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Antihydrogen - a microscopic laboratory
for testing the fundamental symmetries of Nature

Physical questions behind experiments with antihydrogen:
e Does the charge-parity-time (CPT) symmetry hold?
e Why is the Universe matter-antimatter asymmetric?

e How does antimatter interact gravitationally with mat-
ter? Does the weak equivalence principle (WEP) hold?

e How does antimatter interact in contact with matter?



How does antimatter interact with gravity?

e Aristotle (350 BC): an iron ball falls faster than feather

e Newton (1687): the gravitational charge / mass ratio is
the same for all sorts of matter.

e Einstein (1907): general relativity and WEP. There is no
distinction between the inertial and gravitational mass.

e Modern theories of gravitation, following from unifica-
tion of quantum mechanics and general relativity theory,
allow violations of WEP

e Ted Hénsch (2004): tests of WEP by interferometric
measurments of the Earth acceleration for various iso-
tops of Rb atoms (%9 =1.241.7-1077)

S. Fray C.A. Diez, T. Hansch and M Weitz, PRL 93, 240404, 2004.

e Most interesting case (largest deviations): gravitational
interaction of matter and antimatter.

e Galileo (1604): all bodies fall with the same acceleration

(principle of universality of free fall).

Is that true for antimatter?



e Preservation of the CPT symmetry does not preclude
violation of the WEP.

e The contemporary theories of gravitation, following from
unification of general relativity with quantum theory, al-
low violations of the WEP.
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Matter - Antimatter Interactions

Quantum Antichemistry

/ —

H+H elastic scattering
Pn + Ps rearrangement

H+H-— < et +e +yy  pp annihilation in flight

p+p+7,+2y ete annihilation in flight

k HH + hv radiative association

H(1)+H(n) — H(n)+H(1)  excitation transfer

O+ He— ... o Calculations include Coulomb + strong nuclear force +
long range interactions + gravitational field

. H+ SURFACE

o Presence of external fields (B, E) [trapping, tuning, spec-
troscopy]

e 4-body calculations




Antihydrogen - surface interactions

e An atom (antiatom) in the presence of the wall - scatters on the purely attractive
long range potential obtained by Casimir and Polder (PR 73, 360, 1948)
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e Physics behind the strength constants

— %: van der Waals interaction, Cj - %pi J;* eliw)dw with a(iw) being the
atomic dynamic electric-dipole polarizability at imaginary frequency iw
— Cy: retardation effects (QED), Cy = go0)

e,

o % —F % retardation, purely quantum.electrodynamical effect.
e Scattering on the wall = check of QED ... if not the short range interaction!
e What happens at the short range?
- atom: reflects via complicated physics from an imperfect surface, stics, etc.
- antiatom: a) no repulsion between nuclei ,

b) no ”Coulomb hole”

c¢) no " Fermi hole”

= purely attractive potential for R € [0, o0]
e What happens at the VERY short range?

- strong force =- annihilation. Is it good or bad?

antiatem

e Annihilation purifies the scattering experiment: in case of total absorption at
'R ~ 0 there is no reflection from the contact with the surface, the scattering
occurs on the well known long range potential

= QED could be tested

= Antiatom - matter interactions and perheaps WEP could be tested



Quantum reflection

e For potentials vanishing faster than —%: quantum reflection!

e Reflection probability increases with the decrease of collisional energy

R=1-bk

where k = %%, b = length scale parameter characterizing the asymptotic tail,

e sl
e.g. for homogeneous potentials —g—&: by = (212'5“)”‘2 s B(0,)

—

e Condition for quantum reflection for homogeneous potentials: the local de

Broglie wave length \(z) = s(i;; = ——2——?% must change fast as function
of distance:

dA hp'

—==>1 bad WKB

= | 2 (bad WKB)

e For homogeneous potentials V,(z) ~ —% (and for ¢; — 0) reflection occurs

when = > (2\/ QmC,,,/n) =



Remarkable features of quantum reflection

e Reflection occures in spite of the purely attractive potential

e Reflection increases with the decrease of the collision energy: R =1 — b,k
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e Reflection increases with the decrease of b, = (2 E? “)m i.e. weaker potential

(smaller C,,) reflects better!

e The decrease of the potential strength shortens the "reflection distance”, z, ~
, I:
k3 [2mea] |
2

e Weaker potential reflects better and brings the reflection closer to the surface.
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Quantum reflection - general case

e Homogeneous potential V(z) = —% = R(by), b(Cy)
e General case V(z) = R(a), where a is the scattering length

e The length-scale parameter b can be expressed in terms of the scattering length

e Reflectivity is given by the S matrix element for the elastic scattering,| R = |S;;|?

e S;; is obtained by solving the Schrédinger equation for the antiatom scattering
off the wall
L & + V(z)| ¥(z) = Ei(z)
P s BV ) — - T
2m dx? i ¥
where V(z) is the exact potential for an atom in the presence of a conductive
surface (Casimir-Polder potential)

e The solution in the van der Waals region (V(z) ~ —%) and for E; ~ 0 is

¥(@) ~ vz B (0) + 2 HP (0)|,  p=21/2mCsfz

where Hl(l] (p), Hl(Q)(p) are Hankel functions of order 1, § = §; + 102 is a complex
phase shift produced by the short range part of the interaction

e Our short range interaction is due to strong forces and causes annihilation. We
use full absorption boundary condition:

>1 = Y@~ (2)HY ()

i.e. there is no outgoing component due to the strong absorption by annihilation

e The solution does not depend on the details of the short-range interaction (is
independent on §)

e Schrodinger equation is integrated with Vep(z) (using ¢(z) ~ \/fm)Hl(l) (p) as
the boundary condition for £ — 0 and ¥ (z) ~ e % — Se’* for z — +00) to
determine the scattering matrix S and the scattering length a

e Scattering length (effective range) approximation is applied: S =1 — 2ika.
=7 R(a)




H reflection / absorption on the wall

e The scattering length a = a — i3 is complex due to absorption

e The reflection coefficient (reflected flux) is given by R = [S|* = 1+2iIm/(2ika)+
Ak?a*a ~ 1 —4kB =1 — kb , with b = 4Im(a).

e The absorption coefficient (annihilated flux) is P =1 — |S|* ~ kb

e Numerical calculation of the scattering length a = length parameter b = re-
flectivity R =1 — kb

Results - absorption (P)/ reflection (R) as function of energy

log(E/au) | T ' R [ P~1—exp(=kb) | Im(a) = |In(1 — P)|/(4k), a.u.
9 0.95 0.99 365.5

-10 0.69 0.74 479.8

-11 107 %K | 0.33 0.77 | 0.34 529.3

12 0.12 0.13 540.9

13 0.041 0.04 542.8

14 107°K | 0.013 | 0.99 | 0.013 543.1

-15 0.0042 0.0042 543.1

-16 ‘| 0.0013 0.0013 543.2

17 0.00042 0.00042 543.2

18 0.00013 | * | 0.00013 543.2 |

Table 1: The annihilation probability P for the ultra-cold antihydrogen impinging on the wall

e Validity of the scattering approximatidn: kla| < 1 satisfied for E; < 10+,

e Scattering length for the exact Casimir-Polder potential:
acp = —81.7 — 1543.2 a.u. (our numerical calculation) =7h=4Im(a) -'-'0.!/1.

e Scattering length for the purely homogeneous case V(z) ~ —%:

ay = —i\/2mCy = —i519.9 a.u. (purely imaginary, Voronin PRA 67, 062706,
2003)

e We note Im(agcp) ~ a4 =  scattering happens predominantly on the Casimir
tail




Reflection probability as a function of distance

e What is the "reflection distance”? The amplitude of the reflected wave is gen-
erated at all distances.
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Figure: Contribution of different antiatom-wall distances to the reflection probability. |B(z)|*
expresses the reflection probability accumulated in the interval between zy and 2.

e Analysis of the wave function = | B(2)|?, fraction of the reflected wave generated
between zy and =z

- |B(e0)|?> = P(E) (”full reflection probability” )
-B(z<2z)=0 (®(2 < ) is a purely incoming wave)

e contribution to the amplitude of the reflected wave from the distances z < 100
a.u. is very small

e E=10"'2 a.u., P = |B(c0)|? = 0.88

- 75% of the reflection is generated between 500 a.u. and 5 000 a.u. (pure
Casimir tail)

- 22% of the reflection is generated between 100 a.u. and 500 a.u. (van der
Waals range)
o B= 1074, P =|B(oc)|* =0.31
-92% of the reflection is generated within Az = [100 — 1000] a.u.,
zr € Az is the "reflection distance”.




Ultracold H between two walls -

e Quantum reflection leads to existence of metastable states of H between two
walls

£ ner,aj levels
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e Matching = quantization condition: kL + 28¢p = 7n
e Scattering leﬁgth approximation: dgp = —kacp == k= (L—EEC;.»)
e Quantized box-state energies:
m?  a’n? Re(agp) 47?n?
By = ' ~ ~{14+4——==) —q|I -p)|——=
9m(L — 2acp) L2 ( L ) ilfm(acr)l5 s
e Modification induced by quantum reflection 2
48
= EO (1 4“013) )
By =5 + 7 i—7 &y
e Example: L = 10 ym = By =5 T.5. 100 ga., I = 157 210719 5.
= lifetime 7 = 0.014 S.

e To increase the lifetime: enlarge the box, 7 ~ L3.

e To increase the lowest energy level: shrink the box, E, ~ E,(IU)(}I—A) + AE(%)



| Gravitational effects
Quantum states of I in the gravitational field of Earth

e Quantum reflection might be used for measuring the gravitational interaction
of H atoms, perheaps probing WEP

e Falling H atoms will bounce on the surface
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En ergy levels

e Quantization is achieved by the confinement

— from below: by quantum reflection via Casimir interaction

— from above: by the gravitational field

e The wave function of the particle bouncing on the perfect mirror:

Yn(z) =C- A — M) ; b= 13/?52/(2mMg) = 5.87 pm.

mc viial eass - mM &= qravitatios wal mass
e The corresponding eigenvalues E, = e),, (e = ¢/h?mg?/2 =2.2-107 a.u.) are
determined from Ai(=Xp) =0 - N "
e Example: ' ' "

— A1 = 2.338, Ay = 4.088, A3 = 5.521, ...
— FE;=514-107* a.u.,



Quantum states of H in the gravitational field of Ear!

e Modification of the eigenvalues due to the Casimir interaction: obtained by
perturbation theory in conjunction with the scattering length approximation =
An = An + %2, Ep — By + ¢™eler) -

Im(acp) b [ oh 1
o ¢ 30 6230 i | " bmg J
e Example: F; =5.17-107% au., n = 1“% ~0.1s M: a]mw;l-cd'-;»'m' gy

e C.f. the experiment with neutrons: discovery of the lowest quantum state
(Nesvizhevsky et al. PRD 67, 102002, 2003; Nature 415, 297, 2002)
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h = Figure 1 Wavefunctions of the quantum states of neutrens in the potential well formed by
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! f ¥ ”} P $ - : nedtron wavefunction Wh(2). The vertical axis z provides the length scale for this
phenomenon. £, is the energy of the nth quantum state.

(\-‘k

o The width is independent on energy (for B, < 107" an): T~ w- P ~ %\/E

= const. : ..,.g.{‘ o

e The measurment of the lifetime of H bouncing on the surface allows determi-
nation of the force mg, i.e. one gets access to the gravitational properties of

antimatter (WEP?)

M= am\.“l' tefional mass



From mayonnaise to quantum mirrors

e Interaction between antiatoms and a Quantum reflection of antiatoms
solid surface

e Quantum reflection of ultracold antiatoms oc-
curs predominantly on the Casimir tail of the _ vy anels
dispersive atom-surface interaction | /
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e The prospects of confining, storage and/or ¢ T s t ij /), e—

quiding antiatoms /] l/ —
e Measurments of gravitational interaction be- ,( X \

tween matter and antimatter.

e Interesting offspins of interest for atom optics
and nanotechnology, e.g. atom holography;,
atom mirrors and lenses, interferometric de-
vices, guiding and trapping in mesoscopic de-
vices, atomic microscope, reflection of BEC- Gravitational states of antiatoms
clouds (Ketterle and Cornell, 2006), ...
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Conclusions on H - wall interaction

e Ultracold H is reflected from the wall by quantum reflection

e Annihilation ”purifies” the H - wall scattering making it independent on the
details of the short range interaction. Reflection occurs on the tail of the Casimir
potential, without contact with the surface '

e The reflection probability R = 1 — 4Im(acp) depends on the scattering length
acp determined by the tail of the Casimir interaction for the H-wall system

e Reflection becomes effective (> 50%) for E < 10° K

e Measurment of the rate of annihilation on the wall gives information about the
scattering length for the Casimir potential, and might be used for probing QED

e Quantum reflection supports the existence of long-lived metastable states of H
confined between the walls (7 ~ L?)
e Perspectives of:
— trapping
— cooling
— quiding |
e The gravitational motion of H bouncing above the surface is quantized. The

lifetime of the quantum states is 7 = 3?%'2 0.1 s, regardless the energy

o Wave packet analysis reveals ”decaying revivals” in the bouncing motion

e Measurment of the liftime of H bourncing on the surface might allow determina-

tion of the gravitational force between matter and antimatter, perheaps tests of
WEP.



