EQUATIONS OF SUPERCONDUCTIVITY FOR TRANSITION METALS
IN THE WANNIER REPRESENTATION

G.M. Vujicic*, A.L. Kuzemskii,
and N.M. Plakida

In the Wannier representation, a system of equations of the superconductivity is obtained
for strongly bound electrons in a transition metal, which is described by the Hubbard
Hamiltonian. The electron—phonon interaction is written down using the rigid-ion model.
A closed system of equations is obtained when the renormalization of the vertex in the
mass operator is ignored.

1. Introduction

In recent years, there has been much interest in the investigation of the superconducting properties
of transition metals, their alloys, and compounds [1]. In contrast to simple metals, transition metals have
not only a broad s band but also a partly filled relatively narrow d band. It has been shown on a number
of occasions [2-5] that strongly bound d electrons are to a large degree responsible for the superconducting
properties of transition metals. Even in the case of strong correlation, the Coulomb interaction between
strongly bound electrons can lead to the formation of Cooper pairs in a Mott—Hubbard semiconductor [6].

The simplest model that describes the correlation of strongly bound electrons in transition metals
and their alloys is the Hubbard model [7], by means of which it is possible to explain numerous electric and
magnetic properties of transition metals, their alloys, and compounds [8,9]. It should be noted that the
Hubbard Hamiltonian is a strongly simplified variant of the Shubin—Vonsovskii—~Bogolyubov polar model of a
metal [10] and in this sense is a first step in the construction of a systematic microscopic theory of transition
metals and their compounds.

In the present paper, we derive a system of equations of the superconductivity for strongly bound
electrons of a transition metal interacting with the phonons. The equations of superconductivity are written
down in a basis of localized Wannier wave functions. Such a representation emphasizes the strongly bound
nature of the d electrons and, in addition, is necessary to describe the superconducting properties of dis-
ordered alloys of transition metals [1,11-14] and amorphous superconductors [14,15].

To derive the superconductivity equations, we use the equations of motion for the two-time Green’s
functions [16], in which the decoupling procedure is carried out only for approximate calculation of the
mass operator of the matrix electron Green’s function. A closed system of equations is obtained when the
renormalization of the vertex in the electron—ion interaction is ignored, as in [17,18]. The obtained system
of superconductivity equations for strongly bound electrons in the localized basis is analogous to ¥liashberg’s
equations [18] for Bloch electrons and makes it possible to study the superconducting properties of transition
metals and their alloys in the framework of a unified system of equations.

2. Hamiltonian of the Electron—-Ion Model

of a Narrow—ﬁand Metal

We represent the total Hamiltonian of the electron—ion system in the form of the sum

H=HAHAH., @

where H, is the electron part of the Hamiltonian representing the Hubbard operator [7]:
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The operators a,* and a, are the Fermi operators of creation and annihilation of electrons at site i; U is

the energy of the Coulomb repulsion of the electrons with opposite spins at one site, tﬁ=N—‘Z ex explik (Ri—R;) ]
k

is the hopping integral, and €, is the band energy.

The ion subsystem is described by the operator

H, = _1.2_}21.—!— izl @, P11, (3)
2 2M, 2 ’
where P, is the momentum operator, M, is the mass of an ion, and u, is the displacement of the atom
from the equilibrium position at the lattice site R, .
The operator of the electron—ion interaction has the form

He..= Z Z Vi (R ot tyotin®, (@)
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where
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It is convenient to rewrite the operators (2) and (4) by means of Nambu operators and Pauli
matrices:

H. = Z ity +%Z (Pt Tawps) (BitTas), {6)
i3 i
Hei= Zvﬁnlp,-mw,-uﬂ, M
n, i7#j
where
O T T L NS ED)

Note that in the model of a metal considered here the s electrons are not taken into account
explicitly. Instead of two bands of s and d electrons, as in the Hubbard model, we consider a single
neffective" band of electrons interacting with phonons. However, the influence of the s electrons is taken
into account indirectly. It is assumed that all three normal frequencies of the phonons w (qu) without
allowance for the d electrons correspond to acoustic frequencies, and the magnitude of the Coulomb repulsion
U is renormalized by the screening by the s electrons [3,19].

2., Equations for the Electron Green’s Functions

We consider the equations of motion for the electron Green's functions, which we represent in the

matrix form
((a”laj,*)).,, <<aiflﬂj¢>>m
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Differentiation of Gi]. (t —t') with respect to the first time gives for the Fourier components the equation of
motion

Z (@ Tebi—1i5Ts) <<1pjlll)i'+>>m=6;i’170 +Z Visa&tiaToWsl P T2+ UK (st eans) Tglpillbi’+>>m. (10)

As in [17], we separate the renormalization of the electron energy in the Hartree—Fock—Bogolyubov average
field approximation @with allowance for anomalous mean values) from the renormalization in higher orders
due to inelastic scattering. For this, we introduce irreducible (ir) parts of the Green’s functions in accor-
dance with the definition (as an example, we take two of the four Green’s functions)

Cayagtaglas Y o= C (@uns) Tlat Yot ngd sy lady D o—anag) (ailar ., \ 1)
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The choice of the irreducible parts of the Green’s functions in (11) and (12} is specified by the conditions

<[(di1nu) ir’ 'lpi+]'+>=0. (13)

The relation (13) makes it possible to introduce unambiguously the irreducible parts and make the inhomo-
geneous terms in the equations for them vanish. Using (11) and (12), we rewrite Eq. (10) in the form

Y (o tsre=2 Colped=8ww + Y Clourat) "1, (14)
j i
where ]
pi= Upiﬁa'l‘z Vimtin (184, 9i=wi+fs¢i=z at’a+aiu=Z Ric. (15)
Here, 2. is the mass operator in the average field approximation: |
2;‘:=U( o {Z‘;H _<“_“Zi“’> ) . (16)

In the representation of the Nambu operators

Qi~g + +
Pi, o= (CL % ) 5 Pi,—= (ai—a, a;‘a)
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the mass operator (16) can be written in the form

. ,
S Uty —otpi > T, + ot a7

To calculate the irreducible matrix Green’s function in (14), we write down for it the equation of
motion with respect to the second time t’ (see, for example, [17]). For the Fourier component of the
Green’s function, we obtain the equation

2 : U ‘
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The procedure for separating the irreducible part with respect to the operators on the right-hand of the
Green’s function in (17) can be done in the same way as in [14]. This gives

Z Clonitaty) 1y ™D (@ ToBory — s Te—Sio) = Z € oaTsii) 1 (Py 1) . 19)

To solve the system of equations (14), (19), we introduce the zeroth Green’s function

Z ((bToéfj-tija—Eiaa) G’ (@) =8y @0}
- ,
Using (20} in (14) and (18), we obtain
Gy (m)=G,-,J°(w)+Z G2 (0) T (0) Gyt (0). @1
b

The S matrix is determined by the irreducible part of the many-particle Green’s function in (19):
T (@)=Y € (ouste) ™| (9r*1sps) . 22)
If we introduce the mass operator M., which is the connected part of the S matrix,

T (@) =My (@) Y Min(0) Gs® (0) T (00, 23)

mn

then Eq. 21) can be represented in the form of the Dyson equation
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Giv (@) =Cur*(0)+ Y G (@) M (0) Grrv (@) 24)

The mass operator Mw={lw-}? does not contain parts that can be cut with respect to a G0 line, which is
indicated by the superscript p (proper part):

M’“"=Z ConiTatbs) ™l (s ¥ Tapyrar) "o 25)

Thus, the most general expression for the electron Green’s function in the localized basis with allowance for
the electron—phonon interaction in the form (4) can be written in the matrix form
G'=G,~'-M. (26)

The calculation of the total Green’s function G is reduced to the finding of Go and M

4. Approximate Calculation of the Mass Operator

The explicit expression for the mass operator in (26) has the form

mow=y, ] 2

To obtain a closed self-consistent system of equations for the mass operator (27), it is necessary to use an
approximation in order to express it in terms of the Green’s function (9), The mass operator 27) describes
inelastic scattering of electrons (the elastic part is contained in 2,® (16)) on fluctuations of the density of

the total electron—ion charge in the lattice. By analogy with [17] (see also [19,21]), we find an analytic
expression for the mass operator in the approximation of "two interacting modes." This approximation con-
sists of ignoring the renormalization of the vertex, i.e., the correlation in the propagation of the distinguished
electron (hole) and the propagation of charge density fluctuations, To this approximation there corresponds
the following representation in (27) of the higher correlation functions in terms of the lower:

$piriry (B) @yry T (8) 5300342 T X 30y (£) Pisy ? <@gy ¥ (2) @340 (28)
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We note that the one-time mean values are already taken into account in the mass operator Zi? (16).

Writing down further spectral representations for the correlation functions in (28), we represent
the mass operator (27) with allowance for the definition (15) in the form of the sum

Mo (0) =M (0) +Miv (o), 29)
where
do, do, b nboe
M“'_Z Z V’lJnV] i'n J‘j‘ o— ((|)1+(_|)2) B (th Cth 2 )X
[-—1I<<I'>> LY o Gy
? MNUp [ Wn” 7 0ptie ] (—?) Tz lm ij \pj' (u1+1'8T3' (30)

The mass operator (30) has a form characteristic of an interacting electron—phonon system [18,19,21]. The
contribution M2, has a more complicated structure:

d 1d 2 2
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where
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It can be seen from Eqgs. (30) and (31) that, in contrast to the electron—ion model of a simple metal
with allowance for the direct Coulomb interaction of the electrons [17], the effective electron—electron
interaction determined in (31) by the Green’s function of the charge density fluctuations, cannot be expressed
in simple approximations in terms of the total permittivity of the electron—ion system for the Hubbard model,
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This is a reflection of one of the shortcomings of the Hubbard model — the neglect of the exchange interaction
at different sites. The permittivity for the Hubbard model can be formally expressed for k, @ # 0 in terms
of the longitudinal dynamic conductivity [22]. However, for k, « — 0 the resulting expression for the
permittivity is not defined. In the polar model of a metal [10], the electron system is described in a more
consistent manner. Therefore, the derivation of the equations of superconductivity for the polar model of a
metal (with allowance for the electron—phonon interaction) is of particular interest,

The well-known difficulties associated with calculating the frequency dependence of the correlation
function <ni(f)ri> for the Hubbard model are associated with this circumstance. Essentially, these
difficulties are analogous to those that arise in the calculation of the correlation function <S7#(¢)S7> in an
isotropic Heisenberg ferromagnet [23,24]. When the Green’s function (S§.7{S;? is calculated, the Green’s
function (6S*S*|85°5~) {where 085°=8"—(S*>) arises, When .<857(#)857>¢S*|S~) is decoupled, the static
approximation [24,25] is usually employed for the correlation function <8S76S7>. An approximate method
for calculating the correlation function (nwne? in the static limit is discussed, for example, in [26], The
system of equations (26) and (29) obtained for strongly coupled electrons in a transition metal can be analyzed
further by the well-known methods (see, for example, [27,28]).

In conclusion, we note that for strongly bound electrons of a transition metal the operator of the
electron—phonon interaction can be expressed in terms of a small number of characteristic parameters of the
transition metal [3,19,21]:

ot(R-R) _ . R-R,
JR—R) TUTRR

Here, g, is the Slater coefficient that characterizes the exponential decrease of the d functions [3]. The
hopping integral tij for the z nearest neighbors can be expressed in terms of the band width W = 2tz. Thus,
the self-consistent system of superconductivity equations (26) and (29) obtained in the present paper in the
Wannier representation makes it possible to investigate real transition metals, their alloys, and compounds
from a unified point of view,
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INFLUENCE OF s—d HYBRIDIZATION ON THE ELECTRICAL
CONDUCTIVITY OF LIQUID TRANSITION METALS

V.T. Shvets

Retarded Green’'s functions are used to develop a theory of the electrical conductivity
of liquid transition metals with systematic allowance for the hybridization of the s
and d states of the conduction electrons. It is shown that the conductivity can be
represented as a sum of three terms, one of which is due to the scattering of s
electrons by ions, including resonance scattering by d states, the second is due to
tunneling of d electrons through d states, and the third is due to traasitions of
almost localized d electrons to deloealized s states and reverse transitions from s
to d states. Expressions for each of the contributions are obtained in the framework
of perturbation theory with respect to the pseudopotential of the electron—ion inter-
action, the hybridization potential, and the resonance integral.

1. Introduction

In recent years, there has been an appreciable increase in the interest shown toward study of trans-
port phenomena in disordered systems. Among the most important systems of this type are liquid transition
metals, which occupy an intermediate position between simple liquid metals, whose properties can be well
described in the approximation of almost free electrons, and amorphous semiconductors, for which the
tight-binding approximation is more adequate. In transition metals, there are not only almost free s
electrons but also almost bound d electrons. The approaches — based on a modified Ziman formula (1,2] -
used at the present time to interpret the experimental data on the static conductivity take into account the
contribution to the conductivity due solely to the s electrons. The role of the d stafes is reduced merely to
resonance scattering of the s electrons by them, In the case of [1], the modification consists of replacing
the pseudopotential of the electron—ion interaction by the single-particle t matrix; in the case of [2], it
consists of replacing it by the potential of the s—d hybridization. Such an approach does not enable one to
describe even qualitatively many properties of these metals, in particular, their electrical conductivity in
the optical frequency range and the Hall effect, Moreover, it has not yet been established to what extent the
approach is applicable even for the description of the static conductivity of liquid transition metals. It is
therefore necessary to take into account more systematically all the effects associated with the presence of
the d electrons.

In the present paper, the electrical conductivity of liquid transition metals will be obtained in the
framework of a mode! that takes into account explicitly the presence of the d electrons and the hybridization
of the s and d states.

2. Formulation of the Problem

Apart from the electron—electron interaction of the s electrons, which makes an appreciable con-
tribution to the resistivity of both simple and transition metals only at very low temperatures [3,4], it is
necessary to take into account in transition metals the electron—electron interaction of the d electrons and
the s and d electrons. If we proceed from a model of d electrons localized at atoms, the interaction of the
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