Muon Catalyzed d-t Fusion in Non-equilibrated Mixtures of T_2 with Normal, Ortho and Para-rich D_2

<u>K. Ishida</u>, T. Matsuzaki, H. Imao, Y. Matsuda, M. Iwasaki,
K. Nagaminea, N. Kawamura, M. Kato, H. Sugai, A. Uritani,
H. Harano, T. Matsumoto and G.H. Eaton
(RIKEN, KEK, U. California, JAEA, AIST, RAL
-μCF collaboration)

Effect of ortho-, para- D_2 in dt μ CF Experimental methods Result

Muon catalyzed fusion in D/T

More than 100 fusions were observed per muon Scientific breakeven can be achieved at 300 fusions Efforts towards µCF improvement

(1) reaction rate >> muon decay rate $(0.45 \times 10^6 / s)$

muon thermalization, muonic atom formation

cascade in muonic atom

muon transfer

dtµ formation

cascade in dtµ, dt fusion in dtµ (2)muon loss probability<<1 in alpha sticking : ω_s initial sticking muon reactivation by muon stripping muon transfer to helium etc

The most important process in µCF - dtµ formation

μ CF efficiency could be improved by selection of initial D₂ state

Previous measurements: non equilibrium D/T effect

dtµ-formation was known to be enhanced in non-equilibrated D2/T2 mixture LAMPF (Jones et al, μ CF89, Oxford) PSI (Ackerbauer et al, Nucl. Phys. A652(1999)311) λ c(equ.) = 110 μ s⁻¹, λ c=130(n.equ.) at Ct=0.418

RIKEN-RAL (Aug 2001 RUN) \rightarrow 1. mix D₂ and T₂ at low temperature (Liq 20K) 2. D₂ + T₂ \rightleftharpoons 2DT

fusion neutrons decreased as the molecular composition gradually reached equilibrium (time constant ~55 hours at 20K) confirmation of $\lambda_{dt\mu}^{0,D2} \gg \lambda_{dt\mu}^{0,DT}$

Non-equilibrium μ CF with ortho-, para-D₂

We have developed production method of ortho- and pard- D_2 for dd μ CF experiment (Imao's talk)

Ortho D₂

```
Ki=even (0, 2, 4,...) coupled to I=0, 2
```

Para D₂

Ki=odd(1, 3, ...) coupled to I=1

Once formed in one state, mutual conversion requires change of coupled nuclear spin state and is usually slow (months)
The small difference in rotational energy (Ki=0 and 1, 7.4 meV)
is large enough to affect resonant molecular formation both in dd- and dt-µCF

Theories on ortho/para effect

1. Model with idealistic gas [Faifman] 5 $t\mu + D_2 \rightarrow [(dt\mu)dee]$ Para tµ + D 2 → [(dtµ)dee]* 4 contribution of para-D₂ is dominant $\lambda_{
m dt\mu} \ [10^{8.1}]$ at low temperature F=0[Leon, Cohen Phys.Rev. A31 (1984) 2680] Stat. [Faifman] \rightarrow 2. with condensed matter effect tho F=1broadening of molecular energy 80 100 120 140 160 180 2002060 40Temperature [K] under development 20 $t\mu + D_2$ I(dtu)dee] [Adamczak, habilitation thesis 2003] \rightarrow F=023K liquid λdtμ [10⁸ s⁻¹] 15 10 A large effect by ortho/para D_2 selection is expected 5 Ortho 0 0

6

2

4

Practical problems: Ortho-para state relaxation in D/T

Produce ortho- D_2 or para- D_2 and mix with T_2 Enhancement of μ CF right after mixing, but 1. Equilibration by molecular reconfiguration (~55 hour in D/T(50%) by our measurement)

 $D_2 + T_2 \rightleftharpoons 2DT$

 Equilibration of ortho-para state by radiation effect ortho-para transition by paramagnetic T atom according to a reference

16 hours in 14K solid D/T(50%) (no liquid data, T atom concentration could reduce by recombination, while mobility could be larger)

Expected μCF with ortho/para D2+T2

Expected effect – based on gas model result

 $\lambda_{dt\mu}$ (ortho)/ $\lambda_{dt\mu}$ (para) = 0.01 (Ct = 0.1 ~ 0.9)

Expected effect – based on theory with condensed matter effect

 $\lambda_{dt\mu}$ (ortho)/ $\lambda_{dt\mu}$ (para) ~ 0.5 (Ct = 0.1 ~ 0.9)

 $Ct \sim 0.5$ is best suited for the measurement

A possible way to the largest μCF yield

Increase of cycling rate high density φ (liquid, solid) faster dtµ formation rate D₂ para-rich (or ortho-rich) Decrease of muon loss rate high density (liquid/solid) -> high reactivation after µα sticking W ~ 0.6% Normally, muon catalyzed fusion efficiency in liquid D/T ~110/muon if) a=200

if $\lambda c=300$

 $Yn = \lambda c / \lambda n = 1 / (\lambda 0 / \phi \lambda c + W) = 1 / (0.45 / 1.25*300 + 0.006) = 140$

RIKEN-RAL Muon Facility

RIKEN has constructed a muon facility at RAL, UK

μCF dedicated port tritium gas handling system

µCF experimental setup

1cc low temperature D/T strong pulsed muon beam at RIKEN/RAL \sim 100 /pulse superconducting magnet for muon focusing detectors for neutron, x-rays and μe decay

Preparation of noneq. D_2+T_2 target

Liquid D2/T2

- Production of normal, ortho, and para-rich D₂ purification through Pd filter (normal D₂) + catalysis conversion at 12K (ortho (99%) D₂) or +selective adsorption on Al₂O₃ (para-rich (72%) D₂)
 Sample Raman analysis of ortho/para ratio
 Solidify D₂ into target cell (10K) through TGHS
 Charge T₂ in TGHS and purify (~3 hours) and solidify into target (~30 min)
 mix D₂ and T₂ by melting (time zero), µCF measurement at 20K liquid
- 6) after several days,
 turn to 300K gas to force equilibration,
 restart μCF measurement with equilibrated gas

Difference between normal D_2 and ortho D_2 was observed but was not so convincing at this stage:

It was small (\sim 5%) and opposite to most of the prediction

Result: Muon loss probability W

New Dec '06 RUN (para rich D_2+T_2)

New non-equilibrium RUN with para-rich (72%) D_2 was done in Dec 2006.

The RUN has much smaller muon intensity (30%) than usual due to proton beam-line problem,

and shorter beam time (late completion of gas preparation)

Due to lower statistics and possible systematic (S/N?) problem we show analysis on $\lambda n (\lambda n = \lambda 0 + W\phi\lambda c)$ only

Analysis -1

non-equilibrium effect

Analysis -2

Conclusion from ortho/para- D_2/T_2 RUNs

In both analysis with different assumptions,

the effects of the order of 20% were observed in enhancement (or decrease) of λn change for each case using ortho or para-rich D₂. This can be converted to ~5% increase (or dcrease) in λc , and extrapolation to full range ortho-para effect indicates 15% effect (and $\lambda_{dt\mu}$ (ortho)/ $\lambda_{dt\mu}$ (para) ~1.4)

Also,

- 1) Equilibration time for D_2/T_2 in our 20K liquid target is about 50 hours
- 2) ortho-para conversion in liquid D/T is long enough so each state stays long enough for our measurement

Summary and future plans

Summary

1. The ortho-para effect in dt- μ CF was observed for the first time using liquid D₂/T₂ (T=20K) mixtures

- 2. μ CF with ortho-D₂ showed larger dt μ formation rate (contrary to theory)
- 3. Transient behavior of the target towards equilibration was observed

Plans:

Short term

Repeated measurement with para-rich D_2/T_2 target

at full muon intensity, and at larger para- concentration(>90%)

Long term

Target with in situ Raman analysis with optical window