)

MuCap

$$L_{\text{QCD}} = -\frac{1}{4} F_{\mu\nu}^{(a)} F^{(a)\mu\nu} + i \sum_{q} \overline{\psi}_{q}^{i} \gamma^{\mu} (D_{\mu})_{ij} \psi_{q}^{j}$$
$$-\sum_{q} m_{q} \overline{\psi}_{q}^{i} \psi_{qi} ,$$
$$F_{\mu\nu}^{(a)} = \partial_{\mu} A_{\nu}^{a} - \partial_{\nu} A_{\mu}^{a} - g_{s} f_{abc} A_{\mu}^{b} A_{\nu}^{c} ,$$
$$(D_{\mu})_{ij} = \delta_{ij} \partial_{\mu} + ig_{s} \sum_{a} \frac{\lambda_{i,j}^{a}}{2} A_{\mu}^{a} ,$$

$$\Lambda_{s} \text{ sensitivity to g} \qquad \frac{\Delta \Lambda_{S}}{\Lambda_{S}} = 0.466 \ \frac{\Delta g_{V}}{g_{V}} + 0.151 \ \frac{\Delta g_{M}}{g_{M}} + 1.567 \ \frac{\Delta g_{A}}{g_{A}} - 0.184 \ \frac{\Delta g_{P}}{g_{P}}$$
$$\delta \Lambda_{s} \text{ with present } \delta g \qquad \frac{\Delta \Lambda_{S}}{\Lambda_{S}} (\%) = \sqrt{0.0239^{2} + 0.0104^{2} + 0.504^{2} + 9.2^{2}}$$

45 Years of Experiments to Determine g_P

	authors	Λ _{stat} (S⁻¹)	comment		
theory 1993	Congleton & Fearing	1304	1B		
theory 1996	Congleton & Truhlik	1502±32	1B + 2B	$g_P(-$	$-0.954m_{\mu}^2) = 8.53 \pm 1.54$
exp 1998	Ackerbauer et al	1496.0±4.0	³ He TPC		
theory 2002	Marcucci et al.	1484±8	1B+2B, T beta constraint		

rad. corrections?

Beta Decay Correlations

PDG 2006

Edwards et al. LHPC Coll (2006)

$$g_A(q^2) = g_A(0)(1 + \frac{1}{6} < r_A^2 > q^2)$$
$$g_A(0) = 1.2695 \pm 0.0029$$
$$g_A(-0.88m_\mu^2) = 1.245 \pm 0.004$$

introduces 0.46% uncertainty to $\Lambda_{\rm S}$ (theory)

FIFO0:0 FIFO1:0 R[78] W[16] MFC5 setpoint changed.

MuCap agrees within ~1 σ with Λ_s theory

Thorough theory studies needed for next MuCap 1% stage

Theory and Sensitivities

author	year	g _P	$\Lambda_{ m S}$	Λ_{T}	comment
Primakoff	1959		664(20)	11.9(7)	smaller g _A
Opat	1964		634	13.3	smaller g _A
Bernard et al	1994	8.44(23)			
Fearing et al	1997	8.21(9)			
Govaerts et al	2000	8.475(76)	688.4(38)	12.01(12)	
Bernard et al	2000/1		687.4 (711*)	12.9	NNLO, small scale
Ando et al	2001		695 (722*)	11.9	NNLO

PCAC:

 $q^2=0$ GT relation: $g_{\pi NN}(0) F_{\pi}=M g_A(0)$

q²<0
$$g_p(q^2)=2 \text{ m M}/(m_\pi^2-q^2) g_A(0)$$

 $g_P=8.7$

Sensitivity of capture rate: $\frac{\delta \Lambda}{\Lambda}$ $= 0.466 \frac{\delta g_{V}}{T} + 0.151 \frac{\delta g_{M}}{T} + 1.567 \frac{\delta g_{A}}{T} - 0.184 \frac{\delta g_{P}}{T} + 0.0238 \delta g_{S,T}$ gv \mathbf{g}_{M} g_A $\mathbf{q}_{\mathbf{P}}$ $\frac{\delta\Lambda}{\Lambda} [\%] = 0.024$ 0.01 0.38 0.24 3.7 assuming optimistic error from $V_{ud} = 0.16$ % 20% g_p error assuming g_T<0.1

Parameters

TABLE I. Numerical values of the parameters and derived quantities used in the text and in our evaluations of rates for comparison with experiment.

Symbol	Description	Value	Reference
F_{π}	pion decay constant	92.4±0.3 MeV	Particle Data Group (2000)
$g_{\pi NN}(m_{\pi}^2)$	pion nucleon coupling	13.05 ± 0.08	de Swart et al. (1997)
$G_F V_{ud}$	Fermi constant for β decay	1.135 48×10 ^{−5} GeV ^{−2}	Particle Data Group (2000)
$g_{a}(0)$	axial coupling from β decay	1.2670 ± 0.0035	Particle Data Group (2000)
r_A^2	rms radius squared for g_a	$0.44 \pm 0.02 \text{ fm}^2$	Liesenfeld et al. (1999)
PCAC gp	PCAC value, $g_p(-0.88m_{\mu}^2)$	$6.87 g_a(0) = 8.70$	Eq. (5), leading term only
	PCAC value, NLO constant term included	$6.50 g_a(0) = 8.23$	Eq. (5), including NLO correction
$\Lambda_{p\mu p}$	$p\mu p$ molecular formation rate	$2.5 \times 10^{6} \text{ s}^{-1}$	average, Wright et al. (1998)
$\Lambda_{p\mu p}^{ortho}/\Lambda_{p\mu p}^{para}$	ratio of ortho to para molecular formation	240:1	Faifman and Men'shikov (1999)
Λ_{op}	ortho to para transition rate	$4.1 \pm 1.4 \times 10^4 \text{ s}^{-1}$	Bardin et al. (1981a)
$2\gamma^{ortho}$	ortho-molecular overlap factor	1.009 ± 0.001	Bakalov et al. (1982)
$2\gamma^{para}$	para-molecular overlap factor	1.143 ± 0.001	Bakalov et al. (1982)
$g_m(0)$	weak magnetism coupling, $\kappa_p - \kappa_n$	3.705 89	Particle Data Group (2000)
r_m^2	rms radius squared for g_m	$0.80 \ {\rm fm}^2$	Mergell et al. (1996)
r_v^2	rms radius squared for g_v	$0.59~\mathrm{fm}^2$	Mergell et al. (1996)

Nucleon charged current at $q^2 = -0.88$ m_{μ}^2

$$\begin{aligned} \mathbf{J}_{\alpha} &= \mathbf{V}_{\alpha} - \mathbf{A}_{\alpha} \\ \mathbf{V}_{\alpha} &= \mathbf{g}_{V}(\mathbf{q}^{2}) \, \gamma_{\alpha} + \mathbf{i} \mathbf{g}_{M}(\mathbf{q}^{2}) / 2\mathbf{M} \, \sigma_{\alpha\beta} \, \mathbf{q}^{\beta} + \mathbf{g}_{S}(\mathbf{q}^{2}) / m \, \mathbf{q}_{\alpha} \\ \mathbf{A}_{\alpha} &= \mathbf{g}_{A}(\mathbf{q}^{2}) \, \gamma_{\alpha} \, \gamma_{5} + \mathbf{g}_{P}(\mathbf{q}^{2}) \, \mathbf{q}_{\alpha} / m \, \gamma_{5} + \mathbf{i} \mathbf{g}_{T}(\mathbf{q}^{2}) / 2\mathbf{M} \, \sigma_{\alpha\beta} \, \mathbf{q}^{\beta} \, \gamma_{5} \end{aligned}$$

nucleon weak formfactors g_V, g_M, g_A

- determined by SM symmetries and data
- contribute <0.4% uncertainty to $\Lambda_{\rm S}$

 $g_V = 0.9755(5)$

 $g_{\rm M} = 3.5821(25)$

 $g_A = 1.245(3)$

remains

 $\mathbf{g}_{\mathbf{P}} = ?$

- Vector current in SM determined via CVC $g_V(0)=1$, $g(q^2)=1+q^2 r^2/6$, $r_V^2=0.59 \text{ fm}^2$ $g_M(0)=\mu_p-\mu_n-1=3.70589$, $r_M^2=0.80 \text{ fm}^2$ q^2 dependence from e scatt.
- Axial vector FF from experiment $g_A(0)=1.2670(35)$, $r_A^2=0.42\pm0.04$ fm² q^2 dependence from quasi-elastic v scattering, π e-production
- 2^{nd} class FF g_S, g_T forbidden by G symmetry, e.g. g_T/g_A=-0.15 ±0.15 (exp), -0.0152 ±0.0053(QCD sum rule, up-down mass difference)

• error from $V_{ud} = 0.16$ %

$$dW \propto (g_V^2 + 3g_A^2)F(E_e)[1 + a\frac{\vec{p_e} \cdot \vec{p_\nu}}{E_e E_\nu} + \vec{\sigma_n} \cdot (A\frac{\vec{p_e}}{E_e} + B\frac{\vec{p_\nu}}{E_\nu} + D\frac{\vec{p_e} \times \vec{p_\nu}}{E_e E_\nu})]$$

Jackson, Treiman, Wyld, Nucl. Phys. 4, 206 (1957)

Coupling ratio

Lifetime

$$\tau = \frac{1}{f(1+\delta_R)} \frac{K/\ln 2}{(1+\Delta_R^V)(g_V^2 + 3g_A^2)} = (885.7 \pm 0.8) \,\mathrm{s} \qquad \lambda = \frac{|g_A|}{|g_V|} e^{i\phi} = (-1.2695 \pm 0.0029)$$

Electron-antineutrino asymmetry

$$a = \frac{1 - |\lambda|^2}{1 + 3|\lambda|^2} = (-0.103 \pm 0.004)$$

Spin-electron asymmetry

$$A = -2\frac{|\lambda|^2 + |\lambda| cos\phi}{1 + 3|\lambda|^2} = (-0.1173 \pm 0.0013)$$

Spin-antineutrino asymmetry

$$B = 2\frac{|\lambda|^2 - |\lambda| cos\phi}{1 + 3|\lambda|^2} = (0.983 \pm 0.004)$$

Triple correlation

$$D = 2 \frac{|\lambda| sin\phi}{1+3|\lambda|^2} = (-4 \pm 6) \times 10^{-4}$$

PDG, 2005 update

neutron

