THEORY OF NUCLEAR SPIN-LATTICE RELAXATION IN
SOLID ORTHOHYDROGEN

K. Walasek and A. L. Kuzemskii

An expression is obtained for the time of longitudinal nuclear spin-lattice relaxation in terms
of the spectral intensities of correlation functions. The libron subsystem plays the role of
the lattice. The correlation functions of the libron subsystem are calculated in the random
phase approximation.

1. INTRODUCTION

Great interest has recently been evinced [2-4] for investigations of the nature of elementary excita-
tions in solid orthohydrogen below the phase transition point [1]. Apart from its own physical importance,
this system is also interesting from the point of view of the general many-body theory in that it is another
model in which a phase transition is possible [5-9].

Calculations show [2-4] that definite collective excitations exist below the transition point. These
excitations, which are known as librons, are due to the intermolecular quadrupole —quadrupole interaction.
These quasiparticles are "rotational waves" in the sense that they propagate like a wave and are associated
with the excitation of rotational degrees of freedom. However, since the average value of the angular
momentum of each hydrogen molecule vanishes in the low-temperature region, one should speak rather of
liberational motion and not rotation. In other words, the quadrupole — quadrupole interaction slows down
the rotation of the molecules to a slight extent, doing this in such a way that the total angular momentum of
each molecule remains the same (i.e., J = 1) but the z component of the angular momentum varies.

No direct experimental confirmation of the existence of librons has yet been made {10, 11]. It is
therefore important to make further theoretical and experimental investigations of processes in solid hy-
drogen such as spin-lattice relaxation [12-15], nuclear magnetic resonance [16], infrared absorption {17],
etc.

In the present paper we shall study the longitudinal relaxation of the subsystem of nuclear spins re-
sulting from its interaction with the libron subsystem, which is treated in the random phase approximation.

In studying this problem, Homma [13] treated the libron subsystem in an approximation analogous to
the Gol'shtein—Primakov method in the theory of spin waves. The order of magnitude of the relaxation
time obtained by Homma is confirmed qualitatively by the experimental results [{15]. Previously, nuclear
spin-lattice relaxation was considered by Moriya and Motizuki [12] and Harris and Hunt {14] for tempera-
tures above the phase transition. A number of investigations into spin-lattice relaxation have been made
by Sung [18-20] for dilute solids solutions of hydrogen and hydrogen and deuterium.

Following Moriya and Motizuki [12], we assume the following relaxation mechanisms: 1) intramole-
cular dipole~dipole interaction and I.J coupling modulated by the intermolecular quadrupole —quadrupole in-
teraction; 2) intermolecular dipole —dipole interaction modulated by the lattice vibrations. However, the
second mechanism makes a small contribution compared with the first [13], and we shall therefore restrict
ourselves to the first relaxation mechanism. In the low-temperature phase, one can say that relaxation
occurs as a result of 'inelastic scattering of librons by nuclear spins. The main contribution is made by
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Raman processes and direct processes are forbidden since the energy gap in the libron spectrum is of the
order of 10°K, which is much greater than the distance between the nuclear Zeeman levels.

In Section 2, we calculate the correlation functions for the libron subsystem in the random phase
approximation. Equations are obfained for the ordering parameter. In Section 3, we obtain an expression
for the time of longitudinal nuclear spin-lattice relaxation in terms of the spectral intensities of the corre-
lation functions of the lattice. In Section 4, the time of longitudinal spin-lattice relaxation is calculated for
temperatures below the phase transition point.

2. CORRELATION FUNCTIONS FOR THE LIBRON SUBSYSTEM

We shall consider an orthohydrogen crystal below the phase transition point. The Hamiltonian of a
system of orthohydrogen molecules in the rotational state J = 1 and coupled by the quadrupole —quadrupole
interaction can be written in the form [4]

_:ZZY;';"OMO "omyon=0, +1, +2. oy

1] mn
Here, _yix.nm are coupling constants (4], and the operators Oim are related fo the operators Jiz’ * in the
subspace J = 1 as follows (J* = J¥ + iJ¥);

0 = 3(J7)* -2,
OF = JrJlx+J+]3
Oitz == (].’t) 2‘ (13)

The Hamiltonian (1} is written down in a system of coordinates (henceforth known as the sublattice system)
in which the z; axis of each molecule i is directed along the symmetry axis of the molecule i. It has been
found [21-24] that the molecular lattice of solid hydrogen below the phase transition point consits of four
simple cubic sublattices., For each sublattice, the quantization axes are aligned along the different dia-
gonals of the cubic unit cell of the face~centered cubic lattice.

We now go over fo the Fourier representation for the operators Oim:

# - Z Z Z vap (k) 05" (k) Og" (— k), @)

a m,n
where

v = Y exp{ik(R(s)— R(B)} vy (R(a) — R(B)),
R(@)—R (8)
0, (k) = __2 O™ (R (o)) exp (— ik- R (a)).
R (o)
Here, o and § are the subscripts of the sublattices, o, 8 =1, 2, 3, 4, and N is the number of unit cells in
the crystal. We note that the set of operators {O;, J;°* *} forms an algebra (see Table 1). It is there-
fore convenient to introduce the following notation:

[Oim’ 0?”] = Kmn(]i) 655, 3
[]jn 0"‘] .—_::’Lmn 01‘)61’51 ( )

where Ky (Jj) and Lmn(O;) are certain functions of the operators Ji Zr % and O » respectively, whose
specific form depends on the values of the subscripts m and n.

The equations of motion are

 20a () X N N @ K (o (& + D) 05" (— @) + 05" (= @) Ko (T (k + Vs )
q 8 m'n’
dJa k
LI }j Z,v % (@) L (Oa (6 4 @) O™ (= @) + 05" (— @) Lo (O (k- D). 5)

We linearize these equations, using the random phase approximation:
KrmTa(k + 0))05" (—q) = K (To(k + 6)) O™ (—q) ) + Ko (o (k + 4)) D05 (—4q), (6)
Lunm (Oa(k + @) 05" (—q) = Ly (Oalk + g) ) (0" (—q)> + Limmr (O (k + q) >0 (—q). {7)
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TABLE 1

X o° o+t ot o o~z J+ J~- Jz

o 0 37+ —3J- o {0 30 | —301| 0
foazt — 3J* 0 2 0 —2J- 20+ 200 — 01
ot 3J- — 2J* 0 2J+ 0 — 200 | 207 o
or? 0 0 —2J* 0 4% 0 20+ - 20+
o2 0 27~ 0 — 4JF 0 - 2071 0 202
Jt 301 — 20%? 200 4] 201 0 2J% —Jt
J- 307 — 200 202 - 20% 0 — 257 0 J-
J* 0 o — Q01 20% — 207 J —J- 0

Taking into account the results of calculations in the molecular field approxi'mation, we also assume (see

B, 5D

(05" (k)> =0, n=%0; <Jy"(k)>==0.

Using (6)- (8), we transform Eqgs. (4) and (5) to the form

+1
; goadt(k) 19r (k) oo,

where we have introduced the notation

F—Ev (0).

{O:F*(k) +19F }: vap" (k) Og" (k)} :

®)

©)

(10)

We have restricted ourselves to the nearest-neighbor approximation [4] (allowance for the next-nearest
neighbors [25] does not lead to significant changes).

From (9) and (10) we deduce the equation

(k) (19r§00> ) {

dt?

We introduce. the notation (see also [4])

and also

Ja (k) + 157 Z +yt (k) Jy (k) F vﬂ-ﬂ(kw(k»}.

B

Fup (1) = o Vi (00, 7op(0) = g Yab ()
8o ()= g Yo ), 82 (0) = o Yo ™
of 191 Yo » 8ap o1 (k),
W) [a® Fk)  — 2
_ew] | -
- J:+ (k) =1. !F(k)
Jeml  Le® —7® FK

M

19r

w0 = (55 o)t +2F wi

(here, the bar denotes matrix quantities).

1)

(12)

(13)

In order to calculate the correlation functions, we shall use the method of Green's functions [26].

We introduce the Green's function

which satisfies the equation
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Further, we introduce the diagonalizing matrix ‘T/(k); V'l(k) =v" &),

9
T W7 1) = (o 0% )1t + 27 (0 F 0 7 0 = (15T <on )1t 2 oy = 6 0, (15)

Here, w? (k) is a diagonal matrix with the elements

0t (k) = (191‘

<0°>> e2(k), p=1,2,....8;

where ¢ (k) are the eigenvalues of the matrix {1 + 20 ®)]; wy (k) are the libron frequencies, which, like
the matrix V(k), must be found numerically. Estimates show [2-4] that for k = 0 and T = 0°K the energy
gap in the libron spectrum is of order 10°K and that the width of the libron band is of order 4~5°K. One
can now readily obtain equations for the Green's functions of the operators J* (k). As an example, we give
one of the equations:

2k

EN

Making the standard calculations [26], we obtain expressions for the spectral intensities of the cor-
relation functions, which we denote by

Iyt i ze-w(e) = L+(o, k a).

We have
8§ (w4 k
Ly (0, 1o @) = 0. ) (Vor (om0 M o)) Seral, (16)
—on(k)) o k)))
o (0, 1, 0) = 155 3 | Ve () P 9 (P 2L en ) )

These spectral intensities will be needed later to calculate the relaxation time.

We shall also obtain an equation for the so-called "ordering parameter” (O"). To this end, we use
the relations J~J% + 575~ = 2(|3)*~(J%)?) and (1a).

The following equation holds:

2 T ¢ 9
Z:'V—;‘ S IJ+J"((D, k, a)dﬁ)—_: ._5_(4_ <00>).

Using (17), we obtain

(0 =4 — 5O 5 Z ex (K) oth ) 18)
where Ny = 4N is the number of orthohydrogen molecules in the crystal. Our result corresponds to the
analogous equation of [3] but differs from the corresponding equation of Raich and Etters [4]. This differ-
ence is evidently due to the fact that Raich and Etters did not use the operators J& * 10 investigate the
libron subsystem but certain other operators whose correlation functions were calculated on the basis of
Wallace's statistical method (see [4]).

Setting w (k) =1 in Eq. (18), we obtain the well~-known results of molecular field theory [5]. The
results of [3, 4]and the present paper are evidently similar, since in all these investigations the expression
for (Oo) calculated at T = 0°K differs by only a few percent from the results obtained in the molecular
field approximation.

3. DERIVATION OF AN EXPRESSION FOR THE RECIPROCAL TIME
OF LONGITUDINAL NUCLEAR SPIN-LATTICE RELAXATION
Bearing in mind the relaxation mechanism discussed in Section 1, we write the Hamiltonian of an

orthohydrogen molecule in an external static magnetic field H, as follows [12]:

%2%3+V, V:%.m“f—%w- (19)
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Here, &, = —al?~bJ? is the Zeeman Hamiltonian; I = IV + 19 is the operator of the fotal nuclear spin of
the orthohydrogen molecule; #..,= ~c-I-Jd is the Hamiltonian of the I.J interaction;
m @ .
W+~ 5d {:a Lo Br l‘”-i‘”} (20)

r r

is the Hamiltonian of the intramolecular dipole —dipole interaction of the nuclear spins of the protons in
the molecule; and r is the distance between them. We use the notation

a=2uH,, b= "H,
¢ = 2wH' d= lgp.,‘(r‘3)
(the determination and numerical values of these quantities are discussed in [12]).
.The Hamiltonian (19) determines the profile of the nuclear magnetic resonance line in solid hydrogen

and leads to relaxation processes. It can be conveniently represented in the form

V:—d-J?Iz—(c———lzi—d)I-J—{—ZSd(I-J)Z. 21)
Using the nonequilibrium statistical operator method of Zubarev [28], one can show [27] that the probabili-
ties of transitions between states with different I¥ = m can be represented in the form of spectral intensi-
ties of the correlation functions of the lattice operators alone. We shall assume that the state of the spin

system is characterized by the spin temperature Bg. Then the time of longitudinal spin-lattice relaxation

is determined as follows:

Elﬁg N Bs
P S
(m — my )W om,
1 1
-]_17 = ‘?" m_: 1) (22)

where —1 =m and m; =1 and Wy, —m, are the transition probabilities expressed in terms of the spectral
intensities. Using the method of [27], we represent the expression (22) in the form

1 2n 9 _ 9 2
T TN Y [ 42 <07 (R (@) 0 (R (@)ert 5 d2<0™ (R (@) | 0 (R (@))10 + 5 T (R (a»iJ*(R(a)»a}- @3)
1 R (@) 8 2 2
Here, {...|... ), is the time Fourier transtorm of the corresponding correlation function taken at the point

w=a. Since a is very small compared with the libron energies, we shall henceforth assume that it vanishes.

The expression (23) is written down in a coordinate system related to the external magnetic field.
We note that it can be reduced to the expression used in [12]. In order to calculate the relaxation time
below the phase transition point, we write the relation (24) in the sublattice coordinate system

1 2= 9d2 . R 2o o™ 4
- Nlre Y [mo ®E) 00 ® @)
: R{®) m, n==—9g
o R O™ @) O RE@D]+ 5 Y T T RE@)TR @) @4)
m, n=-—1

Here, we have introduced the notation

n'm’ AnA-m . o
Rim (a) = A A Diu’((Pm 8a, 0) Do (Pas B0, 0),
neim’
m7 n = i27 i17 07
1 7 5\ 1 15\ 1 ;15\
Ao= "‘“5‘(4;1) v An =75 (Zn) » An=—5 (2:\'.) ’
n'm’ Ban - *
Tﬂf:" (G.) = BB, D}l"n ((P(h ea, 0) D}ﬂm' ((P(ly eﬂ.v 0):
nDm
m,n= 1,0,
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3\ L 3k
P () Pu=F ) 75

where 0, and ¢, are the axial and azimuthal angles of the guantization axis in the sublattice «.

4, CALCULATION OF THE TIME OF SPIN-LATTICE RELAXATION
BELOW THE PHASE TRANSITION POINT

The spectral intensities of the correlation functions occurring in Eq. (24) can only be calculated with
difficulty on the basis of the random phase approximation developed in Section 2. The difficulties that arise
are of the same nature as those in the calculation of a correlation function of the "density —density" type in
the Heisenberg model. We first write the expression (24) in the form

1. ZN [9d2 +2, =2 _.1..__R+1' -1 ]
.T_I_“TKQ,I 2 m;%q[‘len (a)+4 i (a)

2
X €0 ()] O™ (— 1) Yomy + Tt ™ 5 I U (= EDYomo) (25)

All the spectiral intensities with m, n = +1 have been omitted since they are not responsible for Raman
processes. In order to calculate the spectral intensities that occur in this expression, we adopt an approx-
imation of the following type. Consider, for example, {0, 2(k)[0,*%(-K)) ,

=¥ OSO (02 (k) 03 (— K, £)) dt

k -

1 t - - + +
= ~T§; qZ _Sofj“ (k— @) Jo () Ja" (— k— qu, 0" (qu, 1)) dt

i3 )
z‘jvz‘e‘z S dolyes- (— 0, k—q, @) [1+;- (0, g, 0}, (26)
.k, q—co

i.e., we shall ignore the fourfold correlators of the operators J* which cannot be expressed in terms of
binary correlators. As an example, we shall also calculate {0, ° &0, (-k)) w =0

%7;‘ S:,,<oa° (k) O’ (—k, t>>d‘z:»§?2{

k,q

o

dm[]*‘J‘ ("" @, k— 4, (l)

<o

X I.I*’J— ((1), q, 0.) + K dﬁ)[]+]—(—— @, k— q, a)I;*‘J*((’)v q, 0‘)} . {27)

All the correlation functions occurring in the expression (25) can be represented in the form of fourfold
correlators of the operators J* and estimated in accordance with their type by (26) and (27).

As an example, we give one expression for the convolution of spectral intensities:

o

4 . .
3§ L (-0, k=4, 0) L (0, 0, ) do = WZ; ;,'sm (e — @) | Varr (@)

k.q —co

[eFr @ 4 PorDy ok q)on (q)
(e?m)‘(kﬂ) . 1) (L,zw).’(q)~~ 1)}‘ 8 ((9)\ (k —_ q) — Wy (‘I)) (28)

We introduce the notation k—q =k; q = ky; z = —19T/2 (O0 Y. We make the substitution

¥ |

a*

where Q* is the volume of the first Brillouin zone and Q is the volume of the unit cell.
Equation (28) can then be rewritten in the form

2 Q2 v
— _19—I’<Oﬂ> Oy 55 &k d3k1§ {Vor (K) | Ve (ky) |7 Fan (k, ky), 29

where

(@O 4 P ey (k) en (ky)

Fl)v (k, kl) = (eB“l(k) — 1) (eﬁn)"(k‘) — i)

{ea (k) — ea- (ky)l. {30)
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Calculating the spectral intensities of the type (26) and (27) that occur in the relation (25) and writing the
corresponding convolutions in accordance with (29), we represeunt the expression (25) in the form

2

Y S &k d%k, Gy (i, k) Fare (K, ky). (31)
TN QF
The quantity Gyx'(k, k;) depends onthe elements of the matrices R and V (see the Appendix) and, hence, on
the lattice structure. In order to separate explicitly the temperature factor, we shall assume that the
dependence of Gy r(k, k) on k and k, can be neglected. Introducing the spectrum densities (see also [13])

(&) 2 % a5
A = 3 1
(2m) eaibme | Viex (k)|
we obtain finally
1 18rnd?
”f:=*fgp—l<0°>i; G Fan (B), (32)
where
€max
d Bze
Far®)=2 ——ﬁ;‘i—"’——“—zam(a>ghr (&),
min (

(€ max—€min) is the width of the band of libron waves and G is a factor connected with the lattice struc~
ture.

5. DISCUSSION

Thus, we have obtained expressions for the reciprocal time of longitudinal nuclear spin-lattice relax-
ation in solid.orthohydrogen in terms of the spectral intensities. These are very convenient for studying
relaxation problems. The calculated relation for the relaxation time (31) enables one to consider this pro-
cess in a wider range of temperatures than was possible in [13]. Estimates of the order of magnitude of
the relaxation time agree with Homma's result [13]. Our results are based on a number of simplifying
assumptions, such as, for example, (26) and (27), and they are therefore of a qualitative nature.

In a later paper, we intend to give the results of some numerical calculations and estimates.

- Finally, we should like to point out that our results obtained in Section 2 give a very convenient and
fairly simple method for treating the libron subsystem on the basis of the random phase approximation.

We should like to thank D. N. Zubarev and N. M. Plakida for assisting in the investigation. We are
grateful to B. V. Vasil'ev and V. B. Priezzhev for discussions.
Appendix
The exact expression for Gy,:(k, k) has the form
Gl k) = 3 2[RES@ + 4 RE D @] (VB0 VA ()
: 2, — 1 4, -
Vi ) Vi o)) + 9| B (00 - - R ‘(a)](v 3 (k) Ve (k)
+ [ﬂffé H0) + 2R () + IR (@) + 5 Rl (o)

+—§—Rt; Ao+ T S @] (Ve ()P Var (k) 1)

~6[H:§;;*() R;2+;2(a>+—1%“ @) 4 o R;‘+;‘(a>] 73 (k)| Var (ko) P 4 Vi (K| Ve <k1>1)]

We have used the readily verifiable properties of the matrices R.
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