THEORY OF ZEEMAN LEVEL WIDTHS OF NUCLEAR
SPINS IN SOLID ORTHOHYDROGEN

K. Walasek and A.L. Kuzemskii

The Zeeman level widths of nuclear spins in solid orthohydrogen are calculated. The treat-
ment is based on an equation for the nonequilibrium mean values of the operators charac-
terizing the nonequilibrium state of the spin system, which interacts with the libron system
(treated as a thermal bath). This equation is derived by the method of Zubarev's nonequili-
brium statistical operator. The correlation functions for the libron subsystem that occur
in the expression for the widths are calculated in the Bose approximation.

1. Introduction

An isolated system of noninteracting nuclear spins of a molecular orthohydrogen crystal in a con-~
stant external magnetic field has a discrete Zeeman energy spectrum. As a result of the interaction with
the other degrees of freedom of the crystal the Zeeman levels become quasidiscrete, acquiring a finite
width T, which is related to the lifetime by the equation I" ~1/7. We should mention that the notion of
quasistationary states is justified when the widths of the quasidiscrete levels are small compared with the
distance between the levels. A broadening of the Zeeman levels in solid orthohydrogen at low temperatures
may be due to several physical factors (interactions with lattice vibrations, with the libron subsystem,
etc.). Estimates show that at low temperatures the interaction with the lattice vibrations can be neglected
and one need only allow for the interaction with the libron system.

At low temperatures-the system of orthohydrogen molecules, which form a rigid face-centered cubic
lattice and are bound only by the electric quadrupole —quadrupole interaction, is described by the Hamil-
tonian [1]

Hi= 2 Z v;,"‘"O;"O,". 1)
i m,n
Here, the first sum is over all the sites of the face-centered cubic lattice and 'yijmn, the coupling con-
stantsof the quadrupole —quadrupole interaction, are determined in [1]. The operators O;M are related to
the operators of the quadrupole moment components of the molecule and are equal to
050 = 3(];’)2 - 2,
OF = Ix x4 J&]E,
0,:’:2 _— (] :i) z,
JE =Jril¥,
where Jj is the operator of the angular momentum of the i-th molecule (J = 1), the quantization axis zj
being taken along the symmetry axis of the molecule i. In the ground state the molecular lattice of solid
orthohydrogen consists of four simple cubic sublattices in each of which the molecules are translationally
and orientationally equivalent. The symmetry axes of the molecules are directed along the four different
threefold symmetry axes of the crystal, which coincide with the principal diagonals of the cube of the face-
centered cubic lattice. In the molecular field approximation it has been found [1, 2] that the state with J;Z
= 0 lies below the states with J;% = +1 and is the ground state. Calculations show [1, 3-5] that near the
ground state, i.e., in the orientationally ordered phase, there exist collective excitations, known as librons,
which are associated with the transitions (Jj2 = 0) —(Jj%= £ 1). Because of the anisotropic nature of the
electric quadrupole —quadrupole interaction the gap in the libron energy spectrum is approximately equal
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to 10°K, The width of the libron band is about 5°K [note that the energy of the transition {J; = 1) —(J; = 3)
is 860°K].

In the present paper we shall calculate the Zeeman level widths of the nuclear spins arising from the
interaction with the libron system, treated as a thermal bath. As in the study of the longitudinal nuclear
spin—libron relaxation [5-7] in solid orthohydrogen, we shall assume that the interaction between the spin
and libron subsystems is made up of the intramolecular dipole—dipole interaction between the nuclear
spins of the protons and the I;-J; interaction, both interactions being modulated by the quadrupole inter-
action. The intermolecular dipole~dipole interaction will be neglected (see also [7]).

Now it is clear that the problem can be solved on the basis of perturbation theory for the Green's
functions [8]. However, we shall calculate the Zeeman nuclear level widths by means of equations for the
nonequilibrium mean values since it is well known that the equations for the nonequilibrium mean values
are equivalent to the equations for the corresponding equilibrium Green's functions. This is an expression
of Onsager's principle, which is widely employed in the theory of nonequilibrium processes. In the inves-
tigation [9], Zubarev and the present authors used the nonequilibrium statistical operator method [10-12]
to obtain the corresponding equation for the nonequilibrium mean values of the operators characterizing
the nonequilibrium state of a subsystem interacting with a thermal bath. Using this equation, one can very
easily calculate the energy shift and the damping; this will become apparent in the present investigation,

2. Hamiltonian of the System

We shall consider a nuclear spin system in an external constant magnetic field interacting with a
libron system. We write the Hamiltonian of the complete system in the form [6]

K=, + M.+ V. 3)
Here, #, = — aZ I7 is the Zeeman Hamiltonian of the nuclear spins; I;Z is the operator of the z compo-

nent of the total nuclear spin of the molecule (I = 1) at the site i; the quantization axis is along the external
magnetic field Hy; @ = vH,, where v is the gyromagnetic ratio; 2, is the Hamiltonian of the libron sys-
tem (1), The interaction operator has the form

V = Vdd + V[q, (4)
where

i

Vg = 2{—«1-1.-*-13 +%da;-~n—) + 81 3) )

is the operator of the intramolecular interaction of the protons of the molecule. Note that in contrast to
(1) the quantization axis for Jj in the expression (5) is the external magnetic field Hy;

V[.J=“—CEIi'Ji (6)
i
is the operator of the I-J interaction, Jj in (6) also being quantized along H;. We shall use the notation
¢ =2uHl’"; d="%/p2{r >,

the definition and the numerical value of these quantities can be found in [6]. The interaction operator V
in (4) can be represented in the form

3 2
V=T‘12 2 QimOi—m—czli’Ji- (7}

i mn=—9
where by analogy with (2), we have introduced the operators g;™:
Gig = 2[(11':)2 - 2/3]1
g& = I&IF 4 112,
42 ()2 8)
ql (I‘ ) b
I# =[5+ il
We must emphasize once more that the operators O;™ in (7) have the form (2) but the quantization axis
for Jj is along the external magnetic field Hy. In calculating the Zeeman level widths in the present paper

we shall restrict ourselves in (7) to terms that do not lead to a mixing [13] of states with different I;Z= A,
wherel= A =<1,
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V= %d; g:°0,* — ¢ Zili’z'fiz- (9)

Since [I;Z, V] = 0, the interaction in the form (9) does not lead to longitudinal nuclear spin—libron relaxa-
tion [5]. This corresponds to a restriction to elastic scattering of librons by the nuclear spins and is
physically justified since the gap in the libron specirum is much greater than the distance between the
Zeeman nuclear levels. Using the equation

L7 = Jhap an = hna, 10)
[y A

it is convenient to introduce a3 and ajj, the operators of creation and annihilation of a spin at site i
with z component equal to A. One can show that these operators satisfy the commutation relations

[an, aj5] = [an*, ¢"]1 =0,

[@ins a56] = 8;500 (1 - aiv+aiv) — Oy;ai0"an, 1)

where ajj -aid = 0 forA=o; aiprt-ajgd = aj)-ajg= 0. Using (10) we rewrite 3, and V in the form
(see [9])

H,= ZEA ()an‘an; Ei(i) = —dh, 1z)
FY
V = Do (i) an‘an, (13)
Y
where
Pyt = %‘“’i" Feli i) =—d -0 (13a)

3. Equation for the Nonequilibrium Mean Values

In order to obtain an equation for the nonequilibrium mean values [9], we shall use Zubarev's non-
equilibrium statistical operator method [10-12]. Our starting point will be the Hamiltonian (3), in which
., #., and V are taken, respectively, in the form (12), (1), and (13). We shall take the mean values of
the operators aj; , aixt, and nj [9] as the set of variables describing the nonequilibrium state of the spin
system with the Hamiltonian 8,. We shall regard the libron system, which is in equilibrium at the temper-
ature # = 1/8, as a thermal bath and describe it by means of the Hamiltonian 5, (1).

We introduce the quasiequilibrium distribution [10-12]

e (2, 0) = e=5¢-°), (14)
where
S(t,0) =D () + D{fa(t) ann + fa" (F) @ + Fur(t) na} + BHr, (15)
i
@ =InSpexp {~ D (fan (1) an + " () @™ + Fi (1) man) — 556’:,} , (15a)
i\

The first argument of pq(t, 0) indicates the implicit dependence of this quantity on the time and the second
its dependence through the Heisenberg representation; fi) (t), fj»* (t), and Fjj (t) are the parameters con-
jugate to {aj)* g {aip Ty, and (njy> q in the sense of nonequilibrium thermodynamics [10-12]; < .. Dq
= Sp (pq. ..). We may call S(t, 0) the entropy operator, since {S(t, 0))q is the entropy.

We construct the nonequilibrium statistical operator p(t, 0) as follows:

p(t, 0) = exp {—S(t, 0)}, (16)
where
0 1]
St0)=-¢ S dtetUsS(t 41,00 Uyt = —e S dtyes U Inpy (t + £, 0)Uy* (16a)

is the quasi-invariant part of the entropy operator; g —~+ 0 after the thermodynamic passage to the limit
in the calculation of the mean values; and U = exp(-t%/iﬁ) is the evolution operator. The parameters
fin (), fia* (), and Fy; (t) can be found from the conditions



{aay = {@a)q; {@n*) = aun™yg; {nn) = M)y {17)

where (...> =Sp(p(t,0)...) denotes averaging with the nonequilibrium statistical operator (16). Fulfil-
ment of the conditions (17) ensures conservation of the normalization after the quasi-invariant part has
been taken. The entropy of the system is

S (1) =<8 (t, 0)> = @ (£) + D {<and fan (£) + <aan*> fur* () + <rad Fan ()} + <) B (15b}
i\

One can therefore show that the mean values in (15b) can be interpreted as generalized thermodynamic
coordinates and fj , f;3*, and F;; as thermodynamic forces.

Averaging the equation of motion for a;; with the nonequilibrium statistical operator (16):

id% = [ai)d gf] = E}. (i)ail + _i—[ai)d V]

and restricting ourselves to the second order in the weak interaction, we obtain, as in [9, 14],

[
d(;»x> = Ex (i) Can) + % S e, VIV ()1 qeth dty. (18)

—0

Here, V(t;) denotes a representation of the interaction operator V. Note that in deriving Eq. {18) we used
the condltlon (@p(i)>q = 0. This can always be achieved as follows. To the Hamiltonian 6 = 36, + ¥4,
+ V add and subtract <‘Px(1)>q- In addition, introduce the quantities O;% O1 - (01 >q and J1 t=Js 1z
(Ji2>q. Equations (12) and (13) are then replaced by

Ho=2Ex (an'an; Ex'() = — -+ (qa(iDg
o » . . (19)
V= §¢1 (D) antan; o (1) = 9a (€) — <P ()

and hence, (¢;'(i)>q = 0. Therefore, we can assume that we are dealing with renormalized quantities,
whose primes we shall omit to shorten the notation. In addition, the renormalization (19) enables us to
find the distance between the peaks of the NMR resonance line in solid orthohydrogen. It is readily veri-
fied that the distance v between the peaks is

bv=|3 a@eosts —1)c0n ],

where O = 3(3JZ)2 —2, and ¢ is the angle between the quantization axis for J;% and the direction of the ex-
ternal magnetic field, Averaging 6v over all directions, we obtain

v = -Z’-d<2—(r).=>,

which agrees with the value of 8 given in [15] (see also [17]).

4. Zeeman Level Widths

We shall follow [9]. We expand the double commutator on the right side of Eq. {18):
.d : 1 ¢ Lo
i ﬂ =Ey(@)<and +-7 S dtets {on (B), P (I tr)Dq Cand
- {20)
_2 2 S dt,e [P (), Pe (7, 21014 2j6* BjoBin dg-

J#*i 6 —oo
Following [9], we restrict ourselves in [20] to the linear term in ( @iy ) (this approximation is discussed
in [9]):

;4 1 ¢
<;“>“ By (i)<any + 5 S dtye <P (i), o (i, 1) g ain). (21}

Introducing the spectral intensity < ¢, ()] ¢, () > @ (see [8,18])

@O Dd= § @00l ) e dr,
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we transform Eq, (21) to the form

$ 28 _ By (1)<any + Kn ) Can, 22)

where
Ky () = S do <<m(;)4l_¢:e(l)> .

Note that (g ()} ) @ = 0. We now introduce the energy shift AEj (i) and the damping T, (i) of the
Zeeman level A by means of the equations

23)

Kn () = AB, () — T30, 4)
AE, () =P § L2, () o ()< B ()
Tu) = 2001 (1) |0 () Yo @)
It is expedient to replace T’ (i) by the averaged quantity
1 .
r1= m;[‘) (l), (26)

where N = 4N is the total number of molecules in the crystal and N is the number of unit cells. Using (13)
and (13a), we obtain expressions for the damping (26):

r,=2 = d=Z<0°l0 s @7)

2n N d? —_—
Tias = 372 2 €00 | 085aa T ed 00| TSt & | S . (28)

These expressions are written down in coordinate systems in which the external magnetic field Hy is the
quantization axis for the nuclear spin moment I; and for the mechanical angular momentum Jij. In the
orientationally ordered phase the quantization axis z of the angular momentum JiZ coincides with one of
the four principal diagonals of the cube of the face-centered cubic lattice, We must therefore go over from
a system of coordinates associated with the external magnetic field to a system of coordinates associated
with sublattices. One can show that the expressions (27) and (28} can be written in the following form in a
sublattice coordinate system:

To= zvd’ 2 2 R, (00) <O™ (Rq) | O™ (Ra)amor
0 a,Ramn=-2 (29)

Taa = 12\/n Z {EZ— Z Rym (90) (O™ (Ra) | 0% (Ra) oo

Oa,Ry mn=—2

1 2 1
Fed 2 D) Spm(00) O™ (Ro) [P (Ra)domo+ ¢ D Trm(0a) I™ (Ra) | I (Ro) Do s 30
n=-—1 m=—=2 m,n=-—1

where ¢ = 1,2, 3, 4 is the lattice subscript and i — (o, R,). The transformation matrices have the form

R (0g) = ko knDo” (0.) Do (@2) . a (5 X 5) matrix,
Snm (ma) == - lnkmDnni.(ma) Domz. (0)(;) , a(3Xx 5) matrix,
T o (@0) == Lol nDo,* (0a) Dot (0,), 2 (3 X 3) matrix,

4 e
D™ (@00) = ( 2_[%) (— ™Y1 (86, 0).

The coefficients ky, and I, have the values: ky = —13kyy = £V3/2; K, ==V¥T lp = 15 I = 1/25 wg = (6,

@ oz) are the axial and azimuthal angles of the quantization axis in the sublattice a in the coordinate system
associated with the external magnetic field.
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5, Correlation Functions for the Libron Subsystem

in the Bose Approximation

We now turn to the calculation of the spectral intensities of the libron subsystem correlation func-
tions in the expressions for the damping (29) and (30).

We start from the Hamiltonian (1)
2
4 L=Z 2 Yi,""0;"0".
i mn=—3
Following [1], we introduce the operators
a= (1/Y2)[1 — (77)*r,

bo= (1/V2)[4 — &)+ (31)

and the complex conjugate operators ai" and b;*. If these operators act on a state with J;% = 0, they map
it to a state with J;%Z = +1:

| Ir =0y = [I2 = +1),
bH|li=0 = [ =—1.
One can show that these operators satisfy the commutation relations {1}
[ay, ai*] = (1 — 2na — 1) 84
[b;, 8] = (1 — Rai — 2R} by,

[a:, b;*] = —bitai-8s5; [by 4] = —a*bidy, 82)

[a, b)] = [a*, 8] =0.
The operators J;* and J;% can be expressed in terms of a; and bj:
J# = ata,— bi*b; (1) = arta: + bi*b,
Jo =VBlot +b); T =VEa+ b), o
and thus, by virtue of (2),

07 = 3(ata;+ b*by) —2
0 = Y2la* 80 00t = (00" (332)
0 = 2ab; 0= (os+=)+.
In calculating the spectral intensities in (29) and (30) we shall restrict ourselves to the approximation
when aj, ai*, bj, and bj* can be regarded as operators that satisfy Bose commutation relations:
[a, a*] = [b4 b*] = 8y,
[a, b1 = [b, a;] = [a, b = [a*, b;*] = 0. 34)

This corresponds to the assumption {(n,;><« 1 and {np) «1, which is valid at low temperatures. Substi-
tuting the operators (33a) into the Hamiltonian (1) and restricting ourselves to bilinear terms, we obtain

H» =2 2 (v, 12— 3(as’a; + b/ b)) + v (@7 — b) (a5 — b;") + v5™* (@r* — by) (as* — b;)} -+ Hermitian conjugate. (35)

We now go over to the Fourier representation for e and bj:

a(Rq) = —~2 ¢"oaq (k).
(36)
b (Ru): _V—,—_N % eikRubG (k)'
We also have
Vi (R = Ry) = T St
19r 1 ; "
VA" (Ra —Ry) = T 2160 g, ),



where we have restricted ourselves to the nearest-neighbor approximation and

19T

00 n_ 19T
RZB/YGB(RG—RB)_ 12

Using (36) and (37) we can represent the Hamiltonian (35) as
M0 — 191*2" {a6* (k) aq (k) + ba* (k) b (K)} + 13_1‘ S\ {gep (k) [a67(— k)

a,8;k
— ba (k)] [ag” (k) — b (— k)] + gag* (k) [@a (k) + ba* (— k)] [ag (— k)
— ba" ()] + fop (k) [2a" (— k) — ba (k)] [25 (— k) — bg* (K)] + fas* (k)
X [aq (k) — ba" (— K)] [a5" (k) — b (— K)]}.

38)

This Hamiltonian can be diagonalized [8] and one can then find the spectrum of the collective excitations
known as librons. Using Wick's theorem, one can calculate the necessary correlation functions for the
libron subsystem. This can be done as follows. The canonical transformation

aq (k) = 2 {tgp. (k) e, (k) + vap (k) ot (— Kk},
- 39}
ba (k) = X {tap* (K) cu (k) + va,* (k) c,* (— K)},
1~

where c u (k) and c#“(k) are new Bose operators, reduces the Hamiltonian (38) to the diagonal form

KL = % eu (k) ¢," (k) e, (k) + E,, {40)
[
where

eu(k) = 19T[1 + 20, (k) ]* = 19T, (k) (40a)

is the libron spectrum; w p k) are the libron frequencies, u =1,2,...,8.

5,

3 191.

By = 2 el —

The quantities uy, k) and vy, () have the form
o, (k) —1
Voulk) ’

i —
Vo (k) = 5 Vou (k) -—-—mpr———-(:z (k)i .

Here Vg (k) are the elements of a unitary matrix and they satisfy the equations

Z{V;pvnk + chV:xk} = 6;0.,

a

2 Vale;u =8 VoV = Z V;th;P =0,
® ¢ »

o (6) = = Ve, (K)

and also
§{Vc‘m (k) Ve (k) fup (&) — Vs (k) Ve (k) g, (K)
+ Vs (k) Ver (k) fap (k) — Vou (k) Vo (K) g3 (K)} = @y, (K) 8-
The operators a , (k) and b, (k) can be expressed in terms of cy (k) and c“+ k):
: 1 1 .
0 () = g 2 Vo () s (00 (0 + 110 (8) + (00 () — 17 (— K,

. 41)
ba K =%gm(k)l,—.mi__(—.k.){m(kwucp(k)ﬂmy(k)—uc; (— ).

We shall now show how the correlation functions are calculated. As an example, consider {O'®R oz)
I0'R )Y, =
w=0

Rz <0° (Ru) loo (Ra)>w=o = % <0° k) [04° (—E))e=e = 2 S do {<aa+ (k) | ag’ (—k))w@e(— k) |aa (k1)>a
a k, k1 —00



+ <aq (k) | ao* (k)>-u <aa* (k1) | @a (k1)Da
+ <ba.+ (k) | bu+ (_‘ k))_‘,, <ba (_ kl) l ba (kl)>(n
+ <ba (k) | ba* (k)>—w <ba (ky) | ba (K1)
+<as* (k)| bo* (— k) (G (— k) | ba (ki)a
+ <aa (k)| be* (k)>—m {ag* (k1) | bq k1)do
+ <ba* (k) | a0 (— k))>- (B (— ki) [ 40 (K1)Do
+ <ba (k) | ao* (k) <ba* (K1) [@a (ky)Do}- “42)
Going over to the operators cy (k) and c“*'(k), one can calculate the spectral intensities in (42). As an
example, we shall give the two following spectral intensities:

Caa* (B) | aa* (— kDo = { <aa* (— k) ag (k, 1)) et dt
1 k) —1 (8(0— e, (k) ”‘u<“>6(m+s k)
- L STy L S0 S ), @
. (@ (k) £ 1) 8 (0 — ey (k) (mp(k)—i)“es'“‘“’ 8 (© + & (K))
<aa (k) [ ba* (k)>w = o %‘, (k){ @ O ) T ) B 1| (43a)

6. Results

One can verify that the expressions (29) and (30) for the damping Ty and Iy, in which the spectral
intensities are calculated according to type by (42), (43), and (43a), have the form

2 DFR (K, k)G (k, k), (44)
ky Ky p’
where
o _ L op (k) oy (ki) + 1
FHM (k, kx) = 6(8}1 (k) Eu (kl))(y)“_(k) O (kl) (eggy_(k) — 1) (egap, T 1)
X {(oe (k) + 1) (@p (ky) + 1) @ £ (0, (k) — 1) (0 (k) — 1) &P &} 45)
and

e, o) = 7 S {7 Ren 00 1 Vo (O P [ Vo () F - ViR Vi (k)

+ 68,0 (@) [| Ve (K) | (V?m k) +- V&i’ (k)]
1 -
+ 5 Run, 1 (@0) [Vae (k) Vi (k) + Vi (8) Vi (k)] + R, 42 (@) [ Vs (k) [ Vour () P13 (46)
is the factor that takes into account the sublattice structure of the orthohydrogen crystal:

rﬂ“ = 2‘,{ FQ (k, k) G2 (k, kl)+—F("’(k, ky) G (K, kl)}, (47)
K, ke i1, @
where
FSh(k, k) =6 e oy (k) + o (ky)
wr (K, ) =8 (ey (k) — &y (kl))%(k) 0 (1) (PP 1) (P 09 1
X {(op (k) + 1) (@ (k) + 1) 22D — (@ (k) — 1) (0 () — 1) P 0} 48)
and

G (k, k) = o ZT o0 (D0) [V (k) Vg () — | Voy () [* | Ve (ky) [*1

is a factor that depends on the lattice strxtcture. To separate explicitly the temperature dependence we
shall assume that the dependence of G ’2 (c,k;) on k and k; can be neglected. We introduce the spectrum
density (see also [5, 7]) whose numerlcal values are given in [4]:

8 (zn)suy.(k)gm ‘vkm!-l(k)l ’

where @ is the volume of the unit cell. Going over from summation to integration in (45) and (47):

49)



v 2 (2::)8 S &%,
where Q¥ is the volume of the first Brillouin zone, we finally obtain
To= 222 .64 Z' F& B) 6 50)
1. =22 16, 2 FRB) G + o5 ig; 642 FG B) G, 1)

where

©max
dmeﬁlsrm (mz + 1)2 /ma
FER () = 2 g m{ 1 }gp(‘ﬂ)gw (@), (52)
@max — @ min) 1§ the width of the band of libron waves [4]; Ff;;I () are functions that reflect the temper-
ature dependence of the Zeeman level widths of the nuclear spins; cl, 2) are duantities that take into ac-
count the complicated sublattice structure of the orthohydrogen crystal (see [5]). At low temperatures,
(52) becomes

“’u}ax 2 /002
F@ () =2 g dcoe-f’l““"{(wz +11) e }gp(m)gpr (@)- (52a)

),

Here, }F‘(:h and G(iﬂz) must be calculated numerically.

7. Discussion

The physical content of our result is the following. If a system of nuclear spins ceases to be isol-
ated, the Larmor frequencies become spread out. This means that the line of the magnetic resonance
absorption acquires a certain width, approximately equal to 6. The temperature and structure depend-
ence follows from (44) and (47). It should be noted that the intermolecular dipole~dipole interaction and
the interaction with the phonons should also be taken into account in a rigorous calculation of the width
and form of the nuclear magnetic absorption line and not only the interactions which we have considered,
In the considered temperature range (well below the phase transition point which is approximately at 1.5°K)
the interaction with the librons is stronger than the intermolecular dipole—dipole interaction. It is well
known that solid hydrogen belongs to the group of substances with a so-called fine structure of the reson-~
ance line ([17,18] Ch.VII). In fact, the distance between the protons in the H, molecule is 0.75-10-8
and the distance between the molecules in solid hydrogen is 3.75-103 cm. Since the dipole —dipole in-
teraction decreases with the distance as R-%, the hydrogen molecule can be assumed to be isolated
in a first approximation and then one can calculate its energy levels in a constant magnetic field.
The order of magnitude of the interaction between the nuclear system and the librons is determined
by the quantities d and ¢, which characterize the intramolecular dipole—dipole and spin—orbit in-
teraction responsible for the fine structure of the resonance line. For a rigid lattice these interactions
are much stronger than the intermolecular dipole~dipole interaction. It has been found experimentally
([18], see also [15]) that at fairly high temperatures, when the molecules rotate almost freely, there is a
single absorption line; this is evidently connected with averaging of the intramolecular interactions. With
decreasing temperature the rotational motion of the orthohydrogen molecules becomes ordered, the inten-
sity of this line decreases, and a fine structure begins to appear [15,17-22]. Note that the intermolecular
dipole—dipole interaction can be taken into account in the same way as the interaction (7).

Thus, using the nonequilibrium statistical operator method, one can fairly simply calculate the
energy shift and the width of the Zeeman levels of the nuclear spins in solid orthohydrogen. It is clear
that similar calculations can also be made for a number of other specific problems.

I should like to express my thanks to D, N. Zubarev and N. M. Plakida for helpful discussions.
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