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Interest
verifying the charge symmetry in strong interactions 
at ultralow energies
obtaining information on exchange meson currents
verifying correctness of the description of few-body 
systems on the basis of modern concepts of nuclear 
interaction between constituent nucleons
obtaining information on the size of electron 
screening of interacting nuclei to explain on existing 
deficit of light nuclei (except 4He) in stars and the 
Galaxy 
to test applicability of the standard model to the 
description of all processes occurring in the Sun



Aim of present research
Measurement of astrophysical S-factors and effective cross sections of 
the pd, dd, d3He and reactions  in the ultralow energy region (1-12 keV)

         MeV) (1.01 MeV) (3.03 
                          MeV) (2.46 He3

tp
n

dd
+→

+→
+

MeV) (5.5  He3 γ+→+ dp

MeV) (3.5 MeV) (14.64 He3 α+→+ pd



Experimental determination of the astrophysical S-factor and effective
cross section of the dd, pd and d3He reactions:

– yield of the detected particles (i = n, γ, α), Np – number of
particles hit in the target (p = p, d, 3He), Z1, Z2 and μ – charges and
reduced mass of the colliding particles, nt – density of the target, εγ –
efficiency of the reaction products detection , E′ – energies of colliding
particles after passage of a target layer of thickness x′, Ē– average
energy of the of colliding particles, f(E) – energy distribution of the
particles hitting the target, – effective target thickness defined from the
expression ( – yield of products from the dd, pd and
d3He reaction in the case of an the infinitely thick target).

Measurement method
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Difficulties
nuclear reaction cross sections for such energy region (1-12 keV) are very small σ ≈ 10-43-10–32

cm2

intensities of accelerated  p, d, 3He  beams  using classical accelerators are too low new 
experimental methods: using a high-intensity radially liner plasma flow in the direct Z-pinch 
configurations (plasma is accelerated toward  to the axis of liner (1993 ) or in the “inverse”  Z-
pinch configurations (plasma is accelerated away from the axis of liner(2000))

direct  Z-pinch

)s/cm()/ln()MA(102)cm/g( 210 VrRIM ⋅⋅⋅⋅=

“inverse”  Z-pinch 



1 – high-current pulse generator; 2 – load unit of accelerator; 3 – diagnostic 
chamber; 4 – grid cathode; 5 – inverse current conductor; 6 – supersonic Laval 
nozzle; 7 – liner; 8 – current-intercepting rods; 9 – scintillation detector; 
10 – thermal neutron detector; 11 – Pb shielding; 12 – light-cover cone; 
13 – collimators; 14 – optical fibers; 15 – magnetic dB/dt probes; 16 – solid CD2
target; LD1, LD2 and LD3 – optical radiation detectors

Experimental setup

Neutron counters: plastic scintillators (d=100 mm, h=200 mm; 100×100×750 
mm3); thermal neutron detectors placed in paraffin moderator (it consisted of 10 
proportional BF3 or 3He counters)



SGM HCEI
I ≈ 950 кА, τ = 80 ns

Institute of high-current electronic RAS 
(Tomsk, Russia) plasma accelerators

MIG
I ≥ 1.7 MА, τ = 80 ns



Results of dd-reaction study (up to 2002)
Z pinch technology 

keV 3.69 7, 2.2 2.06, 1.8, =ddE

bkeV 1.182.58 ;1653 ;3064 ;68114 ⋅±±±±=ddSsolid line corresponds to the value of S=50 keV b



Gamma-detectors: plastic cintillator (ø 160×210 mm 2 pieces; ø 50×50 mm); 

pd reaction study (2005)
“inverse” Z pinch technology 
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Problems with Z-pinch

Absence of reproducibility of the experimental conditions 
from "shot" to "shot" - imposes certain restrictions on 
accuracy of measurement of parameters of the investigated 
processes 

using the pulsed ion source with the closed Hall current 
(plasma Hall accelerator)
generation of two opposite  plasma flows counter 
propagating across magnetic field

This circumstance stimulated the development of two 
alternative methods for formation of intense charged-particles 
beams in the ultralow energy region:



1 – anode holder, 2 – insulator, 3 – shock coil, 
4 – Laval nozzle, 5 – pulse gas valve, 
6 – first-step anode, 7 – second-step anode,
8 – conic cathodes, 9 – electromagnet, 
10 – Rogovsky belt

B = 1.6 kGs in the middle of the ring gap
average diameter  of the second anode –
170 mm
square of emitted surface – 95 cm2

voltage of shock coil – 20 kV
duration of plasma pulse – 1÷50 μs
rise time of plasma pulse – 200 ns
amplitude unstability in the high voltage 
pulse – 0.5 %
current – 200 A
generator of accelerated voltage – 2÷20 kV

Hall ion source



Basic units of the ion source

Induction plasma source 
installed in the vacuum 
chamber of the accelerator

Electromagnet of the Hall ion 
source. The electromagnet is 
intended for generating a 
transverse isolating magnetic 
field in the accelerating gap.



Characteristics of Hall ion source

Hall plasma source uses an electrodeless induction discharge with 
pulsed gas bleed-in 
wide range of plasma parameters covers ion level required emission 
according to the experimental conditions (≤ 1 А/сm2)
replacement of the filling gas allows a desired flux of ions to be 
formed rather simply 
maximum volume of the bleeded-in gas at the atmosphere pressure 
is 0.3 cm3

plasma density is - (1-2)⋅1013 сm-3, which corresponds to the ion 
saturation current ~ (1-3) А/сm2

Conclusion:
Hall ion source is very effective for high intensity plasma flux 
formation



Plasma Hall accelerator



Diagnostics equipment
Electrostatic multigrid  spectrometer of charge particles

Purpose:
measurement of energy distribution of ions generated by the Hall accelerator

distance between grids ≈ 4 mm; 
total area of entrance apertures of spectrometer S ~ 1 cm2; 
total grid transparency K = 7.2 %;
transparency of S1 grid ~ 28 %; 
ion density of the input: N ≈ Q /(e·S·K)

Target (CD2,TiD, TaD, D2 O) –
fore-part of spectrometer flange
V(S1) = -300 V
S2, S4 – grounded grids
V(S3) = 0÷10 kV
V(collector) = -200 V
Grid diameter ≈ 50 mm



Current density in various ion beam sections – collimated Faraday cup arrays

CFC collector – a hollow cup 5-10 mm deep
suppression of secondary electron emission from the collector – transverse 
magnetic field 2-3 Kgs (samarium-cobalt magnets)
measurement of plasma density – double and face probes located along the 
axis of the plasma gun
maximum plasma density at a distance of 5 cm from the end face of the 
plasma gun is ~1013 cm-3 at the ion velosity ~ 5·106 cm/s
ion currents – Rogowski belt

Diagnostics equipment
Collimated Faraday cup arrays

1 – case, 2 – ion collectors,
3 – collimating plate, 
R1-R5 – load resistors. 



Diagnostics based on radiation measurements of the excited neutrals H* in 
the Ha-, Hβ-wavelength regions in the plasma flow ions. Three optical 
radiation detectors (LD1-LD3): collimator 40 mm long, a 1 mm diameter 
by 7 m long quartz fiber, a Hα-, Hβ-filters and a PMT. The distance 
between LD1 and LD2 and between LD2 and LD3 was 50-100 mm.

Diagnostics equipment
Plasma optical radiation detectors



Conclusion
Developed and built are: 

a) Hall ion accelerator (model) with conic focusing, induction 
plasma source, and pulsed gas bleed-in

b) power supplies for the Hall accelerator 
c) pulse generator of the accelerating voltage with a current up 

to 200 A and independent adjustment of voltage amplitude 
up to 20 кV and pulse duration up to 50 μs. 

Electrophysical diagnostics complex for measurement of Hall 
accelerator parameters. 
Methods for measurement of energy distribution of ions in a 
plasma flow: 3-channel system for detection of optical radiation; 
electrostatic multigrid spectrometer of charged particles.
Arrays of collimated Faraday cups for measurement of current 
density in various ion beam sections.



Study of the dd-reaction in the astrophysical energy 
region using the plasma Hall accelerator

1 – Hall ion source plasma accelerator, 
2 – deuterium target (CD2, TaD, TiD, D2O)
3 – electrostatic multigrid spectrometer, 
4 – 3He detector of thermal neutrons
5 – plastic detector

Deuteron energy distribution



Preliminary results

Conclusion
The experimental results obtained with the plasma Hall accelerator indicate that, 
the developed technique holds promise for detailed study of reaction 
mechanisms between light nuclei in the region of ultralow energies
There is a difference between results of the dd-experiments with CD2 and TaD 
(TiD) targets

bkeV 3.2)16.9(31.9  keV) (4.7 ⋅±±=S
231 cm 10)3.07.12.3()keV 1.53.4(~ −⋅±±=<< colldd Eσ

bkeV 3.1)11.7(38.9  keV) (5.1 ⋅±±=S
231 cm 10)5.00.26.6()eVk 5.57.4(~ −⋅±±=<< colldd Eσ



Electron screening
The electron clouds act as screening potential: this leads to higher cross section, 
σs (E), than would be the case fore bare nuclei, σb(E).
The enhancement factor: flab(E) = σs (E)/σb(E) ≅ exp(πηUe/E), Ue is the 
electron screening energy (Ue ≅ Z1Z2e2/Ra, with Ra , an atomic radius). 
If E/Ue ≥ 1000 – shielding effects are negligible.
If E/Ue ≤ 100, relatively small enhancements from electron screening can cause 
significant errors in the extrapolation of cross sections to lower energies.
The observed enhancement of the cross section are in all cases is larger than 
could be accounted for  from available atomic physical models.

For testing of the screening effect it is necessary to perform the experiments 
with different types of the targets (TaD, TiD, ZrD, CD2, D2, D2O)



Distributions of the deuterium (hydrogen) concentration

Van de Graaf accelerator
Method of measurement: 
elastic recoil detection and 
Rutherford back scattering  

The depth profiles of the deuterium for various type of targets were measured on the
set- up located on the electrostatic generator EG-5 JINR: the beam of 4He+ ions with
energy 2.30 MeV and the intensity ~1012 s-1 was used.
The sample, recoil particle detector and the detector of the backscattered 4Не+ ions
where established at angle 150,,300 and 1350 to the axis of the 4Не+ ions beam,
respectively.
Two spectra have been measured: the spectrum of nuclear recoils (protons, deuterons)
and the spectrum of the Ratherford backscattered 4He+ ions.



Idea: interaction of two counter streaming plasma flows, propagating across B-field, as two 
oppositely charged plasma capacitors , moving toward each other (discharge in the cross E×B 
fields) 

Schematic of experimental setup: a – view along B-field; b – side view normal to B-field 
1. discharge HV electrodes, 2. spectrometer, 3. region of plasma flows collision, 4. voltage plate 
electrodes, 5. light detector’s collimators, 6. floating probes

ceramic chamber: din = 18 cm, l =1 50 cm; solenoidal B-field with end mirrors of 1.4 : 1 ratio; in the 
middleplane – H ≈ 1 T; two parallel pairs of high discharge high voltage electrodes  at 10 cm 
distance between them; gap – 2 cm, the electrodes’ length in the direction of B-field – 14 cm; 
diameter of chamber ~ 40 cm; density of plasma flow ~ 1016 cm-3.

Generation and interaction of  two opposite plasma 
flows  counter  propagating across magnetic field



General view of experimental setup

length of the experimental chamber – 150 cm
diameter – 20 cm
accumulated energy in the capacitor storage (30 μF) for discharge 
electrodes – 25 kJ
accumulated energy in the capacitor storage (0.05 F) – 0.5 MJ



Energetic Characteristics of the discharge

Based on the calorimetric measurements:
Plasma flow cross section size (in horizontal and vertical planes) – 10×3 cm
Plasma density – 1015 cm-3

Density of energy – 1 J/cm3

Transfer ratio efficiency from the energy deposited in the discharge to the 
plasma flows – 0.5
Average speed across 1T B-field – 3·107 cm/s

Time, μs.
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Motion of the plasma flows across B-field – in the 
drift channel (due of flows polarization with 
oppositive directions)
During collisions of the flows – depolarization and 
decay of the drift channels
Flow spends part of its kinetic energy – formation 
drift channel
Collisions of the flows feature quasi - periodic 
character as result of competing processes of decay 
and restoration of drift channels
First effective collision – 2.5-3.0 μs after start of 
discharged pulses

Formation of the drift channel



Experimental results

Waveforms of the: electron (1) and 
ion ( 2) currents from the 
spectrometer collector; (3) potential 
difference between electrodes #1 at 
figure of setup; (4) signal from 
neutron detector

Waveforms of the collector current 
at different bias voltage of the grid 
1 – 1.5 keV; 2 – 1.0 keV; 3 – 0.6 
keV 
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Integral spectra of ions (1) and 
electrons (2)

Energetic distribution of deutrons (1) 
and electrons (2) in the jet at the 
spectrometer entrance
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Conclusion
The size of the collision region of the flows in direction of 
their propagation was < 0.5 cm. 
The plasma flow from the collision region along B-field 
lines featured pulsating character when 1/(εμ)0.5 > Vd
When the frequency of pulsation was near to Larmor 
frequency of the deuterons the collision of plasma flows 
was accompanied by powerful X-ray and neutron bursts
The quantity of deutrons in the jet and their spectrum is 
likely to satisfy requirements for study dd process in the 
keV energy range
To get more clear picture of the processes in the collision 
region we plan to measure the ion/electron spectra in the 
drift flow in the pre-collision zone
It is planned to study on evolution of the spectral 
distribution of ions in the jet with distance from the 
collision region to the spectrometer.



Plans
In nearest three years we plan:

to improve the characteristics of the Hall accelerator 
and diagnostics equipment
to measure dd,  pd and d3He reactions in energy region 
1-12 keV with using the Hall accelerator and different 
types of the targets (testing of the screening effect)
to study  more detail the processes of formation and 
interaction of two opposite plasma flows  for receiving 
the final answer – is it possible to use this method for 
investigations of nuclear reactions at ultralow energies 
with high accuracy?
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