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The method of the nonequilibrium statistical operator developed by D. N. Zubarev
is employed to analyze and derive generalized transport and kinetic equations. The
degrees of freedom in solids can often be represented as a few interacting subsystems
(electrons, spins, phonons, nuclear spins, etc.). Perturbation of one subsystem may pro-
duce a nonequilibrium state which is then relaxed to an equilibrium state due to the
interaction between particles or with a thermal bath. The generalized kinetic equations
were derived for a system weakly coupled to a thermal bath to elucidate the nature
of transport and relaxation processes. It was shown that the “collision term” had the
same functional form as for the generalized kinetic equations for the system with small
interactions among particles. The applicability of the general formalism to physically
relevant situations is investigated. It is shown that some known generalized kinetic
equations (e.g. kinetic equation for magnons, Peierls equation for phonons) naturally
emerges within the NSO formalism. The relaxation of a small dynamic subsystem in
contact with a thermal bath is considered on the basis of the derived equations. The
Schrödinger-type equation for the average amplitude describing the energy shift and
damping of a particle in a thermal bath and the coupled kinetic equation describing the
dynamic and statistical aspects of the motion are derived and analyzed. The equations
derived can help in the understanding of the origin of irreversible behavior in quantum
phenomena.

Keywords: Transport phenomena; method of the nonequilibrium statistical operator;
system weakly coupled to a thermal bath; kinetic equations.

1. Introduction

The aim of statistical mechanics is to give a consistent formalism for a microscopic

description of macroscopic behavior of matter in bulk. The methods of equilibrium

and nonequilibrium statistical mechanics have been fruitfully applied to a large

variety of phenomena and materials.1–7 The statistical mechanics of irreversible

processes in solids, liquids, and complex materials like a soft matter are at the

present time of much interest. The central problem of nonequilibrium statistical me-

chanics is to derive a set of equations which describe irreversible processes from the
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reversible equations of motion. The consistent calculation of transport coefficients is

of particular interest because one can get information on the microscopic structure

of the condensed matter. There exist a lot of theoretical methods for calculation

of transport coefficients as a rule having a fairly restricted range of validity and

applicability. The most extensively developed theory of transport processes is that

based on the Boltzmann equation.8,9 However, this approach has strong restrictions

and can reasonably be applied to a strongly rarefied gas of point particles.10 For

systems in the state of statistical equilibrium, there is the Gibbs distribution11 by

means of which it is possible to calculate an average value of any dynamical quan-

tity. No such universal distribution has been formulated for irreversible processes.

Thus, to proceed to the solution of problems of statistical mechanics of nonequi-

librium systems, it is necessary to resort to various approximate methods.12–18

Kubo and others19–21 derived the quantum statistical expressions for transport co-

efficients such as electric and thermal conductivities. They considered the case of

mechanical disturbances such as an electric field. The mechanical disturbance is

expressed as a definite perturbing Hamiltonian and the deviation from equilibrium

caused by it can be obtained by perturbation theory. On the other hand, thermal

disturbances such as density and temperature gradients cannot be expressed as a

perturbing Hamiltonian in an unambiguous way. During the last decades, a number

of schemes have been concerned with a more general and consistent approach to

transport theory.4,22–30 These approaches, each in its own way, lead us to substan-

tial advances in the understanding of the nonequilibrium behavior of many-particle

classical and quantum systems. In addition, they have used dynamic arguments to

obtain kinetic and balance equations which describe the irreversible evolution of a

system from particular initial states. This field is very active and there are many

aspects to the problem.31 The purpose of the present work is to elucidate further

the nature of transport processes and irreversible phenomena from a dynamic point

of view. According to Montroll,32 “dynamics is the science of cleverly applying the

operator exp(−iHt/~)”. We wish to give a self-contained consideration of some

general approach to the description of transport phenomena starting with dynamic

equations. Our purpose here is to discuss the derivation, within the formalism of

the nonequilibrium statistical operator,22,27,33 of the generalized transport and ki-

netic equations. On this basis we shall derive, by statistical mechanics methods, the

kinetic equations for a system weakly coupled to a thermal bath.

In Sec. 2, we briefly review some basic concepts. In Sec. 2.1, the derivation

of the transport and kinetic equations within the NSO formalism is outlined. In

Sec. 2.2, we consider the application of the established equations to the derivation

of the kinetic equations for magnons and phonons. Special attention is given to the

problem of derivation of kinetic equations for a system weakly coupled to a thermal

bath in Sec. 3. On the basis of these equations the balance and master equations

are obtained in Sec. 4. The behavior of a small dynamic system weakly coupled to a

thermal bath is discussed in some detail in Sec. 5. The relaxation of a small dynamic

subsystem in contact with a thermal bath is considered on the basis of the derived
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equations. The Schrödinger-type equation for an average amplitude describing the

energy shift and damping of a particle in a thermal bath, and the coupled kinetic

equation describing the dynamic and statistical aspects of the motion are derived

and analyzed in Sec. 6.

2. Outline of the Nonequilibrium Statistical Operator Method

In this section, we briefly recapitulate the main ideas of the nonequilibrium sta-

tistical operator approach22,27,33 for the sake of a self-contained formulation. The

central statement of the statistical-mechanical picture is the fact that it is prac-

tically impossible to give a complete description of the state of a complex macro-

scopic system. We must substantially reduce the number of variables and confine

ourselves to the description of the system which is considerably less than complete.

The problem of predicting probable behavior of a system at some specified time

is a statistical one. As it was shown by Gibbs11 and Boltzmann,8 it is useful and

workable to employ the technique of representing the system by means of an en-

semble consisting of a large number of identical copies of a single system under

consideration. The state of the ensemble is then described by a distribution func-

tion ρ(r1 · · · rn,p1 · · ·pn, t) in the phase space of a single system. This distribution

function is chosen so that averages over the ensemble are in exact agreement with

the incomplete (macroscopic) knowledge of the state of the system at some specified

time. Then the expected development of the system at subsequent times is modelled

via the average behavior of members of the representative ensemble. It is evident

that there are many different ways in which an ensemble could be constructed.

As a result, the basic notion, the distribution function ρ is not uniquely defined.

Moreover, contrary to the description of a system in the state of thermodynamic

equilibrium which is only one for fixed values of volume, energy, particle num-

ber, etc., the number of nonequilibrium states is large. The role of the relaxation

times when a system goes to equilibrium state was analyzed in Ref. 34. The precise

definition of the nonequilibrium state is quite difficult and complicated, and is not

uniquely specified. Since it is virtually impossible and impractical to try to describe

in detail the state of a complex macroscopic system in the nonequilibrium state,

the method of reducing the number of relevant variables was widely used. A large

and important class of transport processes can reasonably be modelled in terms

of a reduced number of macroscopic relevant variables.35 There are different time

scales and different sets of the relevant variables,36,37 e.g. hydrodynamic, kinetic,

etc. This line of reasoning has led to seminal ideas on the construction of Gibbs-

type ensembles for nonequilibrium systems.28,38–40 B. Robertson41–44 proposed the

method of equations of motion for the “relevant” variables, the space- and time-

dependent thermodynamic “coordinates” of a many-body nonequilibrium system

which were derived directly from the Liouville equation. This was done by defining

a generalized canonical density operator depending only upon present values of the

thermodynamic “coordinates”. The most satisfactory and workable approach to the
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construction of Gibbs-type ensembles for the nonequilibrium systems, as it appears

to the writer, is the method of nonequilibrium statistical operator (NSO) devel-

oped by D. N. Zubarev.27 The NSO method permits one to generalize the Gibbs

ensemble method11 to the nonequilibrium case and to construct a nonequilibrium

statistical operator which enables one to obtain the transport equations and calcu-

late the kinetic coefficients in terms of correlation functions, and which, in the case

of equilibrium, goes over to the Gibbs distribution. Although this method is well

known, we shall briefly recall it, mostly in order to introduce the notation needed

in the following.

The NSO method sets out as follows. The irreversible processes which can be

considered as a reaction of a system on mechanical perturbations can be analyzed

by means of the method of linear reaction on the external perturbation.19 However,

there is also a class of irreversible processes induced by thermal perturbations due

to the internal inhomogeneity of a system. Among them we have, e.g., diffusion,

thermal conductivity, and viscosity. In certain approximate schemes it is possible to

express such processes by mechanical perturbations which artificially induce similar

nonequilibrium processes. However, the fact is that the division of perturbations

into mechanical and thermal ones is reasonable in the linear approximation only. In

the higher approximations in the perturbation, mechanical perturbations can lead

effectively to the appearance of thermal perturbations.

The NSO method permits one to formulate a workable scheme for description

of the statistical mechanics of irreversible processes which include the thermal per-

turbation in a unified and coherent fashion. To perform this, it is necessary to

construct statistical ensembles representing the macroscopic conditions determin-

ing the system. Such a formulation is quite reasonable if we consider our system for

a suitable large time. For these large times the particular properties of the initial

state of the system are irrelevant and the relevant number of variables necessary

for description of the system reduces substantially.36

As an introduction to the NSO method, let us describe the main ideas of this

approach as follows. The basic hypothesis is that after small time-interval τ the

nonequilibrium distribution is established. Moreover, it is supposed that it is weakly

time-dependent by means of its parameter only. Then the statistical operator ρ for

t ≥ τ can be considered as an “integral of motion” of the quantum Liouville equation

∂ρ

∂t
+

1

i~
[ρ,H ] = 0 . (1)

Here ∂ρ
∂t denotes time differentiation with respect to the time variable on which the

relevant parameters Fm depend. It is important to note once again that ρ depends

on t by means of Fm(t) only. We may consider that the system is in thermal, ma-

terial, and mechanical contact with a combination of thermal baths and reservoirs

maintaining the given distribution of parameters Fm. For example, it can be the

densities of energy, momentum, and particle number for the system which is macro-

scopically defined by given fields of temperature, chemical potential and velocity.
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It is assumed that the chosen set of parameters is sufficient to characterize macro-

scopically the state of the system. The set of the relevant parameters are dictated

by the external conditions for the system under consideration and, therefore, the

term ∂ρ
∂t appears as the result of the external influence upon the system. Due to

this influence precisely, the behavior of the system is nonstationary.

In order to describe the nonequilibrium process, it is also necessary to choose

the reduced set of relevant operators Pm, where m is the index (continuous or

discrete). In the quantum case, all operators are considered to be in the Heisenberg

representation

Pm(t) = exp

(

iHt

~

)

Pm exp

(−iHt
~

)

(2)

where H does not depend on the time. The relevant operators may be scalars

or vectors. The equations of motions for Pm will lead to the suitable “evolution

equations”.27 In the quantum case

∂Pm(t)

∂t
+

1

i~
[Pm(t), H ] = 0 . (3)

The time argument of the operator Pm(t) denotes the Heisenberg representation

with the Hamiltonian H independent of time. Then we suppose that the state of the

ensemble is described by a nonequilibrium statistical operator which is a functional

of Pm(t)

ρ(t) = ρ{· · ·Pm(t) · · ·} . (4)

Then ρ(t) satisfies the Liouville equation (1). Hence the quasi-equilibrium (“local-

equilibrium”) Gibbs-type distribution will have the form

ρq = Q−1
q exp

(

−
∑

m

Fm(t)Pm

)

(5)

where the parameters Fm(t) have the sense of time-dependent thermodynamic pa-

rameters, e.g., of temperature, chemical potential, and velocity (for the hydrody-

namic stage), or the occupation numbers of one-particle states (for the kinetic

stage). The statistical functional Qq is defined by demanding that the operator ρq

be normalized and equal to

Qq = Tr exp

(

−
∑

m

Fm(t)Pm

)

. (6)

This description is still very simplified. There are various effects which can make

the picture more complicated. The quasi-equilibrium distribution is not necessarily

close to the stationary stable state. There exists another, completely independent

method for choosing a suitable quasi-equilibrium distribution.3,4,28,45,46 For the

state with the extremal value of the informational entropy4,28

S = −Tr(ρ ln ρ) , (7)
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provided that

Tr(ρPm) = 〈Pm〉q ; Tr ρ = 1 , (8)

it is possible to construct a suitable quasi-equilibrium ensemble. Then the corre-

sponding quasi-equilibrium (or local equilibrium) distribution has the form

ρq = exp

(

Ω −
∑

m

Fm(t)Pm

)

≡ exp(S(t, 0))

Ω = ln Tr exp

(

−
∑

m

Fm(t)Pm

)

(9)

where S(t, 0) can be called the entropy operator. The form of the quasi-equilibrium

statistical operator was constructed in a way so as to ensure that the thermody-

namic equalities for the relevant parameters Fm(t)

δ ln Qq

δFm(t)
=

δΩ

δFm(t)
= −〈Pm〉q ;

δS

δ〈Pm〉q
= Fm(t) (10)

are satisfied. It is clear that the variables Fm(t) and 〈Pm〉q are thermodynamically

conjugate. Here the notation used is 〈· · ·〉q = Tr(ρq · · ·).
It is clear, however, that the operator ρq itself does not satisfy the Liouville

equation. The quasi-equilibrium operator should be modified in such a way that

the resulting statistical operator satisfies the Liouville equation. This is the most

delicate and subtle point of the whole method.

By definition a special set of operators should be constructed which depends on

the time through the parameters Fm(t) by taking the invariant part of the operators

Fm(t)Pm occurring in the logarithm of the quasi-equilibrium distribution, i.e.,

Bm(t) = Fm(t)Pm = ε

∫ 0

−∞

eεt1Fm(t+ t1)Pm(t1)dt1

= Fm(t)Pm −
∫ 0

−∞

dt1e
εt1(Fm(t+ t1)Ṗm(t1) + Ḟm(t+ t1)Pm(t1)) (11)

where (ε→ 0) and

Ṗm =
1

i~
[Pm, H ] ; Ḟm(t) =

dFm(t)

dt
.

The parameter ε > 0 will be set equal to zero, but only after the thermodynamic

limit has been taken. Thus, the invariant part is taken with respect to the motion

with Hamiltonian H . The operators Bm(t) satisfy the Liouville equation in the limit

(ε→ 0)

∂Bm

∂t
+

1

i~
[Bm, H ]

= ε

∫ 0

−∞

dt1e
εt1(Fm(t+ t1)Ṗm(t1) + Ḟm(t+ t1)Pm(t1)) . (12)
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The operation of taking the invariant part, of smoothing the oscillating terms, is

used in the formal theory of scattering47 to set the boundary conditions which

exclude the advanced solutions of the Schrödinger equation.48 It is most clearly

seen when the parameters Fm(t) are independent of time.

Differentiating Pm with respect to time gives

∂Pm(t)

∂t
= ε

∫ 0

−∞

eεt1 Ṗm(t+ t1)dt1 . (13)

The Pm(t) will be called the integrals (or quasi-integrals) of motion, although they

are conserved only in the limit (ε → 0). It is clear that for the Schrödinger equation

such a procedure excludes the advanced solutions by choosing the initial conditions.

In the present context this procedure leads to the selection of the retarded solutions

of the Liouville equation. This philosophy has been pressed by the necessity of a

consistent description of the irreversibility which is, according to,49 “at once a

profound and an elusive concept” (c.f., a discussion in Refs. 31 and 50).

It should be noted that the same calculations can also be made with a deeper

concept, the methods of quasi-averages.27,33,51 Let us note once again that the

quantum Liouville equation, like the classical one, is symmetric under time-reversal

transformation. However, the solution of the Liouville equation is unstable with

respect to small perturbations violating this symmetry of the equation. Indeed,

let us consider the Liouville equation with an infinitesimally small source into the

right-hand side

∂ρε

∂t
+

1

i~
[ρε, H ] = −ε(ρε − ρq) (14)

or equivalently

∂ ln ρε

∂t
+

1

i~
[ln ρε, H ] = −ε(ln ρε − ln ρq) , (15)

where (ε → 0) after the thermodynamic limit. Equation (14) is analogous to the

corresponding equation of the quantum scattering theory.47,48 The introduction of

infinitesimally small sources into the Liouville equation is equivalent to the bound-

ary condition

e

(

iHt1
~

)

(ρ(t+ t1) − ρq(t+ t1))e

(−iHt1
~

)

→ 0 , (16)

where t1 → −∞ after the thermodynamic limiting process. It was shown27,33 that

the operator ρε has the form

ρε(t, t) = ε

∫ t

−∞

dt1e
ε(t1−t)ρq(t1, t1)

= ε

∫ 0

−∞

dt1e
εt1ρq(t+ t1, t+ t1) . (17)
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Here the first argument of ρ(t, t) is due to the indirect time-dependence via the

parameters Fm(t) and the second one is due to the Heisenberg representation. The

required nonequilibrium statistical operator is defined as

ρε = ρε(t, 0) = ρq(t, 0) = ε

∫ 0

−∞

dt1e
εt1ρq(t+ t1, t1) . (18)

Hence the nonequilibrium statistical operator can then be written in the form

ρ = Q−1 exp

(

−
∑

m

Bm

)

= Q−1 exp

(

−
∑

m

ε

∫ 0

−∞

dt1e
εt1(Fm(t+ t1)Pm(t1))

)

= Q−1 exp

(

−
∑

m

Fm(t)Pm +
∑

m

∫ 0

−∞

dt1e
εt1 [Ḟm(t+ t1)Pm(t1)

+ Fm(t+ t1)Ṗm(t1)]

)

. (19)

Let us write down Eq. (15) in the following form:

d

dt
(eεt ln ρ(t, t)) = εeεt ln ρq(t, t) , (20)

where

ln ρ(t, t) = U †(t, 0) ln ρ(t, 0)U(t, 0) ; U(t, 0) = exp

(

iHt

~

)

. (21)

After integration, Eq. (20), over the interval (−∞, 0) we get

ln ρ(t, t) = ε

∫ 0

−∞

dt1e
εt1 ln ρq(t+ t1, t+ t1) . (22)

Here we suppose that limε→0+ ln ρ(t, t) = 0.

Now we can rewrite the nonequilibrium statistical operator in the following

useful form:

ρ(t, 0) = exp

(

−ε
∫ 0

−∞

dt1e
εt1 ln ρq(t+ t1, t1)

)

= exp (ln ρq(t, 0)) ≡ exp (−S(t, 0)) . (23)

The average value of any dynamic variable A is given by

〈A〉 = lim
ε→0+

Tr(ρ(t, 0)A) (24)

and is, in fact, the quasi-average. The normalization of the quasi-equilibrium dis-

tribution ρq will persist after taking the invariant part if the following conditions

are required

Tr(ρ(t, 0)Pm) = 〈Pm〉 = 〈Pm〉q ; Tr ρ = 1 . (25)
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Before closing this section, we shall mention some modification of the “canonical”

NSO method which was proposed in Ref. 46 and which one has to take into account

in a more accurate treatment of transport processes.

2.1. The transport and kinetic equations

It is well known that the kinetic equations are of great interest in the theory of

transport processes. Indeed, as it was shown in the preceding section, the main

quantities involved are the following thermodynamically conjugate values:

〈Pm〉 = − δΩ

δFm(t)
; Fm(t) =

δS

δ〈Pm〉 . (26)

The generalized transport equations which describe the time evolution of variables

〈Pm〉 and Fm follow from the equation of motion for the Pm, averaged with the

nonequilibrium statistical operator (23). It reads

〈Ṗm〉 = −
∑

n

δ2Ω

δFm(t)δFn(t)
Ḟn(t) ; Ḟm(t) =

∑

n

δ2S

δ〈Pm〉δ〈Pn〉
〈Ṗn〉 . (27)

The entropy production has the form

Ṡ(t) = 〈Ṡ(t, 0)〉 = −
∑

m

〈Ṗm〉Fm(t) = −
∑

n,m

δ2Ω

δFm(t)δFn(t)
Ḟn(t)Fm(t) . (28)

These equations are the mutually conjugate and with Eq. (26) form a complete

system of equations for the calculation of values 〈Pm〉 and Fm.

Let us illustrate the NSO method by considering the derivation of kinetic equa-

tions for a system of weakly interacting particles.52 In this case the Hamiltonian

can be written in the form

H = H0 + V , (29)

where H0 is the Hamiltonian of noninteracting particles (or quasiparticles) and V

is the operator describing the weak interaction among them. Let us choose the set

of operators Pm = Pk whose average values correspond to the particle distribution

functions, e.g., a†kak or a†kak+q . Here a†k and ak are the creation and annihilation sec-

ond quantized operators (Bose or Fermi type). These operators obey the following

quantum equation of motion:

Ṗk =
1

i~
[Pk, H ] . (30)

It is reasonable to assume that the following relation is fulfilled

[Pk, H0] =
∑

l

cklPl , (31)

where ckl are some coefficients (c-numbers).
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According to Eq. (19), the nonequilibrium statistical operator has the form

ρ = Q−1 exp

(

−
∑

k

Fk(t)Pk +
∑

k

∫ 0

−∞

dt1e
εt1 [Ḟk(t+ t1)Pk(t1) + Fk(t+ t1)Ṗk(t1)]

)

.

(32)

After elimination of the time-derivatives with the help of the equation 〈Pk〉 =

〈Pk〉q it can be shown52 that the integral term in the exponent, Eq. (32) will be

proportional to the interaction V . The averaging of Eq. (30) with NSO (32) gives

the generalized kinetic equations for 〈Pk〉
d〈Pk〉
dt

=
1

i~
〈[Pk , H ]〉 =

1

i~

∑

l

ckl〈Pl〉 +
1

i~
〈[Pk, V ]〉 . (33)

Hence the calculation of the r.h.s. of Eq. (33) leads to the explicit expressions for

the “collision integral” (collision terms). Since the interaction is small, it is possible

to rewrite Eq. (33) in the following form:

d〈Pk〉
dt

= L0
k + L1

k + L21
k + L22

k , (34)

where

L0
k =

1

i~

∑

l

ckl〈Pl〉q (35)

L1
k =

1

i~
〈[Pk, V ]〉q (36)

L21
k =

1

~2

∫ 0

−∞

dt1e
εt1〈[V (t1), [Pk, V ]]〉q (37)

L22
k =

1

~2

∫ 0

−∞

dt1e
εt1

〈[

V (t1), i~
∑

l

Pl
∂L1

k(· · · 〈Pl〉 · · ·)
∂〈Pl〉

]〉

q

. (38)

The higher order terms proportional to the V 3, V 4, etc., can be derived straight-

forwardly.

2.2. Kinetic equations for magnons and phonons

The dynamic behavior of charge,53 magnetic,54 and lattice55 systems is of interest

for the study of transport processes in solids. Partial emphasis has been placed

on the derivation of the kinetic equations describing the hot electron transport in

semiconductors56,57, and the relaxation of magnons58,59 and phonons55,60 due to

the inelastic scattering of quasiparticles.

We discuss briefly in this section the processes occurring after the switching off

the external magnetic field in a ferromagnetic crystal. Our main interest is in fer-

romagnetic insulators, where the dominant interaction is the Heisenberg exchange

coupling JSiSj . It is well known that a strong microwave magnetic field applied
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parallel to the dc field can give rise to parametric excitation of spin waves.58,61,62

In this technique the wave number of the potentially unstable spin waves can be

changed by varying the dc magnetic field. One thus obtains information about the

variation of the spin-wave relaxation time with the wave number.63–67 Because of

its relative simplicity the “parallel pumping” technique has proved very useful in

determining rather fundamental properties of ferromagnetic materials. The sub-

harmonic generation of spin waves at high power levels is an efficient research tool

for probing magnon-magnon and magnon-phonon interactions. Useful information

about the spin-wave relaxation rate can be deduced from the kinetic equations to

study magnon-magnon and magnon-phonon interactions.

Here the spin-wave relaxation processes arising from the dipolar interaction will

be considered as an example. The Hamiltonian has the form

H = −1

2

∑

l6=l′

J(Rll′)SlSl′ + 2µ0h0

∑

l

Sz
l

+ 2µ2
0

∑

l6=l′

1

R5
ll′

(R2
ll′SlSl′ − 3(Rll′Sl′)(Rll′Sl′)) . (39)

This Hamiltonian contains Zeeman energy, exchange energy, and dipolar energy.

To treat this Hamiltonian, it should be expressed in terms of the amplitudes of the

normal modes or spin waves.68 The amplitudes of the normal modes are quantum-

mechanically interpreted as creation and annihilation operators (usually bosons).

We get68

S+
l = Sx

l + iSy
l =

√
2Sb†l

√

1 − b†l bl
2S

;

S−
l = Sx

l − iSy
l =

√
2S

√

1 − b†l bl
2S

bl ; Sz
l = −S + b†l bl .

(40)

We adopt the notation

bi = N−1/2
∑

k

bk exp(ikRi) , b†i = N−1/2
∑

k

b†k exp(−ikRi) .

The transformed Hamiltonian contains a term that is quadratic in the spin-wave

amplitudes H(2) and also terms that are of higher order, H (3), H(4), etc.

H = H(2) +H(3) +H(4) + · · · . (41)

The eigenstates of the quadratic part of the Hamiltonian H (2) can be characterized

by the occupation numbers c†kck, i.e., the quadratic part can be diagonalized to the

form68

H(2) =
∑

k

ε(k)c†kck ; ε(k) = ~ω(k) . (42)
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Here the operators c†k and ck are the second-quantized operators of creation and

annihilation of magnons. All higher order terms in the Hamiltonian lead to tran-

sitions between the eigenstates. In terms of the magnon operators these terms are

given by

H(3) =
∑

kpp′

Φ(k, p, p′)c†kc
†
pcp′∆(k + p − p′) +H.C. (43)

H(4) =
∑

kpp′r

Φ(k, p; p′, r)c†kc
†
pcp′cr∆(k + p− p′ − r) +H.C. (44)

Usually, only that term in the Hamiltonian which is of the third order in the ampli-

tudes of the normal modes is considered explicitly, because only this term leads to

the relaxation rates proportional to the temperature in the high-temperature limit.

Let us apply now the formalism of generalized kinetic equations, as described

above. We suppose that the set of averages 〈Pk〉 = 〈c†kck〉 = 〈nk〉 characterize the

nonequilibrium state of the system. The quasi-equilibrium statistical operator has

the form

ρq = Q−1
q exp

(

−
∑

k

Fk(t)nk

)

; Q−1
q = Tr exp

(

−
∑

k

Fk(t)nk

)

. (45)

The kinetic equation (34) can then be expressed by

d〈nk〉
dt

= L0
k + L1

k + L21
k + L22

k . (46)

For both the contributions H(3) and H(4) the following equality holds:

L0
k = L1

k = L22
k = 0 . (47)

Let us first consider the contribution of the term H (3). We can then write

L21
k = −8π

~

∑

p,p′

{|Φ(k, p, p′)|2δ(ω(k) + ω(p) − ω(p′))∆(k + p − p′)

× [(〈nk〉 + 1)(〈np〉 + 1)〈np′〉 − 〈nk〉〈np〉(〈np′ 〉 + 1)]

− 1

2
|Φ(k, p, p′)|2δ(ω(k) − ω(p) − ω(p′))∆(k − p− p′)

× [(〈nk〉 + 1)〈np〉〈np′〉 − 〈nk〉(〈np〉 + 1)(〈np′〉 + 1)]} . (48)

We can make the same calculation to obtain L21
k for the magnon-magnon scattering

term H(4)

L21
k = −16π

~

∑

p,p′,r

{|Φ(k, p, p′, r)|2δ(ω(k) + ω(p) − ω(p′) − ω(r))∆(k + p − p′ − r)

× [(〈nk〉 + 1)(〈np〉 + 1)〈np′〉〈nr〉 − 〈nk〉〈np〉(〈np′ 〉 + 1)(〈nr〉 + 1)]} . (49)

Here the notation was used

〈nk〉 = N(~ω(k)) = [exp(β~ω(k)) − 1]−1 .
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The quantities Φ(k, p, p′) and Φ(k, p, p′, r) are the combination of the matrix

elements which describe the various transitions between spin eigenstates.58 Equa-

tion (48) corresponds precisely to the rate equation which describes the change of

the average occupation number 〈nk〉 of the mode k derived in Ref. 58. The discus-

sion of the two relevant relaxation rates τ−1
k (due to the confluence and splitting)

is given there. The types of kinetic equations, Eqs. (48) and (49), involved in our

derivation and the conclusions arrived at show very clearly that the NSO method is

a workable and useful approach for derivation of the kinetic equations for concrete

physical problems. As far as the kinetic equations for magnons is concerned, its

convenience can become even more evident if one needs to take into account higher

order magnon processes (four, five, etc.). The higher order processes may give rise

to additional and unusual behavior (i.e., a general heating of the spin-wave system

causing the saturation, additional smaller peaks and kinks in the measured curves,

etc.)

It is evident that a similar derivation can be given for the kinetic equation for

phonons. The theory of thermal conductivity60,69 has been extensively developed

beginning with the kinetic theory of Peierls.9,55,70 The theory of lattice thermal

conductivity invented by Peierls55,70 is based on the assumption that the perturb-

ing mechanisms to the harmonic case (anharmonicity, imperfections) are small in

magnitude. The Peierls collision term for the three-phonon processes H (3) looks

like

L21
k ∼ aπ

~

∑

p,p′

{|Φ(k, p, p′)|2δ(ω(k) + ω(p) − ω(p′))

× [(〈nk〉 + 1)(〈np〉 + 1)〈np′〉 − 〈nk〉〈np〉(〈np′ 〉 + 1)]

+
1

2
|Φ(k, p, p′)|2δ(ω(k) − ω(p) − ω(p′))[(〈nk〉 + 1)〈np〉〈np′〉]} . (50)

Note that our calculations show that three- and four-phonon processes behave quite

differently. One expects that the stronger the anharmonicity the larger the thermal

resistance. To catch this trend, some sophisticated formalisms71 have been devel-

oped which utilize a modified version of the Peierls–Boltzmann equation. A useful

approach to improving the initial Peierls theory corresponds to the derivation of a

generalized Peierls–Boltzmann equation, where the phonons in the collision term are

treated not as free phonons but as quasiparticles with a finite width and damping

which are determined self-consistently. Crystal lattices at low temperatures rep-

resent an interacting system of quasiparticles in which we observe two relaxation

mechanisms of widely different time scales, i.e., the system either at short or long

times after its initial perturbation from equilibrium. For the long-time behavior

of the system it is possible to formulate the problem in terms of the correlation

functions of quantities relaxing slowly, such as densities of conserved variables in

the system. The corresponding transport equations are similar in structure to the

phonon Boltzmann equation with a modification of the collision term. A detailed
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study of the transport equations for phonon systems is not within the scope of this

paper and deserves a separate consideration.

3. System in Thermal Bath: Generalized Kinetic Equations

We now proceed to derive generalized kinetic equations for the system weakly cou-

pled to a thermal bath. Examples of such systems can be an atomic (or molecular)

system interacting with the electromagnetic field it generates as with a thermal

bath, a system of electrons or exitons interacting with the phonon field, etc. Our

aim is to investigate relaxation processes in two weakly interacting subsystems, one

of which is in the nonequilibrium state and the other is considered as a thermal

bath. The concept of thermal bath or heat reservoir, i.e., a system that has effec-

tively an infinite number of degrees of freedom, was not formulated precisely. A

standard definition of the thermal bath is a heat reservoir defining a temperature

of the system environment. From a mathematical point of view,37 a heat bath is

something that gives a stochastic influence on the system under consideration. In

this sense, the generalized master equation72,73 is a tool for extracting the dynamics

of a subsystem of a larger system by the use of a special projection techniques.74

The problem of a small system weakly interacting with a heat reservoir has var-

ious aspects. For example, a useful model of the lattice thermal conduction is a

problem of a stationary energy current through a crystalline lattice in contact with

external heat reservoirs.75–77 Basic to the derivation of a transport equation for a

small system weakly interacting with a heat bath is a proper introduction of model

assumptions.

We are interested here in the problem of derivation of the kinetic equations for

a certain set of average values (occupation numbers, spins, etc.) which characterize

the nonequilibrium state of the system.

Let us consider the relaxation of a small subsystem weakly interacting with a

thermal bath. The Hamiltonian of the total system is taken in the following form:

H = H1 +H2 + V , (51)

where

H1 =
∑

α

Eαa
†
αaα ; V =

∑

α,β

Φαβa
†
αaβ , Φαβ = Φ†

αβ . (52)

Here H1 is the Hamiltonian of the small subsystem, and a†α and aα are the creation

and annihilation second quantized operators of quasiparticles in the small subsystem

with energies Eα, V is the operator of the interaction between the small subsystem

and the thermal bath, and H2 is the Hamiltonian of the thermal bath which we

do not write explicitly. The quantities Φαβ are the operators acting on the thermal

bath variables.

We are interested in the kinetic stage of the nonequilibrium process in the

system weakly coupled to a thermal bath. Therefore, we assume that the state of
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this system is determined completely by the set of averages 〈Pαβ〉 = 〈a†αaβ〉 and

the state of the thermal bath by 〈H2〉, where 〈· · ·〉 denotes the statistical average

with the nonequilibrium statistical operator, which will be defined below.

In order to pursue our discussion, we will use the whole development in Sec. 2.

We take the quasi-equilibrium statistical operator ρq in the form

ρq(t) = exp(−S(t, 0)) , S(t, 0) = Ω(t) +
∑

αβ PαβFαβ(t) + βH2

Ω = ln Tr exp



−
∑

αβ

PαβFαβ(t) − βH2



 .
(53)

Here Fαβ(t) are the thermodynamic parameters conjugated with Pαβ , and β is the

reciprocal temperature of the thermal bath. All the operators are considered in the

Heisenberg representation. The nonequilibrium statistical operator has the form

ρ(t) = exp(−S(t, 0)) , S(t, 0) = ε

∫ 0

−∞

dt1e
εt1



Ω(t+ t1) +
∑

αβ

PαβFαβ(t) + βH2



 .

(54)

The parameters Fαβ(t) are determined from the condition 〈Pαβ〉 = 〈Pαβ〉q .
In the derivation of the kinetic equations we use the perturbation theory in a

“weakness of interaction” and assume that the equality 〈Φαβ〉q = 0 holds, while

other terms can be added to the renormalized energy of the subsystem. The nonequi-

librium statistical operator can be rewritten as

ρ(t) = Q−1 exp(−L(t)) ,

L(t) = ε

∫ 0

−∞

dt1e
εt1





∑

αβ

PαβFαβ(t+ t1) + βH2(t1)



 .
(55)

Integrating in Eq. (55) by parts, we obtain

L(t) =
∑

αβ

PαβFαβ(t) + βH2

−
∫ 0

−∞

dt1e
εt1





∑

αβ

Ṗαβ(t1)Fαβ(t+ t1)

+
∑

αβ

Pαβ(t1)
∂Fαβ(t+ t1)

∂t1
+ βḢ2(t1)



 . (56)

For further considerations it is convenient to rewrite ρq as

ρq = ρ1ρ2 = Q−1
q exp(−L0(t)) , (57)
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where

ρ1 = Q−1
1 exp



−
∑

αβ

PαβFαβ(t)



 ; Q1 = Tr exp



−
∑

αβ

PαβFαβ(t)



 (58)

ρ2 = Q−1
2 e−βH2 ; Q2 = Tr exp(−βH2) (59)

Qq = Q1Q2 ; L0 =
∑

αβ

PαβFαβ(t) + βH2 . (60)

We now turn to the derivation of the kinetic equations. The starting point is the

kinetic equations in the following implicit form:

d〈Pαβ〉
dt

=
1

i~
〈[Pαβ , H ]〉 =

1

i~
(Eβ −Eα)〈Pαβ〉 +

1

i~
〈[Pαβ , V ]〉 . (61)

We restrict ourselves to the second-order in powers of V in calculating the r.h.s. of

Eq. (61). To this end, we must obtain ρ(t) in the first-order in V . We get

∂Fαβ(t+ t1)

∂t1
=

i

~
(Eβ −Eα)Fαβ(t+ t1)

−
∑

µν

∂Fαβ(t+ t1)

∂〈Pµν〉
1

i~
〈[Pµν (t1), V (t1)]〉

=
i

~
(Eβ −Eα)Fαβ(t+ t1)

−
∑

µνγ

∂Fαβ(t+ t1)

∂〈Pµν〉
(〈ΦνγPµγ〉 − 〈ΦγµPγν〉) . (62)

Restricting ourselves to the linear terms in Eq. (62), we obtain

∂Fαβ(t+ t1)

∂t1
' i

~
(Eβ −Eα)Fαβ(t+ t1)

− 1

i~

∑

µν

∂Fαβ(t+ t1)

∂〈Pµν〉
(〈Φνγ〉q〈Pµγ〉 − 〈Φγµ〉q〈Pγν〉)

=
i

~
(Eβ −Eα)Fαβ(t+ t1) . (63)

The quantities, Ṗαβ(t1) and Ḣ2(t1) in the first-order in interaction have the form

Ṗαβ(t1) =
1

i~
(Eβ −Eα)Pαβ(t1) +

1

i~
[Pαβ , V (t1)]

Ḣ2(t1) =
1

i~
[H2(t1), V (t1)] .

(64)
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Here and below all the operators are taken in the interaction representation. Using

Eqs. (63) and (64) we find

L(t) = L0 −
∫ 0

−∞

dt1e
εt1





∑

αβ

Pαβ(t1)Fαβ(t+ t1) + βH2(t1), V (t1)



 . (65)

It can be verified that the expression
∑

αβ Pαβ(t1)Fαβ(t+ t1)+βH2 is independent

of t1 in the zero-order in interaction and consequently is equal to L0. Then for ρ(t)

in the linear approximation in interaction V we have

ρ(t) = ρq −
i

~
ρq

∫ 0

−∞

dt1e
εt1

∫ 1

0

dλeλL0 [L0, V (t1)]e
−λL0 . (66)

By integrating in Eq. (66) over λ and using the relation

eλL0 [L0, V (t1)]e
−λL0 =

d

dλ
eλL0V (t1)e

−λL0 (67)

we get

ρ(t) = ρq −
i

~

∫ 0

−∞

dt1e
εt1 [V (t1), ρq ] . (68)

Finally, with the aid of Eq. (68) we obtain the kinetic equations for 〈Pαβ〉 in the

form

d〈Pαβ〉
dt

=
1

i~
(Eβ −Eα)〈Pαβ〉 −

1

~2

∫ 0

−∞

dt1e
εt1〈[[Pαβ , V ], V (t1)]〉q . (69)

The last term of the right-hand side of Eq. (69) can be called the generalized “col-

lision integral”. Thus, we can see that the collision term for the system weakly

coupled to the thermal bath has a convenient form of the double commutator as

for the generalized kinetic equations (37) for the system with small interaction. It

should be emphasized that the assumption about the model form of the Hamil-

tonian (51) is nonessential for the above derivation. We can start again with the

Hamiltonian (51) in which we shall not specify the explicit form of H1 and V . We

assume that the state of the nonequilibrium system is characterized completely by

some set of average values 〈Pk〉 and the state of the thermal bath by 〈H2〉. We con-

fine ourselves to such systems for which [H1, Pk] =
∑

l cklPl. Then we assume that

〈V 〉q ' 0, where 〈· · ·〉q denotes the statistical average with the quasi-equilibrium

statistical operator of the form

ρq = Q−1
q exp

(

−
∑

k

PkFk(t) − βH2

)

(70)

and Fk(t) are the parameters conjugated with 〈Pk〉. Following the method used

above in the derivation of Eq. (69), we can obtain the generalized kinetic equations

for 〈Pk〉 with an accuracy up to terms which are quadratic in interaction

d〈Pk〉
dt

=
i

~

∑

l

ckl〈Pl〉 −
1

~2

∫ 0

−∞

dt1e
εt1〈[[Pk, V ], V (t1)]〉q . (71)
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Hence Eq. (69) is fulfilled for the general form of the Hamiltonian of a small system

weakly coupled to a thermal bath.

4. System in Thermal Bath: Balance and Master Equations

In Sec. 3 we have obtained the kinetic equations for 〈Pαβ〉 in the general form. Our

next task is to write down Eq. (69) in an explicit form. To do this, we note that the

perturbation operator can be represented as V (t1) =
∑

α,β φαβ(t1)a
†
αaβ , where

φαβ(t1) = U2(t1)ΦαβU
†
2 (t1) exp

(

i

~
(Eα −Eβ)t1

)

; U2(t1) = exp

(

iH2t1
~

)

. (72)

Now we calculate the double commutator in the right-hand side of Eq. (69)

〈[[Pαβ , V ], V (t1)]〉q =
∑

µν

{〈Φβµφµν(t1)〉q〈Pαν〉 + 〈φνµ(t1)Φµα〉q〈Pνβ〉

− (〈Φµαφβν(t1)〉q + 〈φµα(t1)Φβν〉q)〈Pµν 〉} (73)

where we restricted ourselves to the linear terms in the mean density of quasi-

particles. Let it be reminded that the correlation functions 〈AB(t)〉 and 〈A(t)B〉
can be expressed via their spectral intensities. Indeed, an effective way of viewing

quasiparticles, quite general and consistent, is via the Green’s functions scheme of

many-body theory.68,78 It is known68,27 that the correlation functions and Green’s

functions are completely determined by the spectral weight function (or spectral

intensity) J(ω).

FAB(t− t′) = 〈A(t)B(t′)〉 =
1

2π

∫ +∞

−∞

dω exp[iω(t− t′)]JAB(ω) (74)

FBA(t′ − t) = 〈B(t′)A(t)〉 =
1

2π

∫ +∞

−∞

dω exp[iω(t′ − t)]JBA(ω) . (75)

Here the Fourier transforms JAB(ω) and JBA(ω) are of the form

JBA(ω) = Q−12π
∑

m,n

exp(−βEn)(ψ†
nBψm)(ψ†

mAψn)δ

(

En −Em

~
− ω

)

(76)

JAB(−ω) = exp(β~ω)JBA(ω) . (77)

Expressions (76) and (77) are spectral representations of the corresponding time

correlation functions. The quantities JAB and JBA are spectral densities or spectral

weight functions.

It is convenient to define

FBA(0) = 〈B(t)A(t)〉 =
1

2π

∫ +∞

−∞

dωJ(ω) (78)

FAB(0) = 〈A(t)B(t)〉 =
1

2π

∫ +∞

−∞

dω exp(β~ω)J(ω) . (79)
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The correlation functions 〈Φβµφµν(t1)〉q and 〈φνµ(t1)Φµα〉q are connected with their

spectral intensities in the following way:

〈Φµνφγδ(t)〉q =
1

2π

∫ +∞

−∞

dωJγδ,µν(ω) exp

[

−i
(

ω − Eγ −Eδ

~

)

t

]

(80)

〈φµν(t)Φγδ〉q =
1

2π

∫ +∞

−∞

dωJγδ,µν(ω) exp

[

i

(

ω +
Eµ −Eν

~

)

t

]

. (81)

Substituting Eqs. (80) and (81) into Eqs. (69) and (73) and taking into account the

notation

1

i~

∑

µ

∫ 0

−∞

dt1e
εt1〈Φβµφµν(t1)〉q =

1

2π

∑

µ

∫ +∞

−∞

dω
Jµν,βµ(ω)

~ω −Eγ −Eδ + iε
= Kβν

(82)

1

i~

∫ 0

−∞

dt1e
εt1(〈Φµαφβν(t1)〉q + 〈φµα(t1)Φβν〉q)

=
1

2π

∫ +∞

−∞

dωJβν,µα(ω)

(

1

~ω −Eβ +Eν + iε
− 1

~ω −Eα −Eµ − iε

)

= Kαβ,µν (83)

one can rewrite the kinetic equations for 〈Pαβ〉 as

d〈Pαβ〉
dt

=
1

i~
(Eβ −Eα)〈Pαβ〉

−
∑

ν

(Kβν〈Pαν〉 +K†
αν〈Pνβ〉) +Kαβ,µν〈Pµν 〉 . (84)

If one confines himself to the diagonal averages 〈Pαα〉 only, the last equation may

be transformed to give

d〈Pαα〉
dt

=
∑

ν

Kαα,νν〈Pνν〉 − (Kαα +K†
αα)〈Pαα〉 (85)

Kαα,νν =
1

~2
Jαν,να

(

Eα −Eβ

~

)

= Wβ→α (86)

Kαα +K†
αα =

1

~2

∑

ν

Jνα,αν

(

Eβ −Eα

~

)

= Wα→β . (87)

Here Wβ→α and Wα→β are the transition probabilities expressed in the spectral

intensity terms. Using the properties of the spectral intensities,68 it is possible to

verify that the transition probabilities satisfy the relation of the detailed balance

Wβ→α

Wα→β
=

exp(−βEα)

exp(−βEβ)
. (88)
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Finally, we have

d〈Pαα〉
dt

=
∑

ν

Wν→α〈Pνν〉 −
∑

ν

Wα→ν〈Pαα〉 . (89)

This equation has the usual form of the Pauli master equation.

According to Ref. 79, “the master equation is an ordinary differential equation,

describing the reduced evolution of the system, obtained from the full Heisenberg

evolution by taking the partial expectation with respect to the vacuum state of the

reservoirs degrees of freedom”. The rigorous mathematical derivation of the gener-

alized master equation72–74,79–82 is rather a complicated mathematical problem.

5. A Dynamical System in a Thermal Bath

The problem about the appearance of a stochastic process in a dynamical sys-

tem which is submitted to the influence of a “large” system was considered by

Bogoliubov.37,83 For a classical system this question was studied on the basis of

the Liouville equation for the probability distribution in the phase space and for

quantum mechanical systems on the basis of an analogous equation for the von Neu-

mann statistical operator. In the papers mentioned above a mathematical method

was elaborated which permitted obtaining, in the first approximation, the Fokker–

Planck equations. Since then a lot of papers were devoted to studying this problem

from various points of view (e.g. Refs. 84–87). Lebowitz and Rubin84 studied the

motion of a Brownian particle in a fluid (as well as the motion of a Brownian par-

ticle in a crystal) from a dynamical point of view. They derived a formal structure

of the collision term similar to the structure of the usual linear transport equa-

tion. Kassner86 used a new type of projection operator and derived homogeneous

equations of motion for the reduced density operator of a system coupled to a

bath. It was shown that in order to consistently describe damping within quantum

mechanics, one must couple the open system of interest to a heat reservoir. The

problem of the inclusion of dissipative forces in quantum mechanics is of great inter-

est. There are various approaches to this complicated problem.79,85,88–90 Tanimura

and Kubo88 considered a test system coupled to a bath system with linear interac-

tions and derived a set of hierarchical equations for the evolution of their reduced

density operator. Breuer and Petruccione89 developed a formulation of quantum

statistical ensembles in terms of probability distributions on a projective Hilbert

state. They derived a Liouville master equation for the reduced probability distri-

bution of an open quantum system. It was shown that the time-dependent wave

function of an open quantum system represented a well-defined stochastic process

which is generated by the nonlinear Schrödinger equation

∂ψ

∂t
= −iG(ψ) (90)

with the nonlinear and non-Hermitian operator G(ψ). The inclusion of dissipative

forces in quantum mechanics through the use of non-Hermitian Hamiltonians is
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of great interest in the theory of interaction between heavy ions. It is clear that

if the Hamiltonian has a non-Hermitian part HA the Heisenberg equation of mo-

tion will be modified by additional terms. However, care must be taken in defining

the probability density operator when the Hamiltonian is non-Hermitian. Also,

the state described by the wave function ψ is not then an energy eigenstate be-

cause of the energy dissipation. As it was formulated by Accardi and Lu79, “the

quantum Langevin equation is a quantum stochastic differential equation driven

by some quantum noise (creation, annihilation, number noises).” The necessity of

considering such processes arises in the description of various quantum phenomena

(e.g., radiation damping, etc.), since quantum systems experience dissipation and

fluctuations through interaction with a reservoir.91,92 The concept of “quantum

noise” was proposed by Senitzky90 to derive a quantum dissipation mechanism.

Originally, the time evolution of quantum systems with the dissipation and fluc-

tuations was described by adding a dissipative term to the quantum equation of

motion. However, as was noted by Senitzky,90 this procedure leads to the nonuni-

tary time evolution. He proposed to derive the quantum dissipation mechanism by

introducing quantum noise, i.e., a quantum field interacting with the dynamical

system (in his case an oscillator). For an appropriately chosen form of the interac-

tion, energy will flow away from the oscillator to the quantum noise field (thermal

bath or reservoir).

In this section, we consider the behavior of a small dynamic system interacting

with a thermal bath, i.e. with a system that has effectively an infinite number of

degrees of freedom, in the approach of the nonequilibrium statistical operator, on

the basis of the equations derived in Sec. 3. The equations derived below can help

in the understanding of the origin of irreversible behavior in quantum phenomena.

We assume that the dynamic system (system of particles) is far from equilibrium

with the thermal bath and cannot, in general, be characterized by a temperature.

As a result of the interaction with the thermal bath, such a system acquires some

statistical characteristics but remains essentially a mechanical system. Our aim is

to obtain an equation of evolution (equations of motion) for the relevant variables

which are characteristic of the system under consideration. The basic idea is to

eliminate effectively the thermal bath variables (c.f. Ref. 91–93). The influence of the

thermal bath is manifested then as an effect of friction of the particle in a medium.

The presence of friction leads to dissipation and, thus, to irreversible processes.

In this respect, our philosophy coincides precisely with the Lax statement91 “that

the reservoir can be completely eliminated provided that the frequency shifts and

dissipation induced by the reservoir are incorporated into the mean equations of

motion, and provided that a suitable operator noise source with the correct moments

are added”.

Let us consider the behavior of a small subsystem with Hamiltonian H1 inter-

acting with a thermal bath with Hamiltonian H2. The total Hamiltonian has the

form (51). As operators Pm determining the nonequilibrium state of the small sub-

system, we take a†α, aα, and nα = a†αaα. Note that the choice of only the operators
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nα and H2 would lead to kinetic equations (71) for the system in the thermal bath

derived above.

The quasi-equilibrium statistical operator (5) is determined from the extremum

of the information entropy (7) subject to the additional conditions that the

quantities

Tr(ρaα) = 〈aα〉, Tr(ρa†α) = 〈a†α〉, Tr(ρnα) = 〈nα〉 (91)

remain constant during the variation and the normalization Tr(ρ) = 1 is preserved.

The operator ρq has the form

ρq = exp
(

Ω −
∑

α(fα(t)aα + f †
α(t)a†α + Fα(t)nα) − βH2

)

≡ exp(S(t, 0))

Ω = ln Tr exp
(

−
∑

α(fα(t)aα + f †
α(t)a†α + Fα(t)nα) − βH2

)

.
(92)

Here, fα, f †
α and Fα are Lagrangian multipliers determined by the conditions (91).

They are the parameters conjugate to 〈aα〉q , 〈a†α〉q and 〈nα〉q :

〈aα〉q = − δΩ

δfα(t)
, 〈nα〉q = − δΩ

δFα(t)
,

δS

δ〈aα〉q
= fα(t) ,

δS

δ〈nα〉q
= Fα(t) .

(93)

In what follows, it is convenient to write the quasi-equilibrium statistical operator

(92) in the form

ρq = ρ1ρ2 , (94)

where

ρ1 = exp

(

Ω1 −
∑

α

(fα(t)aα + f †
α(t)a†α + Fα(t)nα)

)

(95)

Ω1 = ln Tr exp

(

−
∑

α

(fα(t)aα + f †
α(t)a†α + Fα(t)nα)

)

ρ2 = exp(Ω2 − βH2) , Ω2 = ln Tr exp(−βH2) .

(96)

The nonequilibrium statistical operator ρ will have the form (23). Note, that the

following conditions are satisfied:

〈aα〉q = 〈aα〉 , 〈a†α〉q = 〈a†α〉 , 〈nα〉q = 〈nα〉 . (97)

We shall take, as our starting point, the equations of motion for the operators

averaged with the nonequilibrium statistical operator (23)

i~
d〈aα〉
dt

= 〈[aα, H1]〉 + 〈[aα, V ]〉 , (98)

i~
d〈nα〉
dt

= 〈[nα, H1]〉 + 〈[nα, V ]〉 . (99)
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The equation for 〈a†α〉 can be obtained by taking the conjugate of (98). Restricting

ourselves to the second order in the interaction V, we obtain, by analogy with (71),

the following equations:

i~
d〈aα〉
dt

= Eα〈aα〉 +
1

i~

∫ 0

−∞

dt1e
εt1〈[[aα, V ], V (t1)]〉q (100)

i~
d〈nα〉
dt

=
1

i~

∫ 0

−∞

dt1e
εt1〈[[nα, V ], V (t1)]〉q . (101)

Here V (t1) denotes the interaction representation of the operator V . Expanding

the double commutator in Eq. (100), we obtain

i~
d〈aα〉
dt

= Eα〈aα〉 +
1

i~

∫ 0

−∞

dt1e
εt1





∑

βµν

〈Φαβφµν(t1)〉q〈aβa
†
µaν〉q

−〈φµν(t1)Φαβ〉q〈a†µaνaβ〉q
)

(102)

where φµν(t1) = Φµν(t1) exp( i
~
(Eµ −Eν)t1). We transform Eq. (102) to

i~
d〈aα〉
dt

= Eα〈aα〉 +
1

i~

∑

βµ

∫ 0

−∞

dt1e
εt1〈Φαµφµβ(t1)〉q〈aβ〉

+
1

i~

∑

βµν

∫ 0

−∞

dt1e
εt1〈[Φαν , φµν(t1)]〉q〈a†µaνaβ〉q . (103)

We assume that the terms of higher order than linear can be dropped in Eq. (103)

(we shall formulate the conditions when this is possible below). Then we get

i~
d〈aα〉
dt

= Eα〈aα〉 +
1

i~

∑

βµ

∫ 0

−∞

dt1e
εt1〈Φαµφµβ(t1)〉q〈aβ〉 . (104)

The form of the linear equation (104) is the same for Bose and Fermi statistics.

Using the spectral representations, Eqs. (80) and (81), it is possible to rewrite

Eq. (104) by analogy with Eq. (84) as

i~
d〈aα〉
dt

= Eα〈aα〉 +
∑

β

Kαβ〈aβ〉 (105)

where Kαβ is defined in Eq. (82). Thus, we have obtained the equation of motion for

the average 〈aα〉. It is clear that this equation describes approximately the evolution

of the state of the dynamic system interacting with the thermal bath. The last term

in the right-hand side of this equation leads to the shift of energy Eα and to the

damping due to the interaction with the thermal bath (or medium). In a certain

sense, it is possible to say that Eq. (105) is an analog or the generalization of the

Schrödinger equation.
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Let us now show how, in the case of Bose statistics, we can take into account

the nonlinear terms which lead to a coupled system of equations for 〈aα〉 and 〈nα〉.
Let us consider the quantity 〈a†µaνaβ〉q . After the canonical transformation

aα = bα + 〈aα〉 , a†α = b†α + 〈a†α〉
the operator ρ1 in Eq. (95) can be written in the form

ρ1 = Q−1
1 exp

(

Ω1 −
∑

α

(Fα(t)b†αbα)

)

, 〈aα〉 = − f †
α

Fα
. (106)

Note that Q1 in Eq. (106) is not, in general, equal to Q1 in Eq. (95). Using the

Wick–De Dominicis theorem68 for the operators b†α, bα and returning to the original

operators a†α, aα, we obtain

〈a†µaνaβ〉q ' (〈nµ〉 − |〈aµ〉|2)〈aν〉δµ,β + (〈nµ〉 − |〈aµ〉|2)〈aβ〉δµ,β . (107)

Using (107), we can rewrite Eq. (95) in the form

i~
d〈aα〉
dt

= Eα〈aα〉 +
1

i~

∑

βµ

∫ 0

−∞

dt1e
εt1〈Φαµφµβ(t1)〉q〈aβ〉

+
1

i~

∑

µβ

∫ 0

−∞

dt1e
εt1{(〈[Φαµ, φµβ(t1)]〉q

+ 〈[Φαβ , φµµ(t1)]〉q}(〈nµ〉 + |〈aµ〉|2)〈aβ〉 . (108)

Now consider Eq. (101). Expand the double commutator and, in the same way as

the threefold terms were neglected in the derivation of Eq. (104), ignore the fourfold

terms in (101). We obtain then

d〈nα〉
dt

=
∑

β

Wβ→α(〈nβ〉 + |〈aβ〉|2) −
∑

β

Wα→β(〈nα〉 + |〈aα〉|2)

+
1

i~

∑

β

Kαβ〈a†α〉〈aβ〉 +
1

i~

∑

β

K†
αβ〈aα〉〈a†β〉

+
∑

µν

Kαα,µν〈a†µ〉〈aν〉 . (109)

Thus, in the general case Eqs. (100) and (101) form a coupled system of non-

linear equations of Schrödinger and kinetic types. The nonlinear equation (102) of

Schrödinger type is an auxiliary equation and, in conjunction with the equation

of kinetic type (109), determines the parameters of the nonequilibrium statistical

operator since in the case of Bose statistics

〈aα〉 = − f †
α(t)

Fα(t)
, 〈nα〉 = (eFα(t) − 1)−1 +

|fα|2
F 2

α(t)
. (110)

Therefore, the linear Schrödinger equation is a fairly good approximation if

(〈nα〉 + |〈aα〉|2) = (eFα(t) − 1)−1 � 1 .
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The last condition corresponds essentially to 〈b†αbα〉 � 1.

In the case of Fermi statistics the situation is more complicated.94 There is well-

known isomorphism between bilinear products of fermion operators and the Pauli

spin matrices.95 In quantum field theory the sources linear in the Fermi operators

are introduced by means of classical spinor fields that anticommute with one another

and with the original field. The Fermion number processes in the time evolution of

a certain quantum Hamiltonian model were investigated in Ref. 96. It was shown

that the time evolution tended to the solution of a quantum stochastic differential

equation driven by the Fermion number processes. We shall not consider here this

complicated case.

In order to interpret the physical meaning of the derived equations, an example

will be given here. Let us consider briefly a system of electrons in a lattice described

by the Hamiltonian

H = H1 +H2 + V

=
∑

kσ

ε(k)a†kσakσ +
∑

q

~ωqb
†
qbq

+
1√
v

∑

k1,k2σ

A(k1 − k2)a
†
k1σak2σ(bk1−k2

+ b†
k2−k1

) , (111)

where ~ωq is the phonon energy, a†kσ , akσ and b†q , bq are the operators of creation and

annihilation of electrons and phonons, respectively; ε(k) is the energy of electrons

and A(q) determines the electron-phonon coupling. Equation (105) for 〈akσ〉 can

be represented in the form

i~
d〈akσ〉
dt

= (ε(k) + ∆E(k))〈akσ〉 −
i~

2
Γ(k)〈akσ〉 , (112)

where

∆E(k) = P
∑

k1

|A(k − k1)|2

( 〈Nk−k1
〉 + 1

ε(k) − ε(k1) − ~ωk−k1

+
〈Nk−k1

〉
ε(k) − ε(k1) + ~ωk−k1

) (113)

and

Γ(k) =
2π

~

∑

k1

|A(k − k1)|2

((〈Nk−k1
〉 + 1)δ(ε(k) − ε(k1) − ~ωk−k1

) + 〈Nk−k1
〉δ(ε(k) − ε(k1) + ~ωk−k1

))

(114)

are the energy shift of an electron and the electron damping, respectively. Here

〈Nq〉 = (eβ~ωq − 1)−1, the distribution functions of the phonons. Expressions (113)

and (114) are the same as those obtained by the Green functions method97 if one

sets 〈a†kσakσ〉 � 1 in the latter.
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6. Schrödinger-Type Equation with Damping for a Dynamical

System in a Thermal Bath

In the previous section we obtained an equation for mean values of the amplitudes

in the form (105). It is of interest to analyze and track more closely the analogy

with the Schrödinger equation in the coordinate form. To do this, by convention

we define the “wave function”

ψ(r) =
∑

α

χα(r)〈aα〉 , (115)

where {χα(r)} is a complete orthonormalized system of single-particle functions of

the operator (− ~
2

2m∇2 + v(r)), where v(r) is the potential energy, and
(

− ~
2

2m
∇2 + v(r)

)

χα(r) = Eαχα(r) . (116)

Thus, in a certain sense, the quantity ψ(r) may plays the role of the wave function

of a particle in the medium. Now, using Eq. (115), we transform Eq. (105) to

i~
∂ψ(r)

∂t
=

(

− ~
2

2m
∇2 + v(r)

)

ψ(r) +

∫

K(r, r′)ψ(r′)dr′ . (117)

The kernel K(r, r′) of the integral equation (117) has the form

K(r, r′) =
∑

αβ

Kαβχα(r)χ†
β(r′)

=
1

i~

∑

α,β,µ

∫ 0

−∞

dt1e
εt1〈Φαµφµβ(t1)〉qχα(r)χ†

β(r′) . (118)

Equation (117) can be called a Schrödinger-type equation with damping for a dy-

namical system in a thermal bath. It is interesting to note that similar Schrödinger

equations with a nonlocal interaction are used in the scattering theory98,99 to de-

scribe interaction with many scattering centers.

To demonstrate the capabilities of Eq. (117), it is convenient to introduce the

operator of translation exp(iqp/~), where q = r′ − r; p = −i~∇r. Then Eq. (117)

can be rewritten in the form

i~
∂ψ(r)

∂t
=

(

− ~
2

2m
∇2 + v(r)

)

ψ(r) +
∑

p

D(r,p)ψ(r) (119)

where

D(r,p) =

∫

d3qK(r, r + q)e
iqp

~ . (120)

It is reasonable to assume that the wave function ψ(r) varies little over the corre-

lation length characteristic of the kernel K(r, r′). Then, expanding exp(iqp/~) in

a series, we obtain the following equation in the zeroth order:

i~
∂ψ(r)

∂t
=

(

− ~
2

2m
∇2 + v(r + ReU(r))

)

ψ(r) + i ImU(r)ψ(r) (121)
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where

U(r) = ReU(r) + i ImU(r) =

∫

d3qK(r, r + q) . (122)

Expression (121) has the form of a Schrödinger equation with a complex potential.

Equations of this form are well known in the scattering theory99 in which one

introduces an interaction describing absorption (ImU(r) < 0). Further, expanding

exp(iqp/~) in a series up to the second order inclusively, we can represent Eq. (117)

in the following form99:

i~
∂ψ(r)

∂t
=

{

(

− ~
2

2m
∇2 + v(r)

)

+ U(r) − 1

i~

∫

d3qK(r, r + q)(qp)

+
1

2

∫

d3qK(r, r + q)

3
∑

m,n=1

qmqn∇m∇n

}

ψ(r) . (123)

To interpret this equation, let us introduce the function

A(r) =
mc

i~e

∫

d3qReK(r, r + q)q (124)

where m and e are the mass and charge of the electron and c is the velocity of

light. Then A(r) can be considered, in a certain sense, as an analog of the complex

vector potential of an electromagnetic field. It is clear that the motion of a particle

(dynamic subsystem) through the medium imitates, to some extent, the motion of

a charged particle in the electromagnetic field. To make this analogy even more

close, let us introduce the following quantity:
(

1

M(r)

)

ij

=
1

m
δij −

mc

i~e

∫

d3qK(r, r + q)qiqj . (125)

It follows from (125) that this quantity can be interpreted as a tensor of the recip-

rocal effective masses.100,101 The notion of the “mass tensor” was introduced in100

to describe the motion of an electron in an external field F

dvi

dt
=

e

~2

∑

j

∂2E

∂qi∂qj
Fj i, j = 1, 2, 3 or x, y, z (126)

or in vector notation

dv

dt
=

e

~2
gradq(F gradq E) . (127)

Thus, a field F may change the velocity ~v in directions other than that of F.

The quantity ~
2( ∂2E

∂qi∂qj )−1 has been called the “mass tensor”. Now we can rewrite

Eq. (123) in the form

i~
∂ψ(r)

∂t
=



−~
2

2

3
∑

i,j=1

(

1

M(r)

)

ij

∇i∇j + v(r) + U(r) +
ie~

mc
A(r)∇ + iT (r)



ψ(r)

(128)
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T (r) =
1

2

∫

d3qK(r, r + q)

3
∑

m,n=1

qmqn∇m∇n . (129)

Note that in an isotropic medium the tensor ( 1
M(r) )ij is diagonal and A(r) = 0.

The introduction of ψ(r) does not mean that the state of the small dynamical

subsystem is pure. It remains mixed since it is described by the statistical operator

(23), the evolution of the parameters fα, f †
α, and Fα of the latter being governed

by a coupled system of equations of Schrödinger and kinetic types. It is interesting

to mention that the derivation of a Schrödinger-type equation with non-Hermitian

Hamiltonian which describes the dynamic and statistical aspects of the motion was

declared by Korringa.85 However, his Eq. (29)

i
∂W ′

∂t
=

(

H ′(t) + h′(t)) +
i

2θ

dh′

dt
+ · · ·

)

W ′(t) (130)

whereW ′(t) is the statistical matrix for the primed system, can hardly be considered

as a Schrödinger-type equation. This special form of the equation for the time-

dependent statistical matrix can be considered as a modified Bloch equation.

Hence we were able to apply the NSO approach given above to dynamics. We

have shown in this section that for some class of dynamic systems it was possi-

ble, with the NSO approach, to go from a Hamiltonian description of dynamics

to a description in terms of processes which incorporates the dissipativity. How-

ever, a careful examination is required in order to see under what conditions the

Schrödinger-type equation with damping can really be used.

7. Concluding Remarks

In this paper, we have discussed the general statistical mechanics approach to the

description of the transport processes. We have applied the method of the nonequi-

librium statistical operator to study the generalized kinetic and evolution equations.

We analyzed and derived in a closed form the kinetic equations and applied them

to some typical problems.

In writing this paper we have essentially confined ourselves to a discussion of

those features of the theory which deal with general structural properties rather

than with specific physical applications. The method offers several advantages over

the standard technique of the calculation of transport coefficients. The derived

generalized kinetic equations for a system weakly coupled to a thermal bath are

analogous to those derived in Ref. 52 for the system of weakly interacting parti-

cles. Moreover, the capability of the generalized kinetic equations was demonstrated

and further discussed by considering a few representative examples, i.e., the kinetic

equations for magnons and phonons, and the energy shift and damping of par-

ticle (electron) due to the friction with media (phonons). There are many other

applications of the formalism developed in this article, for example, longitudinal

nuclear spin relaxation and spin diffusion. However, we have not considered other

contributions here. These questions deserve a separate consideration.
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An example of a small system being initially far from equilibrium has been con-

sidered. We have reformulated the theory of the time evolution of a small dynamic

system weakly coupled to a thermal bath and shown that a Schrödinger-type equa-

tion emerges from this theory as a particular case. Clearly then, the nonequilibrium

statistical operator approach is a convenient and workable tool for the derivation

of relaxation equations and formulae for evolution and kinetic equations.

In our above treatment we have avoided a number of important questions such

as the rigorous proof of the existence and uniqueness of the quasi-equilibrium state,

the validity of the time-smoothing procedure, etc. These questions, as well as the ap-

plication of the derived equations to other important problems of transport in solids

such as the nuclear spin relaxation and diffusion, electro- and thermal conductivity,

remain to be areas for further investigation.
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