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SELF~CONSISTENT THEORY OF ELECTRON
CORRELATION IN THE HUBBARD MODEL

A.L. Kuzemskii

The Dyson equation for the two-time thermal Green’s functions is used for a self-consistent
calculation of the single-particle Green’s functions in the Hubbard model. The method
makes it possible to obtain a generalized interpolation solution of the Hubbard model valid
for arbitrary relationship between the effective band width and the Coulomb repulsion
parameter. Two variants of the theory make it possible to obtain two exact representations
for the mass operator, which are used to obtain approximate solutions in the atomic and
band limits.

1. The method of two-time thermal Green’s functions [1,2] is convenient and effective for investi-
gating systems of many interacting particles. Recently, a helpful reformulation of this model has been
given; it makes it possible to operate with the exact mass operator and perform the decouplings in the final
stage. This approach is based on the introduction of irreducible Green’s functions [2-6], which makes it
possible, without recourse to a truncation of the hierarchy of equations for the Green’s functions, to write
down the Dyson equation and obtain an exact analytic representation for the mass operator. Approximate
solutions are constructed as definite approximations for the mass operator.

The method of irreducible Green's functions has been used in a large number of investigations into
the self-consistent theory of phonons, the Heisenberg model, the spin—phonon interaction, ferroelectricity,
and more (see [2-6] and the literature quoted there). In the present paper, we consider the application of
this approach to the Hubbard model, which is one of the ones most widely used to describe magnetic pro-
perties and the transition from the metallic to the nonmetallic state in transition metals and their chalco-
genides [7, 8].

The Hamiltonian proposed by Hubbard [7],
U
H= Z ti-]»a,.g*‘aj;f-.—z—z [ (1)

3 .
depends on two parameters: the effective band width w= (N“Z | t,.jv) and the energy U of the intra-atomic
ij

Coulomb repulsion of the electrons. As their ratio changes, so does the band structure of the system. Thus,
to describe transitions in the system, it is necessary to obtain an interpolation solution for the Hubbard
Hamiltonian valid in a wide range of values of the parameter z = w/U from the atomic limit (z — 0) to the
band limit (z > 1). The method of irreducible Green’s functions makes it possible to construct such solutions
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systematically.

2. Following [9,10], we introduce the single-particle Green’s functions

Guo(8) =Cas (1) a5y =18 (1) <[apo (1), ab]>=

-co

d(l) g 7734 .dm —-iwii ¢ d&)'
—;e G,w(m)—j 2—n—e -——j‘

2 o (eﬁm’_*_i)]ka(m,)r
ezl

7
bt ()]

where P=(kT)"*, J..(») is the spectral intensity. The equation for the Fourier transform G, (o) of the
Green’s function has the form

U .
(0—e4) Gro (0) =1 + FZ Qs ol s gomolig o B @)
pq

By definition, we introduce an irreducible Green’s function that does not contain renormalizations of the
average field,

1€ @ ¢ p,00p14,~ollg ol Gaot Do= «ak+p,aapiq,—aaq,—alahu+ P a=87,0¢1g,~6) Gro. &)

The irreducible Green’s function in (?) is defined in such a way that it cannot be reduced to Green’s
functions of lower order with respect to the number of fermion operators by an arbitrary pairing of operators
corresponding to one instant of time. Substituting (2) in (2), we obtain

¥

U ir
G (w) =GI:F(0)) +Go N‘ Z <<a'k+11<ua:+q,—aaq, —ol@us™ . 4)
pa

Here, we have introduced the notation

U
Grjxm (00)= ((')_SI:ZF ), SJ:F =g+ _IV—ZI {Rg,-s>.
q

To obtain the Dyson equation, we must express the Green’s function "€Ala..*} on the right-hand side of (4) in
terms of the total Green’s function G.. (o). For this, we differentiate this function with respect to the second
time: —i(d/dt)'"€4; ai,* (t)?. For the Fourier components, this is written in the form

(0=,) Al gt Yu="C[A4, @t 10+ %Z (A1} o yomottivese (5)

The anticommutator in (5) is calculated on the basis of the definition of the irreducible part:
¢ [ah+lv,ua:+¢1,-—uaq,—d’ o ([ah+p.oa;+q,—aaq,—c"(a:ﬂ,—daq,—ﬁ)akw.a’ ak§+]+>50- (6)

Substituting (6) in Eq. (5) and introducing in it, as in (2), a2 Green's function irreducible with respect to the
right-hand operators, we obtain

Gha((')) =GkaHF(m)+Ghanp(m)Phu(m)GkaHF((‘))a (7)
where we have introduced the following notation for the radiation operator:
u: u?
Pulo)= F 2 “((ak-qrp,ca:ﬂ,—aaq,—a IarT—uaril,—uakn:-l,u»u“ = ﬁ E Gp.lar (p,qir, s; @), (8)
pygrs pgrs

To separate the mass operator, it is necessary to separate the connected part of the irreducible Green’s
function in (8):

' U .
Gae (P, qlF, 53 ©) =Lyo (p, glr, 5, 0) + NEZ ZLW(p, glry, 53 ©) Gas (@) Gas (B, qulr, 55 ©). 9

T8 Pals

Here, Lw(p, g|r, s o) is the connected part of the Green’s function G, (p, g|r, s; ©), which in accordance with
the definition {9) does not contain parts connected by one line Gi"F(w). After simple transformations, we
obtain from (7)

Pro(0) =Mi(0) +Mis(0) Gie™ (0) Prs(0), (10)
where

U?
Mm(ﬁl)'-_-ﬁzlm(l’, g7, 8, ('))- ‘{11)

pars



Finally, we obtain from (7) and (10)

Gro(@) =G (@) + 1™ (@) Mio (0) Gro{0) . (12)

Equation (12) is the Dyson equation for the single-particle two-time thermal Green’s function Gu.(®). It has
the formal solution

Gku(m) =[m_ekaHF—Mhu(m) ]—i- (13)
The expression

M ((ﬂ)—*—zg1 C A R P S A S (14)
ko NZH k+p,0%p+q,—ollg -l by —olbrys —cllpts, o/ 0 i
pars
is an exact representation for the mass operator of the single-particle Green’s function for the system of

correlated electrons in the narrow energy bands (the superscript ¢ in (14) denotes the connected part). The
expression (14) can be written in the more convenient form

di
Mo (0) = j ( o’ +1)——‘j E—ei“' 2 '(a:—-aru.-oa:w,oakw,u(t)a:ﬂ,—a(t)aq,-o(t))”'°=
i
e pgrs
1% do' .
. fa’ 1.11 r—1 —~ik{Ry—R;) .ﬂ+ imollieg . lr,c'
ol Rt C +1)U2j N Z' e (@ga*ny-attics (D) 1o () (15)
—00 135y

The expression (15) for the mass operator M of the single-particle Green’s function of the Hubbard model
is exact and valid for arbitrary z. It can be seen that the method of irreducible Green’s functions is closely
related to a definite method of projecting the higher Green’s functions onto the original ones; as zeroth
Green’s function, one chooses a nonlocal Green’s function renormalized with allowance for all renormaliza-
tions of the average field. The representation (15) is more convenient for obtaining approximate solutions in
the band limit since it explicitly contains the factor UZ, but, in general, it can also be used to obtain
approximate solutions in the case of strong correlation. To obtain approximate solutions, it is necessary to
make definite assumptions about the approximate expression for the connected part of the correlation function
on the right-hand side of (15).

3. By the introduction of irreducible parts, we have separated all the renormalizations of the
average field, i.e., all the equal~time pairings. Different equal-time pairings in (15) will lead to different
approximate solutions (see [2-6,91). We first make a simple binary decoupling:

<ar —olrys, —aah+c o@hp, +(t) Aprq—s(t)q-o(t) > °m Onten+20rs0,0400r, q<ah+p olpip, o(2) 2 a,4q- ,ap,q —a(2) ><flq —olly, (). (16)

We then obtain

dw; dw, dw, .
M""p(m)_sz,[ ekt {n(mi)[1"’”((02)—"*(033)]+n(m2)n(m3)}<g;w+q,—n(ml)gk+mG(mz)gﬁv'ﬁ(mf‘)' (1mn

(o+m, W2—@;

Here gi.(0)=—1/n)Im G, (w+ic).

The binary decoupling was used in [9] to calculate the mass operator in the paramagnetic state. In
the language of the diagram technique, the binary approximation corresponds to a simple vertex in the mass
operator and can be used outside resonance regions of the collective excitations when the density of quasi-
particles is sufficiently low. Equations (12} and (17) constitute a self-consistent system of equations for the
single-particle Green’s function in the framework of the binary approximation. Choosing a particular
initial representation for the function gw(®) on the right-hand side of (17), we can calculate the Green’s
function Guw. In principle, substituting the result obtained once more in (17), we can find 2 more exact solu-
tion. In the band limit, a reasonable initial approximation that admits such an iteration is g () =8(w—e).
At the same time we obtain from (17)

[J' IVhpf
Mo (0)=—) ———. 1s)
N @, —Qupy
Py
o
Nkprz=”p+q,~a{1”nk+p,o—nq,~o]+nh+p,unq,—o= Qupg=—EprgT T €0 19

A mass operator of the form (18) for the Hubbard model was obtained earlier in {12] by Langer, who used the
equation of motion for the second-order Green’s function and an approximation of a density expansion type.
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We now obtain an equation for the mean population numbers in the binary approximation. For this,
following [13], we represent the spectral intensity of the Green’s function in the form

1 rm((ﬂ) 1 Phu(ﬁ))
(@)= 20 () 8 (0—Eyg) + N2 20
gro(0) = — RS (1—0e) 8(0@—Epe) + — T o E (20)

where

Uy o o ;
Too(0) =—Im Mo (0ie) =n 1z YN (0-Qu),  Erno=ess™+Re Was? (Be) =es®™ 5, o= o

»a - @~ypq
The unknown factor (1—ay,) of the delta function on the right-hand side of (20) is determined by the normaliza-
tion conditions

E dwgku(m) =1,

whence
U ‘Nizq
Clye = = ——— (21)
" N? " (Qkpq"“EIw)

With allowance for (21), we find an equation for the mean population numbers:

m_z n(E',,U)-F- Zl o Nﬁ’; )z — [n(Qupy) —n (Ei) 1. (22)

Thus, the mean population numbers are determined in a self-consistent manner from Eq. (22). The first on
the right-hand side of (22) describes the effects of renormalization of the energy of the particles in the
average field (from which Stoner’s magnetism criterion is obtained), and the second describes the effect of
two-body collisions of quasiparticles in the second order in U. The density of quasiparticle states in this
approximation is equal to

Da(0)=N""Y", o) =N}, {(1—a40) 8 (0= i) F 0t (0~ L) ). (23)

The average energy of the system in this approximation is determined by

<H>=——Z j (m-l"ak)lka(m)dm———z (Erotes) n(E,w)+(AE) ,

he =00

where

1 U Ny
(AE) = — ﬁﬁiz E,ﬁth [(Eroten) n(Brs) — (Qupeten) n(Qupa) ]

is a quantity whose structure is similar to that of the second-order correction to the energy in the many-
impurity Anderson model or the Hubbard model with s—d hybridization [14]. In the band limit, the second
term on the right-hand side of (22) is small. We can therefore attempt to obtain a magnetism criterion in
the given approximation. For this, following [15], we introduce the mean number of electrons n="/(ny+n,)
and the magnetization m="/,(n,—n;). Denoting n.=f(e; es+Un-s) and considering the condition for the existence
of solutions of the equation

=1/of(e;; eatUn—Um) —/af (e5; extUn+Um),

we obtain a criterion for the occurrence of magnetism in our system. It has the form

N+ Y Vs () gaa (o)A () >1. @4)
k
Here,
U Nipg—Nisg U Nip—Nby
v. k)=U{1+ } A= e Qune) =1 (s +Un) .
l ZNZZ[Qh,,q~(8k+l7n)]2 _ W2 T (o Ty 7 L (Cee) st Un) ]
q

In general, one can assume that (24) is a generalization of Stoner’s criterion for the occurrence of ferromag-
netism in the Hubbard model. The relation (24) takes a form closest to this criterion when one can assume
Uer(k)=U:(0). Then from (24) we obtain
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UeDo(e,}—A (g7)>1. (25)

It can be seen from this result that the occurrence of magnetism in the system is determined by the eleciron
density of states. The occurrence of the renormalized quantity U_,. and the parameter A is natural when
a more accurate allowance is made for the correlation than in the Hartree—Fock approximation, which leads
to Stoner’s criterion. It is well known that in the Hartree—~Fock approximation the tendency of the system to
form a magnetically ordered state is strongly overestimated. As we have already said above, in the band
limit the representation (17) for the mass operator can be used for iterative calculation of the higher (in the
interaction parameter U) orders of the mass operator, for which it is necessary to substitute (23) in (17).
Thus, the proposed self-consistent procedure makes it possible to construct a perturbation theory for the
mass operator. Because the resulting expressions are cumbersome, we do not give them here hut refer to
[11], in which the use of a two~pole representation for the spectral density (two delta functions) as initial
approximation is also considered.

4. In the region of resonance of the single-particle and collective excitations the binary approxima-
tion breaks down. In particular, to describe a magnetically ordered state it is particularly important to
take into account the contribution of the spin-flip processes to the mass operator. The method developed
here permits this in a simple and perspicuous manner. For this, we perform in (15) the following different-
time decouplings:

@t Ry olts_o (1) 856 () DRy ghy—o () 2 <a55% Ais )+ <aiu+a.i-—caitn(t) ai(t) ><a.:-0ai—U(t) >+
(aj(,“a,-toa,-_‘,(t)a,-.,(t) )(aj-.,aita(t) . (26)
Then the mass operator (15) is written in the form '
do’ .
S YN Y ey
DY

]

o 1
Maa0) =M (0) + s (@) His" (@) = 5=
2nY o

T 1 1
{ j dE'nF (— ? Im«aiglaj¢+>>3+n) nB((Dl"'E) (— ‘; Im((n,-..dn,-_q))m'_EHE) -+

—o0

o0

| aEne(®) (— ni Tm€ai—ola; sV s pse ) na(o'—E) -—:— Im((a,«_aa;.,la;.,*a,-fq))or_“,-s) } @7)

-

Here M. (o), Mi'(0). Mi'(w) are the contributions to the mass operator that take into account the collective
motions of the electron density, the spin density, and the pair density, respectively;
ne®=lexp (w/0)F1]-%

We consider, for example, the calculation of the contribution Mx"(®) in the simplest approximation

. 1% do’ , ) < dt
Mi _— Bw 2AT—1 —iR(Rg—R)) et tg 2 B
b @)= f (@)U Y e [ oo astau(®)) (i K@),
—_— k] —o0 (28)
Kij(t) =< (nj—c—n-c) (ni—c(t) '_n—o) >.

If we restrict ourselves to the static approximation for Ki(t), i.e., we set Ki(#)~Ky(0) (see [5]), then

from (28) we obtain
el UZ K
Mo ((ﬂ)=—1\7 E | J‘

¢ =

dE (ef®+1) { - i— Im G,q(E+ie)} (n.&tEK, ) ne(E). (29)
o—FE i

Equations (29) and (12) are a self-consistent system of equations for the single-particle Green’s function G,
in the given approximation. Taking as initial value ge.(0)=>0(wo—e,), we obtain from (29)

W @)= T Y (0o - HEL. (30)

Simple estimates of M..* and M. can be obtained similarly. A more accurate calculation of the mass
operator (27) and the collective Green's functions and an application to definite physical systems will be
presented in a separate paper.
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5. In the present section, we consider the scheme for calculating a second exact representation
for the mass operator. This representation is also valid for arbitrary z but is more convenient for obtaining
approximate representations in the strong-correlation limit since it explicitly contains the factor It . As
zeroth Green’s function, we again choose the nonlocal Green’s function renormalized with allowance izor all
renormalizations of the average field. In a number of papers [16,17] a perturbation theory has been con-
structed in the atomic limit on the basis of the local zeroth Green’s function of the atomic limit: G=(w—Un.)/
{(0—U)®. As was noted in [18,19], this leads to inaccurate results since even in the atomic limit the solution
is definitely nonlocal, i.e., one must from the very start take into account nondiagonal elements of the
solution. If one attempts to dispense with the method of Green’s function, it is necessary to construct a
systematic perturbation theory in the atomic limit, which is a very nontrivial problem because of the high
multiplicity of degeneracy of the energy levels of the unperturbed Hamilionian. At the same time, it is
necessary to solve the problem of volume divergences and construct a special variant of the very cumbersome
diagram technique [19]. We mention here that in [19] a method was formulated for constructing an effective
Hamiltonian in the Hubbard model by a unitary transformation and it was shown that the simplest — Heisenberg
— interaction is the main exchange interaction in the Hubbard model. In the present paper, this group of
questions is not discussed, and we merely calculate the excitation spectrum of quasiparticle states of systems
within the framework of the method of irreducible Green’s functions, which gives a self~consistent scheme of
systematic construction of generalized interpolation solutions of the Hubbard Hamiltonian valid in a wide
range of z.

The construction of the mass operator is based on the introduction of irreducible parts for the
Green’s function Gy.(t)=(a.(t); o5*», which is written in the form
Gio(@) =CauiaptVe= Y (bl died =Y\ Gh(@),  diar=nsriaom). " =us; nis™= (1=n0), (31)
af af

where Gi£ is the matrix Green’s function

- { dix dive | dfio) {dise | dF o) |
Gijo (@) = <<<d_ ")|<d;;od,-_o>>>w = [<< roldiad (ol dived J (32)
L {di—s | djsop {di-o | di-c)
the equation of motion for its components having the form
(0 — Ea) GSS ((D) = 6ij6a)5n—-cra + Ztiz«n{a—calu =+ daiabu,—a!dj;:x»u- (33)
Lo=i
Introducing the matrix notation
— {0 — E,) 0 _ n_st 0
BE= [ &= [ o (34)
TR I il O
we rewrite Eq. (22) in the form
{Eéijc(m) - ‘5655}% == Z sy «niioalu + aaiobiz,-afdj:g»@. (35)

I
By definition, we now introduce the matrix irreducible Green’s function D.'"(») :

_ . otin+ Giabas ol Ayt D (i st + aigbu ol dit) y AL e ey (B e
I, ir o =[ 1_0 1o igYil,~o!@jp0 a~ lo ioVil,—giWj—g ]- {[ ] X[Gi'aGi‘g]—' [ ) ] X[G 'o‘G ' } (36)
B S N AT YA P = LA SRR V5 to G

The coefficients 4, and F; are determined from the condition
<[{ﬁiljr}aﬂs djﬁa]+>50. (37)

Calculating the corresponding commutators in (27) and equating the terms proportional to §,, and 6

. res-~
ij 3
prectively, we obtain (i # 1)

{‘Eil}aﬁ it a'(<dx‘ﬂ—aal—a>+<d:‘—ﬁ—ual+—u>) (n—uﬁ) _1’ {Eli}aﬁ = {<nlﬁ~ania—c>+ aB (<aiﬁai+-aal—cdla+>“ '<aicai—ualtaala+>)} (n—aﬂ) _i- (38)

The part of the higher Green’s function that we have expressed in terms of the original Green’s functions
can be conveniently expressed by means of the zeroth-order Green’s function containing all renormalizations
of the average field:
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+a' +o’
B

— ~4i '+ ya’— a o' —
{EGi; — 08} ap = Ztil {[A—la' ] X[Gnij1 Go; 11— [B~u’ ] X[Goz;+ Gu; ] } 39
la’ i L

By means of the Fourier transformation Go;=N"' Zﬁoq explig(R: — R;)] we can find the explicit form of the
4

matrix Gog :

[ et

The coefficients @, b, ¢, d are equal to

[n_,*'b n-.d
n_stc n.."a

] {ab —cd)~t. (40)

‘;} =(m—Ei—N"Eez(A*=(— D) - B (1 —q)) ), ;} =8 Ve a7 (=0 - B (- q)). (41)

T

Substituting (40) in (26), we obtain

B 1o (0) =Cog (©) +Coq (0) T Dia(w), Dy = {(( Z z,.,D,.‘,',um;a)) } : (42)

Thus, to obtain the Dyson equation we must calculate the matrix D, (w). For this, we differentiate this
matrix Green’s function with respect to the second time:

~ i—;—t (( Z[‘t,-,ni,',“; oo (1) )) : (43)

Separating now in Eq. (42) the Green’s function irreducible with respect to the right-hand operators in the
same way as in (26), we obtain the Dyson equation

Go(o) '—:goﬂ(m)+50?(m)ﬂw("))§q(m)- {44)
The mass operator has the form
an(m)'—' ﬁqc(m)z o {Ztutw‘«ﬁulrlpm}'”»oc},1 -t {45)
tm

The formal solution of the Dyson equation (44) has the form

(o) (i)

1

aqo((ﬁ)={G-oq_l((u)—ﬁqu(m)}_‘= T T T T (46)
det (Go ™t — Moo) ( c +qu—+) ( a - __Mq0++)
Ry~ g
Thus, the problem of finding the Green’s function G, has been reduced to calculating the matrix
elements Gt and M.
6. We consider the zeroth-order Green’s function (40), In accordance with (31), the total zeroth-
order Green’s function G.(g, ®) is equal to
Guolq, @) =(ab—cd)(n_ga+nbt+nd+n.gtc)=
o—(n_*E-+n-oE,)—Mq) (47)
(w—E,—n_s"h(q)) (0 ~ E_—n.s*2(g)) — n-sn-s"As (q) As (9) ’
where
P 1 E+3 —_ ES —_ — 1 =T L —_ *F —_
7~;(<1)—~’;—_:—;Z e(A**(1)— B**(v—q)), 7»:(9)—7—_-}—};&(‘4 (—=1)—B*(1—-9q)), -

Ag) ={(n-s") (Mths) +(noot)  (Aetha).

The Green's function of "zeroth" order (47) has a two-pole structure close to the Hubbard III solution [20] and
Roth’s solution [21,22], but takes into account more accurately the nondiagonal matrix elements since it
contains all renormalizations of the average field. In particular, the Hubbard III solution gives the local
mass operator.
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The equation for the poles of the Green’s function (47) has the form

{(m_E+_zv-ﬂze,(w(-r)—BH(r—qj))(m—E-—N-*Z&(A“(»r)—B——(r—q))) -

T

Nt Z (A (—1)—B* (71— q))N"Z:I g (A (—1)— B (1—9q)) }= 0. {49)
The spectrum of quasiparticle states consists of two branches:
©02(9) =2 {(Es+E_+a,+b,) [ (E.+E-—a—b,)*~4ed]"}, ay=0—Ei—a, by=w—E_—b, {50}
Thus, the spectral intensity of the zeroth-order Green’s function has two peaks separated by the distance
0.0) = 0(0) = (U =a = 1)t —ed) ~ U (1 - L2 Y o, (51)

We now consider in more detail a comparison between our initial approximation (47) and the other
well-known solutions of the Hubbard Hamiltonian in the case of strong correlation. For this, we rewrite

Go,(®) in the form
{ a db-'c ! d b da~'c y*
n-u+ - n—a+ } 7{ n_g~ - n_q }

G = {52)
(0) [4 a db~'c y ! b da~'c y*
b { n_g* n_,* } { P R }
from which we obtain for the total zeroth-order Green’s function
n_t(1+¢e/b)  n_,~(1-+d/a) n_g gt
G (g, w)= + ~ -+ , (53)
ol 0) =~ b—cad o—E-—n W e-FE.-n W
where '
nogtn Wi ,=N-" Z t;expl—ig(R: — Ry ] {(<a,-*'_(,n,.o*aj_(,)+<ai,0n,~ﬁa,-f,>) +(nEnsy+
izkj
{a ;oa;fdai,..aa,-‘,*)—(a,«uai_oa,tﬁaju+)) } {54)

are the shifts for the upper and lower bands due to the correlation of the electrons. In this form, the
solution (52) is very close to the solution obtained in the case of strong correlation by Roth’s method [21, 22]
and the method of moments [22,24]. The expression (54) for the band shift obtained by the method of irredu-
cible Green's functions coincides with the results obtained by these methods except that the band shift (54)

is different for the upper and lower sub-bands and does not contain terms independent of the quasimomentum.
The reason for this is that the expression (47) takes into account more accurately the nondiagonal structure
of the solution since all the renormalizations of the average field are summed. Usually, in the atomic limit
in Roth’s method and the method of moments one retains in the band shift only the part that does not depend
on the quasimomentum, which corresponds precisely to the neglect of the nonlocal terms.

In our approach, to obtain further approximate solutions from the representation (54) it is necessary
to compare the collective correlation functions on the right-hand side of (54). For z — 0 and n,4n..<1 we
can, following [25], assume that the correlation functions <a;.ni.*a; ), <@i-i®a;sd, and (a.a; .a-0:"> are
small. From (54) we then obtain the band shift

n_.,+n_,‘W:_,=N"Z tnimi—sYexpl—ig (Ri~R) 1. (55)
%]
The solution (55) goes over into the Hubbard I solution [7] if we make the additional approximation (n..m._,>~
n_,’; we then obtain
o 1'—?1-,;
o-U—en., o—e,(1—n.;)

Gilg 0)= (586)
Thus, the use of the representation (47) as the Green’s function of the "zeroth" order makes it possible to
obtain the well-known solutions of the Hubbard model as special cases; the conditions of applicability of

these solutions are discussed in the quoted references. The approximations used in the present paper to
obtain these solutions are always associated with the standard decoupling procedure that expresses the higher
correlation functions in terms of the lower ones. Namely, the use of the method of two-time Green’s function
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makes it possible to see clearly what correlations are omitted in the total correlation function to obtain any
particular well-known approximation, and this makes it possible to construct approximate solutions systema-
tically. Note that the parameters A,(q) in (48) do not depend on the frequency. Such a dependence, due to
inelastic scattering processes, arises, as will be shown below, on account of the mass operator,

7. Let us consider the corrections due to the mass operator. The renormalized spectrum of the
system will be given by the equation

{( c M) (—-f’-_-—M;; )- ( ° +M;,‘) (—d:+M}; ) }‘=0, (57)

(2 —a R.g g

and is essentially determined by the nature of the approximations used to calculate the mass operator. The
total Green’s function G.(gq, ®) has the form

G.(g, 0)= ! {

1 spptt 1 — 1 —
j —n.*M e (D—Weg M o — MY+
det (G, — M) Feng Moo )+ ——(b—no M)+ o (dFns Mo )

n_g .

1

N5

(c+n_sMy) }= [o—(n_t*E +n_E)-2(q, @) Y (0—FEi—n_Ai(g, @) (0—E —n_*].(q, @) —

s N R:(g, ©)A: (g, @)1, (58)
where
%i(g, 0) =2, (0)— (75T M= (0), A3{q. o) =l (g)+(n-"/n_*) M7 (o),
N E i i

2 . ; (59)
J(q. @) =A(g) Fr-s*noe (M (@) + M (0) ~Mu* (0) =M~ ().

The corrections due to the mass operator occur in (59) as additive corrections, which is very convenient for
estimating the contributions of different scattering effects. The solution (58) is an exact representation for
the total Green's function @,(g, ®) of the Hubbard model. Here, no approximations have yet been made;

all the average-field effects have merely been separated in the zeroth Green’s function. The use of projection
operators has made it possible to cast this exact representation in the two-pole form. Therefore, this
representation is more convenient for obtaining approximate solutions in the region of strong correlation,
where a decoupling into two sub-bands occurs. To find (58), we write the exact mass operafor in terms of
the correlation functions:

— o — o d(ﬂ' . wdt - fat . T r
(BT B o= _jxm-—_?(ew 1941y _L"z}? e Nt Z e Bt g (DD (6" (60)
By introducing irreducible parts, we have separated all the equal-time pairings. As in the preceding case,
we now perform the possible different-time pairings for the correlation function on the right-hand side of (60),
obtaining
ir, - -3 -1
<Dm§,ﬁ9s;,a(i) =Lt a,.{t) )<n,-p_an,~_.,(t) YHans TR, () )(n,«fua,g(t) >+§<bn§v_‘,a’g§(t) »X

(B3t 02 (8) ) Bl ol Z o () X< a30¥ 010 (£) Y+ Qe 1o (8) Y1 S by o (8) Y 0ul@not byy —a(£) VX
CM TN € D ST Y ) DY TR JON (5 D 0. T MU S (S DX C IR M (DR (61)
The quantities in (61) can be interpreted in the language of the theory of alloys as scattering corrections,

resonance-broadening corrections, and interference corrections [10]. As an example, we calculate the
simplest scattering correction, i.e., we shall assume that

(D F1r D;:a) = (a,mc‘*'am(t) > (njﬂ_qn?_u)= <(1ma+alc(t) ? {n—apn_ﬂa-f*Kijap (t) } 1 Iffjma (t) = (njﬂ—o_n—o”) (n?—a(t) _n'(’a) >- (62)

my-p

The first term in Eq. (62) describes the scattering of quasiparticle excitations with spin o in the average
field, and the second the additional momentum transfer on scattering. For qualitative estimate of the second
effect, we use, as in (29), the static approximation K (t)~K;*(0). Substituting (62) in (60), we obtain

_ T do’ T dr .
(B @)= | —(;:‘% (e o+1) | e - ¥ expl—ig(R—R) 1%

iilm

Eirlm; f da,n (o) e‘“"{ — ﬂi Im Gy o{@,Fie) } (n_fn_2+K.7(0)). (63)

—

Equations (62) and (58) are a self-consistent system of equations for the single-particle Green's function
Gi(0). For a simple estimate, we take the expression (56) as initial approximation. We then have
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n_ i—n_
.8}~ N- _,=K.<=b+_5_,;={ <+ }
{BM D} as ;'qu oK S n_tr_ 2} p el s e | {64)

On the basis of the mass operator (64), we can explicitly find the energy shift and damping due to inelastic
scattering of quasiparticle excitations, which has significant advantages over {20], in which explicit calculation
of the analytic form of the mass operator for different corrections was very difficult, Note that for the
systematic construction of solutions it is necessary to calculate the collective correlation functions of the
electron density, the spin density, and the pair density. We propose to consider this gquestion separately.

8. Thus, in this paper, using the method of irreducible Green's functions, we have obtained for the
mass operator the general expressions (14) and (60), which enable us to construct interpolation solutions of
the Hubbard model systematically in a wide range of the parameter z from the atomic to the band limits, In
particular, one can directly separate the approximations for the mass operator that do not violate the quasi~
momentum conservation law in the system. This is particularly important in the band limit, i.e., for the
metallic phase [26]. Indeed, in the case of very weak correlation, when there is no decoupling into sub-bhands,
one can determine the Fermi surface in the manner of Luttinger [27]. If when w tends te some fixed value
s the damping Ty (@)=—Im M.{0+ie) tends to zero, then

(o)
[o—er" " —As (@) 1"+ 1" (@)

In the general case, the set of quasimomentum values k satisfying the equation

ghu(m)=

2.«’6 (m"ekaF_Aka(sf) ) ]m—»z i (65)

sl—skuﬂF_Ahq(af) =0, (66)

belongs to a surface in the momentum space, which is called the Fermi surface of the interacting system [27].
In {26], Edwards and Hewson asserted that the Hubbard I sclution does not enable one to introduce a well-
defined Fermi surface because the mass operator does not contain a dependence on the guasimomentum,
However, in our opinion, it is incorrect to speak of a Fermi surface of the interacting system in the sense of
Luttinger [27] when there is a splitting into sub~bands. The finite lifetime of quasiparticles on the Fermi
surface obtained by Edwards and Hewson for the Hubbard I solution indicates this. For the single-band
solution of the Hubbard model in the band limit one can determine a well-defined Fermi surface for the local
mass operator as well if the solution is constructed in such a way that the damping on the Fermi surface is
zero. In this case, the quasimomentum-independent correction fo (66) leads to a shift of the center of
gravity and a deformation of the ideal Fermi sphere; a more accurate description of course regquires
allowance for the quasimomentum dependence. Our approach enables us, on the basis of the solution (14) in
the band limit, to describe the case of nonsplit sub-bands and introduce a Fermi surface in a natural manner
on the basis of the definition (66). For the mass operator in the binary approximation (18), the proof that a
well-defined Fermi surface exists can be found in [28].

Thus, the self-consistent method developed here for constructing generalized interpolation solutions
of the Hubbard model is very general, does not use a definite zeroth approximation, and makes it possible
to calculate in a unified scheme the spectrum of quasiparticle excitations of the system in both the band and
the atomic limit. It may be hoped that this method will be useful for the concrete systems for which the
Hubbard model applies. For example, the results of [9] have already been used to investigate a Hubbard
antiferromagnet [29], and also in some other problems.

I am grateful to N. M. Plakida and W. Goetz for helpful discussions.
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STOCHASTIC APPROACH AND FUNCTIONAL MODELS
IN THE KINETIC THEORY OF GASES

C.A. Grechannyi

The stochastic approach [1] is applied to the theory of nonequilibrum processes in a
correlated and fluctuating gas with binary collisions. Markov processes are considered
that make it possible to treat in a unified manner the fluctuation and dissipation properties
of a nonequilibrium system when its evolution is described on space-time scales charac-
teristic of the kinetic theory. A nonlinear stochastic equation is obtained for the single-
particle density that is suitable for describing large fluctuations in unstable and strongly
correlated states of a noneguilibrium gas.

1. Introduction

Allowance for long-wavelength statistical connections in a rarefied nonequilibrium gas is necessary
for the investigation of nonequilibrium fluctuations [2] and the description of the hydrodynamics of turbulent
flows [2,4,5]. In the general case, the kinetic stage in the evolution of a monatomic gas with allowance for
large-scale fluctuations in the approximation of binary collisions is described by a system of irreversible
kinetic equations for the partial distribution functions [6, 7]:

F, ¢ : :
== V)i Fl+ Y Lo (0 3 [ dzede s (o], 1.1
j=t it =1
where
1 =[ded. = [ dzd, ., (1.2)
is the Boltzmann collision integral, x ;= (rj, Pp; ), H . is the single-particle Hamiltonian, N and V are the
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