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CnHHOBLIE BONHBI M HX YCTONYRBOCTL B HEYNOPSROYEHHBIX
¢eppOMArHATHEIX MeTalllIH4eCKHX ClaBax

Ha ocHOoBe MHKpOCKONH4YEeCKOli TEOpHUH ¢EePMU-IKHAKOCTH TpH HYJenoWH
TeMuepaType BhIUHC/eHA SHEPrud O/IMHHOBOIHOBBLIX CIIHHOBLIX BO36yXAeHHI B
beppoMarauTHeiX CHlaBax NepexoaHbiXx Merannos. B xorepeHTHoM ropuacHTanb-
HOM JIECTHHUYHOM NPHGIHXeHUH 118 XaoTHYeCKol Moaenu Xab6apaa nposeleHo
CaMoOCOorJlacoBaHHOE BBLIYHCICHHE TNEepPelOPMUPOBKH KO3GhHUHEHTA MXeCTKOCTH
D 3a cuer a/MeKrpOH-3MeKTPOHHBIX Koppensuuit, KoadduuueHr D mnonyuen
9RCAeHHBIM 06pa30M # HCNONb3yeTCs A/1S onpeaelleHHs yCToHuHBOCTH ¢eppo-
MATAETHOTO cocTOsHHA. [lofy4enHble pe3y/lbTaThl CPaBHUBAIOTCS C PKCHEpH—
MeHTAa/lbHLIMiU [8HHBIMHK 110 PacCedHH!0 HeATPOHOB ANg Cu/laBoB Ha ocHope Ni. 1. INTRODUCTION

Pa6ora BuinonHeHa B JlaBoparopHu TeopeTHdeckoit ¢u3uku OUSAU. In itinerant-electron ferromagnets the stiffness
constant D characterizes long-wavelength spin waves
of the type wgq =Dq? below the Stoner gap in the particle-
hole excitation spectrum. In particular, the stability of
ferromagnetism in metallic systems, for instance in
transition metal alloys, is related to the condition D > 0

. Npenpuar O6veanHeHHOro MHCTHTYTa SAEpHbIX HCClenopauuit. [ly6aa 1978 X . X . L. .
provided that the magnetization is positive. Inelastic

neutron scattering data of D for pure Ni’l”  and
Ni -based alloys (see, e.g/2% 5 ) can be explained by
an itinerant electron model. In the simplest version, the
intra-atomic interaction between d -electrons produces
the exchange splitting and their overlaps guarantee fer-
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Ferromagnetic Spin Waves -and Their Stability
in Disordered Metallic Alloys

The energy of long-wavelength spin waves in ferromagnetic.
transition metal alloys is calculated within a microscopic Fermi

liquid approach at zero temperature., The renormalization of the romagnetism. /6 to 10/
stiffness constant D due to electron-electron correlations is per- The approach mostly used to calculate D for
formed self-consistently inthe  coherent horizontal ladder approxi- ithi : /11/
mation for the random Hubbard model, The stability of ferromaghe- ?.HOYS within a random version of tl.le Hgbbard model
tism is studied numerically in terms of D. A comparison with is based on the random phase approximation (RPA), where
neutron scattering data for Ni -based alloys is given. the electron-electron interaction is taken into account
The investigation has been performed at the Laboratory in the . Hartree-Fock (HF) gpproxxmat.lon _and the d112S/-
of Theoretical Physics, JINR, order in the coherent potential approximation (CPA)/ .

A RPA decoupling scheme was given in’13/. Beside CPA
tre%n}%l)ts there are rigid band calculations of D
(ctf. ™’ ) in alloys performed with an adjusted band
splitting depending on the impurity concentration.

In order to include electron correlation effects on
Preprint of the Joint Institute for Nuclear Research. Dubna 1978 D a theoretical scheme going beyond the RPA was pro-
posed in’1%/ which is based on the coherent ladder ap-

proximation (CLA)/15'16/, i.e., the self-consistent combi-

nation of the CPA and the local ladder approximation/ 17/



in the particle-particle channel. Such a T -matrix ap-
proximation is suitable for strong short-range interac-
tions and low carrier densities, and can therefore be
applied to Ni (0.6 holes per atom) , Pd and Pt (0.4 holes
per atom). The replacement of the energy-dependent
T- matr1x by an effective interaction of the Kanamori
type /, as used e.g., in calculating the paramagnehc
susceptibility 71°/ and the magnetostriction’2?’, leads
again to a RPA-CPA treatment of spin waves.

In the present paper we calculate explicitly the stiff-
ness constant D for disordered alloys within a micro-
scopic Fermi liquid description '14/ at zero temperature
starting from a single-band random Hubbard model.
The main features of this computation of D are as
follows:

(i) Simplified assumptions on the pure unperturbed
band permit one to carry out k-space integrations ana-
lytically.

(ii) Correlation effects are evaluated self-consis-
tently from bare Coulomb interactions by retaining the
energy-dependence of the T-matrices.

(iii) Weak and strong ferromagnetism are treated
simultaneously. Numerical CLA results of D are com-
pared with experimental values for NiFe and Nipq al-
loys. Moreover, the stability of ferromagnetism is also
proved in terms of RPA-CPA solutions.

2. STIFFNESS CONSTANT INCLUDING
ELECTRON-ELECTRON CORRELATIONS

It is satisfactory to base the ferromagnetism in nar-
row-band alloys A.B;_, on the Hubbard Hamiltonian’ 117
in the random form

H{V}=Ee n, + s v

o K Ko jo !
where ny; (n;, ) is the occupation number operator
for Bloch (Wannier) states with spin ¢, and ¢p is the
band energy assumed to be independent of the atomic
arrangement. Within the whole alloy configuration {v} the

n +uUln n ’ (1)
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atomic energy f;’ and the bare intra-atomic Coulomb
mteractlon U/ take the random values ¢” and
v’ (v=A,B), respectively, according to whether an A -
or B-atom occupies the site i.

The spin wave energy «_.=Dq?® for cubic crystals
can be determmed by a pole of the transverse suscepti-

bility »*~ (q,a)) giving rise to the spin wave stiffness
constant

fvi

1 > 2<<S~z> >
D= — — lim llm[-‘“—(x (d,0) + 1 9, (2
2<<SZ>!V; > w0 g0 q® 2)

where 9<<SZ M =(nT—n¢) is the magnetization per site

(ng: average number of ¢ electrons per site), <.t
means the ground-state expectation value within {v}, and

>, denotes the configuration average. Alternatively,
the formula

+ v +—

. 2<<sZ s2L [;131 pe<lS gl o lim Xy (@0l
written down by means of the spin current-spin current
response XJ “(qo) was applied to alloys in /7,10,13/
(compare the derivation for pure systems’?!’). For the
model (1) the transverse spin den81ty operator in the
Fourier transform S} (orS q =@8%)* ) and its current
operator Jt ( or J— —(J )+ )il)emg here nonrandom
are given by ~d

4)

where c, (cp, ) creates (destroys) an electron in the
state |ka>, N is the number of lattice sites.



In the framework of a microscopic Fermi liquid
description (cf.’!%/ ) at zero temperature the suscep-
tibilities in (2) and (3) can be expressed with (4) in terms
of causal Green functions as follows:

x+-(§,w)=-<<<s*q;,s:a>{ s - l-f-‘-’-E-<t {AM (E E+o ) x

W ¢

R CTRIWE i O ®)

¢ XJ (q.0) =-<<<ql’ e qJ +>>{w}> = (6)

C

= —--»f <tr{/\{ }(E E+w.q)G{ ( E+o)A (= Q)Gir}(E)b .

where

{V} . 5. dE . {V} -
Aaij E,E +o ;q)=/\aij Q- 5”. f—g-ﬂ—lIi EE+0w)x

1 P4t )
v} vl 2
X 2 G (E)A (E E+a) q)G (E+w); (a=0,1)
H,
L. —igR; 5 iR, —mﬁj

l\Oij (Q)=e i /\lij(q)=tij (e —e )
t..—:—l— ) e_,eik(Ri—Rj) (®)
J N g k

Here only the locality of the irreducible particle-hole
vl - v} -~ -
vertex 1. (EE+0;jw)=1 " (EE+0;E+0,E) has

ryyt tyut
been assumed, and the trace means the summation (with-
out spin) over one-particle states. The prescription (3)
seems to be favoured instead of (2), because the Bethe-
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Salpeter-type equation (7) for «=1 can be solved with-
124
out further assumptions on Ii Then by expanding

A1 and the effective spin- fhp current AM in (6)

and (7) to first order in ¢ and employmg the cubic
symmetry in the following one gets

+- > v v

X (q=0 a))s——-f——-<t{A1¢¢(E E+w)G, (E+th B},
9
1 > T e ®
A“j(E,E+w)=]ij "'5ij [ = . (D] E+a).a)) T(E)X
T ‘Hq,‘r
X{V} - v}
x IT? (B E+a))GnH(E +w);
. . (10)
I ==it, (Ri--RJ )
wher; zthe notations A,Q) =q. and Am EE+w;q) =
-4.A ;1 (E.-E+w) have been introduced ; under the
trace j and A‘V form a scalar product. (]
Separatmg dxagonal and off-diagonal parts of A
in (9) and (10) we obtain
y@=00)=do B (76" 07" (YN
1)

+ 32;_(643. w),

where

—~ i dE -+ {vl >t
X; (q:o,a))zgﬁ— r——-< ZAlii(E,E+Q))‘Kii(E+CL),E)>c

P “ (12)

*{ } fv} fvl
; E+o, E)=ZG (E+w)J -G (E). (13)

$T nil
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Since the configurational averaging in (12) is beyond the
CPA we make the factorization ansatz/14/<A1”} KW >, =
=<A§V¥>C .<1<:M>C leading to

= d { >
K (E+o E)~<q :’&Em)jc {:}(E)>c“ -

L

@ Y@ 14)
N ;z; Se, (E““’g’m(u) Vaen =0

and 3?1;_ @=0,0 )= 0  due to time-reversal symmetry.
Q{o denotes the coherent one-particle Green function
including electron-electron correlations (see below). Thus

we are left with the CPA result without vertex correc-
tions, i.e.,

+= (2 i dE 2
X (q=0,w) =3_1\T—f§;%91?¢ (E+w)§k4T(E)(V Ke_i() . (15)

Substituting (15) and
g T L
1 «<[85 ,q7 =3 <0, > Ve,
q:gl P [ 54 _q]> > BN%(f n, > > Va  (16)
into (3) and going over from the causal to retarded ’r”)
Green functions one finds

1 ¢ C@T r , 2
—In [ LG ®-85 @V )] an

Dmwe——
67(n -n ) % N
[ +

where # is the Fermi energy. This expression for D
agrees formally with the RPA-CPA result '6.7.19’  which
was based on the HF treatment of the electron-electron
interaction.

In the present calculation, however, an is dressed
in the CLA scheme ’'®/. Then the correlation part ex-
pressed in terms of partially averaged causal functions
reads

EIIjJiia(E)zf%?-Gil;—a(é)Ti (E+}§), (v =A,3), (18)

T ®) = [[:7 + 0] (6" (B (19)

where T;j is the effective two-particle vertex. The local
Green function G;;,(z) written as resolvent ( z being
the complex energy) is renormalized by

6% () F, (z) | (20)
1-(€7 (z)~32 (2)F (z)
io o o

” (21)

?iZ (z)= ‘Vi + 240
1 22

F, (2) *N % QT;O(Z), (22)
8, @=-c. -3, (23)

S, (@=ct) (@) +(1-0)eP (2)- [3)(2)- 2, (2)] F, ()22 (2)-3_(2)],
(24)

1
n=Zn =_;.5deImFU'(E). (25)

Here 2, is the coherent potential, n is the average
number of electrons per site. Contrary to the usual
CPA’!®/ the atomic potential € (2) (i is dropped
in (24)) becomes energy-dependent through the self-energy

3 ;iia(z) caused by correlations.

In the HF approximation the modified CPA problem
(20) to (25) must be completed only, instead of (18) and
(19), by the constant self-energy ZVUHif(‘, = U/ ), ,
where n” is the average electron number with spin o
at » siies given by

v v

nY - 717__,:“: G/}, ). (26)



Taking into account the special vertex I{iy}
Tt
ful = {V{ = .
=-T; (E +E +cu);—Ti E+E +w ), the equations (7), (18)
Tty

and (19) with v replaced by (v} yield the identity/14

v} R R 1
Aoi (E,E+w:Q)5ij —Aglvi? (E,E+w;Q)=e hj} , Ero)-
rd A
-1 2R,
LA PR @7)
ij ¢
with
W@y a@m-erys o1 3l
ijg-( —e i) j Tty UHU() , (28)
where the site-diagonality of AMJ = A{ } . has

u
T‘Iy
been used in (27). Hence, in the com;iletely random ver-
sion {v}, the local ladder approximation fulfils the Ward-
Takahashi-type relation (27).
The stability condition of the ferromagnetic ground
state against spin wave excitations

D=D(n,-n,)>0 (29)
may be found from the spectral representation

X (o) = - g faer SOl T @, (30)

7T o @W~=~q) + 1€ —(i ~-q

where the spectral density Is+s- (w)> 0 is related to
4 -3
a configurationally averaged system. The magnon pole
n b 0}
-1 (3 * v
X ()= - —————p5"m 31
pole w ~Dq?iie 3L
can be separated for small ¢ and o (Goldstone theo-
rem) from the Stoner continuum, since the individual

10

(B.E + wjw) =

excitations have vanishing spectral weight for ¢- 0. In
(31) the damping is omitted, and the residue is written
down only in the lowest order of gq. The comparison of
(30) and (31) leads to (29)"14/.

In the present approximation the spin wave damping

Yq entering into (31) instead of ¢ can be proved to be

2
y =9 _ Imx =T (O,Dq2)=
q n, —-n,

___.__.9_...__.-_21m@r WG}, (m(vﬁsk,)“? (32)

3n(n o i IN 3

taking the same form as in RPA-CPA/S/; however, here
electron-electron scatterings are included.

3. NUMERICAL ANALYSIS AND CONCLUSION

To carry out part of the computation of D analytical-
ly we choose simplified expressions %2/ for the unper-
turbed density of states (per site per spin) py(E) and the
mean-square velocity over a constant-energy surface as
follows:

po(E)=

LS o@acy)=21-E)1" g(w-E]), 33)
K k mwW

2
>,.EV_-_[1 (E5* 1% 5w~ B,
W

(34)

L s s5(E-
NS (E-e¢ ° )( V
where w is the half bandwidth, and v is of order wa
with 2 Dbeing the lattice spacing. By means of (33) the
k -summation in (22) yields

F_(2) = %(20—1\/1_:?3_), 72l 2e®) (35)

11



To make (35) univalent we take that branch in the Zg -
plane with a cut along the real axis from -1 to 1, where

the square root is positive on the upper lip of the cut.
Rewriting (17) as

D=

w
rr Ir o r
67(n 1_—n:)1m_f°°dE[Hﬂ EE)+T | (BE)-2MG(EE)] (36)

. L rr +o 4 .
;vl:(tih the abbreviations HUU ,(E,E)EIIW,(E E*),E*E4i0,

Moo (z,27)= %%Qio(z‘)gﬁo,(z')(viei)’g @37)

we find in performing the k -sum with (34) by the residue
method the current polatization parts

2v? ——— Et_s &t

T m 2 3 . _,2 [ (E )
[]UU=—;V—2——(3ZO—-§--3120\/1 ZU)' ZU-—-__— = ’
(38)

3/2 3/2

(1-z2) " ~(1-22)
ner =3‘f‘ﬂ(z2+z2+z z —§-+i 1) 3 ).
" w2 TN Y T3 7 — 7

From (36), (38), and (39) it results

2 K 2 - 2(1-z%
D=——pl I [ QB [(2,2, )P —ivi~ 22z 4 o))
317W (n‘r_n‘ —_0 +— .

. 5" 2(1-z2 )
-iV1-2%@z, - —— 40)
t =2y

where the complex square roots are taken in the sense
mentioned above.

The scalar dc conductivity o at zero temperature
can be calculated with the ”same accuracy” as D
This leads to the modified Kubo-Greenwood formula

82N s [ ra I _
o= &L 2 0, (u.x)-Re Haa(y,p)]=(2700 (41)

12

including Green functions renormalized by electron cor-
relations within the CLA. Here H;a(#,y)znw(ytp‘).

p o=p—1i0, V  is the volume of the system, and ¢ is
the unit charge. By inserting (38) and (39) with the rep-
lacement Ilfj‘oaﬂg[z,»zg,zJ' »z% ] into (41) we get

the spin-dependent dc conductivity (for ImEo(;ﬁ) <0 )

+132 —
o =on[2AmEg 7)) + i Re{i\/l—z‘i(i(l—atfn
d w? ImS, (")
ag
3 A + 42
+ 2 IS (D, “2)
where
~ + _ + -~ 2,2
7 - u ZOQL)’ o - e VmN__ ] (43)
g w 3772V

The numerical analysis is performed as follows:
Choose the parameters w,c4, ¢B=0 fixed, UA,UBc, and
n; solve the self-consistency loop (18) to (25) with the
explicit Green function (35), and use these results to
obtain D from (40) via the E-integration.

Figure 1 shows the transition region between weak
and strong ferromagnetism versus the strengths of the

intra-atomic Coulomb repulsion U” treated here in the

HE, approximation. In particular, the sets with UA = 2
U” =0 and UA-2, UB=2 have been investigated in’*®/ |
but not in the context of spin waves. The RPA-CPA re-

sults (a) for the stiffness constant D (in units ofd, = %)- w a?)

refer to the instability of the ferromagnetic ground state
against spin wave excitations. Note that a crossing of the
spin-dependent dc conductivities o, (b) is found
(cf./24/ ). The component and average magnetizations
m” =n'{-n{ and m=n,-n,, resp., are drawn in Fig. ld.

Figure 2 represents a confined region of stable
(mainly saturated) ferromagnetism (D>0(b), m” >0 (a))
depending on the electron density n. The zero of D at

13



the lower value of n corresponds roughly to a Stoner-
like criterion (cf./16/ ), while the other zero signals

” @
2
[ 4 <’
A & 0
on_\‘\ [\ N ®
A
%
$
2
g
4
o

Fig. 1. a) Unstable ferromagnetism characterized by the
spin wave stiffness constant D<0, b) dc conductivities
9, and o, c) electron densities n,, and d) maﬁnetiza-
tionsm¥ and w versus UY foranalloy with(w,e3,¢B c,n) =
=(1, -0.8, 0, 0.4, 0.4). Hartree-Fock treatment of the elect-
ron-electron interaction.

a change of the spin arrangement. Note that the maxima
of D and o¢;(d) occur nearly at the same n values.

Most of the data on the stiffness constant D exist
for NiFe alloys as reported in Fig. 3. As a {est, we
have taken into account electron-electron correlations,
although the present scheme is more suited to describe
the nickel component with 0.6 holes per atom in the
d band than the iron component with a high local hole
density. In Fig. 3 the D values (x) calculated on the
basis of the CLA are compared with (a) results obtained
in RPA-CPA '7%/ rigid band” theory 1%, in the ap-
proach/13/. and with inelastic neutron scattering da-
ta’123/ The small value of D at c= 04 (b) shows

14
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Fig. 2. a) Partial magnetizations m" , b) spin wave stiff-
ness constant D in the stable ferromagnetic case, c) Fer-
mi energy u, and d) dc conductivities o, and o ver-
sus n at the alloy concentrations c = 0.1 (full lines in
a), b), c)) and c= 0.3 (dashed lines in a), b), c)) for the set
(w,eA B UAUB)= (1, 0.2, 0, 4, 3). Hartree-Fock treat-
ment of the electron-electron interaction.

that our model calculation can be justified only for small
Fe concentrations. Note that for pure Ni the stiffness
constant is found close to Dy = 955 meV 42 measured
at4.2 k',

Electron correlation effects on the stiffness constant
D in NiPd alloys are studied in Fig. 4, and a compari-
son with %%/ is given. This material is a good candidate
for the CLA due to the small density of holes. For the
pure systems the parameters are chosen as propo-
sed in/20/; in alloying one has n=cnfd;(1—c)n™ , and
the different hopping integrals are taken into account
by putting the bandwidth 2w =c(@w)Pd (1—c)@w)N! . Note
that in reduced units UPd UN! | Pd _eNi  are gcaled
for all ¢ by 2w=1. The bare U” are dressed self-con-
sistently yielding the two-particle vertices T;E+E) |

15
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0 02 03 b,
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Fig. 3. Spin wave stiffness constant D versus c for
Fe, Ni1—¢ alloys. D wvalues (x) based on the coherent
ladder approximation with (w, ¢2 ¢B UA UB pn ) -
=(0.5, -0.24, 0, 2.66, 3.4, 0.6) (2w = 4.15¢eV, a-43 in
abs%l/ute/lgr/uts :’n b)). Comparison with a) results computed
N ’ kD (1 13/ ) )
in (1), (2), (3, (4) and a), b) experimental data
given in /Y),/2(A)!3/o).

especially I'"=T{(2x) and I =c"®+ (1-c)["Bare plotted in
reduced units in Fig. 4d.

The numerical results of the present model calcula-
tion exhibit the marked influence of the electron-electron
correlations on the magnon energy in the long-wave-
length limit Dq =Dg?. Although a single-band Hubbard
model with simplified band structure and diagonal dis-

16
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Fig. 4. Pd;Nij_. alloys treated by using the coherent
ladder approximation” with the set (Rw)Fd , @w)Nt |
ePd NI gPd "gNi nPd 'nNi)x (6.05 eV, 4.15 eV,
0.3 eV, 9.17 eV, 14.11 eV, 0.4, 0.6). a) Stiffness constant
D values (x) compared with results in'~>/( - - - ) and
experimenta] points (e) quoted in’?®’ b) D in absolute
units (a=3.8A), c) partial ma]gnetizations m¥, and d) effec-
tive Coulomb intervactions T’ and I wversus c -

order only is taken into account, physically reasonable
D values are found for Ni-based alloys. Beyond the
RPA-CPA treatment, the approach given here is based
on the coherent horizontal ladder approximation. Loca-
lity of the energy-dependent two-particle vertices is
assumed which allows to preserve the single-site cha-
racter of the CPA. The spin wave damping is proved
to be small at least of order q*. Thus a practicable
method is proposed which retains the self-consistency
to find stable ferromagnetism in transition metal al-
loys.
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