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SELF-CONSISTENT THEORY OF ELECTRON 

CORRELATION IN THE HUBBARD MODEL 

A . L .  K u z e m s k i i  

The Dyson equation for the two-time thermal  Green ' s  functions is used for  a sel f -consis tent  
calculation of the s ingle-par t ic le  Green ' s  functions in the Hubbard model. The method 
makes it possible to obtain a general ized interpolation solution of the Hubbard model valid 
for  a r b i t r a r y  relat ionship between the effective band width and the Coulomb repulsion 
pa ramete r .  Two var iants  of the theory make it possible to obtain two exact representat ions  
for the mass opera tor ,  which are  used to obtain approximate solutions in the atomic and 
band l imits.  

1. The method of two-time thermal Green ' s  functions [1, 2] is convenient and effective for invest i-  
gating sys tems  of many interacting par t ic les .  Recently, a helpful reformulat ion of this model has been 
given; it makes it possible to operate with the exact mass  opera tor  and pe r fo rm the decouplings in the final 
stage. This approach is based on the introduction of irreducible Green ' s  functions [2-6], which makes it 
possible,  without recourse  to a truncation of the h ie ra rchy  of equations for  the Green ' s  functions, to write 
down the Dyson equation and obtain an exact analytic representat ion for the mass operator .  Approximate 
solutions are  constructed as definite approximations for the mass opera tor .  

The method of i rreducible Green ' s  functions has been used in a large number of investigations into 
the sel f -consis tent  theory of phonons, the Heisenberg model, the spin-phonon interaction, fe r roe lee t r ic i ty ,  
and more (see [2-6] and the l i te ra ture  quoted there).  In the present  paper,  we consider  the application of 
this approach to the Hubbard model, which is one of the ones most widely used to descr ibe magnetic pro-  
per t ies  and the transit ion f rom the metallic to the nonmetallic state in transit ion metals and their  cha lco-  
genides [7, 8]. 

The Hamiltonian proposed by Hubbard [7], 

t~ja.~ a j o + . - - ~  l n~oni_~ (1) H = ~  + U 
' 2 Z . ~  

i~a ia 

depends on two pa rame te r s :  the effective band width w =  N -1 It,~r ~ and the energy U of the in t ra-a tomic  
i j  

Coulomb repulsion of the e lec t rons .  As their  ratio changes, so does the band s t ructure  of the sys tem.  Thus, 
to descr ibe t ransi t ions  in the system, it is n e c e s s a r y  to obtain an interpolation solution for  the Hubbard 
Hamiltonian valid in a wide range of values of the pa rame te r  z = w/U f rom the atomic l imit  (z ~ 0) to the 
band limit (z >> 1). The method of i rreducible Green ' s  functions makes it possible to const ruct  such solutions 
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s y s t e m a t i c a l l y .  

2. Fol lowing  [9, 10], we in t roduce  the s i n g l e - p a r t i c l e  G r e e n ' s  funct ions  

Gko(t)=((ako(t);a~))=--iO(t)<[a~o(t) ,a~]>~ e-'~'G~o((o) ~ w - e -  ~---| ; (e '+t)]ko(O) ), 

where  ~=(kT) - ' ,  1ko((0) is the s p e c t r a l  in tens i ty .  The equat ion fo r  the  F o u r i e r  t r a n s f o r m  Gk.(o) of the 
G r e e n ' s  funct ion has  the f o r m  

U_--:-_ Z ((aa+.,oa.+,-oaq-.[a~.>>.. (2) (o)-e~) Gk.(o)) =i + + + 
2i 

Pq 

By definition, we introduce an irreducible Green's function that does not contain renornmlizations of the 

a v e r a g e  field, 

ir <( a~ + ~,oap ~ q _oaq,_ol a~+ >) | = <( a. + l,,oa ~ q _oa~ _o ] a~+ >> .--Sp,o < nq _o> Gk.. (3) 

The i r r educ ib l e  G r e e n ' s  funct ion in (3) is defined in such a way  that  it cannot  be r educed  to G r e e n ' s  
funct ions  of  l ower  o r d e r  with r e s p e c t  to the n u m b e r  of  f e r m i o n  o p e r a t o r s  by an a r b i t r a r y  pa i r ing  of  o p e r a t o r s  
c o r r e s p o n d i n g  to one ins tant  of t ime .  Substi tut ing (3) in (2), we obtain 

{r 
HF IIF U ~ + 

G,,o (co) =Gk. (o)) +G~o -~- ) <(ah+v,oap+q_oaq, _~laA.+>).. (4) 
Pq 

Here ,  we have in t roduced  the notat ion 

l HF U 
a ~  ~ (0~)= (~-~'o ~ )-,~o =~,~+ ~ <~_o>. 

N~--J 
q 

To obtain the Dyson equation, we must express the Green's function '~<<AIa~o+>> on the right-hand side of (4) in 

terms of the total Green's function Gab(co). For this, we differentiate this function with respect to the second 
time: -i(d/dt) ~r<<A; a~ + (t) >}. For the Fourier components, this is written in the form 

U + + 
((o--~) ':((A la~o+)>~ = L~< [A, aho+] +> + - N - Z  _ _  <<A ]a~-oar+.,-oak+o,~>>.. (5) 

r s  

The a n t i c o m m u t a t o r  in (5) is ca lcu la ted  on the bas i s  of the defini t ion of the i r r educ ib l e  par t :  

Ir<[~ ~+ a + + + L~h+~,,o'~p+q,-~ ~,-., a~ ]+>= < [ah+v,.ap+q,-oa~-o--<a~,+q,-.aq,-~>a~+p,,,, a~+]+>-----O. (6) 

Subst i tut ing (6) in Eq. (5) and in t roducing  in it, a s  in (2), a G r e e n ' s  funct ion i r r educ ib l e  with r e s p e c t  to the 
r igh t -hand  o p e r a t o r s ,  we obtain 

Gk. (o)) =Gh.'F ((0) +G~"r  (o))P~.(<0) Ga.~r (r (7) 

whe re  we have in t roduced  the fol lowing notat ion fo r  the rad ia t ion  o p e r a t o r :  

U ~ U~ W~ - '~ . 
(<a~+~,.oav+q.-~aq-~ [ ar.-~r ~- ,.-~aa+,.~>},, p ~ ( ( o ) = _ ~  Z ~: + * + ,r ~7~, , (9~o(p ,  qlr, s;o))" (8) 

~ q r t  pqr l  

To s e p a r a t e  the m a s s  o p e r a t o r ,  it is n e c e s s a r y  to s epa ra t e  the connec ted  par t  of the i r r educ ib l e  G r e e n ' s  
funct ion in (8): 

,r ~-,~. ~-~. -r  ,r 
G~r (p, qlr, s; o)=L~o(p,  qlr, s; (o)+ U~ N--- 7 ~._.~ ~..-~ L~o(p, q[r,, s~; ~)G~o (co) G~ (p~, q,lr, s; ~) .  (9) 

f i s t  Plql 

Here ,  L~(p,  q]r, s; (o) is the connec ted  pa r t  of  the G r e e n ' s  function G~2qp, qlr, s; (o), which in a c c o r d a n c e  with 
the definit ion (9) does  not conta in  p a r t s  connec ted  by one l ine G~.'r((0). Af te r  s imple  t r a n s f o r m a t i o n s ,  we 
obtain f r o m  (7) 

where  
U �9 

i~o(r = -~7 Z L~o(p, q; r, s; o)). (11) 
p ~ r s  
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Finally, we obtain f rom (7) and (1O) 

a~o((o) =G~oae ((0) +Gh~'F(o))M,,~(o)G~o(O). (12) 

Equation (12) is the Dyson equation for the s ingle-par t ic le  two-time thermal Green 's  function Gho(o). It has 
the formal solution 

G,,o (o) = [ (0-e~ar-M,o (o) ] -L (13) 

The express ion 

g _ _ U  V .  + lr c + + �9 
Mho(o) = (<ak+r,~ar+q,-oaq,-ola.,-oa~+,,-oah+.,o>>. (14) 

~qr  * 

is an exact representa t ion for the mass opera tor  of the s ingle-par t ic le  Green ' s  function for the sys tem of 
cor re la ted  e lect rons  in the nar row energy bands (the superscr ip t  c in (14) denotes the connected part). The 
expression (14) can be written in the more convenient form 

2~ ~ do" U2"~ dt e',' r + + + M~ ((0) = - - - - -7  (e~+'+l)--  / (a.,-cz,+.,-~a,+~,~a~+r,o (t) a~+q _o (t) aq-o (t) >' 
o - o  N 2 J 2n 

_ ~  _ ~  pqvs  

-2~S o)-o)'d~ ,et,..+l)U 2 i 2~dt-~-e'~ e-"(R'-Rt)(a'~176176176 (15) 

The expression (15) for the mass opera tor  Mko of the s ingle-par t ic le  Green ' s  function of the Hubbard model 
is exact and valid for a rb i t r a ry  z. It can be seen that the method of irreducible Green ' s  functions is c losely  
related to a definite method of projecting the higher Green ' s  functions onto the original ones; as zeroth  
Green ' s  function, one chooses a nonlocal Green ' s  function renormal ized with allowance for all r enorma l i za -  
tions of the average field. The representat ion (15) is more convenient for obtaining approximate solutions in 
the band limit since it explicitly contains the factor  U 2, but, in general ,  it can also be used to obtain 
approximate solutions in the case  of strong corre la t ion .  To obtain approximate solutions, it is necessa ry  to 
make definite assumptions about the approximate express ion for the connected part  of the corre la t ion function 
on the right-hand side of (15). 

3. By the introduction of irreducible par ts ,  we have separated all the renormal izat ions  of the 
average field, i . e . ,  all the equal- t imb pair ings.  Different equal- t ime pairings in (15) will lead to different 
approximate solutions (see [2-6, 91). We f i rs t  make a simple binary decoupling: 

+ + + + + 
<a.,_oar+~,_oak+.,~ah+~,o(t)av+q,_~(t)aq,_o(t) >'~,r 6h+.,~+vSr+,,~+qS~,~<ak+p,~a~+p,~(t) ><a~+q- a..q-.(t) ><aq._oaq,_~(t) >. (16) 

We then obtain 

U z 
Mkov(c0)=~--~Z ~ do'dc~162176 {n(oi)[t--n(o2)-n(o~)]+n(o2)n(o,s)} <g~,~q,_.(o,)g~+v,o(o~.)gv,-~(o3). (17) 

P,q 

Here g~ . (o )=- ( l /~ ) Im G~o('o+ie). 

The binary decoupling was used in [91 to calculate the mass opera to r  in the paramagnet ic  state.  In 
the language of the d iagram technique, the binary approximation cor responds  to a simple ver tex in the mass  
opera tor  and can be used outside resonance regions of the collective excitations when the density of quas i -  
part icles  is sufficiently low. Equations (12) and (17) constitute a se l f -consis tent  sys tem of equations for the 
s ingle-par t ic le  Green ' s  function in the f ramework  of the binary approximation.  Choosing a par t icular  
initial representat ion for the function gA~(o) on the right-hand side of (17), we can calculate the Green ' s  
function G~o. In principle,  substituting the resul t  obtained once more in (17), we can find a more exact solu-  
tion. In the band limit,  a reasonable initial approximation that admits  such an i teration is gho(O)=6(o-e~). 
At the same time we obtain f rom (17) 

U -~ N~p,, 
i~o~ ( o )  = : ) \  (18) 

N-, z.~ o )  l - -  (- 2/~;,,j 
pq 

Nk~=np+q_o[ t--n~+p,,~--nq,-o]+nk+1,,.nq,-., ~ ) - l ~ p q = - - e p + q ~ - e l r  p - ~ e q  �9 (19) 

A mass opera tor  of the form (18) for the Hubbard model was obtained ea r l i e r  in [12] by Langer,  who used the 
equation of motion for the second-o rde r  Green ' s  function and an approximation of a density expansion type. 
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We now obtain an equation for  the mean population numbers  in the binary approximation.  
following [13], we represen t  the spectra l  intensity of the Green ' s  function in the fo rm 

1 r ~ ( ~ )  
g,o(0)) = 

(+'Eho)'+r,: 
where 

5 n o 

P q  

The unknown fac tor  
tion condi t ions  

whence 

For  this, 

= ( l - = , , ) ~ ( ~ - E ~ o ) +  i r , , ( ~ )  (20) 
(r 

N~Z-~ ~ "  

(1-r162 of the delta function on the right-hand side of (20) is determined by the no rma l i za -  

i d(og~.(o)) = t ,  

Z . o U V~ N~q 

N ~ , ~  (Q,~j,q -E,,,,,) 
o 

Pq 

With allowance for (21), we find an equation for the mean population numbers:  

n o -  t ~ U 2 N ~  ----N-Z__z n(E~-")+--~2 [n(Qh~,q)--n(E~o) ]. 
(.%~-E~o) "~ 

k hpq 

Thus, the mean population numbers  are  determined in a se l f -consis tent  manner f rom Eq. (22). The f i rs t  on 
the r ight-hand side of. (22) descr ibes  the effects of renormal iza t ion of the energy  of the par t ic les  in the 
average field (from which Stoner ' s  magnet i sm cr i t e r ion  is obtained), and the second descr ibes  the effect of 
two-body coll isions of quas ipar t ic les  in the second o rde r  in U. The density of quasipart icle  states in this 
approximation is equal to 

(21) 

(22) 

D,(0~)=N-' Z g~,(c0)= N-' 2 { ( l--ak,)6(o)--E~o) +ah.5(a)--~,,,q) }. 
& h 

(23)  

The average energy  of the sys tem in this approximation is determined by 

t 
ha - - ~  ha 

where 

2N N ~ ~ ~hpq--E,~ 
kpqq 

is a quantity whose s t ruc ture  is s imi la r  to that of the second-orde r  cor rec t ion  to the energy  in the many-  
impuri ty  Anderson model o r  the Hubbard model with s - d  hybridization [14]. In the band limit, the second 
t e r m  on the r ight-hand side of (22) is small .  We can therefore  at tempt to obtain a magnet ism cr i te r ion  in 
the given approximation.  Fo r  this, following [15], we introduce the mean number of e lect rons  n=V~(n~+n~) 
and the magnetization m=V2(nt-n~). Denoting no-~/(e~; e~+Un-o) and considering the condition for the existence 
of solutions of the equation 

m='/2/(e:; sh-4-Un-Um)-'/J(el; e~+UnA-Um), 

we obtain a c r i te r ion  for the occur rence  of magnet ism in our  sys tem.  It has the fo rm 

Here, 

N- '  Z U,, (k) g~o (el) --A (ej) > i .  (24) 
k 

t ~ Ua , , / U 2 v'1 N~q-N~q ~., 
Uo.(k)=U( 1 + - z ~  ~ j A [n(~h~q)-n(,~+Un)]. 2N ~[~.h,q-(~+y,~)]' = V , ~  ' N~,,-N~, 

[~, ,~-  (~.+un) ]' 
Pq hpq 

In general ,  one can assume that (24) is a general izat ion of Stoner ' s  c r i te r ion  for  the occur rence  of f e r r o m a g -  
ne t i sm in the Hubbard model. The relation (24) takes a fo rm c loses t  to this c r i t e r ion  when one can assume 
Uo,(k)~Uctf(O). Then f rom (24) we obtain 
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Uo,tDo(e,)-A (el) >1. (25) 

It can be seen f rom this resul t  that the occur rence  of magnet ism in the sys tem is determined by the electron 
density of s ta tes .  The occur rence  of the renormal ized quantity Uef f and the pa rame te r  A is natural when 
a more accurate  allowance is made for  the corre la t ion  than in the H a r t r e e - F o c k  approximation, which leads 
to Stoner ' s  c r i te r ion .  It is well known that in the H a r t r e e - F o c k  approximation the tendency of the sys tem to 
fo rm a magnetically ordered state is s t rongly overes t imated .  As we have a l ready said above, in the band 
limit the representat ion (17) for the mass  opera to r  can be used for i terative calculation of the higher (in the 
interaction pa rame te r  U ) o rde r s  of the mass  operator ,  for which it is neces sa ry  to substitute (23) in (17). 
Thus, the proposed sel f -consis tent  procedure  makes it possible to cons t ruc t  a perturbation theory for  the 
mass  opera tor .  Because the result ing express ions  are  cumbersome,  we do not give them here but r e fe r  to 
[11], in which the use of a two-pole representat ion for  the spectral  density (two delta functions) as initial 
approximation is also considered.  

4. In the region of resonance of the single-particle and collective excitations the binary approxima- 
tion breaks down. In particular, to describe a magnetically ordered state it is particularly important to 
take into account the contribution of the spin-flip processes to the mass operator. The method developed 
here permits this in a simple and perspicuous manner. For this, we perform in (15) the following different- 
time decouplings. 

+ I r , c ~  <aj~+a~_~a~_~ (t) a~o (t) > <aj_oa,-o (t) > + <ajo nj_on~_o(l)a~o(t)> --<n~_on~_o(t)>(aj~+a~o(t)>+ + + 
+ + + <aj~ aj_oa,_o(t) a,o(t) ><aj_~a,_o(t) >. (26) 

Then the mass  opera to r  (15) is writ ten in the fo rm 

.~ t | do '  V .  M,o(o) ~-M,o (f,O) +M~oS((o) .+Maad(0) )  = - ~  {D--(0' (#o '+ i )U2N- '~  e-~(R~-RI)X 

t + • 
~dEnr(E)(--~-Im(<a,-o[aj_~ ~t + + }. (27) -- Im<<a~-oa~~ r I 

Here M.o"(o), M.o~((o), M.~(o) are  the eontributions to the mass  opera tor  that take into account the collective 
motions of the electron density, the spin density, and the pai r  density, respect ively;  

n,B=[exp (o/0) ~1 ] - ' .  

We consider ,  for example, the calculation of the contribution Mho"(t0) in the simplest  approximation 

M:: (o)= ~ ( e ' * ' + l )  U2N -' Z e_,~(~,_.p _'0 dt . + 2 . [ ~ - e '  ':{<a~ a,,(t)>(n_o +Ko(t))}, 2~ d 
-| ~*J -| (28) 

K,j(t) =((nj_.-n-o) (n,-o(t)-n-o) >. 

If we r e s t r i c t  ourse lves  to the static approximation for K~j(t), i . e . ,  we set Ku(t).~K~j(O) (see [5]), then 
f rom (28) we obtain 

M:: (0j)= ~___~Z i dE ~ f -- ~ -  Im G,a(E+ie, (29' 

q --o? 

Equations (29) and (12) are  a se l f -cons is tent  sys tem of equations for  the s ingle-par t ic le  Green ' s  function Gko 
in the given approximation.  Taking as initial value g q a ( f a ) ) ~ ( c a ) - - E q ) ,  w e  obtain f rom (29) 

U ~ 
M;'o ((o) = -N Z ((o--sk-q)-t {n-.2+Kq}. (30) 

q 

Simple es t imates  of Mho' and M~, a can be obtained s imi lar ly .  A more accurate  calculation of the mass 
opera to r  (27) and the collective Green ' s  functions and an application to definite physical sys tems  will be 
presented in a separate  paper .  
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5. In the present  section, we consider  the scheme for calculating a second exact representat ion 
for  the mass opera tor .  This representa t ion is also valid for  a r b i t r a r y  z but is more convenient for  obtaining 
approximate representa t ions  in the s t rong-cor re la t ion  limit since it explicit ly contains the fac tor  I t i 12. As 
zeroth  Green ' s  function, we again choose the nonlocal Green '  s function renormal ized  with allowance ~or all 
renormal iza t ions  of the average field. In a number  of papers  [16, 17] a perturbation theory has been con-  
s tructed in the atomic limit on the basis  of the local zeroth  Green ' s  function of the atomic limit: G=(~-Un_~)/ 
(o-U)r As was noted in [18, 19], this leads to inaccurate resul ts  since even in the atomic limit the solution 
is definitely nonlocal, i . e . ,  one must f rom the ve ry  s tar t  take into account nondiagonal elements  of the 
solution. If one at tempts to dispense with the method of Green ' s  function, it is neces sa ry  to const ruct  a 
sys temat ic  perturbat ion theory in the atomic limit,  which is a ve ry  nontrivial problem because of the high 
multiplicity of degeneracy  of the energy  levels of the unperturbed Hamiltonian. At the same time, it is 
n e c e s s a r y  to solve the problem of volume divergences  and cons t ruc t  a special var iant  of the ve ry  cumbersome 
diagram.technique [191. We mention here that in [191 a method was formulated for construct ing an effective 
Hamiltonian in the Hubbard model by a uni tary t ransformat ion  and it was shown that the s implest  - Heisenberg 
- interaction is the main exchange interaction in the Hubbard model. In the present  paper,  this group of 
questions is not discussed,  and we mere ly  calculate the excitation spec t rum of quasipart icle  states of sys tems 
within the f ramework  of the method of irreducible Green ' s  functions, which gives a se l f -consis tent  scheme of 
sys temat ic  construct ion of general ized interpolation solutions of the Hubbard Hamiltonian valid in a wide 
range of z. 

The construct ion of the mass  opera tor  is based on the introduction of i rreducible parts  for the 
Green ' s  function G~j~(t)=<<a~(t); a~o+>>, which is written in the fo rm 

G.o(o)=((a~.. aj~+))~ ((d~.ldj~o})~= G~((0), d~,.~n,_.a,~(~+)~ _ , n;.+=n~; n~o-=(l-n~),  (31) 

where G~  is the matr ix Green ' s  function 

the equation of motion for its components having the form 

((o E ~ '~ ~' ( o ) =  6~6~n_o ~-4- t.((n,_oa~ cta~ob._, d~.))~. (33) -- a) ~r i~ 
l~/=i 

Introducing the matr ix notation 

E =  

we rewri te  Eq. (33) in the fo rm 

0 ] in o+ 0 ]  ,34, 
0 ( ~ o - E _ )  a n d  ~ =  0 n _ ~ -  ' 

{EUij~ ((0) - a-pS~;}~ = Z t .  ((n~_~a~ + ua~ob. _~ld~,+o}}~. (35) 

By definition, we now introduce the matr ix irreducible Green ' s  function D,/r(0)) : 

+ ' + + ] } ~/ir((,3)= ((ni-~ aiabil'-al4-a>> • 1- tB_.,[ B'+~'" • (36) 
<<n~Zoa~ - + - b + - aiobi-o,d;+~))<(ni_~alo--a~o ~-oldj-~)) ~" . zl 

The coefficients ~,. and ~.  are  determined f rom the condition 

<[ {O. Jr}~, dido] +>-~ 0. (37) 

Calculating the corresponding commuta tors  in (37) and equating the t e rms  proportional  to 5ir and 5fl, r e s -  
prectively,  we obtain (i r l )  

{A.}~=a(<d~,_oa~_~>+<d,_~_oaz_~>) (n_J~) -~, {B.}~={<n~_on~-~)+a~(<a,oa,_oa~-oazo >-- <a~oa,_oa~_oa~+ +))} (n_o e')-~. (38) 

The part  of the higher Green ' s  function that we have expressed in t e rms  of the original Green ' s  functions 
can be conveniently expressed by means of the zeroth,-order Green ' s  function containing all renormal izat ions  
of the average field: 
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++' ~ 

,lf-"-o 1 ~ ~  • G~ 1 -  X[Go++ Go,+ �9 {/~(]o,j-- q,S+~}~ = 2 t + +  t t A 5  ' J  tB++ J 
(39) 

By means  of  the Fou r ie  r t r a n s f o r m a t i o n  U0~ = N-~  y ~  Goq exp  [ iq (R~ - R~) ] we can find the expl ic i t  fo r m  of the 
q 

mat r ix  Goq : 

[Goq ~ (o)) Goq +-((o) n-o+b n_o-d 1 ( a b -  cd)- ' .  (40) 
Go.F+(m) Go~--(m) ] = [  n_o+C n_~-a j 

The coef f i c i en t s  a, b, c, d a r e  equal  to 

Subst i tut ing (40) in (36), we obtain  

l 

Thus ,  to obtain the Dyson  equat ion we mus t  ca l cu la t e  the mat r ix  D,q((o). F o r  this,  we d i f fe ren t ia te  this  
ma t r i x  G r e e n ' s  function with r e s p e c t  to the second t ime:  

I 

Separa t ing  now in Eq. (42) the G r e e n ' s  funct ion i r r educ ib l e  with r e s p e c t  to the r igh t -hand  o p e r a t o r s  in the 
s a m e  way as  in (26), we obtain the Dyson  equat ion 

~qp ( to ) -=-~oq( co ) +~oq ( O) )_~qo( (o ) gq ( (o ) . (44) 

The m a s s  o p e r a t o r  has  the f o r m  

~ , + ( o ) ) = P q C ( t o ) - ~ - t { Z t t ~ t  ,,j ,, ,-. , " 'riD, "~i'~>) r ,, qi-'. (45) 
l m  

The fo rma l  solution of the Dyson equat ion (44) has the f o r m  

C,~~ = { ~ 0 , - '  (co) - ~ q ~  } - '  = 
det (~0( '  - Mqo) 

Thus, the problem of finding the Green's function 
elements G0q-' and d~qo. 

(:J 
(C +++~ +)(L+-++++) 

Gq~ has  been reduced  to ca lcu la t ing  the ma t r i x  

(46) 

6. We c o n s i d e r  the z e r o t h - o r d e r  G r e e n ' s  funct ion (40). In a c c o r d a n c e  with (31), the total z e r o t h -  
o r d e r  G r e e n ' s  funct ion Go~ (o ) i s  equal  to 

Goo(q, o)) = (ab - cd) - '  (n_.-a + n_o+b + n_o-d + n..o+c) = 

where  

o~ - ( n _ / E _  + n _ o - E + ) -  ~,(q) 

(to -- E+ - n_o:~, (q) i ( r  E_ - n_~ (a) ) - n-~ (q)X, (q) ' 
(47) 

, n_~_[+ ~ , (A++(_  +)_ 8~+(+_ q)), ) ~ , ( q ) = - ~ 7 - Z  e , (A•177  ~ ( q ) =  _ 
2 , + (48)  

L (q) = ( n - . - )  2 ()~,+~.~) + ( n - . + )  2 (~.2+~.,) �9 

The G r e e n ' s  funct ion of  " z e r o t h "  o r d e r  (47) has a two-po le  s t r u c t u r e  c lo se  to the Hubbard  III  solut ion [20] and 
R o t h ' s  solut ion [21,221, but takes  into accoun t  m o r e  a c c u r a t e l y  the nondiagonat  ma t r ix  e l e m e n t s  s ince  it 
con ta ins  all  r e n o r m a l i z a t i o n s  of  the a v e r a g e  f ield.  In pa r t i cu l a r ,  the Hubbard III solut ion g ives  the local  

m a s s  o p e r a t o r .  
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The equation for  the poles of the Green ' s  function (47) has the fo rm 

N-' E e,(A-+(- 'O- B+-('c-q) )N-' Z s,:(A+-(-'~)- B+-(z-q) ) }=O. 
T 

(49) 

The spec t rum of quasipart icle  states consis ts  of two branches:  

(o,,.(q) ~l/2{(E++E_A-a,A-b~)• (E+-i-E_-a~-b~)2--4cd]'1'}, a~=o~--E+--a, b,~o-E_--b. (50) 

Thus, the spectral  intensity of the z e r o t h - o r d e r  Green ' s  function has two peaks separated by the distance 

o~(q)_o~2(q)={(U_a _b~), cd},t,~U( t (a,-b,)  u )+O(z). (51) 

We now consider  in more detail a compar ison between our  initial approximation (47) and the other 
well-known solutions of the Hubbard Hamiltonian in the case of strong corre la t ion .  For  this, we rewri te  

[ { a db-'c}-'  _~{ b da-'c - t ]  
~"~-o + l t - a  + n - o -  n-~ '} (52) 

G~ [ + 1  a db-'c }-' {. b da-'c -' 
~__a + /Z_a + /./,_a- n _ g -  } 

G0q(r in the fo rm 

f rom which we obtain for  the total z e r o t h - o r d e r  Green ' s  function 

Go~(q, (o)= n-~+ (t § c/b) -4- n-o- (i + d/a) ~ n_o- 
a -- db-lc b -- ca-'d 

where 

+ (53) 
o) -- E_ -- n_o+W~_~ o) -- E+ -- n_o-W+q_~ ' 

+ -- ~ 1  4- , 4- ~- 2= . n_~ n_o-Wq,_o=N-' t~jexp[-iq(R~--Rj)]{(<a~_.n~o=aj_~)+<a~_on~=aj_~>)+(<nj=on~_.>~ 

<a .4- + / + + ioai-oa~.oaio >--\a~oai-oaj_~ajo >)} (54) 

are  the shifts for the upper and lower bands due to the corre la t ion  of the e lec t rons .  In this form, the 
solution (52) is ve ry  close to the solution obtained in the case of strong corre la t ion  by Roth 's  method [21, 22] 
and the method of moments  [22, 24]. The express ion  (54) for the band shift obtained by the method of i r r edu-  
cible Green ' s  functions coincides with the resul ts  obtained by these methods except that the band shift (54) 
is different for the upper and lower sub-bands and does not contain t e rms  independent of the quasimomentum. 
The reason for  this is that the express ion (47) takes into account more accura te ly  the nondiagonal s t ructure  
of the solution since all the renormal iza t ions  of the average field are  summed.  Usually, in the atomic limit 
in Roth 's  method and the method of moments one retains  in the band shift only the par t  that does not depend 
on the quasimomentum, which cor responds  prec i se ly  to the neglect of the nonlocal t e rms .  

In our  approach,  to obtain fur ther  approximate solutions f rom the representat ion (54) it is n e c e s s a r y  
to compare  the collective cor re la t ion  functions on the right-hand side of (54): F o r  z ~ 0 and n~+n_o<t we 
can, following [25], assume that the corre la t ion  functions {a~_on~o a~_,), <a~-on~ aj-~}, and ~a~a~_~a~_~a~o are  
small .  F r o m  (54) we then obtain the band shift 

n-o+n-o-W~,-o=N-' 2 t,~<nT-~n,~o)exp [ -iq (R,-Rj) ]. (55) 

The solution (55) goes over  into the Hubbard I solution [7] if we make the additional approximation <nj_on~_~>~ 
n_J; we then obtain 

G..(q,~)~ n-o f--n-~ 
(o-U--e~n-, "}" '"r (t-n_~) (56) 

Thus, the use of the representat ion (47) as the Green ' s  function of the "zeroth" o rde r  makes it possible to 
obtain the well-known solutions of the Hubbard model as special  cases ;  the conditions of applicability of 
these solutions are  discussed in the quoted re fe rences .  The approximations used in the present  paper to 
obtain these solutions are  always associa ted with the standard decoupling procedure  that expresses  the higher 
cor re la t ion  functions in t e rms  of the lower ones. Namely, the use of the method of two-time Green ' s  function 
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makes it possible to see c lea r ly  what cor re la t ions  a re  omitted in the total corre la t ion  function to obtain any 
par t i cu la r  well-known approximation,  and this makes it possible to cons t ruc t  approximate solutions s y s t e m a -  
t ically.  Note that the pa rame te r s  Xi(q) in (48) do not depend on the frequency.  Such a dependence, due to 
inelastic sca t ter ing p roces ses ,  a r i s e s ,  as will be shown below, on account of the mass  opera tor .  

7 o  

sys t em will be given by the equation 

{ ) }--0 
and is essent ia l ly  determined by the nature of the approximations used to calculate the mass  opera tor .  
total Green ' s  function G,(q, ~) has the f o r m  

1 ~ t _ 1 +~/+- 
G~ (q, (,)) = det (C.~-M~~ in-o* (a--n-"+M+~+) + 1 - - -  (b-n_o-M~o-)+----2(d+n-~.  ~. )+ 

n_o ~ 

t 
~=[o~--(n_~+E_+n_.-E+) -~. (q, .o) ]:[ (co-E+-n_o-~ (q, (o)) (co-E_-n_o+).,_(q, co) ) - (~ +~_~-M:. § 

I I_ a-  

where 

Let us cons ider  the co r rec t ions  due to the mass  opera tor .  The renormal ized  spec t rum of the 

n_.-n_.*~z(q, r ~.,(q, co) ]-', 

(57) 

The 

(58) 

].f(q. co)=~..:(q)-(n•177 ~s(q. ".~)=.~3(q)+(n_.;/n_~•177 
._, ~ 4 ;, (59) 

~(q, co) --X(q) +n_~+n_o-(Mq.++(o)+ M,o--(co) -Mq~ -+ (co) -M.~,+- (~0)). 

The cor rec t ions  due to the mass  opera to r  occur  in (59) as additive cor rec t ions ,  which is ve ry  convenient for 
es t imat ing the contributions of different sca t ter ing effects .  The solution (58) is an exact representat ion for  
the total Green ' s  function G.(q, co) of the Hubbard model.  Here,  no approximations have yet been made; 
all the average-f ie ld  effects  have mere ly  been separated in the zeroth Green ' s  function. The use of projection 
ope ra to r s  has made it possible to cas t  this exact  representa t ion in the two-pole form.  Therefore ,  this 
representa t ion  is more  convenient for  obtaining approximate solutions in the region of strong corre la t ion ,  
where  a decoupling into two sub-bands occu r s .  To find (58), we write the exact  mass  opera to r  in t e rms  of 
the cor re la t ion  functions: 

| do)" ~dt  e~.N_ ~ e t.t,,~j(D,.j.~D.~.(t)). (60) 

By introducing i rreducible  par ts ,  we have separated all the equal- t ime pair ings.  As in the preceding case,  
we now pe r fo rm the possible d i f fe rent - t ime pair ings for the corre la t ion  function on the right-hand side of (60), 

obtaining 
q - I t  c " + I~ ~ + eL <D,.j,~O,.~(t)> ~<a~ azo(t))<nj_~ n:_.~(t)) ~ + (nj-om.,(t) )+~(b,,~j_oa,,.(t) ) X 

I~ + " + + 

(nj_~ b . ._ . ( t ) )+ a.f~(b,.~-ob.-o(t))(aj.+a~(t)). (61) 

The quantities in (61) can be interpreted in the language of the theory of alloys as scat ter ing cor rec t ions ,  
resonance-broadening  cor rec t ions ,  and interference cor rec t ions  [10]. As an example, we calculate the 
s imples t  scat ter ing cor rec t ion ,  i . e . ,  we shall assume that 

- I - l r  (n~_~(t)--n_~ ) ). (62) (D.,~o D,'~:~)~(a,,,~+azo(t) )(n~_on~_o)= (a~+a~.(t) ) {n-. 'n-o~+K~'(t)  }, K , j~ ( t )=(  (n~-~-n-o ") ~ 

The f i r s t  t e r m  in Eq. (62) desc r ibes  the sca t ter ing of quasipart icle  excitations with spin o- in the average 
field, and the second the additional momentum t rans fe r  on scat ter ing.  F o r  qualitative es t imate  of the second 
effect,  we use,  as  in (29),the static approximation K,f~(t)~K,j (0). Substituting (62) in (60), we obtain 

{|176162162 = o-~----~ (e"'/~ a 2~ 

dco~n(co,)e'' {----~- Im G~.,,~(co,+ie) } (n-o'n-,~-bK~::"(O)). (63) 

Equations (6?) and (58) a re  a se l f -cons is tent  sys tem of equations for the s ingle-par t ic le  Green ' s  function 
G~(0)). Fo r  a simple es t imate ,  we take the express ion  (56) as initial approximation.  We then have 
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q' 

(64) 

On the basis  of the mass  opera tor  (64), we can explicit ly find the energy  shift and damping due to inelastic 
scat ter ing of quasipart icle  excitations,  which has significant advantages over  [20[, in which explicit calculation 
of the analytic fo rm of the mass  opera tor  for  different co r rec t ions  was ve ry  difficult. Note that for  the 
systemat ic  construct ion of solutions it is n e c e s s a r y  to calculate the collective corre la t ion  functions of the 
electron density, the spin density, and the pair  density. We propose to consider  this question separately .  

8. Thus, in this paper,  using the method of i rreducible Green ' s  functions, we have obtained for  the 
mass  opera tor  the general  express ions  (14) and (60), which enable us to cons t ruc t  interpolation solutions of 
the Hubbard model sys temat ica l ly  in a wide range of the pa r ame te r  z f rom the atomic to the band l imits .  In 
par t icular ,  one can di rec t ly  separate  the approximations for  the mass opera tor  that do not violate the quas i -  
momentum conservat ion law in the sys tem.  This is par t icu lar ly  important in the band limit,  i . e , ,  for the 
metallic phase [26]. Indeed, in the case of ve ry  weak corre la t ion ,  when there is no decoupling into sub-bands,  
one can determine the Fe rmi  surface in the manner of Lutt inger [27]. If when w tends to some fixed value 
ef  the damping Fh~(0))=-ImM~o((0+ie) tends to zero,  then 

r,o(o) ~6  (~0-e .H~-a~(~0)  I~ ,  r (65) 

In the general  case,  the set of quas imomentum values k satisfying the equation 

et--ekflF--h~(el) =0, (66) 

belongs to a surface in the momentum space, which is called the Fe rmi  surface of the interacting sys tem [27]. 
In [26], Edwards and Hewson asse r ted  that the Hubbard I solution does not enable one to introduce a wel l -  
defined Fe rmi  surface because the mass  opera to r  does not contain a dependence on the quasimomentum. 
However,  in our  opinion, it is incor rec t  to speak of a Fe rmi  surface of the interacting sys tem in the sense of 
Lutt inger [27] when there is a splitting into sub-bands.  The finite lifetime of quasipar t ic les  on the Fe rmi  
surface obtained by Edwards and Hewson for the Hubbard I solution indicates this. For  the single-band 
solution of the Hubbard model in the band limit one can determine a well-defined Fe rmi  surface for the local 
mass  opera tor  as well if the solution is const ructed in such a way that the damping on the Fermi  surface is 
zero .  In this case ,  the quasimomentum-independent  cor rec t ion  to (66) leads to a shift of the center  of 
gravi ty  and a deformation of the ideal Fe rmi  sphere;  a more  accura te  descript ion of course  requires  
allowance for the quas imomentum dependence. Our approach enables us, on the basis  of the solution (14) in 
the band limit, to descr ibe  the case  of nonsplit sub-bands and introduce a Fe rmi  surface in a natural manner 
on the basis  of the definition (66). Fo r  the mass  opera to r  in the binary approximation (18)~ the proof that a 
well-defined Fe rmi  surface exists  can be found in [28]. 

Thus, the se l f -consis tent  method developed here  for  construct ing general ized interpolation solutions 
of the Hubbard model is ve ry  general ,  does not use a definite zeroth approximation,  and makes it possible 
to calculate in a unified scheme the spec t rum of quasipart icle  excitations of the sys tem in both the band and 
the atomic limit.  It may be hoped that this method will be useful for  the concre te  sys tems  for  which the 
Hubbard model applies.  F o r  example, the resul ts  of [9] have a l ready been used to investigate a Hubbard 
ant i fe r romagnet  [29], and also in some other  problems.  

I am grateful  to N. M. Plakida and W. Goetz for  helpful d iscuss ions .  
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S T O C H A S T I C  A P P R O A C H  AND F U N C T I O N A L  M O D E L S  

IN T H E  K I N E T I C  T H E O R Y  OF  G A S E S  

O . A .  G r e c h a n n y i  

The s tochast ic  approach [1] is applied to the theory  of nonequil ibrum p ro ces se s  in a 
co r r e l a t ed  and fluctuating gas with b inary  col l is ions.  Markov p rocesses  a re  considered 
that make it possible  to t r ea t  in a unified manner  the fluctuation and dissipation p roper t i e s  
of a nonequi l ibr ium sys t em when its evolution is descr ibed  on space- t ime  scales  c h a r a c -  
t e r i s t i c  of the kinetic theory .  A nonlinear s tochast ic  equation is obtained for  the s ingle-  
par t ic le  densi ty  that i s  suitable for  descr ibing large fluctuations in unstable and strongly 
co r r e l a t ed  s ta tes  of a nonequit ibr ium gas.  

1. I n t r o d u c t i o n  

Allowance for  long-wavelength s ta t is t ical  connect ions in a ra re f ied  nonequil ibrium gas is n ece s sa ry  
for  the investigation of nonequil ibr ium fluctuations [2] and the descr ip t ion of the hydrodynamics  of turbulent  
flows [3, 4, 5]. In the genera l  case,  the kinetic stage in the evolution of a monatomic gas with allowance for  
l a rge - s c a l e  fluctuations in the approximation of b inary  col l is ions is descr ibed  by a sys tem of i r r eve r s ib l e  
kinetic equations for  the par t ia l  distr ibution functions [6, 7]: 

where 

~ F j  $ 8 

ot  = V,  

is the Boltzmann col l is ion integral ,  xj  

(z.1) 

Y~j= ~ dx~Y,:~,,j= ~ dxJ~ ,~ (1.2) 

= (r3,  pj  ), H I is the s ingle-par t ic le  Hamiltonian, N and V are  the 
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