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A CONTRIBUTION TO THE THEORY OF A FERROMAGNETIC
CRYSTAL WITH TWO SPINS PER SITE *

L. A. MAKSIMOV and A. L. KUZEMSKIY

Joint Institute of Nuclear Research

(Received 9 Octobdr 1869)

The problem of the magnetization and magnetic excitations spectrum of a
ferromagnetic crystal has been examined for the case where the total spin moment
at each site is due to the combination of two interacting electron spins,

On the basis of a simple model it is shown that, even where the interaction
within a site 1s comaratively weak, of intersite order, the Curie point i3 close to the
maximum level for a hard spin coupling at the site. Besides the usual, “acoustic”
branches of magnetic excitations we have also found the high-energy excitations
which are connected with transitions between triplet and singlet states at the site,
which cannot be derived by examining atrongly coupled spins.

The problem of spin interaction within a single site is solved precisely and the
self-consistent field approximation is used to take account of site interaction in

computing the magnetization, and that of Bogolyubov and Tyablikov in the
examination of the magnetic excitation spectrum. :

1. The most closely studied model of ferromagnetism is that of Heisenberg (e.g. see {1]), in which it
is assumed that exchange-interacting spins are situated at latfice sites. No account is usually taken
[2-5] of the fact that the spin of a site with s > 1/2 is the resultant of the spins of several electrons of an
antom, and the total atomic spin may generally not be preserved on interaction.

[t is of definite interest to see what influence the internal spin structure of an atom with s > 1/2 has
on the magnetic excitation spectrum of a crystal. This problem has been investigated by the approximate
second quantization method by Kondorskiy and Pakhomov in {6, 7], and also Izyumov in [8]. The case of
several spins per site, where the subsite interaction is much greater than the intersite, has been
examined by Izyumov and Yakovlev in {9}, using the method of two-time Green’s temperature functions. The

conditions under which the Heisenberg model may be applied for the case of several magnetic electrons at
an atom has been investigated in detail by Irkhin in [10).

. In the present work we shall examine the model of a ferromagnetic crystal in each site of which the
total spin momentum is the resultant of two interacting electron spins. In section 3 we investigate the
temperature dependence of the magnetization of the system in the self-consistent field approximation. In

section 4 we shall discuss the exactly solvable problem of two spins in an external field. The results of

this examination are used in section 5 to study the magnetic excitation spectrum of the system by means of
two-time Green's temperature functions.

Vo

2. Let us start from the model Hamiltonian [11]

[ —
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2 Theory of a Ferromagnetic Crystal
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Here s is the site index (f=1. ... N); a is the spin number at the site (o= 1.2}; Sie.  is the spin

i
operator 5= "5"; I{fa; gB) is the exchange integral. The case of A = 1 corresponds to the isotropic
model and that of A = 0 to a model of the Ising type. In this work we shall not be concerned with the
possibility of antiferromagnetic spin ordering in the lattice and shall therefore assume that the exchange

integrals:
S(fa; By =11, a+#;
J{fa; gB)y=J(f; 2), [ +¢

are non-negative.

3. Let us use the self-consistent field method for a qualitative examination of the magnetization of
the system. In the second term of the (2.1) Hamiltonian, which describes interaction between spins from
different sites. let us isolate the quadratic term in the spin deviations from the mean (we shall study the
case of A = 1 in detail and derive the result for A = O)

| , 1 o i .
H = 21,@*N — 210 + 3 28], — 31y T SiSp— 3 D pILRS

 Fegon B

X (fo; gP)(Sre— 9a) (Sgp— Tp)

where ]2=L;!(f,g) and <S;, > =0, 0;=0,=0.

For intersite interaction the problem can be solved in the self-consistent field approximation. As we
know [12]. the zero approximation of this method is here derived by neglecting the last term 1n (3.1). In
no approximation can interaction between spins within a single site be reduced fo the self-consistent
field. We shall take accurate account of this interaction. As a result, we get a Hamiltonian of the form

H:‘?_‘,Hf,

where ”
Hf = 2!2{] —|~ (2!:'3 + I.LH) (Sfl -|— S?E} — ]J-Sflsfz‘

In this approximation the free energy breaks down into the sum of free energies in a single site
F_f == — T lI’l Zf’

and the statistical sum Z,

—BH —2f.0tp [ y-i-Bii/4 Bf,1]4 — - p v —R3fH,
Z;==Spe P F=e {Ef F + e !+e | + € | }-:._-
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_e P l2chy 1 e, (3.2)

where [3= I/T: y=B (21’20+},LH)
Taking account of (3.2), we get
__ {y—PuH)? ~ |
pFy = 5 — B/ In{2chy 1+ 7" (3-3)
The mean spin ¢ is found from the condition of minimum free energy J/f;/do=0 and 18
#y——EuH: * 2shy
° I 2 chy4-1+e Pl (3.4)

When the interaction within a site is much greater than the intersite interaction I, » o, the equation for the

mean spin becomes
2shy
g = A
2¢chy -4 1

at H = 0 there will be a

he Brillouin function at s = 1. In such a system,
interaction we shall get

which is a particular case of t
2/,1,, which means that for infinitely large subsite spin

phase transition for 7=
lecular field method for a ferromagnetic crystal with s = 1.

In the general case (H = 0) the equation for T, has the form

3 _i_e'_ﬁ‘;,fl:: 2I2ﬂﬂf (3.5

~ where B.=1/T.. Letus introduce new variables x=2[,8, and ;1=..;_ [./l,. Then we can rewrite
- equation (3.5) as
3 - P L (3.6

it is easy to see that the Curie temperature rises to T.=2/5[,. when the
it is easy to find the behaviour of the

Once again, we find that at fixed intersite
of the graphical

‘After solving (3.6) graphically,
interaction in a site increases ([, is fixed). By analogy,

magnetization in a model of the Ising type (in (2.1} A =1).
interaction (I, = const) the Curie temperature rises with I, as faras T, =1,. The results

E - golution of (3.6) for A = 1, and the analogous equation for A = 0, are given in Fig. 1.

—_——ﬂ_—ﬂ_d-—-—_

i/ /,

FIC. 1. Critical temperature as a function of the
exchange integral relation.




4 Theory of a Ferromagnetic Crystal

Thus we see that spin motion within a single site has a fairly small influence on the temperature
behaviour of the magnetization. o . the

4 We shall use the method of two-time Green’s temperature functions [1, 13] to examine the magnetic
excitation spectrum of the system.

First let us consider the case of a system in which there is no exchange interaction between the
sites. Then the problem is reduced to the exactly solvable prablem of two spins interacting in an external 3 __
field A . wh
H-— — z 2 8 o Wl
”H(Sl ‘I‘SE)“— /y (5,S.,). (4.1) ; sy
the
Obviously, the energy spectrum of the system (4.1) can readily be derived by direct solution of the

Schrédinger equation. However, for subsequent analysis of the spin excitation spectrum of the system

(2.1) we have to find the excitation of system (4.1) by the Green’s function method. For such a simple ~ fun
Hamiltonian as (4.1) the system of equations for the Green’s functions obviously reduces to two equations g
and can be solved exactly. We find that the Green’s function & ST (¥) |S=(0)> has poles p#, E

and uH - I, the Green’s function & S—(#)|S+(0)» has poles pH,=uH—I, and —wA+1,. Their §F
interpretation is depicted in Fig. 2. The horizontal lines depict the energy levels of the system. The 3 -
values of the total spin §; and its projection are given on the left; the intrinsic energy values on the right. s R
The left-hand group of transitions in Fig. 2 corresponds to the poles of Green’s function ST \ST >, '

the right-hand to the poles of ¢ S7|S7}»>. We shall not refer to other Green’s functions because

LS SE> =0, 8|S =« 8|S, where i, k== z and the rest of them are easily Her
expressed in terms of & Sﬁ 13*; >, K bec

O e T N

] -wH
e - Tya
(S:=1;:52= 1) ' r —pH ~.vah
('Sm=“5r§= 0) '} - - yfr‘.tr’
($5=1555 = 1) - - _PH'%{‘? SIS
g Sin
FIG. 2. Spectrum of the magnetic excitations of a two-spin system. § " Bec

- Grex
The Green’s functions <<S'i" |ST>»> and <On |3T>> describe all the possible transitions in the -

system involginv a change of +1 in the total spin projection onto the quantization axis, which is depicted }
in Fig. 2. Green’s function & S¢ | 87 > will, of course, describe transitions in the system without a ¥ inw
change in the total spin projection. The spins are parallel to the field (S; =1, §=1). in the ground s
state. The poles of Green’s function KST (87> which are equal to ¢H and pH + 1, correspond to ]
allowed transitions from ground to excited satate, so the corresponding residues are also non-zero at zero 3%
temperature. Pole uH - I,, which corresponds to transition from the excited state to a lower energy level, ¥
has a residue which disappears at zero temperature. This behaviour is because the residues are proportiondg
to the occupation of the initial state. The residues of Green’s function poles &S57 | S.?L . behave in the

same way.
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5. Now let us determine the magnetic excitation spectrum of the total system (2.1). We shall consid
the case of A = 1 in detail, and simply give the results for A = 0.

We shall examine the following Green’s functions:

L SH (1S (0) > =0(t) < [Sk, (8), S, (0)] >;
(0) > = 0(t) <[Spp (8, SE(0)] >,

(5.1
LSy (1S

fA

where Sii (1) is the Heisenberg representation of the operator of the transverse components of spin

with the total Hamiltonian (2.1) for A = 1. Green’s function (5.1) describes the dynamic behaviour of the
system when the z projection of total spin 1s altered by unity, the Green’s functions poles (5.1) defining

the magnetic excitation spectrum of the system.

Now let us define the Green’s functions. Using the equation of motion for operator St.. for Green’:

o function & Sr_rlt_l I Snﬁu > we shall get the equation

. d . )
IE—f 4 S:j:-l (t) |Sq_p, (0) > = Iﬁ(t) ‘5nm 6;.\_“ < QS;:.E, > 4+ I"‘H & S;j;LIS;;L > - (51

+ I J(fa mMKSESTISLD + B Jmes mh) KSTSI8, —

— 3 e m) S (S > — B (ma mh) KS}uSEISEY

f+m, o oA

"-'.Here and below, terms with f # m and the term with f = m will be written separately. This is quite natura
. pecause the problem is solved exactly for a single site, but approximately for site interaction. In equatic
7 (5.2) let us express part of the second Green’s functions (for which f £ m) in terms of the first:

)

& Se.SH|Sm > = <8;, > SIS >, T+ m
& 82, St 180 > = <82y > LSEISL», f#m.

mh o

) :'f__i-Tyabliknv is the originator of this uncoupling [1]. We note that, because of translational invariance, the
. - values <SZp> do not depend on the site index,

S, > = <8} > =0.

. "Since we wish to solve the problem of intrasite interaction exactly, we must examine the equations for th

second Green’s functions. As we can see from (5.2), we only need to examine equations of motion for

Green’s functions of the form:

<< anasﬁl | S;u >:'} y

gronnd ¢

0
at zero
level,

-

roportionals .
/e in the & o

& o s S:-p,] > HH & sza.sj_:z.IS;L} —

. d , : .
i~ LS, SH 1S, > = i6(f) = [SE ST

e, T py L

| o o Ry
— 2 I (pv; nie) € Sk, S, 8,185 > — = Y, (mv, ma)& S, %

pam, 7 X+
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l L " —_—
XSSl Su> +5 E J(py; mo) LSS50 S > T

D+ m. ¥ | -2 S

n é E J (my; ma) S, SESH 1S, > E J (py, mh) L8754, K

oty p v iny

o
P p o,y

X Sh1 S > 4 X Jmy; mh) € 82 82 St 1S »> — I J(pri mh)X

&8 8.8+ 18- > — ¥ [(my; mh) <S¢, S:.85 1S (5.4)
o R

me=o ma py 1 np 7 y ma™ A= my

Let us examine each of the Green’s functions entering this equation in detail:

1) # Sk 8-8t |8~ >=0 here P+ m

LT Py A HITa

2) LS+ S-S+

prg Ty ik HQ

. 1 o " s | o—
1S5 = T STl S5 » — KSLSmISL>

since it follows from y £ a and e £ A that y = A because a, y and A assume the values 1 and 2:

- o —_ - e I~ -
HL >> =~ . S:.':“IS.-.JJ?.. {( Slrl:"}' iS”u

3) 7 8- 88t |S

T g atd

> where M + P;

4) £ S~ St SH |8 % -0 {(here y¥ @ ¥ ok hence Y7 A, (5.0)

PG ey A, L

5) €8 8§ SH (IS »>=L S

WA Py A 1t i tid, |

> K Sfm:r’,:,S%_. IS:;., :’> where ™ 7= P

Lo Qo _ ! .
6) <555 ‘Sih | Sr':u 7 T LSE Sn_u > t(here Y ¥ A

i

and @ A,  therefore o = )
2 F4 - i- — NN, e z ; s Q- — _d '
7) ‘:<. SHF"LSH-}..S;J‘IF 'S.rl'”_ f;) = {: S}j;rAS;;;}h > o S‘I:‘ ‘SHM >> Wh&re p s ”1,

8) 4 82,88t IS7 > =

Il i TY R i L

& 82,8t 1S > (here also Y # A

HL

o | —

and a = A, hence 7 =a).

Relations 2, 4, 6 and 8 in (5.5) are exact. Such Yelations are used in the exact solution of the problem of

two interacting spins in an external field in section 4. Relation (8) in (5.5) is the approximation of _
Tyablikov, as in (5.3). Of course, relation 1 is satisfied very well at low temperatures. Determinations 3 f
and 7 are analogous to those suggested by Callen in (5], with the difference that correlators of spin :
operators in different sites will be treated as small. Incidentally, under our assumptions the result given
below is not altered if, instead of uncouplings 3 and 7, the corresponding Green’s functions are simply set 3

equai to zero.

If (5.3) is put into (5.2) and (5.5) the chain of equations for the Green’s functions 1s closed. Going
over to Fourier representation we shall see that the Fourier transform of function <5 S5, (0) > 18t

! 0 i 1
Gl l(kr {1}) = - -
’ o w—pH — {1y — 1.(k)) 20 2o 2

o l'“hl-"" . l_r'.-

. whe

#  Let

exc

4 itis
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- s
>< g — ‘: QSf” SEHE} {SHII SH!'::' } I ¢ 1 >< (5'6)

ﬂ]"—l.lH"_fjf‘-Jﬁ‘J"l"]_ Qﬂ-

[

3 g "L < _Sf‘:” Si:? > o < S.;nl Sj:*?' -
’ @ — pnH — 1,26 — I !

 where lo(k) - ¥ [(f, m)e rk{mhf}

F oo

[Let us analyze the expression we have obtained. The Green’s function poles of (5.6) describe the spin

(5.4)  excitation spectrum of the system. They have the fﬂllﬂ;ﬁing form:
LA, (5. T)
w=puH + 1,20+ 1; (5.8)
(9.9)

W= WH 1,20 —/,.

[f we use the well known relations of (1]

==

LK A| B = _i j (€0 — )1 4 5 (w) d@

E — )~ (&

"
)

K

. BJ A >>{r} — _i._ PN, dw
j ( ") AB(M)-—E —@© 4 &

f3_:;- it is easy to verify that the Green's function < S.» 1S,m > has poles equal to those of (5.7)-(5.9) with
;3 '."_-'the opposite sign. The (5.7) poles represent the energy spectrum of normal spin waves (the gap of which

 vanishes at H = 0) in a ferromagnetic system with a spin of s = 1 at each site. The {(0.7) spectrum 1s due
" to site interaction, which broadens the intersite transition @ = uH (see section 4} into a band.

| Excitations (5.8) and (5.9) are analogous to the optical branches in lattice dynamics and are due to
%  transition between triplet and singlet states of the site. In our approximation these excitations do not

- depend on k and are of a purely local nature. In the case in question site interaction 18 reduced to the
supplementary molecular field I,20. It is interesting to note that the quasi-optical excitations in [7] are o
‘an analogous nature if the intersite exchange integrals do not depend on the numbers of the electron state

at the site.

lem of
. For a model of the Ising type (in (2.1) A = 0) the spectrum of magnetic excitation has the form:

tions 3 -3 - w=uH |+ 21,04 1,/2,
W = !_LH — 2}25—[1;"{2.

, given @ -
wply set ®H

. Such poles have the Green’s function & Sk ‘S”“ . The poles of the conjugated Green’s function are
2 -'___'r-'"_-_'aqual to these poles with the opposite sing.

}Oing E '
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B for valuable criticism; and also to Doctor E. Praveczki, Doctor V. Tsic and Doctor G. Convent for their

- “interest and useful discussion of the work.




Theory of a Ferromagnetic Crystal

APPENDIX

Using the standard method of [1] it is not hard to derive an equation for the correlation of transverse

spin components in a single site

o Pl 9
<, Sm::"S:—:r:l o> = —— -
2N expif (WA +4 20 {{a— 1, (K))] — |
K
*’ 95, 1 8% ., >—<S, St - 087 ' SZ,.» 4 LSS, >
] q— < Sml m3 < ml Y m2 - 0+ < ml “m?2 .- + i m:?s-*")
2( exp B H -+ 12 — 1,)] — 1 xp(B(WH + 204 I —1 )

By analogy, from (5), (6) we get an equation for the relative magnetization

] 20
| + 96 = — N
T N e exp (B (RH - 20(12 — I (k)] — |

06— <285 Shy> — <SSk > 0+ <28, 8, >+ <S8, Shh >
exp [B (WH + 1520 — )] — 1 " exp(B(uH 4+ 20+ 1] —1

To 1nvestigate the temperature dependence of the magnetization we need to calculate the correlation 3
functions <S;,;S5.> and S-St~ which go into it. Tt is, however, no trivial problem to calculate @ . Al
the correlation functions of spin operators (particularly longitudinal) both within a site and between sites -3
(e.g. see [14-16]), for which reason we have not done it here.

10,
11,
12,
13,
14,

15.
16,
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K TEOPHH $EPPOMATHHTHOTO KPUCTAJJIA C ABYMHA
CITUHAMH B Y3JIE

JI. A. Maxcumos u A. JI. Kysemckuil

Paccymartpusanach 3a7aua 0 HAMAarHMYeHHOCTH M ClleKTpe MarHHTHEHX BO3OyXJeHud ¢ep-
POMATHHTHOTO KPHCTaJJia B CJAyuae, KOLJa CyMMapHBlHl CAHHOBBIH MOMEHT B KaxAOM yaJje
cOpasyercsi B pesyjbTaTe CJIOKEHUs ABYX B3aHMOMAEHCTBYIOIUHX 3JEKTPOHHBIX CIIHHOB.

Ha ocHoBe NMpocToft MOAeaH NOKa3aHO, 4TO fAaxKe NPH OTHOCHTEJBHO ciafoM, mnopsika
MeXKAOY3eAbHOTO, B3aHMOJNEHCTBHH BHYTPH y3/ia Temieparypa Kiopnm 6an3ka K Mpele/bHOR
Temnepatype Kiopn Ipu KecTKOH CBA3H CNAHOB B yazie. IloMuMo OGBIUHOM, «aKyCTHYECKOH»
BETBH MAarHMTHBIX BO36yXKIeHHH, HalifieHbl BBICOKO3HEPreTHYeCKHe BO3OYXMEHHs CHCTEMS,
CBsI3aHHblE C TepPeXOAaMH MeXAY TPHIIETHBIM H CHHIVIETHbIM COCTOSIHHAMH B y3Jje, 4TO He-
BO3MOXKHO TIOJNYYHTh NPH PaCCMOTPEHHH CHJBHO CBA3aHHBIX CIIMHOB.

3amava o B3aMMOIeHACTBYK CHHHOB BHYTPM OZHOTO y3Jja pelllaeTcs TOYHP, a MEeXKI0-
Vv3eJbHOE B3aMMOJEHCTBHE YUHTHIBAeTCH B NPUOJMIKEHHH CaMOCOIJIACOBAHHOFO MOJAA NpH Bhl-
YHC/IGHWH HAMAarHHYeHHOCTH M B Npubankeéunn Boromob6osa—TabiukoBa NpH HCCACXOBAHHMH
CMeKTpa MarHuTHHIX BO30YXKIeHUH. '





