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Condensed-matter effects in µCF experiments
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Condensed-matter effects in µCF experiments
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Interaction potential of hydrogenic molecules
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In liquid and solid deuterium, the interaction between
neighboring D2 molecules is important.



Mean kinetic energy of hydrogenic molecules
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Mean kinetic energy ET of H2 molecule in liquid and solid
para-H2 at a fixed temperature of 19.3 K (Zoppi et al., 2001).

Open circles — inelastic neutron scattering data,
full circles — path-integral quantum Monte Carlo.



Mean kinetic energy of hydrogenic molecules

T [K] φ [LHD] ET [eV ]

4.2 1.42 5.9 ± 1.0

20 1.21 5.2 ± 0.8

30 1.01 5.6 ± 0.8

Mean kinetic energy ET of D2 molecule in solid (4.2 K)
and liquid (20 and 30 K) normal deuterium nD2 versus
temperature T and density φ (Mompeán et al., 1996).

Energy ET is much greater than the classical limit 3
2
kBT .

Energy ET in the solid is greater than in the liquid.

Magnitude of ET is mainly determined by the zero-point
vibrations of the molecules in a target.



Method of response function

Cross sections for scattering in condensed targets are
calculated using the response function S, which depends
only on target properties (Van Hove, 1954).

Partial differential cross section:
(

∂2σ

∂Ω∂ε′

)

= Nmol
k ′

k
σmol S(~κ, ω)

Notation:

σmol = |fmol|2,

fmol — scattering amplitude for a single molecule,

horizontal bar — averaging over the spins, rotational states,
and isotopic concentration of the molecules,

~κ = ~k − ~k ′ — momentum transfer,

ω = ε − ε
′ — energy transfer.



Impulse approximation of the response function

For large momentum κ and energy ω transfers:

S(~κ, ω) =

∫

n(~p) δ
[

ω + p2/2M − (~p + ~κ)2/2M
]

d3p ,

n(~p) — target-particle momentum distribution,

~p and M — target-particle momentum and mass,

δ function expresses the kinetic-energy conservation.



Impulse approximation of the response function

For large momentum κ and energy ω transfers:

S(~κ, ω) =

∫

n(~p) δ
[

ω + p2/2M − (~p + ~κ)2/2M
]

d3p ,

n(~p) — target-particle momentum distribution,

~p and M — target-particle momentum and mass,

δ function expresses the kinetic-energy conservation.

The target particle means a hydrogenic molecule or nucleus,
depending on the magnitude of κ and ω.

Application — measurement of the momentum distribution
(e.g., for proton in H2, or for H2 in solid/liquid hydrogen)
using deep inelastic neutron scattering (ISIS, RAL).

Effects of the target-particle movement are important even
at high energies.



Averaging of nuclear amplitudes in molecules
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Averaging of nuclear amplitudes in molecules
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Scattering of tµ in solid tritium at 3 and 20 K
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Scattering of tµ in solid tritium at 3 and 20 K
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Deceleration of muonic atoms in solid hydrogens
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Deceleration of muonic atoms in solid hydrogens
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Emission of cold pµ atoms from solid
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Application of the calculated cross sections for pµ scattering from
solid and gaseous nH2 for description of the TRIUMF experiment
using a solid multilayered target (Woźniak et al., 2003).



Energy balance in dtµ formation in a solid deuterium
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The Vesman-type subthreshold resonance can contribute to the
dtµ formation rate via the energy transfer ω to collective degrees
of freedom of a condensed deuterium.



Resonance response function

Van Hove’s response function cannot be used for description
of resonant formation of the muonic molecules.

In particular, the function S does not take into account
a significant change of the target-molecule mass in the
formation process (e.g., [(dtm)dee] in the place of D2).



Resonance response function

Van Hove’s response function cannot be used for description
of resonant formation of the muonic molecules.

In particular, the function S does not take into account
a significant change of the target-molecule mass in the
formation process (e.g., [(dtm)dee] in the place of D2).

However, a generalized resonance response function Sres(κ, ω)
can be applied for estimation of condensed-matter effects in
the resonant formation (Adamczak&Faifman, 2005).

For the Vesman-type resonances at the lowest resonance
energies εif , function Sres tends to the incoherent part of Van
Hove’s function S (ddµ resonances below 10 meV).



Resonance response function for ddµ in 3-K solid D2
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Function Sres and matrix elements |Vif |
2 versus dµ energy.

Recoil-less ddµ formation is described by the δ function.

The wide spectrum of Sres corresponds to the formation with
simultaneous phonon annihilation or creation.



Resonant ddµ formation in solid deuterium
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The resonant ddµ-formation rate in solid deuterium at 3 K.

The rate is proportional to the product of Sres and |Vif |
2.

It is assumed that rotational-vibrational levels of the D2

molecule are not changed in the condensed target!



Resonant ddµ formation in solid nD2 at 3 K

10

10 2

10 3

0 0.1 0.2 0.3 0.4 0.5

time (µs)

pr
ot

on
 c

ou
nt

s 
/ 2

ns

λ̃ = 3.08 ± 0.32 µs−1

λ̃21 = 33.8 ± 0.3 µs−1

χ2/ndf = 242/245

The calculated Monte Carlo time spectra of dd-fusion
products agree well with the experimental results for
normal nD2 target at 3 K (Knowles et al., 1997).

Broadening of molecular rotational levels in the solid
(∼ 0.5 meV) taken into account to obtain reasonable fits.



Ortho-para effects in ddµ formation in solid D2
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The calculated ortho-para effect in ddµ formation is opposite
to that found in experiments (Toyoda et al., 2003).



Ortho-para effects in ddµ formation in solid D2
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The calculated ortho-para effect in ddµ formation is opposite
to that found in experiments (Toyoda et al., 2003).

The calculated time spectra are very sensitive to the locations
and widths of the lowest ddµ resonances.

Possible explanation of this discrepancy: widths (values?)
of the rotational levels of D2 and [(ddµ)dee] significantly
(∼ 1 meV) changed in a solid/liquid deuterium.



Resonance response function for dtµ in 3-K solid D2
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Function Sres and matrix elements |Vif |
2 versus tµ energy.

Recoil-less dtµ formation is described by the Breit-Wigner
function.

Broadening of molecular levels is not significant in the case
of wide dtµ resonances!



Resonant dtµ formation in a 3-K solid deuterium
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Resonant dtµ formation in a 3-K solid deuterium
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Resonant dtµ formation in solid D/T
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Resonant dtµ-formation rate in
tµ(F = 0) scattering on nD2

molecule bound in a solid D/T
(Ct = 0.4, φ = 1.45).



Resonant dtµ formation in solid D/T
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Resonant dtµ formation in liquid D2
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Resonant dtµ-formation rate in liquid deuterium at T = 23 K
and φ = 1.16, calculated using a crude model of liquid.

The rate at small κ and ω is described by the Lorentzian
function (its width equals Dsκ

2, Ds is the self-diffusion
coefficient of D2 in deuterium).



Resonant dtµ formation in liquid D2
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Resonant dtµ-formation rate in liquid deuterium at T = 23 K
and φ = 1.16, calculated using a crude model of liquid.

The rate at small κ and ω is described by the Lorentzian
function (its width equals Dsκ

2, Ds is the self-diffusion
coefficient of D2 in deuterium).

Averaged dtµ-formation rates: 4.0 × 108 s−1 (T = 23 K,
φ = 1.16) and 3.6 × 108 s−1 (T = 33.3 K, φ = 0.928).



Summary

Condensed-matter effects are very significant in solid, liquid,
and cool dense gaseous hydrogenic targets.

These effects can be described using a generalized response
function.

Accurate scattering amplitudes, resonance energies and matrix
elements for single molecules are needed as the input.



Summary

Condensed-matter effects are very significant in solid, liquid,
and cool dense gaseous hydrogenic targets.

These effects can be described using a generalized response
function.

Accurate scattering amplitudes, resonance energies and matrix
elements for single molecules are needed as the input.

Outlook

Estimation of intermolecular-interaction effects in
rotational energies of D2 and [(ddµ)dee] is necessary
to solve the ortho-para problem in ddµ formation.
A more accurate model needed for mixed D/T crystals.
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