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Scattering of slow neutrons and magnetic properties of

transition metals and alloys
A. L. Kuzemskil '

Joint Institute for Nuclear Research, Dubna
Fiz. Elem. Chastits At. Yadra 12, 366423 (March-Apnil 1981)

It is shown that many phenomena studied by scattering of slow neutrons in ferromagnetic transition metals
and their alloys can be described in a unified manner on the basis of the Hubbard model and its
generalizations. Consideration is given to some new possibilities of neutron spectroscopy opened up by the
commissioning of powerful pulsed sources such as the IBR-2 pulsed reactor.

PACS numbers: 28.20.Cz, 75.50.Bb, 29.25.Dz, 75.25. + 2

INTRODUCTION

Fifty years ago, the authors of the then most com-
plete monograph on magnetism characterized the situa-
tion in the physics of magnetic phenomena as follows:
“BEven recently questions relating to magnetism ap-
peared to be exceptionally unfavorable for theoretical
investigations. This was due to the circumstance that
the investigators had concentrated mainly on ferro-
magnetic phenomena, since these played and still play
a very important part in technology. But the theoreti-
cal treatment of ferromagnetism presents such great
difficulties that this field is at present one of the most
obscure in the whole of physics.” !

During the fifty years which have elapsed, the phy-
sics of magnetic phenomena has been transformed into
a very extensive branch of modern physical science ;2
To a large degree, the progress in the study of the
structural and dynamical properties of magnetic sub-
stances is due to the achievements of magnetic neutron-
diffraction studies.®” The unique possibilities of the
method of thermal neutron scattering make it possible
to obtain information about the magnetic and crystal
structure, the distribution of magnetic moments, the
gpectrum of magnetic excitations, critical fluctuations,
and so forth. To interpret the data, it is necessary to
take into account the electron—electron and electron—
nucleus interactions in the system and the Pauli prin-
ciple. Thus, magnetism can be described properly
only in the framework of a quantum statistical theory
of the condensed state.

Because of the presence of an incomplete inner nd or
nf shell, all free atoms of the transition elements are
strongly magnetic by virtue of Hund’s rules. When a
crystal is formed, the atomic shells are rearranged
and for a clear understanding of the properties of the
crystal it is necessary to know the wave functions and
energies of the former valence electrons. The calcu-
Jations of the energy levels of electrons in a crystal
is very complicated®'®; speaking qualitatively, one
needs to know how much the atomic wave functions of
the valence electrons are changed—how much they are
delocalized—when the crystal is formed.

In the theory of magnetism, the method of model
Hamiltonians has proved to be very effective, Without
exaggeration, one can say that the great successes
in the physics of magnetic phenomena are to a con-
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siderable extent due to the use of some very simple
and schematic model representations for the “theoreti-
cal interpretation of ferromagnetism.” At the present
time, there are essentially three of these models used
in the quantum theory of magnetism.

Historically, the first was Heisenberg's model of lo-
calized spins {and its limiting case, the Ising model’);
then followed the model of a ferromagnetic Fermi li-
quid® and the Hubbard model.’

The Heinsenberg model’ **® is based on the assump-
tion that the wave functions of magnetically active eiec-
trons in a crystal differ little from the atomic orbitals.
It is agsumed that this model applies basically to sub-
stances in which the ground-state energy is separated
by a gap of finite width {rom the energy of excited cur-
rent states, i.e., it applies to semiconductors and
insulators. The model also applies well to a number
of magnetic rare-earth elements, since the incompleie
f shells have small effective radii (for many rare-earth
f metals, indirect exchange through conduction elec-
trons plays an important part in establishing the mag-
netic order).

The model of collectivized electrons,''*° or the model
of a ferromagnetic Fermi liquid, applies to metals in
which the system of former valence electrons forms a
mobile Fermi liquid over the entire volume of the crys-
tal. (Sometimes, for d metals, in which the incom-
plete d shells do not have such small effective radii as
the f shells, so that there is an appreciable overlapping
of the nearest neighbors, one speaks of a mixture of the
two Fermi liquids of the f and d electrons.)

The narrow-band model, or Hubbard modeL®"" is in
a2 certain sense an intermediate model and was original-
ly proposed for the description of 3d metals. At the
present time, the Hubbard model and its generaliza-
tions are used to describe the magnetic properties of
pure 34 metals and their alloys, chalcogenides of tran-
sition and rare-earth metals, actinides, and others.

Thus, all three models give different answers to the
question of the extent to which the wave functions of the
former valence electrons are changed in the crystal.
These models (or combinations of them) make it pos-
sible to describe many phenomena and obtain qualita-
tively, and frequently quantitatively, correct results.
Sometimes (not always) very complicated and laborious
calculations of the electron band structure yield virtu-
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ally nothing new compared with the results obtained on
the basis of these schematic and rough models.

However, despite the successes achieved in under-
standing the physics of magnetic phenomena, the diffi-
culties of exact calculation of the electron band struc-
ture and the performing of all the necessary experi-
ments means that, except for the rare-earth elements,
we still cannot say with complete confidence which of
the microscopic models (or combinations of them)
gives the most adequate approximation to the real situ-
ation in a particular substance. It is for this reason
that the determination of the true mechanism behind the
occurrence of a magnetically ordered state is currently
regarded as problem number one in the theory of mag-

~netism.

A precise understanding of the physical processes
leading to the occurrence of ferromagnetism is particu-
larly important when we turn to the theoretical descrip-
tion of alloys of ferromagnetic transition metals. Al-
loys of magnetic metals are widely used in technology,
so that their theoretical study has great practical im-
portance.

In the present review, we show that the investigation
of the spectrum of magnetic excitations of pure transi-
tion metals and their alloys is of great interest for re-
fining our theoretical model representations of the
nature of the magnetic state in these substances. The
most direct and convenient method of experimental
study of the spectrum of magnetic excitations is the
method of inelastic scattering of thermal neutrons. In
this connection, we discuss some new possibilities of
the method of neutron spectroscopy opened up by the
commissioning of powerful pulsed neutron sources such
as the IBR-2 pulsed reactor. In particular, we con-
sider the possibility of direct measurement of Stoner
excitations in ferromagnetic transition metals. The
direct measurement of Stoner excitations in a wide
range of momentum and energy transfers is of great
importance for determining the degree of localization
or delocalization of the magnetically active electrons
in ferromagnetic transition metals. We show that the
Hubbard model makes it possible to describe from a
unified point of view a very large number of phenomena
relating to the magnetic behavior of pure ferromagnetic
transition metals and their alloys.

1. HUBBARD MODEL

In recent years, the Hubbard model®'*'** has come to
be used rather widely in the description of the magnetic
and electric properties of transition metals and their
alloys. In the present paper, we shall show that the
excitation spectrum of the Hubbard model and some of
its simple modifications is of considerable interest
from the point of view of application of the method of
neutron scattering. We shall first discuss pure 3d
metals, and, more concretely, nickel, iron, and co-
balt. It is assumed” that the original energy spectrum
of the system is a broad sp pand, in which a system of
five narrow intersecting d bands (Fig. 1) is embedded.
In the Hubbard model, an attempt is made to take into
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FIG. 1. Band structure of
a ferromagnetic transition
metal.

aeccount the entire complex of unusual properties of 3d
metals. In particular, it is known experimentally that
the spin-wave scattering of slow neutrons’  in these
substances can be described on the basis of the Heisen-
berg model. It has also been found that the distribu-
tions of the charge density in ferromagnetic metals are
close to the atomic distributions.™® On the other hand,
the mean atomic magnetic moments differ appreciably
from the atomic values and are fractional. That the d
electrons make an appreciable contribution to the low-
temperature specific heat ¢, =7"/3g(g)T=7T is indi-
cated by the fact that the coefficient ¥ in transition
metals is greater than in normal metals. Strong col-
lectivization of the d electrons is also indicated by es-
timates of the binding energy and investigation of the
Fermi surfaces.

In the Hubbard model, ®*!*** these aspects of the be-
havior of the system can be described by assuming that
the d electrons form a band but are subject to strong
Coulomb repulsion at one lattice site. |

We congider the system of d electrons, whose Ham-
iltonian has the usual form*

H=%‘,[§; o) 4123 =k (1)
1+

We go over to the second-quantization representation,
introducing field operators ¥,(r) and ¥¢(r). In this
representation, the Hamiltonian (1) takes the form

H=73 | orts ma¥sm
+12 3 5 5 Brdir Wh () Wi (1) Vo (') Yo (r) (2)

The eigenfunctions of the unperturbed Hamiltonian &
form a complete orthonormal system of functions, call-
ed Bloch functions, {®@s.(r}}. The index n character-
jzes a particular given band. Expanding the field oper-
ators in terms of the operators @,, and ds,, for the
Bloch states ®¥apgs

L (r) = %}l @hno (T) Ghna, (3)
we rewrite the Hamiltonian (2) in the form

H=12 e, (k) ain:8snu
Ang

-t 172 H:E 2 E an. gf (kr krm ‘1) ﬂtnuﬂ:'+q":-‘rﬂ’ﬂh+l‘.tmﬂ”h'."ﬂ- (4)
kg mn o’
i ni
Here
Vim, ot (k, k', q) = {Pxrno (F) Graqra’ () (r— ') Caegmor Pa'fols (5)

The eigenfunctions @r.(T) Of the unperturbed Hamilton-
ian can be expanded in a Fourier series:

Pano (1) = N7 %) $acir—Ri)exp (ikR.). (6)
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The functions ¢,,, which are known as Wannjer func-
tions, are localized in space and behave like atomic
wave functions; they form a complete orthonormal sys-
tem of functions obtained from @,,{r) by means of a
unitary transformation whose coefficients are exp(ik
‘R,). We denote the number of atoms in the crystal

by N. Ik is rather difficult to analyze the precise na-
ture of the localization of the Wannier functions®; it is,
however, clear that at large distances the Wannier
functions are small. In actual calculations it is assum-
ed that the Bloch functions corresponding to wave vec-
tor k in band »n can be calculated by one of the known
methods, for example, the Xa method.’

We now express the Hamiltonian (2) in the second-
quantization representation in the Wannier basis:

1 mm’® &
H= ) }_; lij Qimoljm'a
17

i; mm'g

+12 3 3 3 {imojjine’ |-

! g + + -
km'o, Ina >ﬂfmuﬂjnﬂ‘ﬂin*n'ﬂhm‘m

ijnt mn g0’ (7)
i 5 Brét (r—R) b (r) ¢m (t—R)); (8)
Gme, i, )
er e —R) el (r'— Ry ¢, (T—Rp) @ (r' — R,) d*rd3r’
— 52 g Ir__r"l . (g)

The matrix element ;" describes hops of an electron
from atom to atom for different orbital states; the
higher the transition frequency, the more strongly col-
lectivized are the electrons, i.e., the width of the
bands is smaller, the more strongly the electrons are
bound.

For simplicity, we restrict ourselves in this section
to one band. It is also convenient to represent the
Hamiltonian (7) in the form

H= Z, iuﬂ?uﬂ-;n'l"Ufz 2 Riafti—g

ija {0

+1/2 Z'Z<ﬁjH—_

iy oo’

[ ]
R ] 1-
i) mionior— 172 31 ) J yalotioafags

ij aaf

+ E' N <u|-§—| jj> aietio iar iy (10)

ij woar
Here, we have introduced the notation
U=e2 (1§ =R r— 1 |$ (' —R)|*dra¥r’s

Jy=e { % (= R) ¢ (—Rp)Ir— 1| $*(r' — Ry) ¢ (¢' — Ry dorar’,

where J;, is the direct exchange integral, and U is the
integral of the intra-atomic Coulomb correlation of the
electrons with opposite spins. From the point of view
of magnetism, the third term in (10) is of no interest,
gince it is proportional to A, ;n;n,. The last term in
(10) describes transitions of antiparallel spin pairs; we
shall not consider these effects here. Estimates show®
that for many transition metals and their compounds
the largest integral in (10) is U. On the basis of this,
Hubbard’ proposed the model

+ ) ™
H = 2 l;10iafljo -+ N Z Riohi—g. (1 1)

ife ia

The repulsion of the electrons at one center represent-
ed by U does not decrease when the atoms are diluted.

Thus, the Hubbard model contains the possibility of
transition from a simple band scheme to a Heitler-
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London-type description. One can therefore expect
that the most interesting effects—the transition from
an ordinary metal for 1#; j| >/ (described by a band
scheme) to a dielectric with strong correlation of Heit-
ler- London type for lt” ‘ «[J, and also the various
magmetic properties —must already be contained in the
Hamiltonian (11). The possibility of construction in-
terpolation solutions—which interpolate from the atomic
to the band limit and describe the collapse of the gap
in the spectrum of single-particle states—was proved
in Refs. 14-17,

In the case of a single electron per atom (n=1) and
a strong interaction (7> lz‘{ p \) one can show'' in see-
ond-order perturbation theory that the effective Hamil-
tonian H,,, = H{UN Eq - H(t,,)]'H(U) reduces to the anti-
ferromagnetic Heisenberg Hamiltonlan:

.1 ¢
Hew= = St 14U {00, — 1}
i

Thus, the ground state of the system for strong corre-
lation and half-filled band is most probably antiferro-
magnetic.

The Hubbard Hamiltonian is rotationally invariant.
This means that under the action of the operator of spin
rotation R =expi- Li@ Yy, o,KH{R'"R=RR"=1), where ¢
is the angle of rotation around the unit vector k, the
relation H' = RHR® holds. Here, o, ={ahay +anap),

Ty =—ilaja;, — apnap), and o;,= (ns = ;). One can also
show that the Hubbard Hamiltonian is invariant under
the time reversal T {T°T=TT" =1): H'=THT', Time
reversal for a crystal leads to fulfillment of the impor-
tant equation £(kK) = £ (- k} irrespective of the spatial
symmetry of the system. The rotational invariance of
the Hamiltonian also leads to important physical con-
sequences of a general nature, which we now discuss.

2. GENERALIZED SUSCEPTIBILITY AND
SPIN WAVES

In accordance with linear-response thEﬂI‘}T,m one can
introduce a generalized spin susceptibility X(q, w). If
the external magnetic field is sufficiently weak, the
magnetization due to it is determined by

M, )= S Brde X (r—r', t—tYH (', 1), (12)

After Fourier transformation, we obtain M{g, w)
=X(q, w) XH(q, w). Here, X(q, w) describes the re-
sponse of the system to the external magnetic field
H(r, t) = H{(q, w) expli(qr — wf)]. If the field is real, the
magnetization is

M(r, /= H(q, o)Re{X (q, w)exp[i (qF — wt)]}- (13)

The frequency dependence of the susceptibility is de-
termined by the retarded commutator

] 1
X (r—r, 0) =+ 5 dt exp (iot) QM (r, ), M (xr, O)]). (14)

For free electrons, the static spin susceptibility
(Pauli susceptibility) is

XP = QH%D {E’f}!

where (5 =eli/(2mc) is the Bohr magneton, and D(&;)
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is the density of states at the Fermi level.

The generalized spin susceptibility for a system of
interacting electrons is determined by the expression

t
X (r, r', 0) = (g1a)? 5 5 dtexp (iof) ((S%{r, ), S* (', Q). {15)
For the Hubbard Hamiltonian {(11) in the Hartree-Fock
approximation n;my, (n;)n, +npin,) we obtain for the
energies of the electrons in the magnetic field

Epyw=8,+U({n— (gnp/2) H;
E, =¢&,+U(ny) +(gpsl2) H.

The calculation of the static susceptibility (15) for T
=0 in this case is elemeniary:

X — (2?ui2) D (&)1 —UD ()} (16)

This result was first obtained by Stoner. The quanti-
ty S=L1- UD(E,}]‘I has become known as the Sioner en-
rancement. The criterion for the occurrence of Stoner
magnetism has the form UD{g;} > 1 and is related to the
occurrence of a singularity of the susceptibility. The
occurrence of a singularity of the susceptibility (15} as
g, w—~0 was analyzed in a most general case by Ed-
wards and Fisher:'® Since the total spin for the Hub-
bard model is an integral of the motion (L2, S}, H] =0},
the operators S§* =S* +{§” change the total 2 component
by £1. At the same time, the operator 2;,5; also
commutes with the Hamiltonian. Edwards and Fisher
showed that due to the rotational invariance of the Hub-
pard model the generalized transverse spin suscepti-
bility X" (q, w) has a spin-wave pole of the form

kQq = D> +4- 0 (¢*)
Dy? = E_(fﬁ{ﬁguf;, 8% ]y —Atg? lim lim X} (17)

w0 g1

Here

i

Xy =+ | dtoxplien (/3 (t), J1q; } |
1 . . (13)

—

heS5=1[8"(q), H].

In the limit w—0, g/w—0, the expression {17) is an
exact formula and is valid for any metallic or nonmet-
allic ferromagnet or nonferromagnet in a static mag-
netic field. In the general case, D is determined by
the band structure of the crystal. For a simple cubic
lattice, the random-phase approximation gives the fol-
lowing result* for the Hubbard model:

| D———'—EL;— Z {viﬂk} (nH —+ H‘.hﬂ + *-B—E'Thf_i 2 {thh}z [.”H‘_nhl)' (19)
A R

Here, & =244ty expl- ik(R; - Rj)} is the band energy,

and A= U/N{ip (,, — n,:)] is the band splitting. The

generalized susceptibility X (g, w) satisfies the impor-
tant sum ruie

5 Im X* (g, w) dmz-—::-— (n) —ns)= —-i—n{S’}. (20)

The exact formula of Edwards and Fisher' for the
susceptibility

K= - 280 L 8 Ix, G ST (—a) (21)

Y

shows that for ¢ =0 we have only the first term in (21),
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which corresponds to a pole of spin-wave type. Thus,

the sum rule (20) is satisfied. Clearly, for small g the
contribution of the spin-wave pele must predominate.
This circumstance is very important for analyzing the
scattering of slow neutrons. Thus, the presence of the
spin-wave pole in the spectrum of magnetic excitations
of the system is a consequence of the rotational invari-
ance of the Hamiltonian.

In their early paper of Ref. 20, Herring and Kittel
showed that in simple approximations the spin waves
can be described equally well in the framework of the
model of localized spins or the model of collectivized
electrons.’! Therefore, the study of, for example, the
temperature dependence of the mean moment in Ni and
Fe in the framework of low-temperature spin-wave
theory does not, as a rule, give any indications 1n
favor of a particular model. Various methods have
been proposed (see, for example, Ref. 22) to test the

band theory of magnetism. An interesting result was

obtained by Foner ef al .t by means of the Mossbauer
effect. On the basis of a prediction of Wohlfarth,*
they investigated the behavior of Fe and Ni in very
strong magnetic fields (higher than technical saturation)
at T=4.2°K. In this region, the contribution of the
spin waves is almost completely suppressed. They
found that Xy = 9M/9H > 0, whereas for the model of
localized spins under the same conditions one must
have Xg =0. This is an important argument in favor
of the band model of magnetism, However, to inter-
pret the experiment in Ref. 21 the simplest Stoner
model (16) was used, so that the conclusions are only
qualitative in nature.

From our point of 1i.riew,2'lr 2% the clearest difference
between the models is manifested in the spectrum of
magnetic excitations. The collectivized model has a
more complicated spectrum than the model of localized
spins. This spectrum has great interest from the point
of view of application of the method of scattering of -
slow neutrons, which is unique for the direct study of
the magnetic dynamics of magnetically ordered sub-
stances.

3. THEORY OF NEUTRON SCATTERING IN
TRANSITION METALS

Among the experimental methods used in solid-state
physics, neutron methods occupy a gquite unique posi-
tion. Scattering of slow neuirons makes it possible to
determine the crystal structure, the position of the
atomic magnetic moments, the distribution of unpaired
electrons, the frequency spectra, and the dispersion
curves of the various elementary excitations. In this
section, we consider the scattering of slow neutrons
by magnetic excitations of a transition metal.,

It is well known®"* that the cross section of inelastic
neutron scattering can be expressed in terms of the
imaginary part of the generalized spin susceptibility
X*#(q, w). The transverse spin susceptibility is de-

fined by

X (g, o) = (ghs)’ 5 <8+ (q, S~ (—q)>expliwtydt,  (22)
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where

A (l), B = —- 8@ (14(), BD

is the two-time retarded thermal Green’s function.™®
The spin operators in (22) can be expressed by means
of the second-quantization operators in the ¢ represen-
tation:

S+ =F (@) DSH@=F (@) D a1

S~ (@) =P (a) 3 57 (g} = F (@) 3 ahianse. 1

F(q)= | drexpian)is (o1

Then the cross section for inelastic scattering of neu-
trons by the transverse spin components can be written
in the form

dl¢ _ { ve* \* k& i ~ N
=) & P @i (1 @ s

1
% —exp (= 7fo] {ImX* (q, o) —ImX*~{—q, —wj}. (23)

Since the structure of the generalized spin suscepti-
bility and the form of its poles are determined by the
choice of the model Hamiltonian of the system and the
approximations made in its calculation, the resulis of
neutron experiments can be used to gauge the adequacy
of the microscopic models. However, to judge reliably
the applicability of a particular model, it is necessary
to measgure the susceptibility at all points of the Four-
jer space and for all temperatures, which is not always
permitted by the existing experimental techniques.

The calculation of the spin susceptibility X" (q, w) for
the Hubbard model (11) in the random-phase approxi-
mation*'?® leads to the result

. . X3 (g, w)
X+ (U @)= T5rieng)? 53 @, @ (24)

where

= o - nkl;_nk-l- 4 )
X; (4, )= (gwal N 3 Frq, - BRI (25)
' it

i = ey = {exp [B (E (ko) —e) + 1)1 E (k) = ex + 7 2t Apo-

Equation (24) is the dynamical generalization of Ston-
er’s result (16) for T#0.

The poles of the total susceptibility (24) are given by
the equation

i Rl = Pxaq, ¢
— —Re 2w . (26)
K

From Eq. (26) in the limit ¢, w —0, lq|/w—~0 there fol-
lows an expression for the spin-wave pole 7, =Dg" of
the form (18). Among the poles of the susceptibility
(24) there are poles of the Hartree-Fock susceptibility
(25):

Im X:‘ (q, w)=m(g1p)? N %(nkﬂ]. p — g )0 (hoy— €kpqg T+ Ex— A),

27
The excitations determined by the dispersion law 27)

hqua“q—-fk-{—ﬂ, ’ (28)

are usually called Sfoner excitations. In contrast to
the spin-wave excitations, the spin flip is determined
here by the single-particle motion rather than the col-
lective motion of the system (Fig. 2). The excitation
spectrum determined by Eq. (26) is shown schematical-
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FIG. 2. Excitations in the coliectivized model. The excitations

of types 1 and 2 arise without and with spin flip.

ly in Fig. 3.

Far from the point of intersection of the Stoner and
gpin-wave spectrum, we can approximately separate
the contributions to the scattering cross section from
these two types of excitation. For this, we represent
ImX* (q, w) in the form

Lo X*= (¢, ») = I X5~ {1 — Ugng)? Be X 7J?
+ [UHgna)? X1 (29)

Since ImX}(q, w) =0 when (g, w) does not belong to the.
region in which the Stoner excitations are defined, it
follows from (29) that

Hfﬂ,; I X+ {q, )= —ad{i —U/{gun)?*Re X! (g, o)} (30)

Since
1-—Uf{gng)tRe X;7 (q. o) = (FQ (Q) + hiw) “;T-

we obtain from (30)

Im X+~ (q, o) = — = (gua)? g 8 (ko + A2 (Q), (31)

 where +Q =q-T; T is a wave vector of the reciprocal

lattice. Using (29)-(31), we obtain from (23) the cross
section for spin-wave scattering of slow neutrons:

(S22, =t QP ( 1e \*1F (@12 - (1 (@m)} 59

x 3\ S in (@(Q) 8 (he + 22 (@) 6(Q +a—)
) T

L[ (@{Q) + 118 (Ao —AQ Q) 8 (g—Q—1}}, (32)

(sy=28, n(@=lexp BAD— 1"

The scattering cross section (32) is identical to the
cross section for scattering by spin waves in the Hei-
senberg model calculated in the random-phase approxi-
mation (see, for example, Ref. 4).

However, for the Hubbard model (11), as follows
from Eqs. (27) and (29) in the energy range in which
an electron can overcome the energy barrier associa-

FIG. 3. Spectrum of spin-wave and Stoner excitations in the
single-band Hubbard model.
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ted with spin flip in the effective field, one must ob-
serve scattering of the neutrons by the Stoner modes”:

(o), = () T 1P @1 (1 )

3
W

X Y Z'Jnm{'lu-nhﬂﬂ:}ﬁ(E{k—{—qﬂ'}—E{kU—hm}}.

cxal k

(33)

Thus, the inelastic neutron scattering occurs in this
case on account of excitation of the transitions |kur)
— |k +gc"). The ferromagnetic transition metals have
well-defined peaks of inelastic scattering by spinwaves.
For many metals the dispersion law Dq* has been mea-
sured with high accuracy. Figure 4 shows the results
of neutron measurements for Ni, The cross section
for scattering (33) by Stoner excitations has a very dif-
ferent nature from the cross section for scattering by
spin waves. In accordance with (33), the Stoner scat-
tering must lead to broad diffuse peaks of low intensity.
Since such excitations do not arise in the Heisenberg
model, their direct detection by means of inelastic
neutron scattering would be a very important argument
in favor of the Hubbard model. This is all the more
important in that there are many indirect data support-
ing their existence. We shall discuss these data in the

following sections.

4. MAGNETIC PROPERTIES OF NICKEL, IRON,
AND COBALT .

We now discuss briefly the results of some experi-
mental and theoretical investigations into ferromagnetic
transition metals, namely, Ni, Fe, and Co. A general
review of the problem from different points of view is
well presented in Refs. 27-30. |

Nickel. This is the metal most fully investigated.
The Curie point is T¢(Ni) =631°K.? The mean atomic
magnetic moment for the ferromagnetic state of the
crystal, expressed in Bohr magnetons, is p(Ni)=0.583
(data for room temperature) 31 Mott was one of the
first to suggest that the observed fractional magnetic
moments arise because the Fermi energy lies within
the 34 band. At the same time, the Fermi energy must
lie at levels in Ni, Fe, and Co such that the number of
holes in the 3d band can be 0.6 in Ni, 1.7 in Co, and
9.2 in Fe; this explains the experimental values of the
magnetic moment. What can information about the
mean atomic magnetic moments tell us about the prob-
lem in which we are interested, namely, are the elec-
trons localized or collectivized? The mean atomic
magnetic moment i8 a static characteristic. Its theo-
retical calculation ensures a good test for the wave
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functions of the electrons in a metal.*"** The degree
of localization (or collectivization) of magnetically
active electrons can be characterized only on the basis
of the contributions made to the mean moment by the
electrons near the bottom or top of the band. However,
this is inadequate to decide in favor of a particular
microscopic model (see the Introduction).

The temperature dependences of the electron specific
heat for ferromagnetic metals were calculated for the
first time by Stoner® on the basis of the band model in
the effective-field approximation and for parabolic den-
sity-of-states curve. This calculation was perfected
by Hunt,* and subsequently by Shimizu and Terao™ for
nickel and iron. The low-temperature magnetic speci-
fic heat of nickel was also calculated by Thumpsnn.“

It was shown that in the low-temperature region the
spin-wave specific heat calculated in the approximation
of noninteracting spin waves does not agree entirely
satisfactorily with the experimental data. The agree-
ment can be improved™® by the choice of the density of
states of nickel on the basis of detailed theoretical
calculations of the band structure 324 However, the
calculations of Ref., 36, made on the basis of Stoner’s
model for nickel and iron, agree best with the experi-
ments. In this model there exist only Stoner excita-
tions, which were not taken into account in Thompson’s
caleulation in Refs. 37 and 38. In the opinion of Shimi-
zu and Terao,*® the contribution from both the spin-
wave and the Stoner excitations must be taken into ac~
count in the calculation if the magnetic electron specific
heat is to be correctly explained.

In recent years, a rather substantial number of theo-
retical calculations have been made of the band struc-
ture of ferromagnetic nickel.?®** On the basis of these
caleulations, it has been possible to explain satisfac-
torily the ferromagnetic anisotropy energies of nickel
and irnmrn,.55 the internal fields in nickel and iron and the
isomer shift of irnn,“ the spin-wave energies of iron,
cobalt, and ninclt;ﬁ-l,52 the spectroscopic splitting factor
and the magnetomechanical ratio of nickel and iron,*
and numerous other characteristics. Our understand-
ing of the energy band structure of Ni, Fe, and Co has
been made more precise by study of the x-ray spec-
tra,’ measurement of the spin polarization of electrons
tunneling from ferromagnets,‘r‘“'ﬁu and photoemission
investigatinns.“'“ The experimental study of photo-
emission electrons makes it possible, In particular, to
determine the band splitting A. For Ni, the best esti-
mate based on all the experimental and theoretical in-
vestigations is 4=0,5+0.1 eV, However, the photo-
emission experiments do not permit establishment of
the contribution of the various types of excitation. In-
direct evidence for the existence of Stoner excitations
is also provided by investigation of the de Haas-van
Alphen effect in transition 3d metals.”**® It was noted
in Ref. 67 that exact description of Raman scattering of
light in transition metals requires allowance for the
additional scattering by Stoner excitations. At small
momenta and zero temperature, the intensity of light
scattering by magnons is greater than by Stoner excita-
tions. However, the contribution to the scattering in-
tensity from the magnons and from the Stoner excita-
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tions depends differently on the specific band structure
of the metal.”®

Ivon. The Curie point is To(Fe) =1043°K.” The mean
atomic magnetic moment for the ferromagnetic state is
n{Fe) =2.177.3 Investigation of the temperature depen-
dence of the electron specific heat of iron°® indicates an
important contribution from Stoner excitations. Cal-
culations of the energy band structure of iron™™" have
deepened our understanding of its magnetic properties.
Study of the Fermi surface of iron™* " and nickel,”* the
spin—orbit coupling, and the optical conductivity of
iron” shows that the model of collectivized electrons
applies very well, Investigations into the temperature
dependence of the exchange splitting in iron® by means
of the de Haas-van Alphen effect give indications of an
important contribution from Stoner excitations,

Nevertheless, an agreed opinion on why iron is mag-
netic still does not exist. In Ref. 78, the following
question is posed: Should the magnetic properties of
iron be described on the basis of the notion of localized
moments or on the basis of a band description as in the
Stoner model? In Ref. 78, studied hyperfine fields in
the alloys FeSi and FeMn were gtudied. The available
information on the state of the magnetically active elec-
trons in Fe obtained from measurement of the hyperfine
fields was analyzed in the review of Ref. 78, It is
demonstrated convincingly in Refs. 78 and 79 that the
electrons in Fe partly retain a localized nature, SO
that the simple Stoner model is invalid. The Hubbard
model, which takes into account both aspects of the
electronbehavior —collectivized and localized—gives a
much more adequate description of the real situation
in the metal; in this model, the collectivized and local-
ized aspects of the electron behavior have a comple-
mentary nature.

Cobalt. The Curie point is T¢(Co)=1403°K.” The
mean atomic magnetic moment is 1(Co) =1.707 3 The
electron energy band structure of cobalt was calculated
in Refs. 80-83. On the basis of these calculations, a
simple interpretation was given of the photoeleciron
measurements in nickel and Cﬂbﬂ.lt,“ and also an inter-
pretation of the measurements of the hyperfine fields.”
Investigations of the low-temperature electron specific
heat made it possible to determine the coefficient y %
The exchange splitting in cobalt is greater than in nick-
el: A{Co) =0.91 eV.®" At the same time, it is indica-
tive that the ratio of the effective Coulomb interaction
{/ to the width of the d band 1s approximately the same
tor all three metals Fe, Ni, and Co: U//w=0.14-0.16.

In Ref. 87, the band model was used (o calculate the
Curie point of Co. The energy band structure, the

m-] | T I B L1 1.

9 W 5 M 9 huw

FIG. 5. Measured spin-wave intensity in Ni at room tempera-
ture along three symmetric directions,”
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wave functions, and the density of states were found
from first principles. The theoretical value To=1370
+200°K was obtained. An estimate of the transition
temperature for Co on the basis of the Heisenberg
model of localized spins gives a value which is too
high, namely, T.=1870°K. We now discuss the data
on the spectrum of magnetic excitations and the mag-
netization.

5. SPECTRUM OF MAGNETIC EXCITATIONS OF
Ni, Fe, AND Co

Very important information about the state of mag-
netically active electrons is obtained by investigating
the spectrum of magnetic excitations. The most inter-
esting investigations (from the point of view of com-
parison of the localized model and the band model)
were made by means of neutron scattering.

The scattering of neutrons in Ni has been investi-
gated in detail in a number of theoretical and experi-
mental studies.?® " The early neutron investigations
into the spectrum of magnetic excitations in Ni are re-
viewed in Refs. 95, 100, and 101; the later results
are discussed in the review of Ref. 30.

Thermal neutron scattering enables one to measure
directly the scattering law S(g, w) in a wide range of
energy, Aw, and momentum, g, transfers:

g = ko— k = (m/h) (vg— V); m/h =0.3936 Ateem™ » msec,
ho = (A2 2m) (k; — kD) = (1/2) m (v —v?); h22m = 2.072 meV.A"2,

In principle, one can investigate the region of ¢ values
in the interval 0.1-10 A and energies %w in the inter-
val 10-10° meV.

In the study of neutron scattering in transition metals,
one can in a first approximation ignore the contribution
of the orbital angular mﬁ:::Irnten*l'.l.mnl.lﬂz For Ni the calcu-
lation shows® that at large momentum and energy
transfers the importance of the orbital contribution in-
creagses. The ferromagnetic metals have well-defined
peaks of inelastic scattering by spin waves. For Ni,
Fe, and Co, the dispersion law

ko = Dg? (1 —Pg2 -+ v¢') (34)

has been measured with high accuracy. The results
of the neutron measurements for Ni are shown in Fig.
4. Ina number of papers'®™ % the spectrum of spin-
wave excitations measured by means of neutron scat-
tering has been interpreted on the basis of the Heisen-
berg model. The experiments were made on nickel'%
and iron.!®1® However, subsequent investigations of
the spin-wave spectrum in iron'” 1! and cobalt (Refs.
90, 100, 112, and 115) showed that the collectivized
model corresponds more closely to reality. The decl-
sive argument in favor of the collectivized model was
an indirect indication of the existence of Stoner excita-
tions.

It was found® that in nickel the spin-wave intensity
of neutron scattering along the direction [110] decreas-
es slowly with increasing energy and at E~=100 meV de-
creases abruptly by more than an order of magnitude.
This sudden decrease in the intensity was explained by
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the intersection of the spin-wave spectrum with the
Stoner continuum, The energy at which the decrease in
the intensity occurred was different for the three prin-
cipal symmetric directions (80 meV for the direction
[111] and 110 meV for the direction (100)) (Fig. 3).

Calculations of the generalized susceptibility X" (g, w)
and its poles on the basis of calculations of the energy
band structure of nickel® with allowance for the depen-
dence of the band spin splitting on the quasimomentum
and many-band effects showed that along the direction
(111] the region of Stoner excitations lies lower than
along the other two directions (Fig. 6), which agrees
with the experiment. A similar behavior of the spin-
wave intensity is observed in iron'® with the difference
that the energies of the abrupt decrease are E =90 meV
for the direction [100], E=95 meV for {110}, and E
=100 meV for [111}.

Detailed neutron measurements of the temperature
dependence of the spectrum of magnetic excitations
were made for both nickel® ™" and iron.'t? It was ex-
pected that the Stoner continuum would be shifted by a
change in the temperature, since the band splitting 4,
which is proportional to the magnetization, must
change. The measurements in nickel®® along the direc-
tion L111] showed that the point of intersection of the
spin-wave spectrum and the Stoner spectrum hardly
changes in the temperature range from 4.2 to 715°K
(Fig. 7). Moreover, the spin-wave spectrum in this
temperature range also changes only slightly. The co-
officient of stiffness D in the dispersion law Fw = Dg*
decreases from 555 meV'’ A% at 4.2°K to 280 meV + A
at Tc=631°K; with further increase in the temperature
to 715°K, the coefficient D hardly changed.

These results were obtained by means of a triaxial
gpectrometer. The technique of small-angle scatter-
ing“]'“r gives the different value D=125 meV" Alat T
- T.. However, despite these discrepancies the condi-
tion D(T)— D, is satisfied as T~ T¢. A similar tem-
perature dependence is observed for iron.''® For the
measurements, 80Nj and (**Fe + 8i) crystals were used.
The isotopes *°Ni and **Fe have very small nuclear
scattering amplitudes compared with the normal iso-
topes. At the same time, the phonon scattering is in
this case less, and the incoherent nuclear scattering
makes a small contribution.

Thus, one can say that the experimentis on inelastic
neutron scattering in transition metals give important

Spin waves

: g
FIG. 6. Results of theoretical calculation of the excitation
spectrum for Ni (Ref. 98) in the direction [111].
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F1G, B’?; Temperature dependence of the spin-wave intensity
in Ni.

indirect indications of the existence of Stoner excita-

“tions. Detailed theoretical calculatiuns“ confirm this

conclusion.

What are the prospects of direct investigation of the
Stoner excitations? An important consequence of the
calculations made in Ref. 98 is the assertion that at
large momentum transfers the spin-wave. scattering
cross section is only two or three times greater than
the Stoner scattering cross section (Fig. 8). One can
give a very simple qualitative interpretation of this
circumstance,“'z"’ which is based on the results of the
theoretical calculation of Thmmps«::url.“E Thompson con-
sidered the Hubbard model, took the sum rule (20),

5 Im X+ {g, )= (2n/k} (n) — 1),

and used the random-phase approximation to calculate
the susceptibility and the effective- mass approximation,
By a numerical calculation he showed that

o

S dw lm}{:'[_q:_-ﬂ_gqm“, m):%%

— S do Im Xt (7= 0.9¢ max, ©)
: “m 2K A i 2 A
ZTT:F('["'_E_)=TEF‘ (35)
He found that for a strong ferromagnet (A > g4, which
corresponds to Ni) the free gusceptibility is
0, ly| = 1;

ImXt (g, w}=9 3 A
B 9 @) { liﬂUﬁE (1“‘9‘2): Iyi"::-i*.-

where y ={A" - w)/0E, A’ =4+ nigt/2m*, and 6E

=1 ‘qkes/m*; m* is the effective electron mass. Thus,
the width of the diffuse peak, which is determined by
ImX; (g, ), will be 8E = (g/ks)&;.

Let us estimate 6E. Following Ref. 117, we assume
that g, = 0.75%,. Then for g = 0.9¢ . We find that OE

0 (q1-2? (q= 04
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FIG. 8. Theoretical calculation of the total scattering croas
gection in Ni as a function of the quasimm1:'11m=.5111t:|.1m,BE
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= 0.67¢,. The exact calculations of £, for metallic nickel®
show that £,="7.6 eV. However, to estimate ImXj~ in
framework of Thompson's calculation, we shall, so as
not to violate the “self-consistency” of the approxima-
tions, use the estimates of g, for the so-called equiva-
lent free electron gas model in the paramagnetic re-
gion.” In the framework of this model, which corre-
sponds to the approximations of Ret, 116, ¢, =0.4 eV.
Thus, the width of the diffuse Stoner peak is 6E=0.67¢,
—0.67X0.4=:0.27 eV. The width of the spin-wave peak
at g =0.9g,,, can be taken to be 0.1 eV (Refs. 84, 95,
99, and 100). Since in accordance with (35) the areas
of the two peaks are equal for g =0.99.4,, the amplitude
of the Stoner peak will be approximately three times
less than that of the spin-wave peak. Thus, our quali-
tative estimates agree with the exact numerical calcu-
lations (¥Fig. 8) of Ref. 98.

The measurements of the spectrum of magnetic exci-
tations in nickel®™ and iron'®'"’ were made using sta-
tionary reactors by means of a triaxial crystal spec-
trometer. The band splitting A of Ni, Fe, and Co has
the smallest value A=0.5 eV for Ni. Therefore, to
measure the Stoner excitations in Ni it is necessary to
have a flux of neutrons with energy in the range 0.1-1
eV. We recall that the point at which the spin-wave
spectrum along the direction [111] terminates corre-
sponds to an energy 80 meV, s0 that the range of ener-
gy transfers of interest to use lies in the interval 0.08~
0.5 eV.

It is clear that the ordinary technique is not well
suited to measure excitations of such high energy even
in the presence of a hot source. A very promising
method is the time-of-flight method, The pulsed neu-
tron sources have the necessary power to ensure suf-
ficient luminosity, and the narrow pulse makes it pos-
sible to work with good resolution and a low background
level. According to the estimates of Ref. 118, the flux
of neutrons expected at distance 30 m from the IBR-2
pulsed reactor for E,=0.5 eV and AE,=0.0045 eV,
pulse time 7=3 psec, and moderalor measuring 20
X 20 cm, can be assumed to be

J=2.,9% 10* neutrons-cm™ * sec

In Ref. 24, estimates were made of the counting rate
of the facility in the case of scattering of such a flux
of slow neutrons by Stoner excitations. The estimates
discussed above for the Stoner scattering cross sectlon
were used. The expected number of counts during a
measurement time of =24 h was found to be N =200
-250 neutrons/day. Similar estimates'’ for the power-
ful pulsed neutron source ZING give N =160 neutrons/
day. Thus, in order of magnitude N =10° neutrons/day.

These upper bounds correspond to a high resolution,
which makes it possible to investigate in detail the
properties of Stoner excitations. But if the aim of the
experiment is merely the simple confirmation of their
existence, it is sufficient to work with a resolution an
order of magnitude lower. Then the intensity is in-
creased by an order of magnitude and the counting rate
is raised,

With the facilities currently available, the direct
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measurement of Stoner excitations in Ni, Fe, and Co

is rather difficult because of the large band splitting.
Therefore, the experimentalists try to find band ferro-
magnets with a small value of A. In Ref. 120, the in-
termetallic compound MnSi, which is a weak band fer-
romagnet, was chosen {o investigate magnetic excita-
tions. A ferromagnetic state is induced in MnSi by an
external magnetic field with intensity higher than 6 kOe.
The neutron scattering experiment was done by means
of a triaxial crystal spectrometer.

In a magnetic field of 10 kOe at 5°K, well-defined
spin-wave excitations were observed below 2.0 meV,
The dispersion law was found in the form Hw,(meV)
—0.13 + 524%(A%) for the direction [100]. Above 3 meV,
appreciable broadening of the spin-wave peak was ob-
served, and this was attributed to intersection of the
Stoner continnum. Thus, the stiffness coefficient in
MnSi is an order of magnitude lower than in nickel.
The band splitting could not be determined; only the
energy at the intersection of the Stoner continuum was
found. For the direction [100], this energy is 2.6 meV.

The scattering of neutrons in Fe;Al (Ref. 121) also
gives indirect confirmation of the existence of Stoner
excitations. For the direction [111), the energy at the
intersection of the Stoner continuum is about 12 meV.
In the intermetallic compound Pd,Fe (Ref. 122), the
dispersion curve of the magnons In the direction 001]
intersects the Stoner continuum at E =40 meV.

Thus, investigations into the spectrum of magnetic
excitations of ferromagnetic transition metals and some
of their compounds provide very weighty arguments for
the existence of Stoner excitations, and the develop-
ment of the experimental techniques could lead to their
direct observation.

6. CONTRIBUTION OF SPIN WAVES AND STONER
EXCITATIONS TO THE MAGNETIZATION

The study of the temperature dependence of the mag-
netization is of great interest from the point of view of
comparing the localized model and the collectivized
model, Unfortunately, sufficient clarity has not yet
been achieved in this question.

‘Wohlfarth™ analyzed the magnetic, thermal, and
magnetoelastic properties of strong and weak band
ferromagnets on the basis of simple thermodynamic
considerations. In his opinion, the properties of
strong band ferromagnets, in particular, Ni, can be
given a fairly satisfactory description below the Curie
point on the basis of the simple spin-wave theory.
Stoner excitations are important in the description of
weak ferromagnets,

The more detailed analysis of Shimizu®® and, in par-
ticular, Riedi*® shows that the situation is much more
complicated than follows from Ref, 27,

Riedi'™ analyzed the experimental data on neutron
scattering, magnetization, and nuclear magnetic Teso-~
nance and attempted to determine the relative contribu-
tion of the spin waves and the Stoner excitations to the
temperature dependence of the magnetization M (T).
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Now in fact the temperature dependence of the mag-
netization depends strongly on the model used for the
description. For a simple cubic Heisenberg ferromag-
net, the temperature dependence of the magnetization
in the spin-wave approximation has the form

AM g w. =M (0) — M (T} ~ F (3/2T) (z1p/M (O)) ( é;g*m )afz

—O(TYY =aTY3 (1 +5T +...). (36)

The first coetficients @ of the term T°” for Ni and Fe
were found in Ref. 124, In a band ferromagnet, there
are in addition to the spin waves the Stoner excitations,
which also contribute to the thermodynamic behavior.
Therefore, in the general case, the temperature depen-
dence AM(T) must be determined by the contributions
of the spin waves and the Stoner excitations, and also
the contribution due to their interaction.

In a certain range of parameter values of the system,
AM{T) can be represented approximately as a super-
position of these two contributions:

AM(T) ~ AM , w. +AM, .. (37)

The temperature dependence &M,_,,(T) is different for
weak and strong ferromagnets (see Ref. 123):

AM b (1)
0,, 121 (T)/n]exp (— AfkT) — for strong ferromagnet, (33)
B { OgodT? — for weak ferromagnet.

The more accurate calculation of Herring'®® with allow-
ance for the interaction of the spin waves and the sin-
sle-particle excitations gives for a weak ferromagnet
the expression

AMop (T) = AT2 T | (39)

Thus, investigation of the temperature dependence of
the magnetization can in principle give important argu-
ments in support of one or the other model. However,
the problem is complicated by the fact that for reliable
conclugions the measurements must be very accurate,
since AM(T) is very small in the low-temperature re-
gion.

In recent years, detailed theoretical and experimen-
tal investigations have been made into the temperature
dependence of the magnetization of Ni (Refs. 124, 126-
130) and Fe (Refs. 124, 128, 131-134). Analysis of
the data on neutron scattering, the magnetization, and
nuclear magnetic resonance shows that Niand Fe be-
have differently. The low-temperature magnetization
of Fe is well described by

AM (T) = B, 7Y%, (40)

where B, is a constant (in agreement with the spin-wave
theory).

As follows from {36), using inelastic scattering of
neutrons to measure the spin-wave gtiffness D), one
can find the coefficient B,. For Fe, all the three val-
ues of B, obtained by means of inelastic neutron scat-
tering, measurements of the magnetization, and nu-
clear magnetic resonance, agree well with one another.

At higher temperatures, the coefficient B in (40) de-
pends on the temperature. For the Hubbard model,
ealeulation of the coefficient of spin-wave stiffness in
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the Hartree—Fock approximation leads to the tempera-

ture dependence’

D (T)= D,— D,T2— D,T*". (41)

The contribution D{T) proportional to T ariges from
the allowance for the electron—magnon interaction.
Using the technique of small-angle scattering, String-
feliow'?” measured D(T) for Ni and Fe. It was found
that Dy =0 for Ni. For Fe, D;#0 in the low-tempera-
ture region, and the dependence of D on T is important.
Thus, the temperature dependence of the spin-wave
gtiffness for Ni has the form

p=D,—D,F¥. (42)

According to Aldred,m the best values of D for Ni are
D(T =4.2°K) =555 meV ‘A’ and D(T =295°K) =455 meV
- A®, Using these data obtained by means of neutron
scattering, one can determine the coefficient B in the
temperature dependence (40) of the magnetization.

It was found that the value of B for Ni obtained from
measurements of the magnetization and nuclear mag-

netic resonance is approximately 30-409% lower than
the value given by the neutron experiments. Aldred™”®

has suggested that this pronounced difierence in the
behavior of Ni and Fe can be explained by the circum-
stance that the low-temperature behavior of Fe is sat-
isfactorily described by the spin-wave picture but that
for Ni it is necessary to take into account the contribu-
tion from the Stoner excitations. Therefore, Aldred
considered the additional Stoner contribution to the
magnetization of Ni:

AMep (T) =AM (T} — AM (Tho.w.. (43)

He attempted to describe the measured temperature
dependence AM(T) on the basis of the expression (38).
Unfortunately, the accuracy of the measurements of
Ref. 129 did not make it possible to choose between the
alternatives in (38). Neither dependence &M, , lies
entirely satisfactorily on the experimental curve, al-
though the dependence AT? ig still a better approxima-
tion to 1it.

Riedi'®® determined the contribution A, , for Ni by
means of nuclear magnetic resonance. His result is

AM, , = 1.68.107°T%% 1 3,22.107772. (44)

He showed that the term proportional to T does not de-~
pend on D(T) in the entire region of experimental val-
ues of the spin-wave stiffness. Riedi therefore as-
sumes 21 that the T° dependence in (44) can be attri-
huted to the contribution of the Stoner excitations. His
analysis shows that the expression (39) agrees less well
with the experiment than the simple dependent T,

There is no doubt that the results of Reis. 123-134
are very important, though they are not entirely unam-
biguous. It follows from (44) that A/k#0 is very small,
gsince Ni is a strong ferrnmagnet.m Measurements of
the magnetization give A/k =162 oK 130 Riedi assumes
that this value must be at least an order of magnitude
smaller to explain the observed discrepancy with the
neutron data.

Thus, additional very accurate experiments are need-
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ed to draw a final conclusion about the contributions of
the Stoner and spin-wave excitations. It is, however,
clear that the spin-wave description alone is inadequate
for Ni. It is unreasonable to hope that an accuracy in
the measurements of the tempeﬁture dependence of the
magnetization sufficient for unambiguous conclusions
will be achieved, since the two contributions enter addi-
tively. It is for this reason that we believe scattering
of slow neutrons to be the only method that can give

reliable and direct information about the Stoner exci-
tations.'®

7. SOME GENERALIZATIONS OF THE HUBBARD
MODEL

In discussing the experimental data on the scattering
of slow neutrons in ferromagnets, it is necessary to
bear in mind the approximate nature of the theoretical
predictions discussed above. Hitherto, we have been
considering the excitation spectrum of the single-band
Hubbard model. In a real metal, however, the situa-
tion may be more complicated. Even for a two-band
model the picture of inelastic neutron scattering is
modified qualitatively and quantitatively; the Stoner
scattering cross section can then be appreciable for
not too large ¢ < g, as well.

The spectrum of the magnetic excitations of the two-
band Hubbard model® is shown in Fig. 9. In contrast
to the single-band model, there are four quasi-Stoner
continua associated with transitions within a band and
between bands, and also a branch of optical spin waves
and the so~called interband spin-wave branch. Thus,
the model of collectivized electrons has a very rich
excitation spectrum in the “optical” region.

1. An important generalization of the single-band
Hubbard model is the Hubbard model with s—d hybridi-
zation, which describes direct scattering of the elec-

trons of the s and d bands"?:

H= S tydleya+ 5 2 Piofi-o
iig )
+ D) E (k) ahotno+ 2 (Vindlotho + hoc.)- (45)
A iho

The existence of a broad band of s electrons is also
taken into account implicitly in the ordinary single-band
Hubbard model in realistic estimates of the Coulomb-
repulsion parameter. Since the hopping rate of d elec-
trons from atom to atom is appreciably lower than the
characteristic velocity of the conduction electrons, the

a8 qrk, -

FIG. 9. Excitation spectrum of the two-band Hubbard model
ag calculated in Ref, 137,
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latter can be effectively correlated with the d electrons
and screen their fields. For transition 3d metals, in-
vestigation of the energy band structure reveals that
s—d hybridization processes play an important part.
Ziman'® showed that for noble and transition metals in
the framework of the Korringa-Kohn-Rostoker method
the 4 band is effectively a resonance in the broad sp
band. This permits the agsumption that the broadening
of the atomic d levels may derive from the s—d hybrid-
ization, competing with the direct overlapping of the
wave functions of the d electrons. This point of view
was confirmed in Refs. 140-143. Subsequently, direct
calculations on the basis of interpolation schemes'*
showed that the overlap integrals of the wave functions
of the d electrons can be smaller than the overlap inte-
grals of the wave functions of the s and d electrons,
although the difference is not too large,

Thus, among the other generalizations of the Hubbard
mode] that correspond more closely to the real situa-
tion in pure transition models, the model with s—d hy-
bridization occupies one of the principal positions. The
single-particle properties of the variants of this model
were investigated in Refs. 145-148. The spin-wave
pole of the generalized susceptibility for the model {45)
was calculated in Ref. 149 in the atomic limit for the 4
electrons and for very strong s-~d hybridization. How-
ever, these approximations are quite invalid for real
transition metals. A detailed theory of the scattering
of slow neutrons for the Hubbard model with s-d hy-
bridization is given in Ref. 150; the calculation is a
direct generalization of that of Izyuama, Kim, and
Kubo.’® They showed that for the single-band Hubbard
model, ignoring the overlapping of the wave functions at
different sites, one can express the generalized trans-
verse spin susceptibility X" (g, w) of the system in
terms of the Hartree~Fock susceptibility X; (¢, w) in
the form (24).

The Hartree-Fock susceptibility of the system (45)
can be calculated by means of a simple (u, v) transfor-
mation of the linearized Hamiltonian

H"" = 3} o (1) diodno + 3 eatiotuo +2(Vttadrat o) (46)
to the form

HYF = §l {mihuu;ﬂuhﬂ + WanaPRoPac). (47)
Here

méknﬂ"—;“ {{Ea {k}"!'ﬂh) + V(Eu (k}“ﬁh)z‘l“iivﬂﬂi {43)

B, =E®+ 5 3 e
P

The expression for the imagmary part of the Hartree-
Fock susceptibility can be expressed in the form™’

1
Im XH_F {q, @)= — n{gnnp)? N E {ubiqitthy {niﬂf — nfwl}
L

X 8 (Ao =+ 01p4q) — 0241}
+ Uﬁ+q41ﬂ’i1~ {“ET _— ”Eﬂn} 0 (o + wap4q) — {ﬂz“)
| -+ HEHWﬁf (HE*} — ﬂ'-§+q1} O (R 4+ 0ip4q— D2xt)

-+ Vigqilths (”ft = "E+ ab) d (ko 4 Diptgl — [!}Ehf}}- (4 9)

Thus, the Stoner cross section for scattering of slow
neutrons
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mgc? n {gun)®

X {(n{w)+ 1) ImX*F (—¢, @) 4- n(—) Im X" (¢, ©)} (50)

will describe scattering by the four quasi-Stoner con-
tinua.

To calculate the generalized spin susceptibility from
the transverse spin components for the model (45), it is
necessary to calculate the two-time Green’s function
((©4q) = dasgide: | BY),. The chain of equations for the
Green’s functions can be reduced to a closed system
of four equations by means of the following random-
phase approximation:

(84 (9), Hyl =~ (E (k)—E (k+q)) B4 (¢)
+ 48, (@) — 2 3 (taaar —7a) B3 (2);
P :

(disqiang, Hal 7 —E (k-+ q) dhrggus — - D) Ropdhsai@at
| B

U
+ - Witane) Q) diraitpt-
P,

As a result, the expression for the transverse spin

. susceptibility X (g, w} can be written in a form analo-

gous to (24):
X~ (g, )= X" (g, &) {1 —Ulgus)* X** (g, o)) (51)

Here, the susceptibility in the Hartree~Fock approxi-
mation X2¥{g, w) has a very complicated form (see Ref.
150) and in the limit V, —0 goes over into the usual ex-
pression (25). Since the Hamiltonian (45) remains ro-
tationally invariant, it follows from Edward’s general
theory (17) that the susceptibility (51) must have a spin-
wave pole. The existence of a spin-wave pole of the
susceptibility X (g, w) is shown in Ref. 150. At the
same time, we have

fm X+ (=0, 0-—0) ~ —n (gup)2b/U8 (ho—AQy), (52)

where b is a constant determined numerically. The
cross section of inelastic neutron scattering by the
spin waves can be expressed in this case in exactly the
gsame way as (32).

2. In the band model of magnetism, as in the local-
ized model, great interest attaches to explicit allow-
ance for the electron-phonon interaction. Because of
this interaction, there is inelastic transfer of energy
from the system of magnetic electrons to the lattice
vibrations; for the detailed description of neutron scai-
tering, this circumstance is important.'™

The electron-phonon interaction is determined by the
cjange in the potentials (R} of the ions of the lattice
when allowance is made for their thermal vibrations:

H.-ph-—-ﬁ {v (Ri—r} — & (Ri—13)) o} (53)
1

where R, =1+, are the coordinates of the ions, 1lare
the equilibrium positions, u, are the thermal displace-
ments, and r, are the coordinates of the electrons. In
Ref. 151, the Bloch functions are determined using
the potential (1~ r) ={v(R~- 1), of the ions averaged
over the lattice vibrations:

(e 2+ 30— 1)} () = exx (), (54)
!
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This definition differs from the usual one { see (1)-(3)]
and makes it possible to take into account elastic elec-
tron—phonon scattering processes. In the second-quan-
tization representation, the Hamiltonian of the single-
band Hubbard model with allowance for the electron-
phonon interaction can be written in the form’

H=Het+ Hopn+ Hepni (55)
Hon= 2‘;} ©biby: (55a)

|
He—ph'_“ E Fp. p+qa;u‘ﬂp+qu T

g

x ) exp (iql) (exp (iqu;) — (exp (igun))).

(55b)

Here, H, is the single-band Hubbard Hamiltonian (11).
v =U/N is the energy of the Coulomb correlation at one
site, V=V,N is the volume of the system, and b; and

b, are the operators of creation and annihilation of pho-
nons with quasimomentum q, polarization j, and energy
W, G =(q, 7). The matrix element of the electron—ion
interaction has the form

Vo, pra=v (g} 5 d*rp} (r) exp (—igr) Ppeq (D=0 (Q Flg, p+D =V,

where v(g)=1/V, ] d Sy exp(— igriv(r) is the Fourier
transform of the electron~ion potential. The potential
»(R, - r) is the effective (screened by the conduction
electrons) interaction potential of the magnetic elec-
trons and ions.

For a system with the Hamiltonian (55), Plakida and
Smirnov'®! calculated the cross-section of magnetovi-
bration scattering with allowance for single-phonon
transitions.

dtg _ k’ (2n) \ (gep)
(dﬂdE‘ )m.“*”’"“ (%) T{“P [—2W D)l xv, j 2wp;
TP
x[n(o,)+5 =7 |d@xp—2a)8(@ 2wy (56)

Here

/N (n,—
e () = (arp (A —e) A F BBV [ =T (57)

ig the effective cross section of magnetovibration scat-
tering. It can be seen that the scattering cross section
(56) has the form of the usual single-phonon nuclear
scattering. However, the effective cross section (57)
contains not only the usual factors for elastic magnetic
scattering [ {1 - &%) | F(#) |?] and the square of the magne-
tization (n, — n,)* ~ (7, - 1,)* as in the model of localized
gspins, but also the square \Vq 12 of the matrix element
of the electron-phonon interaction, which permits esti-
mation of this quantity by means of magnetovibration
scattering of neutrons in metals.

The electron-phonon interaction in the Hubbard mod-
el was also considered in Refs. 152—-156. Morkowski®™®
calculated the magnon relaxation time due to interaction
with the phonons in the second order of perturbation
theory. Using the method of two-time thermal Green’s
functions, Gemrgua""f“'i obtained an expression for the re-
normalized spin-wave stiffness in the random-phase
approximation. In Ref. 156, Yamada calculated the
magnon relaxation time and the renormalization of the
spin-wave stiffness by means of the Matsubara Green’'s
functions in the random-phase approximation. It is
important that, in contrast to the other calcula-
tions, ™ '1%® Yamada’s calculation™® gives an expression
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for 5D ~T* which agrees with the phenomenological re-
sult of Ref. 152. Yamada'™® also estimated these quan-

tities numerically for Ni and Fe.

3. From the point of view of scattering of slow neu-
trons, great interest attaches to the spectrum of mag-
netic excitations of the so-called Zener model." The
Hamiltonian of this model can be written in the form

H= 2 t”ﬂfua;.,-l—U;‘Z § n,.,n.-u—,'?..f g u,S,, (53)

{ja
where d=a},a,, 01=aj.a;, and of=1/2(agay - a}.a;,)
are the spin operators of the collectivized electrons,
', and 8, is the operator of the localized spin at site i cor-
i responding to Hund’s rule. We rewrite the Hamiltonian

4} ~ {58) in the k representation: -
| Hamiltonian of the s—d model:

; H= :.Zu £pdlotns +UN? E SO N0 SR, 2
q

FIG. 10. Schematic form of the excitation sapectrum of the
modified Zener model.

H = epaloapa—J N1 Yexp(—iqR,)

"-'i - o X
! X {04 +0194 ST + ok e qnt ST + (ak+o1Bxt — TR+ qtny) Sil. (66)

Sl

The Hamiltonian (66) is widely used to describe the s-d
exchange interaction between an impurity spin and the
spins of the conduction electrons in nonmagnetic metals

The generalized transverse spin susceptibility of the
system with the Hamiltonian (59)

At T R et 4 it i R e e v

v Al (g, W)= 5 &0y (1), 0-g2 exp (imt) di | (60)

(see Ref. 159 and the literature quoted there).

can be calculated in the random-phage approximation,
as for the ordinary Hubbard model (11). The obtained
result is™"

X (4, @) =Ko (g, OW(L— U — 220 —TnD) % g, o)} (B1)

tions (S (g)
suscelz)tibility in the random-phase approximation, we
=]

obtain

' Let us consider the calculation of the Green’ s func-
s*(-q)),. For the imaginary part of the

— A Iyt (g, ©) = 286 (@ — wae (0)) + 125 (0 —00p (@) -

where )
+ (28 + nx) ﬁ# S A3 [6 (@ — Epsqp — Enp) — 8 {0 —2n) 3 Erat)]. (67)

'l:.!ir

Bt S

Yo (g, )= —N"1 2} m:}:,‘_’_*g:;;”_* z (62)
" In the approximation of the effective mass g =k /2m*
is the susceptibility of the collectivized electrons in the as ¢— 0 we find that

Hartree—Fock approximation; A= Unx +2J(5%;° nx

— N2 (1, — 7x,). The transverse susceptibility for

the localized spins can be found similarly:

n [{— (2/3) & (21T S)]
Wae {Q) — qui: Di = 9 n* {23+ H.I] »
S 144 (4/3) ep/(Sn)] (BB)
mﬂp {Q):I(ZS'{'“I}‘FDE’II; D,= m*= (25 | nr) -

&SH IS (—DPe=2(8e—Jnz
202 (5% % (g, ©) [1— U (@, @)} (63)

%3,
fr
i

Thus, the Hubbard model admits many generaliza-
tions, which makes it possible to take into account nu-
merous physically important interactions in a real
transition metal, This is particularly important when
one is comparing experimental data on inelastic neu-
tron scattering in a metal with results of theoretical
calculations. As follows from our discussion, the de-
tailed investigation of the spectrum of magnetic exci-
tations in the optical and acoustical ranges is of very
great interest from the point of view of comparing the
localized model and the band model of magnetism. It
is also important to emphasize that these two approach-
es, the localzed and the band, do not contradict each
other. They are, rather, “complementary” agpects
of the quantum statistical description of the state of
magnetically active electrons in a real metal. The
acoustic part of the spectrum of the magnetic excita-
tions is a reflection of a certain localization of the
spins, while the optical part reflects their delocaliza-
tion. This deep “complementarity” is well reflected
by the Zener model (58), which is one of the most

For q, w—0 we find the spectrum of the spin-wave ex-
citations of the gystem; it is determined by the poles
of the susceptibility (61) and (63):

hwge = Dq= — for the acoustical branch, } (64)
o= Eqy +D (UEp/JA—1) g% — for the optical branch-

Here, Eg,=Jnx +2KS". Physically, this result cor-
responds to the circumstance that the system contains
the inequivalent spin subsystems of the collectivized
and localized spins. Besides these two types of excita-
tion, there is the continuum of Stoner excitations

(65)

g = (Ex— Ex+ o + 4,

which is determined by the poles of the susceptibility
(62). The spectrum of magnetic excitations of the Ze-
ner model ig shown schematically in Fig. 10. Thus, in
contrast to the single-band Hubbard model (11), the
apectrum of the Zener model contains an additional
branch of optical spin waves. The presence of this
optical spin wave is due to the circumstance that the

system consists of two subsystems, as for the two-band
Hubbard model 1™ To see this more clearly, we set

7=0 in the Hamiltonian (59). We then arrive at the

158 Sov. 1. Part. Nucl. 12{2}, March-April 1981

interesting models of magnetism. The diversity of the
models reflects the diversity of the aspects of the mag-
netic behavior of real magnets of interest to us.
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8. ALLOYS OF MAGNETIC TRANSITION METALS

In recent years, the electron structure and various
physical properties of alloys of transition metals have
heen intensively studied. For the study of the magnetic
properties of alloys of transition metals, scattering of
slow neutrons has proved to be very helpful. Investi-
gation of the elastic and inelastic gcattering of siow
neutrons in alloys yields unique information about the
magnetic moments and form factors, and also the
change in the spin-wave stiffness.

It should be noted that neutron investigations into the
distribution of the magnetic moment in magnetic alloys
and the change in the spin-wave stiffness stimulated to
a large degree the development of modern methods for
caleulating the electron structure of disordered alloys;
these methods are extremely helpful for the solution of
many problems in solid-state physics. They include
the coherent potential method,'® which is now well
known,

The Hubbard model was very helpful for describing
many electron and magnetic properties of alloys of
transition metals and is successfully used in many
studies. To describe disordered alloys by means of
the Hubbard model, one infroduces random parameters,
and therefore speaks of the Hubbard model with random
parametiers.

We now turn to its description. It is assumed that the
interaction of the electrons in a binary disordered alloy
A_B;__ of two magnetic components is described by the
model Hamiltonian

= }_‘_ tiBiat e+ Z it Z‘: Uinjohtyao. (69)
io i

1joF

Here, as in (11), a,, and g}, are the operators of anni-
hilation and creation of Wannier electrons at site ¢ with
gpin . It is assumed that the hopping integrals f{; are
the same for both species of atoms A and B, i.e., #{
-—"tff =1t;;; the band structure of the pure components
A and B in the absence of Coulomb interaction is the
game. In{69), &, and U, are the single-particle poten-
tial and the intra-atomic Coulomb interaction, respec-

tively:
T e ‘Tl P, ieB
For a disordered alloy, ¢; and U, take random values

depending on the atom, of species A or B, which occu-
pies the site,

ic4d,;

. 7
i€ B; ( G)

The Hamiltonian (69) has been investigated by many
people in different limiting cases. If it is assumed
that one of the components of the alloy (for example, B)
consists of nonmagnetic atoms, then one can set U°
—0. This case corresponds to Wolff’s model, "% If
we set £ =¢% in (69), we obtain the model Hamiltonlan
used 'by a number of authors!®1® for the theoretical
description of the Pd-Ni alloy. The case when U
= UB was considered by Fulde and Luther!'®® to analyze
the scattering of paramagnons by jmpurities; Yamada
and Shimizu'® calculated the spin-wave spectrum.
Mnriya“‘w investigated the electron structure near a

159 Sov. J. Part. Nuct. 12(2), March-April 1981

magnetic impurity (Uf+#0) in a nonmagnetic matrix (U]
#0) and calculated numerous physical characteristics
of the impurity system. The interaction between im-
purities was considered in Ref. 168, All the studies
of Refs. 161168 were restricted to the approximation
of a strongly dilute alloy.

The coherent-potential method ®® makes it possible to
consider an alloy with finite impurity concentration.
One can identify two theoretical directions which use
the coherent-potential method to describe disordered
alloys.

The first was initiated in Ref, 169, This gives a
theoretical interpretation of the concentration depen-
dence of the mean magnetization, the atomic moments
of the components, and the electron specific heat for
the alloy Ni Fe;,. The papers of Refs, 170~1'74 are
in the same direction.

The approach of Hasegawa and I'I.'.al.n:amr:n-:}riIEg is based
on the use of the Hartree—Fock approximation for de-
seribing the intra-atomic Coulomb correlation. In this

case, the Hamiltonian (69) is written in the form'™

H =i§ t;)alat e -+ % Esaig8 o, (71)
where
E=t;+U;{niq. (713-)

Thus, the disorder, which is described in the frame-
work of the coherent-potential approximation, is char-
acterized by the two parameters E ,, and Eg,. The
mean population numbers {n;.,; in (71a), which are dif-
ferent for the different components of the alloy {({n;_ &
=1 4, OT N, i €A or B), must be determined in a self-
consistent manner. This last circumstance has the
consequence that not every unit cell is electrically neu-
tral and transfer of a finite charge may take place.

For the single-article Hamiltonian (71), one can use
the standard scheme of the coherent-potential method,
which we describe here, using the notation of Ref, 160.
In the coherent-potential approximation, one considers
a single-electron Hamiltonian of the form

H=W+D=W4+2, D, (72)

Here, W is the periodic part, and D is the sum of ran-
dom contributions, each associated with one gite. The
single-electron properties of the alloy are calculated as
ensemble averages over all possible configurations of
the atoms in the lattice. Usually, one considers the
single-electron Green’s function G(z) averaged in this

manner.

(7 (z}}={(z——D——W}'1}E{£—-W—E]"- (73)

We define the T matrix for a given configuration of the
alloy by means of the equation

G = (G) -+ (G) T {G). (74)

Then the functional equation for determining the un-
known operator Z will be given by the condition

(T [Z]) = 0. (75)

Equation {75) is a self-consistent definition of the op-
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erator 2.

Agsuming that

D—Esziﬂﬂ_—zn)gzvm ' (?6)

one can introduce the local gcattering operator
Tn = I’Iﬂ\ (1 — {G} V‘n)-i‘ (77)

By means of the operator T,, the effective medium
characterized by the operator Z I8 replaced by scatter-
ing by the real atom at the given site n. In the coher-
ent-potential method, the general gelf-consistency con-
dition (75) is replaced by its single-site approximation

(T, [Z])=0. (78)

Thus, in this approach the impurity is assumed to be in
an effective medium whose Green’s function is chosen
to make the T matrix of gcattering by the impurity van-
ish on the average. We ignore scattering by pairs of
atoms and larger clusters. The coherent-potential
method is exact in the atomic limit, when hopes of
electrons from site to site are Very improbable. The
comparison of the virtual-crystal approximation, the
average T-matrix approximation, and the coherent-
potential approximation made in Ref. 175 showed that
the third is no worse an approximation than the first.

In the coherent-potential method, the averaged
Green’s function (G(E)) of the disordered system 18
obtained from the Green’s function for an ideal lattice
by replacing the energy by a complex quantity. The
analytic properties of quantities calculated in the sin-
gle-site approximation of the coherent potential are
nontrivial; the Green’s function {G(z)) is analytic
everywhere except the lines of the cuts corresponding
to the impurity band and the band of the matrix,

It is important that in the coherent-potential method
the effect of electron gcattering due to the disorder is
described by a complex guantity, namely, the coherent
potential. From the point of view of quantum mechan=-
jes, there is nothing unusual about this, We recall
that for multiple scattering of a wave by an arbitrary
engemble of scatterers one introduces an ensemble-
averaged wave function, and the potential in the Schro-
dinger equation becomes cumplex.m The imaginary
part of the potential describes absorption due to scat-
tering. |

The main characteristic of the excitation spectrum of
the system is the density of states D(g) per unit energy.
It is determined by the imaginary part of the Green’s
function (G(z)) =G°F*. On the basis of the single~par-
ticle density of states one can give a good description
by means of the coherent-potential method of the beha-
vior of the asphericity parameter ¥ for alloys of Ni,
Fe, and Co™

This parameter is an important characteristic which
can be measured experimentally by means of the scat-
tering of slow neutrons and it is defined by

Y= I.tEg.J'p, (Tg)

where J,, is the magnetic moment determined by elec-
trons in states of ¢, type, and 1t is the total spin mag-
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netic moment.

The neutron-scattering experiments show that the
measured values of v fit very closely onto a straight
line when plotted against u for virtually all alloys of
Ni, Fe, and Co, i.e.,

v=a-bp. (80)

It is only for pure Ni that this does not hold; ¥x, is sig-
nificantly smaller than the value which follows from
(80). A possible reason for this deviation for pure Ni
could be the inf luence of electron correlation or the
particular single-particle behavior of the system. In
Ref. 177, only the single-particle properties of the
gystem in the approach (71) of Hasegawa and Kanamori
were considered, and it was shown that the influence

of correlations is not very important for calculation as
the asphericity parameter. As in Ref, 169, the con-
centration range 0<¢c<0.5 of the Ni;..Fe, alloy was
considered. Using the coherent-potential method,
Hasegawa and Kanamori calculated the magnetic mo-
ment p and the local moments ((Ni) and u(Fe)., Their
results agree well with the experiments. 1t must, how-
ever, be noted that they used not the real density of
states but a strongly jdealized function and that the
problem was solved using many free parameters.

In Ref. 177, the real theoretical density of states® '8
was used for the first time to calculate the parameter
v. For the exact calculation of v, it is necessary to
take into account separately the e, and {,, states. It1is
very difficult to obtain such separate densities of states
because of their strong hybridization. In Ref, 171, use
was made of the circumstance that at points and on lines
of high symmetry, where there 18 no hybridization, the
wave functions can be identified with e, and £, states.
It was assumed that quantitatively the behavior of the
wave functions is not strongly changed on the transition
to other points. The employed theoretical density of
states consists of siX aub-bands, two of which are as-
sociated with s electrons, while the remaining four at
the points and lines of high symmetry have the behavior
of the density of states of electrons in the t,, and ¢,
states. One can therefore propose an approximate sep-
aration of the density of states into components for the
t,, and ¢, electrons. |

In the coherent-potential method, the expression for
the density of states in the alloy Ni; . Fe, has the form

DEPA () = —— Im GoFA (e), {81)
where
cra _ 1 A CO
Gi =5—l 5 dE Y ST 3 (32)

T, is the coherent potential defined by
=20+ 2, (A—Zg) GT74 (e); (83)

A describes the shift between the atomic levels of Fe
and Ni. In Ref. 169, this parameter depends very
strongly on the spin (a,/A, =5.8) and on the concentra-
tion, In Ref. 177, In contrast, it was assumed that A
is virtually independent of these quantities in order to
take into account systematically the single-particle
properties of the model. The problem could be solved
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without the use of free parameters. The density of
states D§¥*(e) and the local densities ple=Ni(g) and
Dl=Fe(¢) were calculated for i =tp, and different con-
centrations. The parameter 7 obtained on the basis of
these results for D$¥*(¢) is shown in Fig. 11. The
agreement with experiment is good.

It is interesting to note that the results for the val-
ues of u, p(Ni), and p(Fe) calculated in Ref. 177 were
less good than in the work of Hasegawa and Kanamori,
A possible reason for this could be the influence of cor-
relations on the value of i, for whose description addi-
tional free parameters were used in Rei. 169. At the
same time, as-can be seen from Fig. 11, the behavior
of the asphericity parameter can already be well ex-

plained on the basis of a single-article density of states

with optimal approximation to the real density. For a
further discussion of the Hasegawa-Kanamori approach,
see Ref. 199. |

A different direction in the description of disordered
alloys by means of the Hamiltonian (69) was developed
in Refs. 180 and 181; specifically, the alloy Pd-Ni
was considered in Ref. 180. The difference between
these two approaches was analyzed by Fukuyama.'® '™
He showed that in the approach of Harris and Zucker-
mann ?’ the main attention is concentrated on the dy-
namical effects of the Coulomb interaction, and the
spatial variation of the potential is ignored. Therelfore,
single-article quantities such as the local density of
states are spatially homogeneous, except for the pos-
sible existence of virtually bound states. The scheme
is self-consistent if the equality €4, = €5, holds in Eq.
(69); in this case, one can, in contrast to (71), take
into account some processes of electron—hole scatter-
ing of higher order.

The difference between the Hasegawa~Kanamori ap-
proach'®®?71"® and the Harris—Zuckermann approach'®
is most clearly manifested in the treatment of collec-
tive effects, especially in the calculation of the spin
susceptibility. This is due to the circumstance that
in the construction of the theory of the electron and
magnetic properties of the digordered alloys described
by the Hamiltonian (69) it is necessary to take into ac-
count the random distribution of the atoms of the com-
ponents on the lattice and the influence of the Coulomb
correlation of the electrons on the electron structure
and the physical properties. As we have seen above,
the single-particle characteristics of an alloy (for ex-
ample, the asphericity parameter v} depend weakly on
the correlation effects, but for the collective proper-

ol r_,,,z”"'[‘

03 "

FIG. 11. Dependence of the asphericity parameter Y on the
concentration x (the crosses are the theoretical values and
the error-bar symbols indicate the experimental values), 1"
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ties correct allowance for the correlations is more im-
portant.

9. SPIN WAVES AND THEIR STABILITY IN
1ISORDERED FERROMAGNETIC METALLIC
ALLOYS

In recent years, great interest has been shown in the
study of inelastic scattering of slow neutrons in disor-
dered magnetic metallic alloys.'”® There is a large
body of experimental data on the variation of the spin-
wave stiffness D of alloys as a function of the concen-
tration.

The early calculations of the spin-wave energies in
alloys in the framework of the band model were based
on the rigid-band approximation (Refs. 42 and 193-195).
In this approach, the alloy is described as a pure metal
with appropriately chosen density of electrons and band
splitting. Essentially, the theory of Yamada and Shi-
mizu'®® is in this direction. In 1973, Hill and Ed-
wards'®® obtained an approximate expression for the
spin-wave stiffness D of analloy in terms of the single-
electron Green's functions.

For the Hubbard model with random parameters (69),
the spin-wave stiffness was calculated by Fukuya- i
ma!™ "1™ and by Riedinger and Nauciel-Bloch."™ *'* The
electron-electron interaction was taken into account
in the Hartree-Fock approximation, and the disorder
in the coherent-potential approximation (CPA). Ed-
wards and Hill'®*® gave a much simpler and elegant dert-~
vation of the expression for the spin-wave stiffness in
the CPA-RPA approximation using the general expres-
sions {17 and (18). The decoupling scheme in the RPA
is given in Ref. 200.

The results of neutron measurements of the spin-
wave stifiness of strongly ferromagnetic alloys based
on Ni are given in Refs. 184—-192, and the results are
interpreted in detail by means of the band model. In
particular, in Ref. 191 inelastic neutron scattering was
used to measure the coefficient of spin stiffness of the
alloy Ni;Co, for the concentrations ¢ =0,21 and 0.5
(at room temperature) and for concentration c=0.05
(at T=4.2 and 203°K). The measurements were made
by means of a triaxial spectrometer. It was found that
the stiffness coefficient decreases slowly with increas-
ing Co concentration, and tor ¢ =0.05 the value of D
depends rather weakly on the temperature, Between
the values ¢ =0.21 and ¢ =0.5 the value of D hardly
changes. The theoretical interpretation of these results
is given first on the basis of the simplest model of a
rigid band, and the correlation is described in the Har-
tree—Fock approximation. In this approximation, D
was calculated for the three alloys NiCo, NiFe, and
NiMn. The best agreement with experiment is observ-
ed for the first alloy; the worst, for the last. This is
probably due to the increased difference between the
valences of the alloy’s components. One then uses the
RPA-~CPA approximation. The agreement with experi-
ment as compared with the rigid-band model is im-
proved—slightly for the alloy NiCo and more appreci-
ably for NiFe and NiMn. Nevertheless, it is noted by
the authors that the RPA-CPA approximation gives an
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unsatisfactory explanation of the behavior of the stiff-
ness coefficient in the alloy Ni,_ Fe, for ¢ =0.5.

Thus, the further improvement in the theory must
be based on a more accurate allowance for the inter-
electron correlations. The point is that the Hartree—
Fock approximation strongly overestimates the corre-
lation effects and the tendency of the system to form a
magnetically ordered state. More accurate allowance
for the correlations must weaken the tendency of the
system to magnetic ordering and thus reduce the spin-
wave rigidity. This 1dea was realized in Ref. 201.

To take into account the effects of electron correla-
tion in the calculation of D, Kolley and Ic'I«::nrlLByZﬂFz deve-
loped a scheme which goes beyond the framework of the
RPA and is based on the coherent ladder approximation
(CLA),2%?% j e., on a self-consistent combination of
the coherent-potential approximation and the local lad-
der apprmﬂmatiunm in the particle-particle channel.
It is convenient to use such a T-matrix approximation
for strong short-range interactions and low carrier
density, so that it can be applied to Ni, Pd, and Pt. If
the energy-dependent T matrix is replaced by an effec-
tive interaction of Kanamori 1:3,1'1:1-53#2“'IE as is done, for
example, in the calculation of the paramag netic sus-
ceptibilityzm and magnetnstrictiun,m we again arrive
at the theory of spin waves in a RPA~CPA framework.

The theory of interelectron correlation in the local
ladder approximation in disordered alloys developed
in Refs. 202-204 proved very helpful for the investiga-
tion of spin waves and their stability in both pure met-
als?® and in disordered ferromagnetic metallic al-
luys.zm 210 1, the framework of this approach, and
following Ref. 201, we calculate here:-D for the single-
band Hubbard model with random parameters at zero
temperature. We have determined the correlation ef-
fects preserving the energy dependence of the T matrix.

We rewrite the Hubbard Hamiltonian with random
parameters (69) in the form

H™ = hZu Ealtpno + ; £i Mg+ 2 Uingry, (34)

where #;, and #n,, are the population~number operators
for the Bloch and Wannier states, respectively, with
spin o, and ¢, is the band energy, which is assumed to
be independent of the given configuration {v} of the
alloy. The single-particle potential g} and the bare
interatomic Coulomb interaction Uj take random values
e¥and U’ (v =A, B) depending on whether the site is oc-
cupied by atom A or B. We have the multiple index

{v} R /P vy}, where vy=A4A, B describes the
configuration of the alloy as a whole.

The spin-wave energy w, :qu for cubic crystals can
be determined from the pole of the transverse spin
susceptibility X" (g, w}, which leads to the following ex-
pression for the stiffness coefficient:

B L Te (o 2S5 1
D= 2 (81N, 11::{.“{} lhnnl [-q_’ (I @, o)+ @ )]’ (85)

where 2(S9 ™), =(n, — n.) is the magnetization per site
(n{, is the mean number of electrons per site); ¢ ‘)[”}
is the mean value with respect to the ground state for
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the given configuration {u}; and {***), is the mean over
the configurations. In Refs, 196, 199, and 200, the
following formula was used for alloys:

i
2{(SsH),

. i + - v . s 4 '
[lﬂ < (1S5 g ZaD)™ de lim Jim x5~ (q, m}J_, (86)
which is expressed in terms of the response function
x7(q, w) for the spin current by analogy with (17).

For the Hubbard model with random parameters (84),
the Fourier transforms of the operator of the trans-
verse spin density S lor S5, =(S;)’] and the current
operator J; Lor J=(J;)*], which here do not depend on
the random parameters, have the form

i

S; = ﬁ % ﬂ;‘l‘ﬂkfl'qﬁ

i (87)
g7y == 2} (Ex+q—Ex) EhtPtais

K k

where a;, and a,, are the operators of creation and an-
nihilation of an electron in the state 1kcr}, and N is the
number of lattice sites,

The susceptibilities in (85) and (86) can be expres-
sed " by means of Eq. {87) in terms of the causal
Green’s functions at zero temperature as follows:

(g, ©) = — (8% 52 e

1

=4 | T (AR (B, E4o; 961"
X (E-+a) Ao (— DG (Ee; (88)

7y (4, ©) = —({ale ¢/ eDa de
=— 7 | 5= (ARV(E, E+ o) 67
X (E+ o) M (— @) 1" (E)Dey (89)
where |
A%}{E, E+ o q)
= oty (@) — sy 5 ;—E— il (B, E+ o) 0) D) Gimt (E)

mn

Xﬂ%’m (B, E+o; 0GR (E+0) (a=0,1); (90)
horp{q) = exp (—igRy) O¢ps Ay (q)
=ty [oxp (— iqR;) —exp (—iqRp]; (91)

£[j= 1;’N % gy 0XP [1k (Rg-ﬂﬂj)].

Here, locality is assumed only for the irreducible
particle-hole vertex I 1,1,{1,',"'”“(E,, E+wywi=l ;;{}’L(E, E

+w; E + w, E), and the trace denotes summation {with-
out the spin) over the single-particle states. It can be
seen that the expression (86) is more convenient for
calculations than (85), since the Bethe-Salpeter equa-
tion (80) for =1 can be solved without making further
assumptions about [ ;}{f’}. . The expansion of A and of the
offective current AlY! with spin flip in (89) and (90) in
the first order in q in conjunction withallowance for cu-
bic symmetry leads to the expressions

.- i d4E
v (a=0, 0) =33 Y o (tr (AfH) (E, E-+ o)
x 617 (E + o) 16t (E)Des (92)
ME'(E_, E+ @)= jy—0y 5 % i I{{} 1 (B, E4oi0)

*,._I.._"-d

X ) G!ﬁi{é‘}mi‘ﬁﬂ (B, E+0)GY (E + ), (93)
where we have introduced the notation j;; =—it;,(R; - R,)
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and
Al =a-3: AT E, E+ao; @=q-AM}{E, E+o).

In the trace, j and A*! form a scalar product. Sepa-
rating the diagonal and nondiagonal parts of A{"’] in (92)
and (03), we obtain

¥} (a=0, w)
= =% S ﬁi ar{iG" (E+ @) 61 (E)De + %3 (=0, w), (94)

where

i

W @=00=35 | - (JAw(E E+o)

% K (E + o, E}>£_ (95)
KEW(E+ o, B)
= § Gt (E+ ) imaGrit (E). (986)

Since the configuration averaging in (95) goes beyond

the framework of the CPA, we use an approximation®®

of the type (APH K™, =(A{NK™), so that

Kt (B4, E)=(G" (E+ 0) iG] (B)eus
=%E§k¢ (E+4 @) Gyi (E) Vg =0 (97)
k

and
0 (=0, w) =0,

i.e., there are no vertex corrections, because of the
symmetry under time reversal., Here, %, is the co-
herent single-particle Green’s function with allowance
for the electron—electron correlations (see below).
Thus, on the basis of the CPA we obtain the expres-

sion
i (@=0, 0) =z | 2 3 Guy (E+ 0} Gxy (B) (Veen)t. {98)
r -

Substituting (98) and the limiting expression

. |
Lim = IS4, TS

= o5 D (o)™, Viex (99)
ko

in (86) and going over from the causal to the retarded
Green’s function, we obtain

(100)

|
‘1 i 1N r!
D= iy Im § aB gy 3 Ga(B)— 5 (B (Fieew)

. — k

where p is the Fermi energy. This expression is for-
mally identical with the one obtained in the RPA-CPA
approach'™:1%8+1%% 5p the basis of the Hartree—Fock ap-

proximation.

In the present calculation, however, the CLA
scheme®™ is used for the function %,,. Then the cor-
relation part in terms of the partly averaged causal
functions has the form

Ehito (B) = | g Cioo (BY TV (E+B), (v=4, BY; (101)
HE) =[S+ | 4 Gl B CLo E—E) ], (102) -

i

where 7" is the effective two-particle vertex. The lo-
cal Green’s function G;; {(z), expressed in resolvent
form (here, z is the complex energy), is renormalized
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as follows:

Glio (2) = Fy (2)/ {1 — [15 (2) — 2o (8)] Fu (2)};5 (103)
€15 (2) = &7 + itiia (2); (104)
Folz) = D Fxo (2) (105)
Yo (3) = (2— By — Zo (2))™; (108)

P, (z) =cem(z)+(1—¢c) eg(z)
—[e 8 (2) — 2 (2)} Fa (2) L& (2) — 25 (2)]; (107)

1

= Sng=—-4 3 | dEIm Fo(E). (108)

O ==o

Here, Z, is the coherent potential, and n 1s the mean
number of electrons per site. In contrast to the usual
CPA, the atomic potential £5,{z) lin (107), the index i
is omitted] acquires an energy dependence through the
masgs operator Zj,,(z)} on account of the correlations.
In the Hartree-Fock approximation, the solution of the
systems of equations (103)-(108) simplifies, since in-
stead of (101) and (102) we use the self-energy Iy

— Un%.,, where nj, is the mean number of electrons
with spin o at the sites v:

1

K
Rl = j dE Im G5l (E). (109)

Using the concrete vertex I i{,f}, AE, E+ w; w) = TVHE
+ E + w)} and the substitution v—'{u}, we find from Egs.
(90), (101), and (102) a relation of Ward-Takahashi

type:

AR} (B, E+ o, @) 5,— Ay (&, E+o, 4f

— exp (—iqR)) G} " (E+0) — G5! (B) exp(—igR)), (110)
where
(G (E))ige=(E—el) 8iy— tyy— 20t (E) By (111)

We now consider the question of the stability of the
ground state of a ferromagnet with respect to spin-
wave excitations. For pure metals, this question is
discussed in detail in Ref. 211 in the band model in
the Hartree—Fock approximation and in Ref. 202 in the
CLA. The condition of stability

for the ground state of the ferromagnet can be obtained
from the spectral representation

_ 1 N sipnw’ 3
1+ T ({li ﬂj} — _H 5 dm: o —m’ _.‘|_i3 ISES__E (m,}*
-

(113)

where the spectral intensity /sss={w) > 0 corresponds
to the configuration-averaged system. For small g

and w, the magnon pole

toole (4, @) = (n§—ny)/ (0 —Dy*+ie) (114)

can be separated from the Stoner continuum, since the
spectral weight of the particle-hole pair excitations
tends to zero as g—~0. Comparison of (113) and (114)
leads to the criterion (112). In the given approxima-
tion, the spin-wave damping [instead of £0 in (114)!
takes the form

i —r
vy = Rfin* Imy7 " {0, Dg?)

Dg* : :
= Bn{nfin,{}ﬁ % I &y (w} T Fiy (i) (Vier)?,

(115)
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ag in the RPA-CPA approach,  though here electron-
electron scattering is taken into account.

We now consider the numerical results of the CLA
for D and compare them with the experimental data on
neutron scattering for the alloys NiFe and NiPd. To

make part of the calculation of D in analytic form, we
use the simplified expressiunsm

[1e)

P (B) =~ s (E—e = [1—(5)] 0te—iE]; (116)
| 4

gyt
S S 8 (E—e) (Vaen)i=—211— (%)2]3{29(15’—[1?”1 (117)

N W
k

where v is the band half-width, v, is a quantity of or-
der wa, and a is the lattice parameter, The summation
over k in (105) leads with allowance for the unperturbed
density of states (116) to the Green’s function

Fo(3)=(2/0) (3 —i V1—28); za=12—Z, (@)}, (118)

To make (118) single-valued, we choose the branch of
the %, plane with cut along the real axis from ~1 to +1
for which the square root is positive on the upper edge
of the cut,

Rewriting (100) in the form

. |
De ot _Im S dE I} (E, E)4- T (E, Ey—21I§\ (E, E)],

ﬁn{n?—nl_]l
(119)

= 0

where we have introduced the notation n'.(E, E)
=1, (E’, E), E'=E +i0 and

Hoo' (2, 2) =5 ) Gao (8) T 00" () (Vaen)?, (120)
h

and then applying the residue theorem with summation
over k in (120) with allowance for the approximation -

(117), we find

Eufn

HE’;=?(3EEH“§'#3HH V1—z3); za=E+_iﬂ E2. (121)

205 g . (=) —(1—a]? -
Iy, = i (314“514"313#'—'54‘1 ! Ry i ) (122)
Therefore,
vl K
D= (n,—n,) Im 5 '-’I'E[(zt“ﬂ}z

e L

s 2(1—13)
_1.1«/’1"—-_31 (331+ :1“31 )

. 2 (1—1)
—1 V‘l-—-£1 (3E+ e=ry )]- (123)
The scalar static electrical conductivity o is calcu-
lated in the same approximation as D. As a resuli, we

arrive at the modified Kubo-Greenwood formula

0N S (M5 () — Re [5G ()l = 3, 06, (124)

which contains Green’s functions renormalized by al-
lowance for the electron correlations in the framework
of the CLA., Here, % (p)=N,(u', pn), g =p~-i0, V
is the volume of the system, and e is the unit charge.
Introducing (121) and (122) with the substituting Ilg;
—nMz, ~2, z.—~2F] in (124), we obtain the spin-depen-
dent electrical conductivity [ImZ (") < 0]

uﬁzﬁn[ 2 {Im ig{u*l]’ o Eﬂ; o Re |
x{iVi-z(id—2) + 25 ImZe (1))} ], (125)
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where

2y == [p*— Z¢ (p)] 1w o = ez}, N/ (3n2V). (126)

The numerical analysis is carried out as follows:
firgt, the parameters w, g4 e? =0, U4 U‘B, c,n are
chosen, and one then solves the self-consistent sys-
tem of equations (101)~(108) with the Green’s function
(118). The obtained results are used to find D In ac-

cordance with (123).

The transition region between weak and strong ferro-
magnetism, which depends on the intra-atomic repul-
sion U/” (considered here in the Hartree—Fock approxi-
mation), is shown in Fig. 12, In particular, the solu-
tions with the parameters UA=2, U°=0and UA=2,0U"
--9 were investigated in Ref. 213, but spin waves were
not considered. Calculations of the stiffness coeffi-
cient D [in units of d,=(1/9)wa?] in the RPA—CPA
scheme (see Fig. 12a) indicate instability of the ferro-
magnetic state against excitation of spin waves., The
partial and total mean magnetizations, m”=ny =1y
and m =n, —~n,, are shown in Fig, 12d. The bounded
region of stable (essentially, saturated) ferromagnetism
D >0 is shown in Fig. 13b, and m*> 0 (see Fig. 13a),
which is calculated in the Hartree—~Fock approximation
as a function of the electron density n. The zero of D
at the smallest value of n corresponds approximately
to a Stoner-type criterion,’® whereas the other zero
indicates a change in the type of the magnetic order.

As can be seen from Fig. 14, there are a large num-
ber of neutron data on D for NiFe alloys. As a test,
allowance was made for the interelectron correlations,
although the given scheme is more convenient for de-
scribing the Ni component with 0.6 holes per atom in
the d band than the Fe component with high hole density
(see, for example, the small value of D at c==0.4 in
Fig. 14b). The calculations of D{(c} on the basis of the
CLA are compared in Fig. 14 with the results obtained
i the RPA~CPA scheme,'¥8"® the rigid-band theory, ”
the approach of Ref. 200, and also the data of Refs. 189,
184, and 185 on inelastic neutron scattering. The stifi-
ness coefficient D for pure Ni is close to

FIG. 12. Dependence of the coefficient of spin-wave gtiffness
D < 0 {(unstable case) (a), the static electrical conductivity 0,4

and o (b), the electron density ng {¢), and the magnetization
m” and m(d) on UY (v=A4, B} in the Hartree— Fock approxi-

- mation. The values of the parameters are w, E:“. EB, c, n=1,
-0.8, 0, 0.4, 0.4, respectively.
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FIG. 13. Dependence of the partial magnetization m” (a), the
stiffness coefficient D (b), the Fermi energy g (c), and the
electrical conductivity o0, and ¢ {(d} on n in the Hartree— Fock
approximation. The values of the parameters are w, E:A, EB,
U“‘, UB, =1, 0.2, 0, 4, 3 {a, b, ¢). The continuous curves

correspond to composition ¢= 0.1, the broken curves to ¢= 0.3,

Dy; =555 meV + A%, measured at 4.2 K.%

Calculations for the alloys NiPd were made in the
CLA and these results (Fig, 15) are compared with the
data of Ref, 214, The parameters for the pure systems
were chosen on the basis of Ref. 208. The alloy is
formed with n=cn" +(1 — ¢)n"* and the different hop-
ping integrals are taken into account through the band
width 2w =c(2w)7% + (1 = ¢}{(2w)"*. Note that in the re-
duced units UP4, UMY, and 74— et for all ¢ are redu-
ced to the scale 2w=1. The bare U" are renormalized
self-consistently, and as a result we have the two-
particle vertices TY{E +E). In particular, I'=T{(2)
and '=cl4+ (1 - ¢)T'? are shown in the reduced units
in Fig. 15d.

Thus, the numerical results obtained in the frame-
work of the CLA indicate an influence of electron~elec-
tron correlations on the magnon energy in the long-
wavelength limit w, :qu. Despite the single-band
approximation in the Hubbard model with simplified
band structure and diagonal disorder, physically rea-
sonable values of D are obtained for the alloys based
on Ni, For the energy-dependent two-particle vertices,
locality is assumed, which makes it possible to pre-
serve the single-site nature of the CPA. The spin-

FIG. 14, Dependence of the spin-wave stiffness D in Fe,Niy_
on the composition. The values of D(x) were calculated in the
coherent ladder approximation for the parameter vaules

gA 8 uA UP, n=0.5, -0.24, 0, 2.66, 3.4, 0.6, respectively
[{b) absolute units: 2Zw=4.15 eV, a =4 A]. a) Calculations:
Ref. 196 (1), Ref. 198 (2), Ref, 199 {3), Ref. 200 (4); b) exper-
iments: Ref. 99 (open squares), Ref. 184 {open triangles), and
Ref. 185 (open circles).

165 Sov. J. Part. Nucl. 12{2), March-April 1981

[ T . i - :
BBy g . .
a8 |- Nl ) A B
by
i) ""‘“-__ L3 "'\u/ A
H'ﬁ. .
i1 T b4
“'ﬁ
02 | | 1 ~ 0.3 ! 1 ’
] al 07 03 c 0 a1 02 43
Wi Pd
D-l ITIHV*J'..E H“Jﬂ; h
7| R
‘N.‘..‘\-‘I
4 T —
Jonr
200
10 1 | :
0 a) 1¥i 3 c
Ni Pd

FIG. 15. Dependence of the spin-wave stiffness D{x) {a}, D in
apsolute units (b), the partial magnetization m" (c), and the
effective Coulomb interactions I'” and I' (d) on ¢ in Pd.Ni,_
calculated in the coherent ladder approximation. (2c)¥d (Zw}m,

gPd_ gPNrd M- g 05, 4,15, 0.3, 9.17, 14.11 eV; n°9=04,

aNM=0.6. In Flg, 15a, the broken curve is the calculation of
Ref. 214 and the black circles are experimental values (cf. Ref.
214).

wave damping is small, of order ¢'. In this sense, the
self-consistent method proposed in Refs. 201, 202, and
209 for finding stable ferromagnetism in alloys of tran-
sition metals is interesting and promising. The method
may also be helpful in investigating the dependence of
the spin-wave stiffness of alloys of ferromagnetic tran-
gition metals on the degree of ordering of the alloy.

CONCLUSIONS

The Investigations of elastic and inelastic scattering
of neutrons in magnetic transition metals and their al-
loys is still, from the fundamental point of view, one
of the most interesting directions of magnetic neutron-
diffraction studies. Further progress in the theoretical
description of the magnetic properties of transgition
metals and their alloys is intimately related to the ex-
perimental investigations, which must give accurate
and reliable information about the distribution of the
charge and spin densities, the spectrum of magnetic
excitations, the exchange couplings, the forces of in-
teratomic coupling, and other physical characteristics
of crystals. Magnetic neutron-diffraction studies pro-
vide unique experimental data, particularly on the
spectrum of magnetic excitations.

In the present paper, we have shown that many phe-
nomena In ferromagnetic transition metals and alloys
studied by means of the scattering of slow neutrons can
be described from a unified point of view by using the
Hubbard model. The spectrum of magnetic excitations
of the Hubbard model reflects the dual behavior of the
magnetically active d electrons in ferromagnetic tran-
gition metals., Investigation into the properties of rota-
tional invariance of the Hubbard Hamiltonian shows that
the presence of a spin-wave acoustic pole in the magne-
tic susceptibility is a direct consequence of the rota-
tional symmetry of the system, as for the Heisenberg
model. Thus, the acoustic spin-wave branch reflects
a definite degree of localization of the d electrons; the
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characteristic quantity D, which determines the spin-
wave stiffness, can be measured directly in neutron
experiments. In contrast to the band model of ferro-
magnetism, which is based on the assumption of com-
plete collectivization of the magnétic electrons, the
Hubbard model enables one to take into account corre-
lation effects. Therefore, if the correlation effects
are taken into account sufficiently accurately, the Hub-
bard model enables one in principle to describe a large
variety of not only magnetic but also electric properties
of the crystals. The simple random-phase approxima-
tion already leads to a fairly satisfactory calculation of

_the spectrum of magnetic excitations of the Hubbard

model; this spectrum contains not only the acoustic
spin-wave branch but also a continuum of single-par-
ticle Stoner excitations. The presence of the Stoner
continuum is a manifestation of the delocalization of the
magnetic electrons.

Since the Stoner excitations do not arise in the Hei-
senberg model, their detection and detailed investiga-
tion by means of neutron scattering is one of the urgent.
problems of physics of the magnetic state. Moreover,
it is to be expected that measurements in the “optical”
range will give more interesting results than can be
expected on the basis of the single-band Hubbard model,
which reflects the basic behavior of the system but is
strongly simplified. The Hubbard model admits natural
generalizations that enable one to take into account or-
bital excitation of d levels, s-d hybridization, electron-
phonon and electron—-magnon interaction, and so forth.
We have shown that even the simplest generalizations
of the Hubbard model give a much richer spectrum, and,
moreover, precisely in the “optical” range. The acous-
tic spin-wave pole is preserved if the modified Hamil-
tonian remains rotationally invariant.

The Hubbard model is extremely effective for the
theoretical description of the electric and magnetic
properties of alloys of transition metals. The intro-
duction of random parameters makes it possible to
simulate a disordered alloy of ferromagnetic transi-
tion metals. The Hubbard model with random param-
eters contains as limiting cases the majority of the
models of systems with impurities. Use of the coher-
ent- potential approximation makes it possible to cal-
culate numerous physical quantities observed in neu-
tron experiments in a wide range of impurity concen-
trations. In the calculation of collective characteris-
tics of an alloy such as the spectrum of spin-wave ex-
citations and the static electrical conductivity, it is
important to take into account consistently the correla-
tion effects. In the present work, we have shown that
the energy of long-wavelength spin waves in alloys of
ferromagnetic transition metals can be calculated by
using the coherent-potential approximation to describe
the disorder in conjunction with general arguments
about the rotational invariance of the system. The
method of calculation developed by Kolley and Kolley
uses the ideas of the microscopic theory of Fermi li-
quids. The renormalization of the coefficient of spin-
wave stiffness due to electron—electron correlations
has been calculated self-consistently at zero tempera-
ture in the coherent horizontal ladder approximation
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for the Hubbard model with random parameters. The
coefficient D has been obtained numerically and used to
determine the stability of the ferromagnetic state.
Comparison of the obtained results with the experimen-
tal data on neutron scattering for alloys based on Ni
shows that in their region of applicability our calcula-
tions agree well with the experiments. At low density,
the proposed approach makes it possible to take into
account more accurately the correlation effects than in
the random-phase approximation.

The theory of magnetic phenomena in ferromagnetic
transition metals and their alloys is far from complete.
The theory of the scattering of slow neutrons in ferro-
magnetic transition metals based on the random-phase
approximation requires a number of refinements.}3¢ 2%
In a more accurate zia.};'q:arnt:u-:iIm'a.ti.«::m,,21E the spectrum
Hwy = €y4q — & T & of Stoner excitations has the form

horg = ex+q— &+ 5 (k+q).

Experimental results must be used to judge the extent
to which the random-phase approximation is applicable.
At the present time, there are also weighty grounds for
believing that a more detailed theory of inelastic neu-
tron scattering in ferromagnetic transition metals must
take into account the dependence of the Coulomb corre-~
lation on the quasimoementum and the orbital degenera-

cy.

The further theoretical and experimental study of fer-
romagnetic alloys of transition metals is of great in-
terest. Recently, scattering of slow neutrons has been
used to measure the coefficient of spin-wave stiffness
in partly ordered ferromagnetic alloys (Refs. 185,

217, and 218). The recent theoretical studies on part-
ly ordered ferromagnetic a.lluysm'zz" use many ideas
described in the present review, in particular, Ref.
222, which is a development of Ref. 119, develops a
theory which permits calculation of the coefficient of
spin-wave stiffness as a function of the degree of atomic
ordering in ferromagnetic alloys of transition metals

of the type Ay sBy.s.

It is agssumed that the lattice of the alloy can be rep-
resented in the form of two interpenetrating sublattices
of the components A and B, all the nearest neighbors
of the atoms in sublattice A belonging to sublattice B
and vice versa. The degree of atomic ordering is char-
acterized by a quantity p, the probability that atoms A
(respectively, B) belong to the sublattice A (respective-
ly, B). The probability that the atoms A (respectively,
B) belong to sublattice B (respectively, A4) is 1-p,

The ordered and completely disordered states are
characterized by tte values p=1 and p =0.5, respec-
tively. The parameter p is related to the usually em-
ployed parameterS of the long-range order by S = 2p - 1.
The electron subsystem is described by the Hubbard
Hamiltonian (69). The coherent-potential method is
used to describe the structural disorder. The stan-
dard single-site treatment makes it possible to obtain

a system of equations determining the coherent poten-
tial, the population numbers, and the effective poten-
tial. To calculate the energy of the spin waves, the |
general equations (17) and (86) are used, as in Ref. 199.
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The interelectron correlation is taken into account in

the random-phase approximation. The configuration

averaging is performed along the lines of Velicky’s
212

approach.

For a simple model of an alloy, the coefficient of
spin-wave stiffness is calculated numericaliy as a
function of the atomic order parameter p at zero tem-
perature. The choice of the parameter corresponds to
the case of the alloy NiFe although the density of states
employed is too simplified. This last circumstance
hinders direct comparison hetween the theory and ex-
periment, particularly in view of the fact that the neu-
tron measurements of D asg a function of the degree of
atomic ordering have been made for NigFe and Pd,;Fe,
Nevertheless, the calculated behavior of D basically
corresponds to the experiments, i.e., increase in the
degree of disorder leads to a spin-wave “softening” of
the system. Further theoretical and experimental
study of such systems will be of great interest. The
method of inelastic neutron scattering is the only meth-
od of verifying theoretical results in this problem.

Further comprehensive theoretical and experimental
study of ferromagnetic transition metals and their al-
loys will deepen our understanding of the nature of
magnetism and more precise model theoretical notions
and will establish the applicability of approximate data
on the magnetic characteristics of such alloys, which
is important for applications and understanding of the
magnetic and electron properties of this extensive
group of materials.
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