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A finite temperature self-consistent theory of the magnetic polaron in the s-f model of ferromagnetic semiconductors is 
developed. The calculations are based on the novel approach of the thermodynamic two-time Green's function methods. 
This approach consists of the introduction of the "irreducible" Green's functions (IGF) and derivation of the exact Dyson 
equation and exact self-energy operator. It is shown that IGF method gives a unified and natural approach for a calculation 
of the magnetic polaron states by taking explicitly into account the damping effects and finite lifetime. 

1. Introduction 

In the last decade a great deal of effort has been made to understand the physical properties of 
magnetic semiconductors. The properties of itinerant electrons and the relationship between the 
magnetic and electrical properties of these substances are at present of great interest [1, 2]. Discussions 
of the true spectrum of the magnetic semiconductors have recently been undertaken in connection with 
the magnetic polaron problem [3-7]. The formation of bound polaron-like states due to the effective 
attraction of the electron and magnon is a very interesting many-body problem. It is possible for the 
case of the antiferromagnetic coupling of the electron spin to the lattice (magnetic subsystem). 
Investigations of the magnetic polarons permit us to clarify the nature of the true carriers at low 
temperatures of the magnetic semiconductors. Under various regimes the bare carriers can be greatly 
renormalized and the relevant true carriers must be considered. This has been supported from the 
experimental point of view [8, 9]. 

The properties of the magnetic polaron states have been investigated at zero temperature in papers 
[3-5]. Recently a much more detailed theory of the magnetic polaron at T = 0 has been given by 
Shastry and Mattis [6]. In ref. 6 the Green's function for a single electron has been calculated including 
both spin-conserving and spin-flip processes. Crucial differences between bound- and scattering state 
contributions to the electron spectral weight have been highlighted. Unfortunately, the damping effects 
and finite lifetimes have not been taken into account. The only mechanism for the damping of the 
polaron bound states which has been considered is the decay of a magnetic polaron into an unbound 

* Permanent address: Faculty of Physics, University of Sofia, Sofia 1126, Bulgaria. 

0378-4363/86/$03.50 (~ Elsevier Science Publishers B.V. 
(North-Holland Physics Publishing Division) 



1 3 0  D.I. Marvakov et al. / A self-consistent theory of the magnetic polaron 

electron with spin-flip and magnon. By energy considerations this becomes possible when the magnetic 
polaron state merges only with the electron-magnon continuum. 

The states of the current carriers in ferromagnetic semiconductors have been investigated for an 
arbitrary value of s-f exchange parameter I in the spin-wave region by a variational procedure in ref. 7. 
These authors have criticized the present methods of calculation of the one-electron Green's function 
for the s-f model and claim that an adequate description requires cumbersome and untransparent 
decoupling procedures. 

The purpose of this paper is to discuss further the magnetic polaron problem and develop an unified 
and complete self-consistent finite-temperature theory by taking into account the damping effects and 
finite lifetime. For this aim we use the novel irreducible Green's function (IGF) method developed by 
Plakida for the self-consistent phonon theory [10] and the Heisenberg ferromagnet [11] and by 
Kuzemsky for the Hubbard model [12]. The IGF method completely describes the quasiparticle 
inelastic scattering processes in a many-body system and finds quasiparticle spectra with damping in a 
very general way. From a technical point of view the IGF method is a special kind of the projection- 
operator approach in the theory of two-time Green's functions [13]. By introducing "irreducible" parts 
of the GF (or the "irreducible" parts of the operators, from which the GF is constructed) the equation 
of motion for the GF can be exactly transformed in a Dyson equation with an exact representation of 
the self-energy operator which is represented by higher-order Green's functions. To calculate the 
self-energy operator in a self-consistent way, we have to express it approximately by lower-order 
Green's functions. The IGF method has recently been applied in a number of solid-state problems [14]. 
Marvakov et al. [15] have recently generalized this method to the calculation of elementary excitations 
with damping for the s-f model. In [15] the scattering regime has only been considered. The present 
paper is devoted to developing this approach further to take into account the polaron-like states. 

2. Hamiltonian of the s - f  model 

The total Hamiltonian of the s-f model is given by the following expression [1, 2]: 

H =  He + Hee+ H f +  Hs_f, (1) 

where H e is the operator of kinetic energy of itinerant band electrons 

t t tija~a~ ~" (2) He = .2~ = E k a  ko-ako- • 

#o- k 

Here e k = , N - ~ , i j t i j e x p [ - i k ( R i - R j ) ]  is the band energy. Although the itinerant electrons (2) are 
predominantly d-electrons, they are usually treated as s-electrons for mathematical simplicity. However, 
the retaining predominant d-character of the itinerant electrons may be very important for describing 
the magnetic semiconductors as shown by Allan and Edwards [16]. For tight-binding electrons the band 
energy is given by 

e k = ~_, t(R~ ) cos(k • R~). (3) 
a 

H~ describes the Coulomb interaction of itinerant d-like electrons 

U 
H~ = Z aI÷q,,~ak,,a;-q,-~ap,-,~" (4) 

2N kp~ 
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Here  U is the Hubbard-Coulomb correlation integral. In the case of a pure semiconductor at low 
temperatures the "conduct ion"  electron band is empty, and the Coulomb term (4) therefore is not so 
important.  Hf describes the localized moments  which are treated by the Heisenberg model 

H,= - 1 Z  4;s~ • s , :  -~ E 4 s ,  • s , .  
i] q 

(5) 

The two subsystems (band electrons and localized spins) are coupled by a local spin-spin exchange 
interaction 

H~f = - 2 1  ~_~ ( ~  " ~)o~,a~a~, 
imr'  

I + * a - * a + c ~  tar -a i$ak+q~ , ) } .  
- ~_~{S-qak~ k+qt+S-qak t  k+q~ ~'-q~ ktak+q~ (6) 

This term leads to the formation of the bound polaron-like states due to the effective attraction of the 
electron and magnon in the case of antiferromagnetic coupling (1 < 0). 

3. Dyson equation for bound state Green's function 

For the calculation of the electronic quasiparticle spectrum of the described model (1) one must 
consider the equation of motion for the one-electron GF 

G ~ ( t )  = <<a~,(t)a *~)> . (7) 

In ref. 15 a self-consistent calculation of the GF (7) has been performed,  where the bound states have 
not been taken into account. To do this, one needs the full generalized Green 's  function 

( (a j , , la~)) ( (a j , , [C~>> [ 
(3,,, = <<c~ , [ak ) )<<c~ , l ck ) )  " (8) 

To  explain the structure of this GF. let us consider first the equation of motion for the Fourier 
transform of the GF (7) 

/ -"a  
toO~.(to) = 1 + ekO~.(to ) - ~ E {((S_, k+,.-.. [ aL)> + z~.((S~-,ak+,... [ aL))}.  (9) 

V N  q 

where z~ = 1(-1)  if o" = ~' ( ~ ) or + ( - ) .  Following [10-15] we introduce by definition the irreducible 
operator  in the right-hand side of eq. (7) 

S z ~ir z z _, ,  = s _ ,  - < s °>~ , ,  o ( 1 0 )  

in which the mean-field contribution is removed.  Then the equation of motion (7) can be exactly 
transformed to the following form: 

( ,o  - ~ L ) < < a ~ .  I a~>) + I ~<<C~la~)> : 1. (11) 
v N  



132 D.L Marvakov et al. / A self-consistent theory of the magnetic polaron 

Here  

I(SZ°) (12) 

- ~ a  + z ir Ck~ = ~'~ {S_q ,+q._~ z~,(S_q) ak+q.~} = a ~  + f l~ .  
q 

(13) 

In the lattice representation the operator C~, reads 

z i r  Cu, = S~.~ ai._¢ + z~(Si)  a~,. (14) 

To study magnetic polaron problem, both the Green's  function ((a~, ] a**~)) and ((C~ I a**~)) entered into 
eq. (8) have to be evaluated in the same way. This is the crucial point of the whole problem. In terms of 
the variational procedure this means the proper choice of the relevant set of wave functions (cf. [7]). 

To calculate ((C,,,[ a~,)) and ((C~,[ C~,)), let us consider the equation of motion (due to the 
first-time differentiation) for ((S-~ak+q._ ~ [ a~)) .  In this paper, for the sake of simplicity, we consider 
only a low electron concentration limit and neglect the U term. A generalization to the finite electron 
concentration case can be done directly. Thus, we obtain 

(to - e°+q,_,,)((S-~a,+q,_~ I aL))  = - - -  
I 

V N  ((S-~Ck+q'-o- I a~,,)) 

1 
- z~ - ~  ~ Jp(((S--_(~+q)S~ - S-/'S!(,+q))a,+q._~, I a L ) ) .  

la 

(15) 

Then it is convenient to define the following set of the irreducible operators: 

0- - o -  i r  ~r - o "  o- - o -  ¢~ ( s _ ~ s _ , )  = s _ , s _ ,  - ( s , s _ , )  , ,_~ ,  (16a) 

( S - ~ r  S z - --or z i r  - -o"  Z - -o"  z z -(t,+q) , Sp S_(p+q)) = S_(,+q)Sp- Sv S_(p+q)- {(So)(8, ,o-  8,,-q) + (A_p - A_(~+q))}S_~, (16b) 

where 

((S_q) (Sq) ) (S-qS~) (16c) Aq = 2KZqZ + K~+ = 2 ~ i~ ~ i~ + 

2(S~) 2(S~) 

- ' C  Note that before introducing the irreducible operators (16) one has to extract from ((S_q ,+q_,, I a*~)) 
the terms proportional to the initial Green 's  function ((S-~ak+,_ ¢ I a*~)) using the spin commutation 
relation. It must be represented by introducing the spin-operators ordering rule in the calculations. 

After a simple algebra eq. (15) can be written in the following form: 

1 
(1 - IAk,,(o~))((a~, , I a~) )  + - - ~  qb(k )((a~ [ a~) )  

: { o I o + l 1 ,17  
- -  k + q , - c r  LO - -  ~ k + q ,  cr 
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where 

211t 10) ~ / [~z  ~ i r [ s  z~lir~- <s-4sp .,,, , , , = _ . , , . ,  , [  
~ - - - o  +- o j '  ¢ ( k )  = Y.  o~ + z ~ %  - ek+,,_= o~ - ek+, ,~ q 

1 
A~,(eo) = ~ E (w + z~e% - e ° ~-' k+q, -~]  ' 

q 

1 1 2K** + K~ + 
oJ, = - ~  (SZo)( J o -  Jq )  + - ~  Z ( Jp - - - n 2 ( S ; )  

(17a) 

(17b) 

(17c) 

Here % denotes the magnon energy in the generalized mean-field approximation [11]. The higher-order 
operators Ak, q and Bk, q have the form (cf. [15]) 

I 1 
._..2.__~ E -,7 z c - ~ ,  ~?z ~ir a A t ,  = ~ ¢ / N  Ck+q,_o,S--. ~ - z~  ~v/_ ~ p Jp(S_(q+p)Sp -- or, "-(q+l,)! k+q,-(r, 

I = _ _  [ ¢ z  ~ir C . 

(18a) 

(lSb) 

The irreducible operators (10), (16a) and (16b) have been introduced so that the operators Ak, q and Bk. q 
satisfy the conditions 

( [At , ,  a~]+) = ([Ak, ̀ , C~]+) -= O, 

([B,, ,, a~,,,]+) = ([Bk, q, Ck*,,]+) = O. 

S z ir We now consider the GF ( ( ( - 9 )  ak+q,~ I a~)).  Similarly to eq. (17) we have 

S z ir S z ir + 
+ I ( ( - q )  ( , )  ) + ((Bk., lak, ,))  

((&~ l a , : ) )  + ~ ~q - - - - g - - -  ( ( a ~ , l a ~ ) ) =  Z o 
O) -- Ek+q,cr q (5.) -- El+q, ~ 

(19) 

(20) 

Then from eqs. (17) and (20) we obtain 

I 
~h~,(oJ)((ak,, I aft))  + ((Ck,, [ a~,)) 

((Ak, q l a*k=)) 
_ o + , _ ~ )  

+ [1 + IAk,,(oa)]((Bk, q J aL)) l  
[1 - / a  ~,(o,)]( , , ,  - s°+,,  ~) J '  

(21)  

where 

-o- a" l - { -  ~/l z ir z ir (s_,s~) [ z ~.( . . )]((s_,)  ( s  t) ) /  / q.~.(o.) = S'  
qz~ [ [ 1 -  IA~(w)] (oJ + z :oJ , -  e,+,,_:) [ 1 -  IAk,,(oJ)](w - eO+q,=) J" 0 + (22) 

Analogously one can write the equation for GF ((Ck,, ] C~,,)). So, the equations of motion (9), (17), (19), 
(21) can be summarized in the matrix form (cf. [15]) 
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Here 

I/V l, 
&= (1/x/~)g,~.(~) 1 

II ° °]1 q~'= l/wk,, 1/12t, 
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( ~ =  }]((((A~: a~))((At ,  I C~)) ] 
a ~ ) ) ( ( B t ,  [ C~))  

(23) 

(24) 

(25) 

with the notation 

E 0 totq = [1 - IA~.(to)](to + z~% - k+g.-~). (26a) 

12 tq = [1 - Ia~( to)] iw - e°+q.,,)/[1 + Ia~,(oJ)]. (26b) 

Comparing eq. (24) with the results of paper  [15] one can see that 0t~(oJ) play the role of the 
generalized "susceptibility" of the spin-electron bound  states instead of a simple electron susceptibility 
xo(k, to) in the scattering-state regime 

x0(k. to) = N q] ~ n,+,~-n. ,  (27) 
t o + e q - - e k +  q - A  

To obtain a Dyson equation, we have to use the second-time t' differentiation for the matrix GF 01 
and then to introduce the "right" irreducible parts as discussed above for "left" operators. Thus, we 
obtain the exact equation 

G/m, ^o ^o ~ ^o = G ~  + (28) 

where the generalized mean-field Green 's  function ~ o ( t o )  reads 

~ o ( t o )  = ~ -1 ] .  (29) 

The  scattering operator  a6~(to) is given by the expression 

where 

((At.  ]Aiq))((Atp ] B~,q)) ] (31) 
P(P, q) = ((Bt" [A~,,))((Bt, I Bi,)) • 

From the Dyson equation 

(~..(to) = G~,,(to)+ (~(to)/~/~,( to)O..( to) ,  (32) 



D.I. Marvakov et al. / A self-consistent theory of the magnetic polaron 135 

we get the following equation for the self-energy operator A~/k¢(to): 

/~,(to) ----- ~/~ (~o) + .~/~,,(to)t~°(to)P~,,(to), (33) 

from which it follows that we can speak in a complete ana/ogy to the diagramatic technique t h a t  the h~/~ 
is defined as a proper (connected) part of the scattering ope ra to r /~ :  

= { p , . ( , o ) }  o . 0 4 )  

It should be emphasized that for the retarded (and advanced) GF's the proper part has only a symbolic 
character. But one can use the causal instead of retarded GF at any step of calculations due to the same 
form of the equation of motion for all three (retarded, advanced, and causal) GF's. In some sense there 
is such a possibility to control, in the diagramatic language, the relevant decoupling procedure in further 
approximative self-energy calculations. Mk,,(to) has the following exact representation 

0 I 

where//~,(o~) denotes 

[((Ak4, I A~,,))°+ ((At, v ]B i , ) )  ° ((B~t, I A;. ,))  = !!Bk, p I BI,))~/ (36) 
Ot,, , ,O,,q '" . l ~ t p . 0 t q  J'" 

Hence, the determination of the full GF G~,~ has been reduced to the determination of the mean-field GF 
^ 0  G k, and the self-energy operator hT/k~. 

4. Excitation spectrum of the magnetic polaron 

The mean-field matrix GF G~(oJ) has the explicit form 

1 
1 I 

I 

Here de t / )  reads 

det ~ = w - e ° - ( I 2 / N ) O k , , ( o J ) .  

Let us consider only GF((a~, [ a~)). It can be rewritten in the following form: 

((a~. ] a~))  = {[((a~. ] a~,.))°] -1-  ~'.(k, 0.9)} -1  , 

where (((a~, [ a*~))°) -1 = det ~ and the self-energy corrections are given by 

(37) 

(38) 

(39) 
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.L , (k ,  O)) : 
12 nk,,.(O)) 

N 1 -  4'~(O))H~(O)) " 
(40) 

ak,~) ) has a very nontrivial structure As it follows from eq. (38), the generalized mean-field GF ((ak~ I * 0 
which is quite different from the standard scattering-state regime form: 

((ak,, I a~) )  = {(((ak~ t a~))°) - ' -  AAtem~'-I  

where 

((a~ I a~,,)) ° = (O) - e ° )  -1 , 

1 2  ~ o" t c z ir z f ir c ~r~ _ -~ (Scak+q,,,~) )) } Mk,.(O)) - ~ ~" {((S_, ak+,,_ ~ I Syak+¢,-,)) + (((S-,ak+q,,.) I 

(41) 

(42) 

For the bound polaron-like electron-magnon states the mean-field renormalizations are quite different 
from the Har t ree-Fock renormalizations. In general, the quasiparticle energies are determined by the 
equation 

E ~  = e ° + (I2/N)~O~(E~) (43) 

and the energy spectrum E ~  consists of two bands for any electron spin projection. At the atomic limit 
(e k = 0) and O)q -~ 0 we obtain the exact analytical representation given in paper [7] 

+ S-z~& 
ak~)) I . t :  2 S + 1  2 S + 1  

((ak,~ [ , o S+z,~S~ 1 (O)+IS)_l_ ~ _ _ ( O ) _ I ( S + 1 ) ) _ 1 ,  (44) 

where S and S~ = (S~)/X/-N are the spin-value and magnetization, respectively. Moreover,  our general- 
ized mean-field solution is exactly reduced to the Shastry-Mattis [6] result for T = 0, 

ak,,)) IsM = {o) - o _  [ 1 -  A ~ ( o ) ) ] J  " 
((a~ I * o 8~ 212S Alto(O)) ~-1 (45) 

The magnetic polaron states are formed only for antiferromagnetic s-f  coupling ( I  < 0) when there is a 
lowering of the band electron energy due to the effective attraction of the electron and magnon. At 
T = 0 the excitation spectrum of the magnetic polaron problem has been investigated in a great detail 
[3-6]. In general, one needs numerical calculations of the excitation spectrum (43). For this aim the 

z ir  z ir 
explicit form of the correlations functions (S-~S~) and ((S_q) (Sq))  must be taken into account [17, 18]. 

Let us consider two limiting cases where analytical calculations are possible: 
i) a wide band semiconductor (llIS ~ w )  

Ek~ ~ ek + I 
S(S  + S~ + I)+ S~ (S -  Sz + I) -N1 ~q { _  iek_q--  ek + 2 I (S - -  Sz)] k_q- e k -  2IS~ J 2S ' (46a) 

ii) a narrow-band semiconductor ( I l ls  ~> W )  

2(S + l)(S + Sz) 1 ek_ q - ek 
E,~=I(S+I)+ +~,~ 2S+1 (2S + 1)(S + Sz + 1) ek 

(S+qS?-,) (46b) 
S + S ~ + I '  
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where we removed the longitudinal spin correlations for the sake of simplicity. Here W is the 
bandwidth in the limit I = 0. Now we consider the low-temperature (spin-wave) limit in eqs. (46) in 
which it may be reasonable to assume that S, ~ S and (S~S-q)~-2S(1 + %). Here vq = [exp(/3%)- 1] -~. 
Thus, we obtain (cf. [7, 19]) 

212S 1 1 ~ ek_ q - e~ ] 

E k ~ = e k + l S + - - - ~ ' - ~ e  k e k _ q + 2 1 S t - - ~  . . . . . . . .  ~vq, f o r l l l S ~ W ,  (47a) 
- e t _ ~  - e~ - 21SJ 

2S 1 .-. 2S /ek_ q - e k \  
E~ ~ = I ( S  + 1) + 2S +----1 ek + --N ~q 2S+1-- \/ . . . . .  2 S + 1  //%, for II I "> W. (47b) 

Using expressions (47) one can estimate the binding energy of the polaron-like state which can be 
defined as 

e B = e 0 ~ _ Ek a (48a) 

0 because in the H - F  approximation the spin-down band is given by the expression e k ~ = e~ + IS. We 
obtain 

eB = e ° ~ - - l  ~_, l-- I et--zq--S e-~ - lv  for l l l S  ~ W (49a) 
e k q - e i - 21S J ~' l~l q t 

and 

0 1 ~ 2S (ek_q--ek) 
= - uq, for I I I S ~  W ,  (49b) 

where 

o _ 212S 1 I l l s  
~B1 Y~ - I l l ,  

N q ek_ q - e  k - 2 I S  W 

0 - 1  + ek 
I l l .  EB2 ----- 

2 s  + 1 ~ 

(50) 

The temperature dependence of the energy spectrum in the spin-wave region is given by the usual T 5/2 
behaviour. In a general case one takes into account a more exact form of the correlation function 
(S~S-q), for example, the famous VLP result [17]. 

5. Damping of polaron states 

To find explicit useful expressions for the self-energy operator ~?~(k, to) (40), suitable approximations 
to evaluate the higher-order GF's  in (36) should be used. To calculate the self-energy in a self-consistent 
way, we have to approximate it by the lower-order GF's.  Let us consider GF's  appearing in (36). It is 
convenient to write down ((Ak. p I Ark, q))c in the form 
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+0¢ 

1 do)' ~,~, 
( (A, , IA: , , ) )~=~-~,  f ~_---~(e'  + l ) f d t e i ~ " ( A : . , A , , p ( t ) )  c. (51) 

Then we obtain 

(A~.qA, .v( t ) )  ~ IZ ~" * C t S -~" = ~ ( S , C , + , . _ ~  ,+v._¢( ) _p(t))+ (a~+q._~F*_q._~.F_v._~(t)a,+v._¢(t)). (52) 

We use the following decoupling procedure: 

* ~- , , v ( S , S _ , ( ) ) (  ,+, ._~C, . , ,_~( t ) ) ,  (SqC, . , ._~C, .v ,_~( t )S-_; ( t ) )  8 ~ -~ t C* 

(a~+,._~F*_q._~F_v._~(t)a,+,._~(t)) ~- 8 , . v (F  *,._~.F_,._~.(t))(a~+,._~ak+,._~(t)) . 
(53) 

Here 

1 ~ z i r s t r  i r  - o -  z t i r  - o -  z i r  i r  i~ ~ Sv ' (t)(S_(q+v,)(t)) ] ) .  (F*_,._.rF_q._~(t)) = -~  S f l , . ( [ (S_ , )  S,+v - (S_(,+v)) _v] [S_(,+,.)(t)(Sv.( )) - 

(54) 

The approximation (53) results from the neglect of the vertex corrections, i.e., the correlation between 
propagation of the polarons and the magnetic excitations and the electrons and the magnons, 
respectively. Taking into account the spectral theorem we obtain from (51)-(53) 

ff  / x } 12 dt°l dr°2(1 + v(t°l)) - ~ Im((S-~ I S~)),o, 
((A,,p I A~, q))C = N 8,,p 0) - oJ,-  0)2 - 

× { - l l m ( ( C t , + q , - ~ ] C : + q , - ~ , ) ) o , 1 } + t S p , q ~ ( J q , - J q - q , ) 2  
q' 

f f f  { 1 z irszir)  x dos, dto 2 dto3[1 + v(0)1)] [1 + v(to2) ] _ ~ Im(((S_q) ( , )  ))~ 
0. )  - -  O )  1 - -  6 0 2  - -  0 . )  3 

1 ~ ~ 1 a~+q,_~))~} 
S,_¢))~} { -  ~ Im((a,+,,_~ × { -  ff  Im((S-_(,_¢) I [ , 

~ f  1 ( ( (S - ' ) (  ')))'°~} , ¢= - - - - - -  Im z i r  S z ir ((B,, IB, , , ))  ~ , ,  do)ldt°2[l+ u(o)l)] { - ~  
, , 0 )  - -  0 . )1  - -  0 )  2 

(55) 

(56) 

and ((A,, v] * * Ak, q) ) are B,,q)), ((Btpl contributions removed. In eqs. (55) and (56) we drop the Fermi 
distribution function due to the low electron concentration approximation. Eqs. (32), (55) and (56) form 
a closed self-consistent system of equations. In principle, we may substitute into the right-hand side of 
(55) and (56) any relevant initial Green's functions and solve it by iterations. We choose for the first 
iteration step the following simple one-pole expressions: 
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- -  -'~ ¢"a* -,,))o. = (S-~S;)~(to + z~.top - ek+q+p.-~), 1 im((S_pai+q+p._,, ]Op t+~+p, 
77" 

1 
77" 

z ir  t s z ~ i r a ,  \ \  z i r  z i r  _ _  = ( s , )  ( s . ) ) ~ ( t o  ~ , + ~ + , . ~ ) .  Im(((S_p) a,+q+p.~ I, ,, k+q+p.~?/o, ( 

2(S~) 
_ 1 Im((S-_~ I S~))~ = - z ~  - - ~  6(o9 + Z~Wq), 

7T 

- lIm((ak+q _,, I a*k+q,-~))= 6(09- e~+o _~). 
"7/" 

(57) 

Then we obtain from (36), (55)-(57) 

I I ,~ ( to )  ~ - - -  
2(s;>I + s • s } . , - - , .  + ((s~-,)'__'(s;)'~ 

N 3 / 2  Z 2 q,p tok, q tO + Zc,(tO q -- t O , ) - -  ek+q_p, cr tO + Z~,to q -- ek+o_p,_ ~, 

I 2 1 + v(tO') 1 ( q )  ))~.} 
+N-q~p ~ d t o ' -  { - ~  'm(((s~-,)" I . /2:. ,  s z i '  

X x - p  p ~  + . x  - p ~  x p /  - , 

CO -- to1 ~- Z~toq -- Ek+q+p._ ~ (1) -- LD 1 -- ~k+q+p.~ 
(58) 

where we write down only the s-f  exchange inelastic scattering contributions for brevity. For a concrete 
calculation in a wide region of temperature we need a suitable approximation for the longitudinal spin 
susceptibility. For this aim one may use the results of paper [18]. Using the self-energy ~,~(k, to) we 
obtain the shift A~(k, oJ) and damping F~(k, to) of the electronic states taking into account magnetic 
polaron states 

A¢(k, to) = Re Z~(k, to); F~(k, w) = - I m  Z~(k, to). (59) 

For example, the s-f  exchange inelastic scattering contribution to the damping for the spin-wave region 
reads 

2 1 1 v(oJp)[1 + v(toq)] 
/ / ,  ~ (to) = (2SI) ~ ,~ to2 - (oJq - oJp) - 

k.q 0.2 Ek+q+p~ 
(60)  

As it follows from (60), the damping of magnetic polaron arises from combined processes of absorption 
and emission of magnons with different energy (toq - top). 

7. Conclusions 

In this paper we have shown that the IGF method gives a unified and self-consistent formalism for 
a complete description of the electronic spectrum including bound polaron-like states and inelastic 
scattering processes for magnetic semiconductors within the s-f  model Hamiltonian. Contrary to the 
claim made in ref. 7 our one-electron Green's  function correctly reproduces the true spectrum of the 
current carriers in a very natural way because the IGF  method permits us to extract all relevant (for the 
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prob lem under  considerat ion)  mean-field renormal iza t ions  and put  them into the " ze ro -o rde r "  
(general ized mean-field)  GF.  In a general  case the mean-field renormal iza t ions  can have a very 
nontrivial  s t ructure as in cases of the H u b b a r d  mode l  in the strong correla t ion limit [12] and the 
magnet ic  po la ron  p rob lem at finite t empera tu res  and an arbi t rary value of  s - f  exchange.  To  obtain this 
nontrivial  s t ructure  of  the mean-field renormal iza t ions  correctly,  one  must  construct  the full matrix G F  
built on the comple te  algebra of  re levant  opera tors  and develop  a special pro jec t ion  procedure  for  
h igher -order  G F ' s  in accordance  with the finding algebra. Moreover ,  for the first t ime in our  theory  we 
are able to calculate explicitly the full self-energy ope ra to r  Z(k, to) for  magnet ic  po la ron  problem.  

No te  that  a similar but distinct task is the p rob lem of the b o u n d  magnet ic  po la ron  in semiconduc tor  
[20, 21]. The  B M P  consists of an impuri ty  e lectron localized in a shallow d o n o r  state accompanied  by an 
i n h o m o g e n o u s  local magnet iza t ion  and it can also be considered by the present  method ,  but it is the 
object  of  a subsequent  paper .  
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