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The energy of long-wavelength spin waves in fert:omagnetic. 
transition metal alloys is calculated within a microscopic Fermi 
liquid approach at zero temperature. The renormalization of the 
stiffness constant D due to electron-electron correlations is per­
formed self-consistently in the coherent horizontal ladder approxi­
mation for the random Hubbard model. The stability of ferromagne­
tism is studied numerically in terms of D. A comparison with 
neutron scattering data for Ni -based alloys is given. 
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1. INTRODUCTION 

In itinerant-electron ferromagnets the stiffness 
constant D characterizes long-wavelength spin waves 
of the type wq =Dq 2 below the Stoner gap in -the particle­
hole excitation spectrum. In particular, the stability of 
ferromagnetism in metallic systems, for instance in 
transition metal alloys, is related to the condition D > 0 
provided that the magnetization is positive. Inelastic 
neutron scattering data of D for pure Ni 111 and 
Ni -based alloys (see, e.g.~2 to 5/ ) can be explained by 
an itinerant electron model. In the simplest version, the 
intra-atomic interaction between d -electrons produces 
the exchange splitting and their overlaps guarantee fer-
romagnetism. 16 to 10 ; 

The approach mostly used to calculate D for 
alloys within a random version of the Hubbard model1111 

is based on the random phase approximation (RPA), where 
the electron-electron interaction is taken into account 
in the Hartree-Fock (HF) approximation and the dis­
order in the coherent potential approximation (CPA)" 121 . 
A RPA decoupling scheme was given in1131 . Beside CPA 
tre'!I_I\e?ts there are rigid band calculations of D 
(cf. · 0 

) in alloys performed with an adjusted band 
splitting depending on the impurity concentration. 

In order to include electron correlation effects on 
D a theoretical scheme going beyond the RPA was pro­
posed in 1141 • which is based on the coherent ladder ap­
proximation (CLA/ 15

•
161

• i.e., the self-consistent combi­
nation of the CPA and the local ladder approximation1171 
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in the particle-particle channel. Such a T -matrix ap­
proximation is suitable for strong short-range interac­
tions and low carrier densities, and can therefore be 
applied to Ni (0.6 holes per atom) , Pd and Pt (0.4 holes 
per atom). The replacement of the energy-dependent 
T-matrix by an effective interaction of the Kanamori 

type 1181
, as used, e.g., in calculating the paramagnetic 

susceptibility 1191 and the magnetostriction1201 , leads 
again to a RPA-CPA treatment of spin waves. 

In the present paper we calculate explicitly the stiff­
ness constant D for disordered alloys within a micro­
scopic Fermi liquid description 1141 at zero temperature 
starting from a single-band random Hubbard model. 
The main features of this computation of D are as 
follows: 

(i) Simplified assumptions on the pure unperturbed 
band permit one to carry out k -space integrations ana­
lytically. 

(ii) Correlation effects are evaluated self-consis­
tently from bare Coulomb interactions by retaining the 
energy-dependence of the T-matrices. 

(iii) Weak and strong ferromagnetism are treated 
simultaneously. Numerical CLA results of D are com­
pared with experimental values for NiFe and NiPd al­
loys. Moreover, the stability of ferromagnetism is also 
proved in terms of RPA-CPA solutions. 

2. STIFFNESS CONSTANT INCLUDING 
ELECTRON-ELECTRON CORRELATIONS 

It is satisfactory to base the ferromagnetism in nar­
row-band alloys AcB 1_c on the Hubbard Hamiltonia~ 11 1 

in the random form 

II
Ivl ~, ')' v .,.., v 

= .~ c n , + .~ (. n. + z.. U. n. n. , (1) 
-• j{ k: a ja I 1a i I I t I + 
ka 

where nka (nia) is the occupation number operator 
for Bloch (Wannier) states with spin a. and cIt is the 
band energy assumed to be independent of the atomic 
arrangement. Within the whole alloy configuration I v l the 
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- -------- --

atomic energy ( ~ and the bare intra-atomic Coulomb 
interaction u r take the random values l v and 
uv (v=A,B), respectively, according to whether an A­
or B-atom occupies the site i. 

The spin wave energy w q = D q 2 for cubic crystals 
can be determined by a pole of the transverse suscepti­
bility x+- (q,w) giving rise to the spin wave stiffness 
constant 

z lvl 
D=-

2<<S~)vl 
1 2 +- ~• 2<<8 · > >c ] lim lim [..!U](x (q,w) t ---L--). (2) 

> W-->0 q-->0 q W 
1 c 

where 2 «S ~ )v l> = (n - n ) is the magnetization per site 
1 c t .j. 

( na: average number of a electrons per site), < ... ,h/1 
means the ground-state expectation value within 1 v l. and 
< ... >c denotes the configuration average. Alternatively, 
the formula 

D= 1
1 
~ [ lim~«[S: ,qJ--.]J

1
'l> -lim lim x+-(q,w)](3) 

2<<S~::>v c q-->0 q <~ -q c w~o q-.0 J 

written down by means of the spin current-spin current 
response x~-(q,w) was applied to alloys in 17 •10 ·131 

(compare the derivation for pure systems 1211 ). For the 
model (1) the transverse spin density operator in the 
Fourier tr~nsform Sci~ (or s:_-q =(S~) ~ ) and its current 
operator J r; ( or J =if = (J! ) + ) tieing here nonrandom 
are given by q 

+ 1 + 
s_.=-:::: !c__. c__..... ~ q v N k kt k+ q+ 

qJ!"" 
1 L (c.,. _..-f .,.)c~ c.,. _.. 

q v'N k k +q K k t k+q .j. 

(4) 

where cra(cka ) creates (destroys) an electron in the 
state 1 ka>, N is the number of lattice sites. 
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In the framework of a microscopic Fermi liquid 
description (cf. / 14 / ) at zero temperature the suscep­
tibilities in (2) and (3) can be expressed with (4) in terms 
of causal Green functions as follows: 

.... + - lv l · dE I v l .... 
x+-(q,w),.,-<«S .... ,S .... » > =.LN f--<triA

0 
(E,E+W;q)x 

q -q w c 2rr t~ 

!vl -> !v l 
xG~ (E+w)A0 (-q)Gt (E)l>c. (5) 

_2 +- -> + - lvl 
ll XJ ( q ,w) = -<«qJ _., qJ ->» > = 

q -q w c 
(6) 

i dE lvl -> lvl -> !vl 
""--f-

2
-<triA (E,E+w;q)G ~ ( E+w)\(-q)Gt (E)l::C N rr 1t~ 

where 

1 v 1 _. .... dE . lv l 
Aa!j (E,E+w ;q) =,\a ij (q)- oij f -2;-ll i (E,E+w;w) X 

t~ t ~ ~ t 
(7) 

lv l - lv l - - .... lv l 
x ~G. (E)A (E,E+w;q)G. (E+w); (a=O,l) mn 1mt amn ill~ 

t ~ 

A (.... -iqR· 
Oi · q) == e \) J ij . A 1 1

/q)=tij (e -e ) 

1 ~ 
t tj ""N it ( .... e 

k 

.... -iqRi - CqR.i ~ 

.... -> -> 
ik (Rj -Rj) (8) 

Here only the locality of the irreducible particle-hole 

lvl - !r'l - -
vertex I. (E,E+U) ;w hI. (E,E +w ;E +w ,E) has 

1 I 

tut t~~t 

been assumed, and the trace means the summation (with­
out spin) over one-particle states. The prescription (3) 
seems to be favoured instead of (2), because the Bethe-

l 6 

Salpeter-type equation (7) for a= 1 can be solved with-
lv l 

out further assumptions on I 1 Then by expanding 

A 1 and the effective spin:flip ~~turrent AJvl in (6) 
and (7) to first order in q and employing the cubic 
symmetry in the following one gets 
+- .... i dE -> lvl lvl -> lvl 

X J ( q = 0 • w ) "" 
3 

N f 2; < tr I A 1 t ~ ( E . E + w ) G ._ ( E +w) j G t (E) l ::C , 

.... lvl -: dE. lvl - lv!-
A1 .. (E,E+w)=J .. -o1J· f -

2 
111· (E.E+w;w) ~G. t(E)x 1 J IJ 17 mn 1m 

t ~ H~t 

(9) 

->lvl - - lvl -
x A 1 r;!~ (E,E+w)Gni/E+w); 

.... -> .... (10) 
j .. ,., -it .. (R . - R . ). 

IJ IJ I J 

-:\ -> -> lvl .... 
where 

1
the notations A 1(q, ""q · j and Att~ (E ,E +w ; q ) = 

~ -:-tlv 
=q · A1-u .... (E. E .... j w) have been introduced ; under the 
trace j and Atl form a scalar product. .... 

Separating diagonal and off-diagonal parts of A J vI 
in (9) and (10) we obtain 

· dE -> lvl -> lvl x+-cii=O,w),.....Lf-<trljG, (E+w)jGt (E)l> + 
J 3N 2rr .. c 

(11) 

- + .... + XJ-(q,.O,w), 

where 

- _ -> i dE .... lv l ->lv l 
X+ ( q = 0, w ) "" 

3
-- f 

2
- < ~ A 

1 
.. ( E, E+ w )·K. . (E + w ,E )> , 

J N rr 1 11 11 c 
t~ ~t (12) 

->{vi lvl -> lvl 
K 11 (E+w,E) ... ~G. (E+w)j G (E). 

*t m n 1m* m n nit 
(13) 

7 



Since the configurational averaging in (12) is beyo~d the 
CPA we make the factorization ansatz 71 4 1 <AI~!. K. vl > = 
,.,<X!vl> ·<Klvl> leading to c 

1 c c 

~ ( !vl ~ lvl 
K E +w ,E)"'< G (E+w) j G (E)> ,. 

~ t ~ t cii 
1 @. rv (14) 

= -N !. ~,... (E + w);:,,... (E) V .,.L .. "'0 k k~ K t k k 

- +- -> 
and x J (q,.,O,w ) "" 0 due to time-reversal symmetry. 
~ka denotes the coherent one-particle Green function 
including electron-electron correlations (see below). Thus 
we are left with the CPA result without vertex correc­
tions, i.e., 

(15) 
+- ~ i dE ru 2 

X (q .. O,w) "'n.N- f-!. ~ ~ (E+w);:, ~ (E)(V ~{ _. ) . 
J ul 277 k k ~ k t k k 

Substituting (15) and 

1 + - !vl 1 !vl 2 
lim --rr- «[S~ , qJ -~ ]> > = -!. «n"' > > V +(-• (16) 

q--0 q q - q c 6 N ka k a c k k 

into (3) and going over from the causal to retarded ("r") 
Green functions one finds 

D= 
1 ImfdEL2(§_~ (E)-~r,(E))2(V~f~)~(17) 

677(n -n) -oo N k~ kt k~ K k 
t ~ 

where f1 is the Fermi energy. This expression for D 
agrees formally with the RPA-CPA result / 6 •1 •101 . which 
was based on the HF treatment of the electron-electron 
interaction. 

In the present calculation, however, ~Ita is dressed 
in the CLA scheme 1161

. Then the correlation part ex­
pressed in terms of partially averaged causal functions 
reads 

-
!. v (E ) = f _.!.El_ o ~ (E) T~ (E +E) . 

Uiia 2 77 i u-a 1 ( v ~A, I3 ), (18) 

v 1 dE v - v - -1 
T. (E)=d- + f-0.

1 
(E)G (E-E)] , 1 u~ 2 77 i 1 a ii-a 

1 

(19) 

v 
where T i is the effective two-particle vertex. The local 
Green function G~1 a(z) written as resolvent ( z being 
the complex energy) is renormalized by 

v Fa (z) 
Giia (z),.. ----------, 

1-(( v (z)-!. (z))F (z) 
ia a a 

( v (z),. t + !. v . (z), 
ia 1 Uha 

Fa (z) '"'..!. !. ~ ~k (z), 
N ~ a • k 

@. -1 v,. (z)-(z-f~- !.a(z)) , 
ka k 

(20) 

(21) 

(22) 

(23) 

!. a (z) ""c( aA (z) + (1-c y-;: (z)- ['(: (z}- !. a (z)] Fa (z)[( : (z)- !.a(z)], 

(24) 
1 f1 r 

n"'2n =--!. JdEimF (E). 
a a 77 a-oo a (25) 

Here !.a is the coherent potential, n is the average 
number of electrons per site. Contrary to the usual 
CPA 1121

• the atomic potential ( ra ( z) ( i is dropped 
in (24)) becomes energy-dependent through the self-energy 

v 
!. Uiia(z) caused by correlations. 

In the HF approximation the modified CPA problem 
(20) to (25) must be completed only, instead of (18) and 
(19), by the constant self-energy lvu~fa .. ur nr -o ' 
where n~ is the average electron number with spin a 
at v siies given by 

n~ ==- .!.. f dE Imot~a (E). 
1 a 77 --<>co (26) 

L8 , 



Taking into account the special vertex I !vl (E,E + w;w) = 

lvl 
= -Ti 

- lvt -
(E+E+wh-T. {E+E+w), 

1 

t Ht 

the equations (7), (18) 
tU~ 

and (19) with v replaced by I v l yield the identity 114
: 

lv l _. lv l 
w A0 . (E,C+w; q)o .. -A

1 
.. 

I IJ lJ 
t~ u 

-. -i QR· {v}-1 
(E,E+w;q) = e 1 G.. (E+(v)-

IJ-1 

1 
.... _. 

{v}- -iqR· 
- G ij t (E) e 1 (27) 

with 

lvl- 1 v lvl 
(G (E)) ==(E-f. )o .. -t .. -~u··a(E)o.. . (28) 

ija I IJ IJ II IJ 

where the site -diagonality of A 1;i1 
j = A 1~! o i j has 

H t~ 

been used in (27). Hence, in the completely random ver­
sion I v l. the local ladder approximation fulfils the Ward­
Takahashi-type relation (27). 

The stability condition of the ferromagnetic ground 
state against spin wave excitations 

f> .. D(nt-n~)>O (29) 

may be found from the spectral representation 

x+- r (q,w) ~- - 1- r dw, .2~~...:... __ } + - (w, ), (30) 
2rr-oo w-w'+if sqs-q 

~ 

where the spectral density Is+ 
8

_ (w) ~ 0 is related to 
q -q 

a configurationally averaged system. The magnon pole 
n -n +- r (__. ) ~ + ( X q, w = - -- 31) 

pole w - Dq2+if 

can be separated for small q and w (Goldstone theo­
rem) from the Stoner continuum, since the individual 

10 

l 

I 
J 

excitations have vanishing spectral weight for q .... 0. In 
(31) the damping is omitted, and the residue is written 
down only in the lowest order of q . The comparison of 
(30) and (31) leads to (29).' 14 1 . 

In the present approximation the spin wave damping 
y q entering into (31) instead of f can be proved to be 

2 
y = ___g ___ Im X+- r ( 0 , D q 2 ) ,. 

q nt - n ~ J 

D 4 rur rur 2 ____ !Jl____ ~ Im ~ ,_. (J1.) Im ~ _. (11) ( V' ~ f _. ), (32) 
3 rr (n -n ) N .... k k t k ~ R k 

t ~ 

taking the same form as in RPA-CPA
181

; however, here 
electron-electron scatterings are included. 

3. NUMERICAL ANALYSIS AND CONCLUSION 

To carry out part of the computation of D analytical­
ly we choose simplified expressions 1221 for the unper­
turbed density of states (per site per spin) p 0(E) and the 
mean-square velocity over a constant-energy surface as 
follows: 

1 2 E2L2 
p0 (E),.,-N * o(E-E .... )=--[1-(--)] e(w-IE!), (33) 

k k rrw W 

L ~ o (E -(it 
N k__. 

2 
2 2vm E 2 ~2 )( v ( ) ,. ---- [1-(--) ] e(w-IEI ), 

k k 77W W 

(34) 

where w is the half bandwidth, and v m is of order w a 
with a being the lattice spacing. By means of (33) the .... 
k -summation in (22) yields 

z- I a (z) 
z =------. 

a w 
F (z),., 1..c-z -iv1":z2). 

a w a a 
(35) 
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To make (35) univalent we take that branch in the z
0

-

plane with a cut along the real axis from -1 to 1, where 
the square root is positive on the upper lip of the cut. 

Rewriting (17) as 

1 f1 rr -
D "" ( -)1m f dE [ II tt (E ,E)+ IIr r (E ,E)- 2 II rt: (E ,E)] (36) 

rr n t-I\ _,., .u 

with the abbreviations II rr ,(E,E)=II (E+E +) E+ "'+
1
·o 

aa aa' , , ac.. , and 

II 00 ,(z,z')- N1 l §-+ (z;§~ ,(z')(V -+(-+ )
2 (37) 

k ka KG k k 

we find in performing the k -sum with (34) by the residue 
method the' current pola tization parts 

2v 2 --
IIrr =-__EI-(3z2 -2... -3iz y'1-z 2 ), 

aa w2 a 2 a a 
E+- I 0 (E+) 

z--
a w 

(38) 

n
r r 2v2m (1 2 312 2 3/2 
t+ "' -- ( z 2 + z 2 + z z - ~ . - zt ) -(1-z ) 

w2 t ~ t ~ 2 + 1------L--). 
z t- z ~ 

(39) 

From (36), (38), and (39) it results 

2 v f1 2 --- 2(1 2 ) 
D = ~rJ.L Im f dE [ (z t- z~ ) -iy'1- z~(3z t+ _-:_:.!_)-

3rrw (n t- n~ ) _,., z -z t ~ 

- i v' 1- z2(3 2(1-z2 ) 
~ z ~- - J. - )]. 

Zt -z~ (40) 

where the complex square roots are taken in the sense 
mentioned above. 

The scalar de conductivity a at zero tempera.ture 
can be calculated with the "same accuracy" as D 
This leads to the modified Kubo-Greenwood formula 

2 N ra rr 
a= L_ I [II Jp.fl)-Reii Jp.fl)]=Ia a (41) 

6rrV a 0 a a 

12 

including Green functions renormalized by electron cor-
relations within the CLA. Here II ra({l.fl)=II (fl +,fl-), 
11- =fl- i o. v is the volume of tK~ systertf, and e is 
the unit charge. By insElrting (~8) and (39) with the rep­
lacementii~a'"'nrr[zt-+Z0,z, -+Z;j.] into (41) we get 

t~ .. 

the spin-dependent de conductivity (for Im I ({1 + ) < 0 
a ) 

+ 2 - ~2 
a =;;.TT[~~-~~-L+ w-+- Re{iy1-Z7,(i(1-za)+ 

a w 2 Im!. ({1 · ) 
a 

3 ~ 
+ -; z aIm!. a(fl +)) l], 

where 
z ,. f1 +- Ia({l+) 

a 
a w 

e2 v 2 N m 

3rr 2 V 

(42) 

(43) 

The numerical analysis is performed as follows: 
Choose the parameters W,fA, fB=O fixed, uA.uB,e, and 
n; solve the self-consistency loop (18) to (25) with the 

explicit Green function (35), and use these results to 
obtain D from (40) via the E -integration. 

Figure 1 shows the transition region between weak 
and strong ferromagnetism versus the strengths of the 
intra-atomic Coulomb repulsion uv treated here in the 
H_lh approximation. In particular, the sets with uA "' 2 , 
U =0 and U A=2 , uB =2 have been investigated in 1231 , 

but not in the context of spin waves. The RPA-CPA re-

sults (a) for the stiffness constant D (in units ofd 0 "" ~ w a2) 

refer to the instability of the ferromagnetic ground state 
against spin wave excitations. Note that a crossing of the 
spin-dependent de conductivities aa(b) is found 
(cf. 1241 ). The component and average magnetizations 
mv ""n~-nf and m""n t-n.,, resp., are drawn in Fig. ld. 

Figure 2 represents a confined region of stable 
(mainly saturated) ferromagnetism (D > 0 (b), m v > 0 (a)) 
depending on the electron density n. The zero of D at 
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the lower value of n corresponds roughly to a Stoner­
like criterion (cf./16/ ), while the other zero signals 

t021 
\ ~· 
,\ 9 ov 2 I~ 

(4.) 

'" I\ ....._ (b) ', ······---·········-·-··· 

\ 7 >-. ',, '··-··············-········-----· 
:\. 

/ ~'---~ --
.3 If s uA=-.ti o 

2 

(c) 

fQ6 
r=b 

) ... I ;)2 

OV I '!='T"'==t t=r; 
~/ 

4il 
A---

.---·---·· 

A_L:.==~__JL,__~ 

I 
~ 

Fig. 1. a) Unstable ferromagnetism characterized by the 
sPin wave stiffness constant D < 0, b) de conductivities 
aa and a, c) electron densities na • and d) mafletiza-

tionsmv and m versus uv foranalloy with(w,cA,c ,e,n)"" 
::(1, -0.8, 0, 0.4, 0.4). Hartree-Fock treatmentofthe elect­
ron-electron interaction. 

a change of the spin arrangement. Note that the maxima 
of D and at (d) occur nearly at the same n values. 

Most of the data on the stiffness constant D exist 
for NiFe alloys as reported in Fig. 3. As a test, we 
have taken into account electron-electron correlations, 
although the present scheme is more suited to describe 
the nickel component with 0.6 holes per atom in the 
d band than the iron component with a high local hole 
density. In Fig. 3 the D values (x) calculated on the 
basis of the CLA are compared with (a) results obtained 
in RPA-CPA 17 ·91 ,"rigid band" theory 1101 , in the ap­
proach1131, and with inelastic neutron scattering da­
ta11·2·31. The small value of D at e"" 0.4 (b) shows 

14 

t a~ 
:::t. 

(a) 0 

az 0.4 0.6 as 1 n-
(d) 

~ (b) 

}----'>o-'--~--'----L.----7,01 

c. 
/ 

0.6 Oi 1 
n--

az a~ o.6 as 1713 
n-

Fig. 2. a) Partial magnetizations mv , b) sPin wave stiff­
ness constant D in the stable ferromagnetic case, c) Fer­
mi energy 11. and d) de conductivities a a and a ver­
sus n at the alloy concentrations e = 0.1 (full lines in 
a), b), c)) and e = 0.3 (dashed lines in a), b), c)) for the set 
(w,<A ,cB , UA, UB)= (1, 0.2, 0, 4, 3). Hartree-Fock treat­
ment of the electron-electron interaction. 

that our model calculation can be justified only for small 
F'e concentrations. Note that for pure Ni the stiffness 
constant is found close to DN. , 555 meV A2 measured 
at 4.2 K 111

. 
1 

Electron correlation effects on the stiffness constant 
D in NiPd alloys are studied in Fig. 4, and a compari­
son with 1251 is given. This material is a good candidate 
for the CLA due to the small density of holes. For the 
pure systems the parameters are chosen as propo­
sed in /20/; in alloying one has n-enPd+(l-e)nNi , and 
the different hopping integrals are taken into account 
by putting the bandwidth 2w ,.e(2w)Pd+(1-e)(2w)Ni . Note 
that in reduced units u Pd uNi cPd -c Ni are scaled 

' ' for all e by 2w:1. The bare uv are dressed self:.con-
sistently yielding the two-particle vertices T r (E +E) 
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(a> L.i.. ~ -•• __ 
I 

·~ :z .:::: 
~ 

as0 o.1 az c-!3 
Ni Fe 

(b) 

0.2. 0.3 
Ni 

Fig. 3. SPin UNIVe stiffness constant D versus c for 
F~ Nit-c alloys. D values (x) based o~ the coherent 
ladder aPProximation with ( w , ( A , ( B , U , U B , n. ) = 

=(0.5, -0.24, 0, 2.66, 3.4, 0.6) ( 2w = 4.15 eV, a=4A in 
absolute units in b)). ComParison with a) results computed 

17!. /91 '101 ·13! ' ' 
in (1), (2), (3), · (4) and a), b) experimental data 
given in 1 J1o)/21~)( 31o). 

especially rv = Tj(211 ) and r =-c 1--.A+ (1-c)r8are plotted in 
reduced units in Fig. 4d. 

The numerical results of the present model calcula­
tion exhibit the marked influence of the electron-electron 
correlations on the magnon energy in the long-wave­
length limit wq "'D q2

. Although a single-band Hubbard 
model with simplified band structure and diagonal dis-
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(d) 

0 0.1 az aJ c jJj 

Fig. 4. !>dcNit-c alloys treated by usi~ the coherent 
ladder approximation with the set ((2w) d , (2w ) Nl , 
f Pd -(Ni , UPd , UNi, nPd, , nNi )~ (6.05 eV, 4.15 eV, 
0.3 eV, 9.17 eV, 14.11 eV, 0.4, 0.6). a) Sti[~ss constant 
D values (x) compared with results in / 2 . 1 

(- - -)and 
exjJerimentoJ points ( •) quoted in 125 l, b) D in absolute 
units (a"'3 .8A ), c) partial mapzetizations mv, and d) effec­
tive Coulomb interactions r and r versus c · 

order only is taken into account, physically reasonable 
D values are found for Ni -based alloys. Beyond the 
RPA-CPA treatment, the approach given here is based 
on the coherent horizontal ladder approximation. Loca­
lity of the energy-dependent two-particle vertices is 
assumed which allows to preserve the single-site cha­
racter of the CPA. The spin wave damping is proved 
to be small at least of order q4 . Thus a practicable 
method is proposed which retains the self-consistency 
to find stable ferromagneti.sm in transition metal al­
loys. 
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