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Abstract: A brief survey of the author’s works on the fundamental conceptual ideas of

quantum statistical physics developed by N. N. Bogoliubov and his school was given. The

development and applications of the method of quasiaverages to quantum statistical physics

and condensed matter physics were analyzed. The relationship with the concepts of broken

symmetry, quantum protectorate and emergence was examined, and the progress to date towards

unified understanding of complex many-particle systems was summarized. Current trends for

extending and using these ideas in quantum field theory and condensed matter physics were

discussed, including microscopic theory of superfluidity and superconductivity, quantum theory

of magnetism of complex materials, Bose-Einstein condensation, chirality of molecules, etc.
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The theory of symmetry is a basic tool for understanding and formulating the fun-

damental notions of physics. Symmetry considerations show that symmetry arguments

are very powerful tool for bringing order into the very complicated picture of the real

world. Many fundamental laws of physics in addition to their detailed features possess

various symmetry properties. These symmetry properties lead to certain constraints and

regularities on the possible properties of matter.

Thus the principles of symmetries belong to the underlying principles of physics. More-

over, the idea of symmetry is a useful and workable tool for many areas of the quantum

field theory, statistical physics and condensed matter physics The fundamental works of

N.N. Bogoliubov on many-body theory and quantum field theory [1, 2], on the theory of
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phase transitions, and on the general theory of symmetry provided a new perspective.

Works and ideas of N.N. Bogoliubov and his school continue to influence and vitalize

the development of modern physics [1, 3]. In recently published review article by A.L.

Kuzemsky [4], which is a substantially extended version of his talk on the last Bogoli-

ubov’s Conference [3], the detailed analysis of a few selected directions of researches of

N.N. Bogoliubov and his school was carried out. This interdisciplinary review focuses on

the applications of symmetry principles to quantum and statistical physics in connection

with some other branches of science. Studies of symmetries and the consequences of

breaking them have led to deeper understanding in many areas of science. The role of

symmetry in physics is well-known [5, 6, 7, 8, 9, 10]. Symmetry was and still is one of the

major growth areas of scientific research, where the frontiers of mathematics and physics

collide. Symmetry has always played an important role in condensed matter physics [5],

from fundamental formulations of basic principles to concrete applications. Last decades

show clearly its role and significance for fundamental physics. This was confirmed by

awarding the Nobel Prize to Y. Nambu et al. in 2008. In fact, the fundamental ideas of

N.N. Bogoliubov influenced Y. Nambu works greatly.

A symmetry can be exact or approximate. Symmetries inherent in the physical laws may

be dynamically and spontaneously broken, i.e., they may not manifest themselves in the

actual phenomena. It can be as well broken by certain reasons. It was already pointed

by many authors, that non-Abelian gauge field become very useful in the second half

of the twentieth century in the unified theory of electromagnetic and weak interactions,

combined with symmetry breaking. Within the literature the term broken symmetry is

used both very often and with different meanings. There are two terms, the spontaneous

breakdown of symmetries and dynamical symmetry breaking, which sometimes have been

used as opposed but such a distinction is irrelevant. However, the two terms may be used

interchangeably. It should be stressed that a symmetry implies degeneracy. In general

there are a multiplets of equivalent states related to each other by congruence operations.

They can be distinguished only relative to a weakly coupled external environment which

breaks the symmetry. Local gauged symmetries, however, cannot be broken this way

because such an extended environment is not allowed (a superselection rule), so all states

are singlets, i.e., the multiplicities are not observable except possibly for their global

part. In other words, since a symmetry implies degeneracy of energy eigenstates, each

multiplet of states forms a representation of a symmetry group G. Each member of a

multiplet is labeled by a set of quantum numbers for which one may use the generators

and Casimir invariants of the chain of subgroups, or else some observables which form a

representation of G. It is a dynamical question whether or not the ground state, or the

most stable state, is a singlet, a most symmetrical one.

Peierls [11, 12] gives a general definition of the notion of the spontaneous breakdown of

symmetries which is suited equally well for the physics of particles and condensed matter

physics. According to Peierls [11, 12], the term broken symmetries relates to situations in

which symmetries which we expect to hold are valid only approximately or fail completely

in certain situations.
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The intriguing mechanism of spontaneous symmetry breaking is a unifying concept that

lie at the basis of most of the recent developments in theoretical physics, from statistical

mechanics to many-body theory and to elementary particles theory. It is known that

when the Hamiltonian of a system is invariant under a symmetry operation, but the

ground state is not, the symmetry of the system can be spontaneously broken. Symme-

try breaking is termed spontaneous when there is no explicit term in a Lagrangian which

manifestly breaks the symmetry.

The existence of degeneracy in the energy states of a quantal system is related to the

invariance or symmetry properties of the system. By applying the symmetry operation

to the ground state, one can transform it to a different but equivalent ground state.

Thus the ground state is degenerate, and in the case of a continuous symmetry, infinitely

degenerate. The real, or relevant, ground state of the system can only be one of these

degenerate states. A system may exhibit the full symmetry of its Lagrangian, but it is

characteristic of infinitely large systems that they also may condense into states of lower

symmetry.

The article [4] examines the Bogoliubov’s notion of quasiaverages, from the original pa-

pers [13, 14], through to modern theoretical concepts and ideas of how to describe both

the degeneracy, broken symmetry and the diversity of the energy scales in the many-

particle interacting systems. Current trends for extending and using Bogoliubov’s ideas

to quantum field theory and condensed matter physics problems were discussed, including

microscopic theory of superfluidity and superconductivity, quantum theory of magnetism

of complex materials, Bose-Einstein condensation, chirality of molecules, etc. It was

demonstrated there that the profound and innovative idea of quasiaverages formulated

by N.N. Bogoliubov, gives the so-called macro-objectivation of the degeneracy in domain

of quantum statistical mechanics, quantum field theory and in the quantum physics in

general. The complementary unifying ideas of modern physics, namely: spontaneous

symmetry breaking, quantum protectorate and emergence were discussed also.

The interrelation of the concepts of symmetry breaking, quasiaverages and quantum pro-

tectorate was analyzed in the context of quantum theory and statistical physics. The

leading idea was the statement of F. Wilczek [10]: ”primary goal of fundamental physics

is to discover profound concepts that illuminate our understanding of nature”. The works

of N.N. Bogoliubov on microscopic theory of superfluidity and superconductivity as well

as on quasiaverages and broken symmetry belong to this class of ideas. Bogoliubov’s

notion of quasiaverage is an essential conceptual advance of modern physics, as well as

the later concepts of quantum protectorate and emergence. These concepts manifest the

operational ability of the notion of symmetry; they also demonstrate the power of the uni-

fication of various complicated phenomena and have certain predictive ability. Broadly

speaking, these concepts are unifying and profound ideas ”that illuminate our under-

standing of nature”. In particular, Bogoliubov’s method of quasiaverages gives the deep

foundation and clarification of the concept of broken symmetry. It makes the emphasis on

the notion of degeneracy and plays an important role in equilibrium statistical mechanics

of many-particle systems. According to that concept, infinitely small perturbations can
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trigger macroscopic responses in the system if they break some symmetry and remove

the related degeneracy (or quasi-degeneracy) of the equilibrium state. As a result, they

can produce macroscopic effects even when the perturbation magnitude is tend to zero,

provided that happens after passing to the thermodynamic limit. This approach has

penetrated, directly or indirectly, many areas of the contemporary physics. Practical

techniques covered include quasiaverages, Bogoliubov theorem on the singularity of 1/q2,

Bogoliubov’s inequality, and its applications to condensed matter physics.

Condensed matter physics is the field of physics that deals with the macroscopic physical

properties of matter. In particular, it is concerned with the condensed phases that appear

whenever the number of constituents in a system is extremely large and the interactions

between the constituents are strong. The most familiar examples of condensed phases

are solids and liquids. More exotic condensed phases include the superfluid and the

Bose-Einstein condensate found in certain atomic systems. In condensed matter physics,

the symmetry is important in classifying different phases and understanding the phase

transitions between them. The phase transition is a physical phenomenon that occurs in

macroscopic systems and consists in the following. In certain equilibrium states of the

system an arbitrary small influence leads to a sudden change of its properties: the system

passes from one homogeneous phase to another. Mathematically, a phase transition is

treated as a sudden change of the structure and properties of the Gibbs distributions

describing the equilibrium states of the system, for arbitrary small changes of the param-

eters determining the equilibrium [15]. The crucial concept here is the order parameter.

In statistical physics the question of interest is to understand how the order of phase tran-

sition in a system of many identical interacting subsystems depends on the degeneracies

of the states of each subsystem and on the interaction between subsystems. In particular,

it is important to investigate a role of the symmetry and uniformity of the degeneracy

and the symmetry of the interaction. Statistical mechanical theories of the system com-

posed of many interacting identical subsystems have been developed frequently for the

case of ferro- or antiferromagnetic spin system, in which the phase transition is usually

found to be one of second order unless it is accompanied with such an additional effect

as spin-phonon interaction. Second order phase transitions are frequently, if not always,

associated with spontaneous breakdown of a global symmetry. It is then possible to find

a corresponding order parameter which vanishes in the disordered phase and is nonzero

in the ordered phase. Qualitatively the transition is understood as condensation of the

broken symmetry charge carriers. The critical region is reasonably described by a local

Lagrangian involving the order parameter field. Combining many elementary particles

into a single interacting system may result in collective behavior that qualitatively dif-

fers from the properties allowed by the physical theory governing the individual building

blocks. This is the essence of the emergence phenomenon.

It is known that the description of spontaneous symmetry breaking that underlies the con-

nection between classically ordered objects in the thermodynamic limit and their individ-

ual quantum-mechanical building blocks is one of the cornerstones of modern condensed-

matter theory and has found applications in many different areas of physics. The theory of
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spontaneous symmetry breaking, however, is inherently an equilibrium theory, which does

not address the dynamics of quantum systems in the thermodynamic limit. Any state of

matter is classified according to its order, and the type of order that a physical system can

possess is profoundly affected by its dimensionality. Conventional long-range order, as in

a ferromagnet or a crystal, is common in three-dimensional systems at low temperature.

However, in two-dimensional systems with a continuous symmetry, true long-range order

is destroyed by thermal fluctuations at any finite temperature. Consequently, for the

case of identical bosons, a uniform two-dimensional fluid cannot undergo Bose-Einstein

condensation, in contrast to the three-dimensional case. The two-dimensional system can

be effectively investigated on the basis of Bogoliubov’ inequality. Generally inter-particle

interaction is responsible for a phase transition. But Bose-Einstein condensation type of

phase transition occurs entirely due to the Bose-Einstein statistics. The typical situation

is a many-body system made of identical bosons, e.g. atoms carrying an integer total

angular momentum. To proceed one must construct the ground state. The simplest pos-

sibility to do so occurs when bosons are non-interacting. In this case, the ground state

is simply obtained by putting all bosons in the lowest energy single particle state, as the

brilliant Bogoliubov’s theory describes.

The method of quasiaverages is a constructive workable scheme for studying systems

with spontaneous symmetry breakdown. A quasiaverage is a thermodynamic (in statis-

tical mechanics) or vacuum (in quantum field theory) average of dynamical quantities in

a specially modified averaging procedure, enabling one to take into account the effects of

the influence of state degeneracy of the system. The method gives the so-called macro-

objectivation of the degeneracy in the domain of quantum statistical mechanics and in

quantum physics. In statistical mechanics, under spontaneous symmetry breakdown one

can, by using the method of quasiaverages, describe macroscopic observable within the

framework of the microscopic approach.

In considering problems of findings the eigenfunctions in quantum mechanics it is well

known that the theory of perturbations should be modified substantially for the degener-

ate systems. In the problems of statistical mechanics we have always the degenerate case

due to existence of the additive conservation laws. The traditional approach to quantum

statistical mechanics [16, 17] is based on the unique canonical quantization of classical

Hamiltonians for systems with finitely many degrees of freedom together with the en-

semble averaging in terms of traces involving a statistical operator ρ. For an operator Â

corresponding to some physical quantity A the average value of A will be given as

〈A〉H = TrρA; ρ = exp−βH /Tr exp−βH , (1)

whereH is the Hamiltonian of the system, β = 1/kBT is the reciprocal of the temperature.

In general, the statistical operator [16] or density matrix ρ is defined by its matrix elements

in the ϕm-representation:

ρnm =
1

N

N∑
i=1

cin(c
i
m)
∗. (2)
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In this notation the average value of A will be given as

〈A〉 = 1

N

N∑
i=1

∫
Ψ∗iAΨidτ. (3)

The averaging in Eq.(3) is both over the state of the ith system and over all the systems

in the ensemble. The Eq.(3) becomes

〈A〉 = TrρA; Trρ = 1. (4)

Thus an ensemble of quantum mechanical systems is described by a density matrix [16,

18]. In a suitable representation, a density matrix ρ takes the form

ρ =
∑
k

pk|ψk〉〈ψk|

where pk is the probability of a system chosen at random from the ensemble will be

in the microstate |ψk〉. So the trace of ρ, denoted by Tr(ρ), is 1. This is the quantum

mechanical analogue of the fact that the accessible region of the classical phase space has

total probability 1. It is also assumed that the ensemble in question is stationary, i.e. it

does not change in time. Therefore, by Liouville theorem, [ρ,H] = 0, i.e., ρH = Hρ,

where H is the Hamiltonian of the system. Thus the density matrix describing ρ is

diagonal in the energy representation.

Suppose that

H =
∑
i

Ei|ψi〉〈ψi|,

where Ei is the energy of the i-th energy eigenstate. If a system i-th energy eigenstate

has ni number of particles, the corresponding observable, the number operator, is given

by

N =
∑
i

ni|ψi〉〈ψi|.

It is known [16], that the state |ψi〉 has (unnormalized) probability

pi = e−β(Ei−μni).

Thus the grand canonical ensemble is the mixed state

ρ =
∑
i

pi|ψi〉〈ψi| = (5)

∑
i

e−β(Ei−μni)|ψi〉〈ψi| = e−β(H−μN).

The grand partition, the normalizing constant for Tr(ρ) to be 1, is

Z = Tr[e−β(H−μN)].

Thus we obtain [16]

〈A〉 = TrρA = Treβ(Ω−H+μN)A. (6)



Electronic Journal of Theoretical Physics 8, No. 25 (2011) 1–14 7

Here β = 1/kBT is the reciprocal temperature and Ω is the normalization factor.

It is known [16] that the averages 〈A〉 are unaffected by a change of representation. The

most important is the representation in which ρ is diagonal ρmn = ρmδmn. We then have

〈ρ〉 = Trρ2 = 1. It is clear then that Trρ2 ≤ 1 in any representation. The core of the

problem lies in establishing the existence of a thermodynamic limit [19] (such as N/V =

const, V → ∞, N = number of degrees of freedom, V = volume) and its evaluation for

the quantities of interest.

The evolution equation for the density matrix is a quantum analog of the Liouville equa-

tion in classical mechanics. A related equation describes the time evolution of the expec-

tation values of observables, it is given by the Ehrenfest theorem. Canonical quantization

yields a quantum-mechanical version of this theorem. This procedure, often used to de-

vise quantum analogues of classical systems, involves describing a classical system using

Hamiltonian mechanics. Classical variables are then re-interpreted as quantum operators,

while Poisson brackets are replaced by commutators. In this case, the resulting equation

is
∂

∂t
ρ = − i

�
[H, ρ] (7)

where ρ is the density matrix. When applied to the expectation value of an observable,

the corresponding equation is given by Ehrenfest theorem, and takes the form

d

dt
〈A〉 = i

�
〈[H,A]〉 (8)

where A is an observable. Thus in the statistical mechanics the average 〈A〉 of any

dynamical quantity A is defined in a single-valued way [16, 18].

In the situations with degeneracy the specific problems appear. In quantum mechanics, if

two linearly independent state vectors (wavefunctions in the Schroedinger picture) have

the same energy, there is a degeneracy. In this case more than one independent state

of the system corresponds to a single energy level. If the statistical equilibrium state

of the system possesses lower symmetry than the Hamiltonian of the system (i.e. the

situation with the spontaneous symmetry breakdown), then it is necessary to supplement

the averaging procedure (6) by a rule forbidding irrelevant averaging over the values of

macroscopic quantities considered for which a change is not accompanied by a change in

energy.

This is achieved by introducing quasiaverages, that is, averages over the Hamiltonian Hν�e

supplemented by infinitesimally-small terms that violate the additive conservations laws

Hν�e = H + ν(
e · 
M), (ν → 0). Thermodynamic averaging may turn out to be unstable

with respect to such a change of the original Hamiltonian, which is another indication of

degeneracy of the equilibrium state.

According to Bogoliubov [13, 14], the quasiaverage of a dynamical quantity A for the

system with the Hamiltonian Hν�e is defined as the limit

� A �= lim
ν→0
〈A〉ν�e, (9)

where 〈A〉ν�e denotes the ordinary average taken over the Hamiltonian Hν�e, containing the

small symmetry-breaking terms introduced by the inclusion parameter ν, which vanish
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as ν → 0 after passage to the thermodynamic limit V → ∞. Thus the existence of de-

generacy is reflected directly in the quasiaverages by their dependence upon the arbitrary

unit vector 
e. It is also clear that

〈A〉 =
∫

� A � d
e. (10)

According to definition (10), the ordinary thermodynamic average is obtained by ex-

tra averaging of the quasiaverage over the symmetry-breaking group [13, 17]. Thus to

describe the case of a degenerate state of statistical equilibrium quasiaverages are more

convenient, more physical, than ordinary averages [16, 13]. The latter are the same quasi-

averages only averaged over all the directions 
e.

It is necessary to stress, that the starting point for Bogoliubov’s work [13] was an in-

vestigation of additive conservation laws and selection rules, continuing and developing

the approach by P. Curie for derivation of selection rules for physical effects. Bogoliubov

demonstrated that in the cases when the state of statistical equilibrium is degenerate, as

in the case of the Heisenberg ferromagnet, one can remove the degeneracy of equilibrium

states with respect to the group of spin rotations by including in the Hamiltonian H an

additional noninvariant term νMzV with an infinitely small ν. Thus the quasiaverages

do not follow the same selection rules as those which govern the ordinary averages. For

the Heisenberg ferromagnet the ordinary averages must be invariant with regard to the

spin rotation group. The corresponding quasiaverages possess only the property of co-

variance. It is clear that the unit vector 
e, i.e., the direction of the magnetization 
M

vector, characterizes the degeneracy of the considered state of statistical equilibrium. In

order to remove the degeneracy one should fix the direction of the unit vector 
e. It can

be chosen to be along the z direction. Then all the quasiaverages will be the definite

numbers. This is the kind that one usually deals with in the theory of ferromagnetism.

The value of the quasi-average (9) may depend on the concrete structure of the addi-

tional term ΔH = Hν−H, if the dynamical quantity to be averaged is not invariant with

respect to the symmetry group of the original Hamiltonian H. For a degenerate state

the limit of ordinary averages (10) as the inclusion parameters ν of the sources tend to

zero in an arbitrary fashion, may not exist. For a complete definition of quasiaverages it

is necessary to indicate the manner in which these parameters tend to zero in order to

ensure convergence [16]. On the other hand, in order to remove degeneracy it suffices, in

the construction of H, to violate only those additive conservation laws whose switching

lead to instability of the ordinary average. Thus in terms of quasiaverages the selection

rules for the correlation functions [16] that are not relevant are those that are restricted

by these conservation laws.

By using Hν , we define the state ω(A) = 〈A〉ν and then let ν tend to zero (after passing

to the thermodynamic limit). If all averages ω(A) get infinitely small increments under

infinitely small perturbations ν, this means that the state of statistical equilibrium under

consideration is nondegenerate [16]. However, if some states have finite increments as

ν → 0, then the state is degenerate. In this case, instead of ordinary averages 〈A〉H , one
should introduce the quasiaverages (9), for which the usual selection rules do not hold.
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The method of quasiaverages is directly related to the principle weakening of the cor-

relation [16] in many-particle systems. According to this principle, the notion of the

weakening of the correlation, known in statistical mechanics [16], in the case of state

degeneracy must be interpreted in the sense of the quasiaverages.

The quasiaverages may be obtained from the ordinary averages by using the cluster

property which was formulated by Bogoliubov [14]. This was first done when deriving

the Boltzmann equations from the chain of equations for distribution functions, and in

the investigation of the model Hamiltonian in the theory of superconductivity [16]. To

demonstrate this let us consider averages (quasiaverages) of the form

F (t1, x1, . . . tn, xn) = 〈. . .Ψ†(t1, x1) . . .Ψ(tj, xj) . . .〉, (11)

where the number of creation operators Ψ† may be not equal to the number of annihilation

operators Ψ. We fix times and split the arguments (t1, x1, . . . tn, xn) into several clusters

(. . . , tα, xα, . . .), . . . , (. . . , tβ, xβ, . . .). Then it is reasonably to assume that the distances

between all clusters |xα − xβ| tend to infinity. Then, according to the cluster property,

the average value (11) tends to the product of averages of collections of operators with

the arguments (. . . , tα, xα, . . .), . . . , (. . . , tβ, xβ, . . .)

lim
|xα−xβ |→∞

F (t1, x1, . . . tn, xn) = F (. . . , tα, xα, . . .) . . . F (. . . , tβ, xβ, . . .). (12)

For equilibrium states with small densities and short-range potential, the validity of this

property can be proved [16]. For the general case, the validity of the cluster property has

not yet been proved. Bogoliubov formulated it not only for ordinary averages but also

for quasiaverages, i.e., for anomalous averages, too. It works for many important models,

including the models of superfluidity and superconductivity [17].

To illustrate this statement consider Bogoliubov’s theory of a Bose-system with separated

condensate, which is given by the Hamiltonian [16]

HΛ =

∫
Λ

Ψ†(x)(− Δ

2m
)Ψ(x)dx− μ

∫
Λ

Ψ†(x)Ψ(x)dx (13)

+
1

2

∫
Λ2

Ψ†(x1)Ψ†(x2)Φ(x1 − x2)Ψ(x2)Ψ(x1)dx1dx2.

This Hamiltonian can be written also in the following form

HΛ = H0 +H1 =

∫
Λ

Ψ†(q)(− Δ

2m
)Ψ(q)dq (14)

+
1

2

∫
Λ2

Ψ†(q)Ψ†(q′)Φ(q − q′)Ψ(q′)Ψ(q)dqdq′.

Here, Ψ(q), and Ψ†(q) are the operators of annihilation and creation of bosons. They

satisfy the canonical commutation relations

[Ψ(q),Ψ†(q′)] = δ(q − q′); [Ψ(q),Ψ(q′)] = [Ψ†(q),Ψ†(q′)] = 0. (15)
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The system of bosons is contained in the cube A with the edge L and volume V . It

was assumed that it satisfies periodic boundary conditions and the potential Φ(q) is

spherically symmetric and proportional to the small parameter. It was also assumed

that, at temperature zero, a certain macroscopic number of particles having a nonzero

density is situated in the state with momentum zero.

The operators Ψ(q), and Ψ†(q) are represented in the form

Ψ(q) = a0/
√
V ; Ψ†(q) = a†0/

√
V , (16)

where a0 and a†0 are the operators of annihilation and creation of particles with momen-

tum zero. To explain the phenomenon of superfluidity, one should calculate the spectrum

of the Hamiltonian, which is quite a difficult problem. Bogoliubov suggested the idea of

approximate calculation of the spectrum of the ground state and its elementary excita-

tions based on the physical nature of superfluidity. His idea consists of a few assumptions.

The main assumption is that at temperature zero the macroscopic number of particles

(with nonzero density) has the momentum zero. Therefore, in the thermodynamic limit,

the operators a0/
√
V and a†0/

√
V commute

lim
V→∞

[
a0/
√
V , a†0/

√
V
]
=

1

V
→ 0 (17)

and are c-numbers. Hence, the operator of the number of particles N0 = a†0a0 is a c-

number, too. The concept of quasiaverages was introduced by Bogoliubov on the basis of

an analysis of many-particle systems with a degenerate statistical equilibrium state. Such

states are inherent to various physical many-particle systems. Those are liquid helium in

the superfluid phase, metals in the superconducting state, magnets in the ferromagneti-

cally ordered state, liquid crystal states, the states of superfluid nuclear matter, etc.

From the other hand, it is clear that only a thorough experimental and theoretical inves-

tigation of quasiparticle many-body dynamics of the many-particle systems can provide

the answer on the relevant microscopic picture [20]. As is well known, Bogoliubov was

first to emphasize the importance of the time scales in the many-particle systems thus

anticipating the concept of emergence of macroscopic irreversible behavior starting from

the reversible dynamic equations.

More recently it has been possible to go step further. This step leads to a deeper under-

standing of the relations between microscopic dynamics and macroscopic behavior on the

basis of emergence concept [21, 22, 23]. There has been renewed interest in emergence

within discussions of the behavior of complex systems and debates over the reconcilability

of mental causation, intentionality, or consciousness with physicalism. This concept is

also at the heart of the numerous discussions on the interrelation of the reductionism and

functionalism.

A vast amount of current researches focuses on the search for the organizing principles re-

sponsible for emergent behavior in matter [23, 24], with particular attention to correlated

matter, the study of materials in which unexpectedly new classes of behavior emerge in

response to the strong and competing interactions among their elementary constituents.
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As it was formulated by D.Pines [24], ”we call emergent behavior . . . the phenomena that

owe their existence to interactions between many subunits, but whose existence cannot

be deduced from a detailed knowledge of those subunits alone”.

Emergence - macro-level effect from micro-level causes - is an important and profound in-

terdisciplinary notion of modern science. There has been renewed interest in emergence

within discussions of the behavior of complex systems. In the search for a ”theory of

everything,” scientists scrutinize ever-smaller components of the universe. String theory

postulates units so minuscule that researchers would not have the technology to detect

them for decades. R.B. Laughlin [21, 22], argued that smaller is not necessarily better.

He proposes turning our attention instead to emerging properties of large agglomerations

of matter. For instance, chaos theory has been all the rage of late with its speculations

about the ”butterfly effect,” but understanding how individual streams of air combine

to form a turbulent flow is almost impossible. It may be easier and more efficient, says

Laughlin, to study the turbulent flow. Laws and theories follow from collective behavior,

not the other way around, and if one will try to analyze things too closely, he may not

understand how they work on a macro level. In many cases, the whole exhibits prop-

erties that can not be explained by the behavior of its parts. As Laughlin points out,

mankind use computers and internal combustion engines every day, but scientists do not

totally understand why all of their parts work the way they do. It is well known that

there are many branches of physics and chemistry where phenomena occur which cannot

be described in the framework of interactions amongst a few particles. As a rule, these

phenomena arise essentially from the cooperative behavior of a large number of particles.

Such many-body problems are of great interest not only because of the nature of phe-

nomena themselves, but also because of the intrinsic difficulty in solving problems which

involve interactions of many particles in terms of known Anderson statement that ”more

is different”. It is often difficult to formulate a fully consistent and adequate microscopic

theory of complex cooperative phenomena. R. Laughlin and D. Pines invented an idea

of a quantum protectorate [21, 23], ”a stable state of matter, whose generic low-energy

properties are determined by a higher-organizing principle and nothing else” [23]. This

idea brings into physics the concept that emphasize the crucial role of low-energy and

high-energy scales for treating the propertied of the substance. It is known that a many-

particle system (e.g. electron gas) in the low-energy limit can be characterized by a small

set of collective (or hydrodynamic) variables and equations of motion corresponding to

these variables. Going beyond the framework of the low-energy region would require the

consideration of plasmon excitations, effects of electron shell reconstructing, etc. The

existence of two scales, low-energy and high-energy, in the description of physical phe-

nomena is used in physics, explicitly or implicitly.

According to R. Laughlin and D. Pines, ”The emergent physical phenomena regulated by

higher organizing principles have a property, namely their insensitivity to microscopics,

that is directly relevant to the broad question of what is knowable in the deepest sense

of the term. The low energy excitation spectrum of a conventional superconductor, for

example, is completely generic and is characterized by a handful of parameters that may
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be determined experimentally but cannot, in general, be computed from first principles.

An even more trivial example is the low-energy excitation spectrum of a conventional

crystalline insulator, which consists of transverse and longitudinal sound and nothing

else, regardless of details. It is rather obvious that one does not need to prove the exis-

tence of sound in a solid, for it follows from the existence of elastic moduli at long length

scales, which in turn follows from the spontaneous breaking of translational and rota-

tional symmetry characteristic of the crystalline state. Conversely, one therefore learns

little about the atomic structure of a crystalline solid by measuring its acoustics. The

crystalline state is the simplest known example of a quantum protectorate, a stable state

of matter whose generic low-energy properties are determined by a higher organizing prin-

ciple and nothing else . . . Other important quantum protectorates include superfluidity in

Bose liquids such as 4He and the newly discovered atomic condensates, superconductiv-

ity, band insulation, ferromagnetism, antiferromagnetism, and the quantum Hall states.

The low-energy excited quantum states of these systems are particles in exactly the same

sense that the electron in the vacuum of quantum electrodynamics is a particle . . . Yet

they are not elementary, and, as in the case of sound, simply do not exist outside the

context of the stable state of matter in which they live. These quantum protectorates,

with their associated emergent behavior, provide us with explicit demonstrations that the

underlying microscopic theory can easily have no measurable consequences whatsoever

at low energies. The nature of the underlying theory is unknowable until one raises the

energy scale sufficiently to escape protection”. The notion of quantum protectorate was

introduced to unify some generic features of complex physical systems on different energy

scales, and is a complimentary unifying idea resembling the symmetry breaking concept

in a certain sense.

The sources of quantum protection in high-Tc superconductivity and low-dimensional

systems were discussed as well. According to Anderson and Pines, the source of quantum

protection is likely to be a collective state of the quantum field, in which the individual

particles are sufficiently tightly coupled that elementary excitations no longer involve just

a few particles, but are collective excitations of the whole system. As a result, macro-

scopic behavior is mostly determined by overall conservation laws.

It is worth also noticing that the notion of quantum protectorate [21, 23] complements

the concepts of broken symmetry and quasiaverages by making emphasis on the hierar-

chy of the energy scales of many-particle systems. In an indirect way these aspects arose

already when considering the scale invariance and spontaneous symmetry breaking.

D.N. Zubarev showed [18] that the concepts of symmetry breaking perturbations and

quasiaverages play an important role in the theory of irreversible processes as well. The

method of the construction of the nonequilibrium statistical operator becomes especially

deep and transparent when it is applied in the framework of the quasiaverage concept.

For detailed discussion of the Bogoliubov’s ideas and methods in the fields of nonlinear

oscillations and nonequilibrium statistical mechanics see Refs. [1, 25, 26]. It was demon-

strated in Ref. [4] that the connection and interrelation of the conceptual advances of

the many-body physics discussed above show that those concepts, though different in
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details, have complementary character. Many problems in the field of statistical physics

of complex materials and systems (e.g. the chirality of molecules) and the foundations of

the microscopic theory of magnetism and superconductivity were discussed in relation to

these ideas.

To summarize, it was demonstrated that the Bogoliubov’s method of quasiaverages plays

a fundamental role in equilibrium and nonequilibrium statistical mechanics and quantum

field theory and is one of the pillars of modern physics. It will serve for the future de-

velopment of physics as invaluable tool. All the methods developed by N. N. Bogoliubov

are and will remain the important core of a theoretician’s toolbox, and of the ideological

basis behind this development. Additional material and discussion of these problems can

be found in recent publications [27, 28, 29, 30].
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