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The renormalized electron and phonon spectra of the Bari§i¢-Labbe—Friedel model of a transition metal are derived.
Using the method of double-time thermal Green functions, the self-consistent system of equations including electron—
phonon interaction is obtained. For the band and atomic limits of the Hubbard model the explicit solutions for the electron
and phonon energies are obtained. The modified Stoner criterion is discussed. The energy gap, appearing between electron
bands in the strong correlation limit, persists in the present calculations. The Eliashberg-type equations of superconduc-
tivity are obtained.

1. Introduction

In recent years, the problem of satisfactory description of the electron, thermal and superconducting
properties of transition metals has evoked a great interest. A systematic, self-consistent treatment of the
electron—phonon interaction plays an important role in this respect {1-3]. Particular properties of the
transition metals, their alloys and compounds follow, to a great extent, from the dominant role of
d-electrons. In the case of simple metals, where the approximation of almost free electrons is valid,
efficient methods exist to carry the above task, based on pseudopotential concept [4, 5]. However, these
methods cannot be applied to transition metals, since the d-electron wave functions are strongly
localized and, therefore, a tight-binding scheme is more suitable.

Barisi¢, Labbe and Friedel [1] (BLF) proposed the Hamiltonian for a transition metal, in which they
generalized the well-known Hubbard Hamiltonian [6] to include the lattice dynamics. The interaction of
tightly bound d-electrons with lattice vibrations is constructed, in the BLF [1] Hamiltonian, within the
“rigid ion”’ approximation, i.e. assuming that the d-electron wave function “rigidly” follows the moving
ion. Contrary to other works [2, 3], the BLF Hamiltonian uses characteristic parameters of the
transition metal in an explicit way. In the papers [1, 8-10] the squared matrix element of the
electron-phonon interaction is calculated in the tight-binding approximation and many quantities
connected with it are evaluated, e.g. cohesion energy [1, 8, 10], McMillan factor for superconducting
transition temperature [1, 3, 8-10]. In the paper [9] the paramagnetic susceptibility is also calculated,
while in [11] the phonon singularities in quasi-one-dimensional systems are studied.

In the present paper the BLF model is used for a self-consistent calculation of the renormalized
electron and phonon spectra of the transition metals and their compounds, both in the band limit and in
the strong Coulomb correlation limit. Single-particle densities of electrons and phonons, phonon
damping and a modified Stoner criterion of magnetism are found. In the case of strong correlation, the
usual Hubbard energy gap between two electron bands persists in our calculations too, despite of
electron—phonon interaction included. The Eliashberg-type system of equations for superconductivity
has also been obtained for the BLF model, allowing one the investigation of the superconducting
properties of the transition metals within the same scheme.

0378-4363/83/0000-0000/$03.00 © 1983 North-Holland



A.L. Kuzemsky et al. | Electron-phonon interaction 169

2. The Hamiltonian of the model

Following [1] we consider a system of tightly-bound electrons in the one-band approximation,
described by the Hubbard Hamiltonian [6]:

m=2%ﬁmﬁ%U2me, @.1)

ij.o

where a},, ai, are creation and annihilation operators for electrons at the site R, U is the Coulomb
repulsion energy of the electrons at one site. The hopping integral #; is given by

t,'/' = J’ d3r¢*(r—Rj)[2£r:T+ 2 Vs(r—Rl)] ¢(r—R,~), (22)

where {¢(r — R))} are a complete, orthonormal set of Warnier wave functions. Assuming V(r) to be a
short-range, self-consistent potential, eq. (2.2) may be rewritten as

2
i~ [ @) £+ vin) | o) = n, - @3
ty=T;+J;+Ji=t(R—R), i#], (2.4a)
where
2
T,= [ Prot - R+ RYE-6(r), (2.4b)
Jy= [ @ro* 0= R+ R) Vi) 6(r) (2.40)

Note 1, # t(0). Considering small vibrations of ions in the “‘rigid ion” approximation, we replace in eq.
(2.4) the ion position R; by (R; + ), i.e. its equilibrium position plus displacement. It is assumed that
d-electron wave functions change very little under displacement of the ion. Also the orthogonality of
the displaced wave functions is assumed:

[ @rorr - Ry —w) d(r - R~ u)~ 5. 2.5)

As it follows from eq. (2.5), the creation and annihilation operators al,, a,, may be introduced in the
deformed lattice, and Hamiltonian (2.1) may be rewritten in terms of them:

He = Z ni, + 2 I(Rj + u — R,' — u,») a,f,aj(, + %U z RigNi—o - (26)
ior ijo io

i#j
For small displacements u; we may expand t(R) as
At(R)

t(R,~+uj—R,-—u,-)= t(Ri—Ri)+—— . (u,»—ui)+--'-. (2.7)
aR R=R—R;
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In the BLF paper [1] the following approximation, based on the nature of tight-binding functions, was
introduced:

) R k). e

Here g is a coefficient characterizing the exponential decrease of the radial part of the d-function,
& (r]) ~ do exp(—qolr]), (usually go is of the order of 1 A- DY
Finally eq. (2.6) may be rewritten in the following form:

HezHg+He—iv (29)

Hi=6Sno+ 31 aba+3U S none,, (2.10)

o
i#j

where t} = t(R; — R;) at equilibrium positions,
H =gy M (wi—w)aLa;, . 2.11)

ijor
i#f

The operator H.; (2.11) describes the interaction between lattice vibrations and tightly-bound electrons in
the localized Wannier basis. .
The Hamiltonian for the ionic subsystem is assumed to have the usual form:

H;= E Zu"@‘," uf . (2.12)
VRSP

The total Hamiltonian is a sum of (2.9) and (2.12). The localized basis representation, used above,
underlines the tight-binding nature of d-electrons; besides, such form is necessary when disordered
alloys or amorphous compounds [12-14] are to be described. In the case of the crystal it is convenient to
introduce the normal coordinate operators Q,,, P,, connected with the bare phonon (i.e. obtained
without the d-electron influence [8]) of frequency wy,, and polarization e, at the wave vector ¢ and
branch index ». In terms of these H; is diagonal:

1
H,= 3 S PoPet+ wieQiQyp (2.13)
qv
and the displacement is given by

2 Qpey 1% (2.14)

u; =

VMN MN

(M is mass of the ion and N their number in the crystal). This leads to the following interaction
operator

e—| 2 Aqv(l ]) qua laaja » (2.15)

ijoqv
i#f
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where

.o qo 0 Rj—R,«)-e,,,
A,,l, =——1j
D= MR R - R

[elaR: — eiaRi] (2.16)

represents the matrix element of the electron—phonon interaction in terms of the parameters g, 3, M,
R; characterizing the transition metal.

Because of the strong localization of the wave function it is reasonable to introduce the nearest
neighbour (n.n.) approximation. Then the hopping integral #(R,) is related to the width W of the d band
in a very simple way: W =2Zt(R,) (Z is the number of n.n.). We introduce the notation R, for the
position of the n.n. with respect to the atom at the origin of the coordinate system. Then

3
Ri=R+R., =3 (i, +ka)a,, (2.17)

a=1

where a, are elementary translations of the lattice. Within the n.n. approximation and using (2.17), the
hopping term in (2.10) may be written as

S HR,) A5 iiee (2.18)
while the electron-phonon part (2.15), (2.16) as
Ho = Aplihi+k)Qpaizaises s (2.19)
ixoqv

R, e,
IR,|

Auli,i+k)= \/% t(R.) R[] — eitRe] . (2.20)

Note that in the rigid-ion model of BLF [1] as well as in the Hubbard model [6], s-electrons are not
accounted for explicitly, although their influence is taken into account in some indirect way. It is
supposed that they participate in the determination of the bare phonon frequencies wqg, and that the
Coulomb repulsion parameter U is renormalized due to the screening by the s-electrons.

3. Electron Green’s function

We begin an investigation of our model from the so-called band limit for Hubbard Hamiltonian,
U < W, a situation typical for a transition metal (e.g. U/W = 0.14-0.16 for Fe, Ni, Co). In this case it is
convenient to use the momentum representation

U
0
He - E Exad ;oaka + 2N 2 a:ﬁq,aa klo'azz—q,—oa ky—o - (31)
ko kikogo

The band energy is given by

& = b+ z t(RK) Cim" . (32)
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For lattices with the center of inversion, t(R,) = t(—R,) = t*(R,), so that
e = to+ >, t(R,) cos(kR,) . (3.2a)

The interaction in the momentum representation looks as

H..= 2: Vilk, k+q) Qgatiqelis (3.3)
o
where
Vi(k, k)= —I;\ﬁm 2 HR) R, - €py [ — e*F] (3.42)
- E\i/qXTN 2 HR) R, - ep-1,[sin(kR,) — sin(k'R.)] (3.4b)

with R, = |R,| as n.n. distance ((3.4b) is valid for the structures with a center of inversion). Summations
over wave vectors in (3.1), (3.3) are limited to the first Brillouin zone.
We introduce now the double-time Green’s function (GF) for electron and phonon operators [15]:

G (t — 1)Y= {ap (1), aj.(t' M = —i0(t — t'X{aw(t), ap(tH]+), 3.5
D, (t — t)={Qqu(t), Qn(tN = —i168(t — 'X[Qy (1), Qn(t)]-) . (3.6)

We are going to calculate functions (3.5) and (3.6) using the equation of motion method for GF [15-17].
1t leads to the following equation for an electron GF (Fourier transformed with respect to time)

(@ = £0po) Gpo(@) = 1+ 3, Vo(p — 4, pX(@p-00Qulaio))u » 3.7
where
EOW = 8,, + % ; <n k,—o) . (38)

As usually, the electron—electron scattering is limited here to the elastic processes:

{aptgolhig-oBi-ol@po)e = 840Nk -o) Gpol®) . (3.9)

Inelastic processes may be accounted for, in principle, by means of the irreducible GF method [16, 17].
In order to evaluate the GF occurring on the left-hand side of eq. (3.7), the GF is differentiated with
respect to the second time variable . After some algebra one gets [16]:

Gpo (@) = Giol®) + Gipo(®) P po(@) Gippl@) , (3.10)
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where the free-particle GF and the scattering operator are

Gho=(0—€0p0)7", (3.11)
Pp(@)= > V.(p—q,p) Vo, P — 4)X(4p-00Q0l Q}vaj-g.cNe - (3.12)
qvg'y’

Following the works [16, 17] we introduce the mass operator M,,(w) as the proper part of the operator
P (without parts connected with the single G° line) according to the equation P = M + MG°P. Then eq.
(3.10) turns into the Dyson’s equation G = G°+ G°MG, which can be solved immediately

Gpo (@) = {[Go(@) ' — M (@)} . (3.13)

In order to calculate the mass operator self-consistently, we express the GF from (3.12) in terms of its
correlator:

©

<<ap+q,0'QqV| o;’v'a;—q’p))w =

—o

dw’

w-—w

(e*"+1) j 2d_7tr e "t (QyAt) ap-g.0(t) Ap-g0Qp) (3.14)

(here the temperature T of the system enters as 8 = kpT). Assuming that the renormalization of the
electron—phonon interaction vertex may be neglected, (comp. Migdal’s paper [18]), we decouple the
two-particle correlator in the following way

<O:'v’(t) a;—q’,a(t) ap—q,aoqv> = <O;'V'(t) qu><a;—q’,a’(t) ap—q,a) - (315)

Now, expressing one particle correlators in terms of the corresponding GFs, we get the final expression
for the mass operator

M, (0)=>.|V.(p—q,p)P f f dw;-,;iwz : —wn-(agg;lz)gl’z)

Im G, () Im D (). (3.16)

Here n(w) and N(w) are the Fermi- and Bose-distribution functions. Throughout the paper the
argument  of the functions G°% G, M, D etc. is to be understood as w + i8, with § =07,

4. Phonon Green’s function

Phonon GF D,,(w) obeys the following equation of motion:

(0~ 0}p) Dp(@) =1+ 3 V,(¢, 4~ PX(@ 7500 Q7D - 4.1)

As in the previous section, by (double) differentiation of the higher GF, occurring in (4.1), with respect
to the second time variable ¢/, the following equation is obtained:

D,.(w)= DS,(w)+ DS,(0) T p.(w) D} (@), 4.2)
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where
Dj = (0’ ~ wfp)t, 4.3)
Tpv(w) = 2 Vv(qv q- P) Vv(q” q, + p)«a;"wfaw.a;’*-p,o’aq’a’»w . (44)

qoq'c’

Defining the mass operator IT as the proper part of the scattering operator T, i.c. by eq. T = II + [ID°T,
we get Dyson’s equation for one-phonon GF:

D, (w)= DS, (w)+ D} (@) I1,,(w) D,,(w) . @.5)
As previously, renormalization of the vertex is neglected, which corresponds to the decoupling:
(@hipa(t) Ago(t) QG-poge) = (A 51po(t) AgoXqo(t) A4-po) - (4.6)

Using (4.6), the mass operator for phonon GF obtained from (4.4) is

@)= S |V.ta~p of [ [ S22 500 10 G () Im G @

w+tw— w

5. Renormalization of the electron and phonon spectra

The electron and phonon GFs are to be determined self-consistently from the following set of
equations:

qu((x)) = [w ~ €0k T Mka’(w)]~1 > (51)
D ()= [0®~ 0fp — ()], (62
M@= S |V, - p, kyp [ dergea Lol Medd i, G, () 1m Do), 53)
Hy(w) = Z IV.(p - ¢, p)F f deos oz "(f)“’;)wl "((‘;’2) Im Gy golw1) Im Gpolwr) , (5:4)

We solve (5.1)-(5.4) using “quasiparticle pole” approximation for the evaluation of M and II (i.e.
neglecting Im M, 8/dw Re M, Im IT and 6/éw Re IT in eqs. (5.1), (5.2) for G and D):

Im Gy, (w)=—78(w — €4) » (5.5)

Im D, (w)= -

- 2:,‘” )= 8(w + wp)] (5.6)

where renormalized electron and phonon energies &, w,, are self-consistent solutions of the equations:
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e—eme— ReM(e)=0, (5.7)
@~ wh,—Rell ,(w)=0 (5.8)

together with

<« |[Vuk—q, k)] [1 + N(wg)~ n(esgo) , N(wg)+ n(es-g0)

My (@)= qEv 2wy, W~ Wg~ Ekgo * W+ Wg — Exgo ] ’ (5.9)
= — 2 [P(Er-go) = n(ek,a)]

yw)= S|V (k= g.b) |5, el il . (5.10)

In this way energy shifts of electrons and phonons are to be calculated from the set of nonlinear integral
equations (5.7-10) numerically, while electron and phonon damping is obtained from (5.1) and (5.2),
using already calculated ¢4, @, M, I1.

Theoretical calculations of the phonon linewidth in transition metals like Pd and Nb and comparison
of the results with experimental values obtained by means of inelastic scattering of slow neutrons
[19-23], have been of great interest in recent years. Following [15] we get from (5.2) the expressions for
the phonon linewidth:

Foo ImIl)
v 9 weop
20— e Re H,,,,(w) »

(5.11)

Contrary to the papers [21, 22] where the matrix element of the electron phonon interaction (for
calculation of the phonon damping) was evaluated using RMTA [24], in a present paper, owing to the
BLF model applied here, this matrix element is expressed in terms of the characteristic parameters of
the transition metal: M, qo, T(R,). The last two, together with the Coulomb repulsion U, are
phenomenological parameters of the model. Note that the anisotropy of the system is fully accounted in
(5.9), (5.10), contrary to the Frohlich model, where spherical Fermi surface is supposed. Owing to N(w)
and n(w) occurring in (5.9), (5.10), the temperature dependence of M and II may be investigated. In
particular, for low temperatures one gets from (5.9):

M i(w; T)~ M p(w; 0)] ~ T* (5.12)
which follows immediately from the estimation
|V, (k — g, k)~ ¢ (5.13)

for small |q|.

6. Renormalized spectrum of the Mott—-Hubbard isolator
In many oxides and sulfides [25] of transition metal the Coulomb repulsion is much greater than the

band width, U > W. In this case (opposite to the one assumed in the section 3) it is reasonable to work
in the Wannier representation for all operators, as it was introduced in section 2. The one-electron GF:

Gii’ﬂ'(t’ t’) = <<a]'a(t), a;v(t’))> (61)
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obeys the following equation of motion

(= 1) Gjo(w)= 8+ 2 tijteGjinjo(@) = Ul jo(w) + % Ap( ]+ &) Py junio(@) 62)
where

Fjjpo(@) = Kajionji-ol @00 » 6.3)

Ppjiinr (@) = (Quajio| o) - (6.4)

Again, by means of time differentiation, the equation of motion for I'; ,(w) may be obtained as
iju'z(w) = 8i1j2<nj1—a> + (t0+ U) Fj]jzo(w) + Z {tj1j3<<nj1—aaj3a-|a;20>>w + tj1j3<<a;1—aaj3—aajla‘aj;a))w
}‘321'1
- ti1i1<<aE_Uafl_uaixﬂla;_d))w + 2 [Aqv(jlj:“)((qunj‘—ca j3a‘a;-20>)w
qv
+ Aql’(].lj:;)((Qq,,ajt—oah—oajla'lai+20')>w - Aqv(j3jl)<<oqva;g—aajl—crajl—craj]a'laBa‘))w]} . (6'5)

The electron subsystem in eqgs. (6.2-5) is described according to Hubbard-I approximation. In the spirit
of it, the following decouplings are performed:

«qunjl—-aaba,a;za»w = (njl-a'> (pqvjy‘zn(w) ’
<<qua;'1—-aaj3—aajlo'laBa))w = <aj+1—aaj3—a') ¢qvj1j2(w) . (6-6)

(Qwfop-o o] oMo = (@0 -0) Do)

Using (6.6), eq. (6.2) may be rewritten as
Un_,
(0 — 1) Gjjjpolw) = {1 + _____}{6]u2+ E [ juirtx Grtrina (@)

+ 3 Al 1 1) Panionisol@) | |- ©7)
qv

In a similar way, by time differentiation equation of motion for @ is obtained, higher correlators are
decoupled in the spirit of (6.6), and then, from (6.7), the final equation for G, obtained, which after
Fourier transformation is

Gio(w) = Gl(w)+ Gio(w) P (@) Glo(w), (6.8)
where
Gi(w)= 2 e HENRYIG o(@), (6.9)

] 2

Glo(w) = [Fo(w)— (e« — )] ", (6.10)



A.L. Kuzemsky et al. | Electron—phonon interaction 177

Fiw) = [ty L 1 6.11)

(A)—t() w—to—

and the scattering operator

P,w(w)=1{,— > Aglih) AfvUsjs) e BRI Q 00| Qgva oD (6.12)

,,,,,,

In terms of the mass operator M, (w), neglecting vertex renormalization, we get the following
solution

Gio@) = {[Glo(@)) ' = M)} ", (6.13)

where

dw; 1— n(w;)+ N(w,) I
3

1
T w0 — W

Mu(@)=S |V.(k - g k)P f f do M Giyol@)) Im D o (@2) - (6.14)

qv

From the fact, that the mass operator (3.16) obtained in the region U < W coincides with (6.14)
obtained in the opposite case U > W, one can expect that the expression (6.14) is valid for any U, W.
Of course, when calculating GF G, (w) in a self-consistent way by (3.13), (6.13), appropriate free-
particle GF G{,(w) must be used (e.g. (3.11) or (6.10) in the limiting cases).

Now let us solve the set of egs. (6.13), (6.14) with (6.10), (6.11), (4.5) and (4.7) again in the
quasiparticle pole approximation. Neglecting Im M in (6.13) and inserting (6.10) and (6.11) we get

Gro (@) = w—EY _ - EY
(@~ to)(@ — ty— U) = UXgy(0)[w = E9] ~ [w— ER(w)][w — ER(@)]’ (6.15)
where
EO=t+(1-n_) U, (6.16)
Xiw(@)=[ex — Re M, (w)— ]/ U, (6.17)

E(w) = B9+ 2 ([Xep(@)+ 2n, — 1]
+QRa = 3)N(Xie(w)+2n_, — 1P +4n_,(1 - n_,)|"%}, a=12. (6.18)
In terms of renormalized band energy E{, defined as the solution of the equation
o — Ef(w)=0; a=1,2 (6.19)
we get the following imaginary part of GF (compare with the Hubbard-I solution [6]):

Im Gy, (@) = —7[ARS (0 — ED)+ ARS(w — ER)], (6.20)
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where

) w—E® < . o2
AR ={[w - Eﬁ:")(w)][l T dw E“f’)(“’)] w=E(”

In the limit of small X (i.e. W < U), the energies (6.18) and amplitudes (6.21) may be expanded into a
power series:

E(w)=to+ (1 - n_,)ex — Re M, (@) — 1][1 + O(X)],

(6.22)
EP(w)=to+ U+ n_,{ex — Re My, (w) — 1][1+ O(X)],
A= (=) 1-2n. Xd,“,(w)[l +OX)]
1- (1= n-g) g Mg (@)[1+ OX)]| =52
(6.23)
1421 - n_y) X s(@)[1+ O(X)]
A =n_, d '
{ 1-n_, do M (0)[1+ O(X)] } w=EQ

The phonon GF in the pole approximation was already found (5.6). When (6.20) and (5.6) are inserted
into (6.14) and (4.7), integrations over w; and w, may be immediately performed and expressions
analogous to (5.9) and (5.10) (although two-times longer) are obtained.

From the expression (6.18) it is evident that E@(w) > E® and E{)(0) < EY for any value of X (w).
This means that the finite gap between the two bands E{Y and E® exists despite of the fact that the
electron—phonon interaction is included. Therefore our model is not capable of reproducing the
metal-insulator transition for Hubbard-I solution.

7. Superconductivity in transition metals

The equations for superconductivity in transition metals were obtained in the Wannier represen-
tation in paper [14], for the following general form of the electron-phonon interaction:

H.,=> Téutaha, (7.1)
ijoa
where
ug=uf —uj. (72)

These equations may be applied to the BLF model, considered in the present paper, for which (comp.
(2.11))

T3 = qot;(R; — RD/IR, — R . (7.3)

The GF appropriate for this problem has the matrix form:
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Gij(w) - [«aiT |a7T ))w, «aiTlajl»w ] ) (74)

(atilajt e Kaifila;de

It obeys the Dyson equation [14]:

G (@) = Gl(@) + S Gliy(@) M (@) Gip(w) (7.5)
J3ia
where
M ()= Mif (@) + Mij(w) (7.6)

is the mass operator. As obtained in a self-consistent way, with renormalization of the vertex neglected,
its electron—phonon part looks [14]:

-1 3 1-— + N « A R
Mf;,‘:h(w) = ;_’2' J j d(l)] dwz n(wl) (wz) 2 T}!ah Im({u;’y-luf’m})wz'n Im G,»u»z(wl) 7':;7"?7_,'A y (77)

l—oi—w 5%

where

T3= [(1): _2] . (7.8)

Now egs. (7.4-7) may be rewritten in the momentum representation

A _ ((ak1|a;1>>un((alea—kl>>w
Ci(w) = [«afulah»w «afula—u»w] ’ (79)

Gi(@) = GUw) + GY(w) Mi(0) Gi(w), (7.10)

M) =3 |Volk - 4.0 7 [ [ dordon
qv o

% th(w/2T) + cth(w,/2T)
2w — w1 — wy)

i’3 Im G._q(wl) 'f'3 Im qu(a)z) . (711)
When deriving (7.11), the following relation (see (2.14) and (3.6)) was used:

Cuslut)y = i S Do) €5 e3f e4RR. (7.12)
qv

Note that electron—phonon contribution to the mass operator (7.11) in the superconducting state has the
same form as that obtained earlier (3.16), (6.14) for the normal state, except that the spin dependent GF
Gi, (w) is now replaced by the matrix [#:G(w) 3], the distribution functions n(w), N(w) are written in
terms of th and cth functions, as usual.

The electron—electron Coulomb part of M in the Hartree-Fock approximation is given by
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M= U| (1) ‘<“‘““*T>]=U " 924, 1m Gy(w) 7 h( (7.13)

—airatc)),  —(nay) 2 ZT)
(the general expression may be found in [14]).

The self-consistent expressions (7.11) and (7.13) for the mass operator describe properties of the
superconducting transition metal within the framework of the BLF [1] model. They are analogues of the
Eliashberg equations [3] for simple metals. Owing to these one can investigate superconducting state
within the same model as used for the description of the normal state, in terms of a few parameters of
the transition metal, such as U, t, t(R.), g0, M and the n.n. distance R,. Considering U to be a fitting
parameter, the standard Eliashberg equations [3] may be derived:

1-Z(w))o= —[; dz Ku(z, o) Re W_—-z:ﬁ sign(z), (7.14)

Z@)8@)= [ dzKa(z, @) Re =2 ED—sign(z)- UN(E) [ dz th(2Z) Re i) —.

V22— A%(z) V22— A%z)’
where (7.15)
TR nl [th(z/2T)+ cth(w’/2T) th(z/2T)— cth(w'/2T)

KP“(Z"*’)”L do'aX(@) F@)s | =00 +is Z—w —w+ib ] (7.16)

while the electron—phonon spectral function (2, 3] is
&k d k’
@) F(w) = J o IV, or(2 )Im Dir ,,(a)+16)/[f ] (7.17)
SE Sg Ux

Eqgs. (7.14) and (7.15) may be reduced to the linearized Eliashberg equations [3], defining the
temperature of the superconducting transition. Results of the numerical evaluation of the a*(w) F(w)
for Nb, W, Mo, Ta, V, based on the expression (7.17), will be published elsewhere.

8. Conclusions
In the present paper a self-consistent theory of the electron—phonon interaction within the BLF [1]
model was developed for the metallic case (U < W) as well for the Mott-Hubbard isolator case

(U > W). The expressions (5.5 or 6.20) and (5.6) determine the renormalized one-particle densities of
states for electrons and phonons:

Ne(w) = —% S m G(@) ®.1)

Nh(w)= —57= S Im D(w). | 82)
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Using (7.17), the electron—phonon enhancement parameter A._,, may be expressed as [2, 3]
Aeph =2 J 0 'e¥(w) F(w)dw. (8.3)
0

The renormalized electron density is

N(Er) = NEr)(1+ Acepn) 8.4)
and therefore the Stoner criterion of magnetization may be written as

UNGE)(1+ Aepn)>1. 8.5

Because of A, occurring in (8.5) one may conclude that the electron—phonon interaction facilitates
magnetic ordering at low temperatures, due to the dressing of the electron by the phonon cloud.

Superconducting properties of the model are handled by eqgs. (7.14), (7.15), allowing investigation of
the superconductivity in transition metals, their alloys and compounds within the framework of common
system of equations [3, 14]. The BLF model has proved to be useful also in the case of the theory of
electroconductivity for the one-band system, including shift of the Fermi surface and its deformation
[26]. Essentially new temperature dependence of the electroresistance in the low temperature region
was obtained there, in agreement with the results of ref. [24]. Using electron—phonon interaction in the
form (3.3), magnon damping was obtained in the generalized RKKY model. The low temperature
behaviour of the damping in a heavy rare-earth metal (like gadolinium) was previously determined [27].
The generalization of the electron—~phonon interaction Hamiltonian for disordered binary alloy A, B;_, of
transition metals was earlier performed in [12]. Using methods of [12, 14] the theory for strong-coupling
superconductivity in disordered transition metal alloys has been developed [31, 32].

It must be noted, however, that BLF model is not free of shortcomings and that it includes a number
of assumptions. Nevertheless, all recent investigations [2, 3, 8, 10, 28, 30] show that in many interesting
physical situations these assumptions are justified and lead to reasonable conclusions.

The results of the present paper demonstrate the effectiveness of the BLF model in the description of
a variety of properties in the transtition metals and their alloys.
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