Muonic atoms scattering from hydrogen molecules using the Morse potential

J. Gronowski¹ A. Adamczak 1,2

¹Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland

> ²Rzeszów Technical University, Rzeszów, Poland

Muon Catalyzed Fusion and Related Topics, 2007

Outline

Introduction

Motivation

The Morse Potential Model

Comparison With Previous Models Assumptions The Morse Potential Spectrum

Examples of Molecular Cross Sections

Considered Processes

Muonic hydrogen scattering from hydrogenic molecules

- elastic scattering: $a\mu(F) + BC \rightarrow a\mu(F) + BC$
- isotopic exchange: $a\mu + BC \rightarrow b\mu + AC$
- spin-flip: $a\mu(F) + AB \rightarrow a\mu(F') + AB$

Considered Processes

Muonic hydrogen scattering from hydrogenic molecules

- elastic scattering: $a\mu(F) + BC \rightarrow a\mu(F) + BC$
- isotopic exchange: $a\mu + BC \rightarrow b\mu + AC$
- spin-flip: $a\mu(F) + AB \rightarrow a\mu(F') + AB$
- This work:

$$d\mu + H_2 \rightarrow d\mu + H_2$$

 $t\mu + H_2 \rightarrow t\mu + H_2$

for:

- muonic atom in the ground state (15)
- different initial rotational states
- the collision energies $\varepsilon \leq 30 \text{ eV}$ (CMS)

Motivation

- Muonic hydrogen atom is a small, neutral object —> the methods developed for neutron scattering can be adapted for muonic hydrogen scattering
- Previous models:
 - $E < E_{diss}$ harmonic approximation
 - $E \gg E_{diss}$ free-nuclei approximation

Motivation

U. Bafile et al., Phys.Rev. B 58 (1998)

- Muonic hydrogen atom is a small, neutral object —> the methods developed for neutron scattering can be adapted for muonic hydrogen scattering
- Previous models:
 - $E < E_{diss}$ harmonic approximation
 - $E \gg E_{diss}$ free-nuclei approximation

Motivation

U. Bafile et al., Phys.Rev. B 58 (1998)

- Muonic hydrogen atom is a small, neutral object —> the methods developed for neutron scattering can be adapted for muonic hydrogen scattering
- Previous models:
 - $E < E_{diss}$ harmonic approximation
 - $E \gg E_{diss}$ free-nuclei approximation
- New model:
 - $\bullet~$ Crossover region \rightarrow

 \rightarrow The Morse potential model

- Planning and interpreting experiments:
 - μ^- nuclear capture in $p\mu$
 - measurements of the Lamb shift in pµ

- The nuclear potential U_{nuc} is averaged over the fast motion of the electrons.
- The Morse potential

- The nuclear potential U_{nuc} is averaged over the fast motion of the electrons.
- The Morse potential
- The harmonic approximation

- The nuclear potential U_{nuc} is averaged over the fast motion of the electrons.
- The Morse potential
- The harmonic approximation
- The Morse potential model includes:
 - vibrational anharmonicities
 - centrifugal distortions
 - molecular dissociation

- The nuclear potential U_{nuc} is averaged over the fast motion of the electrons.
- The Morse potential
- The harmonic approximation
- The Morse potential model includes:
 - vibrational anharmonicities
 - centrifugal distortions
 - molecular dissociation
- The presented model reproduces results:
 - harmonic approximation low energy limit
 - free-nuclei approximation high energy limit

The Morse Potential Model - Assumptions

- Born approximation
- Intramolecular interaction \rightarrow The Morse potential
- Cross sections directly expressed by the corresponding nuclear amplitudes
- Effects of internal motion of nuclei inside molecules
- Electron-screening corrections

The Morse Potential Model - Assumptions

- Born approximation
- Intramolecular interaction \rightarrow The Morse potential
- Cross sections directly expressed by the corresponding nuclear amplitudes
- Effects of internal motion of nuclei inside molecules
- Electron-screening corrections

The Morse Potential Model - Assumptions

- Born approximation
- Intramolecular interaction \rightarrow The Morse potential
- Cross sections directly expressed by the corresponding nuclear amplitudes
- Effects of internal motion of nuclei inside molecules
- Electron-screening corrections
- Our results: The first full quantum-mechanical calculations based on the Morse potential
- DINS: The Morse potential spectra have been obtained using semi-classical WKB approximation

The Morse Potential Spectrum For Hydrogen Molecule

• Discrete

- *E*′ < 0
- Analytical solution only for K' = 0
- 332 rotovibrational states

•
$$K' \leq 32$$

• $\nu' \leq 16$

The Morse Potential Spectrum For Hydrogen Molecule

• Discrete

- *E*′ < 0
- Analytical solution only for K' = 0
- 332 rotovibrational states
 - *K*′ ≤ 31
 - $\nu' \leq 16$

Continuous

- E' > 0
- infinite degeneracy in K'
- for the collision energies $\varepsilon \leq$ 30 eV \longleftrightarrow $K' \leq$ 70

Total Cross Sections

$$d\mu$$
+H₂($K = 0$) $\rightarrow d\mu$ +H₂

$$t\mu + H_2(K = 1) \rightarrow t\mu + H_2$$

Rotational Transitions

$$d\mu + H_2(K = 0) \rightarrow d\mu + H_2$$

color lines \rightarrow the Morse potential model black lines \rightarrow harmonic approximation

$$t\mu + H_2(K = 1) \rightarrow t\mu + H_2$$

Differential Cross Sections

$$t\mu + H_2(K = 0) \rightarrow t\mu + H_2$$

solid lines \rightarrow the Morse potential model

dash lines \rightarrow harmonic approximation

$$t\mu + H_2(K = 1) \rightarrow t\mu + H_2$$

Summary

The Morse potential describes muonic hydrogen scattering from hydrogen molecules in a more realistic and accurate way

The Morse potential describes muonic hydrogen scattering from hydrogen molecules in a more realistic and accurate way

The calculated differential cross sections are necessary for a proper description of higher-energy muonic-atom experiments with low-density gaseous hydrogen targets The Morse potential describes muonic hydrogen scattering from hydrogen molecules in a more realistic and accurate way

The calculated differential cross sections are necessary for a proper description of higher-energy muonic-atom experiments with low-density gaseous hydrogen targets

Outlook

- Differential cross sections in LAB
- Monte Carlo simulation