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1 Introduction

The study of the quasiparticle excitations in solids has been one of the most fascinating
subjects for many years [1]. The subject of the present paper is a microscopic many-body
theory of strongly correlated clectron models, A principal importance of this problem is
related with the dual character of electrons in a wide class of materials (transition metal
oxides, intermediate-valence solids, heavy fermions and high-Tc superconductors). The
behaviour of clectrons in these materials exhibit both localized and delocalized features [2].
Contrary to the wide-band clectron systems (like simple metals), where the fundamentals
are very well known and the clectrons can be represented in a way such that they weakly
interact with each other, in these substances the bands are narrow, the electrons interact
strongly and moreover their spectra are complicated.

The problem of the adequate description of the strongly correlated electron systems has
been studied intensively during the last decade, especialy in context of Heavy Fermions
and High-Tc superconductivity [2). The understanding of the true nature of the elec-
tronic states and their quasiparticle dynamics are one of the central topics of the current
experimental and theoretical cfforts in the field. The plenty of experimental and theo-
retical results show that this many-body quasiparticle dynamics is quite non-trivial. A
vast, amount of theoretical scarches for the suitable description of the strongly correlated
fermion systems deal with the simplified model Hamiltonians. These include as workable
patterns single-impurity Anderson model (SIAM) [3] and Hubbard model [4]. In spite
of certain drawbacks these models exhibit the key physical feature: the competition and
interplay between kinetic energy (itinerant) and potential energy (localized) effects. A
fully consistent theory of quasiparticle dynamics of both models is believed to be crucially
important [5], [6] for a deeper understanding of the true nature of the electronic states in
the above mentioned class of materials.

In spite of many theoretical efforts the complete solution of dynamical problem still lack-
ing for the "simple” Anderson/Hubbard model. One of the main rcasons for-this is that it
has been recognized relatively recently only (7] that the simplicity of the Anderson model
manifests itself not in the many-body dynamics (the right definition of the quasiparticles
via the poles of the Green’s functions) but rather at quite different level - in the dynamics
of the two-particle scattering, resulting in the elegant Bethe-ansatz solution, which gives
the static characteristica{stalic susceptibility, specific heat etc.). In this sense, as to the
true many-body dynamics, the complete analytical solution of this problem is still a quite
open subject. The present paper is primarily devoted to the analysis of the relevant many-
body dynamical solution of the SIAM and its correct functional structure. We wish to
determine which solution actually arise from both the self-consistent many-body approach
and intrinsic nature of the model itself. We believe strongly that before numerical calcu-
lations of the spectral intensity of the Green function at low energy and low temperature
it is quite important to have the consistent and close analytical representation for the one-
particle GF of SIAM and Hubbard model. To confirm this let us mention two examples
only: i) recent "exact” dynamical solution [8] of the Anderson model, which is in fact the
well-known lowest order approximative interpolation solution [9]; ii)”"nonperturbative”
self-energy corrections to the Hubbard model [10], where the self-energy (Eq.(15)) in the



second-order in U (c.f. [5]) has been used for the calculation of the corrections to "ITub-
bard I" solulion, which is essentially strong-U solution and, moreover, is incorrect even
in this limit. A proper many-body description of dynamic correlations is very actual also
for the investigation of the dynamics of many-impurity Anderson model, where standard
advanced many-body methods does nol work properly in usual formulation. Recently, a
lot of cfforts have been devoted for better understanding of the static and dynamical prop-
erties of the Anderson Model in the context of many impurity case(e.g. [6], [11]). This
field is quite important for description of magnetic properties of anomalous rare-carth
compounds {12] - [16]. Although the few-impurity Anderson model has not been studied
cxtensively, with the use of conformal field theories the corresponding Kondo problem has
been at this point clarified substantially [17).

The problem of an adequate and consistent description of dynamics of single-impurity
and many-impurity Anderson models(SIAM and TIAM) and other models of correlated
lattice electrons is still not solved analytically completely yet. It is well known [1], that
the proper theoretical description of the dynamical propertics of the Anderson model has
a direct relationship with experiment, namely with different types of photoelectronic stud-
ies of f and d clectrons in rarc-carths and actinide compounds [18], [19] and description of
transport properties. Core-level x-ray photoetnission and photoabsorption spectroscopies
are powerful Ltools in the study of electron states in solids. The Anderson model provides
a microscopic basis and also a point of view for discussing this phenomena [20]. There are
some points still remains open to discussion in this ficld [21], [22] and to settle this issue
we need a better understanding a first-principles microscopic description of the many-
body quasiparticle dynamics of the Anderson and related models. This problem has been
studied intcnsively during last decades [23] - [30]. The paper [30)] clearly show an impor-
tance of the calculation of the Green’s function and spectral densities in a self-consistent
way. A remarkable achievement was made recently in papers [31), [32] with numerical
renormalization group approach. Their results, though being only numerical, provide an
accurate description for the frequency and temperature dependence of the single-particle
spectral densities and transport time.

During the last decades a lot of theoretical papers have been publxshcd attacking the An-
derson tnodel by many refined many-body analytical methods [33] - [43]. Nevertheless,
the fully consistent dynamical analytical solution in the closed form for a single-particle
propagator of SIAM is still lacking. In this paper the problem of consistent analyti-
cal description of the many-body dynamics of SIAM will be discussed in the framework
of cquation-of-motion appproach for two-time thermodynamic Green’s Functions, Our
main motivation was the fact that an interesting approach to dynamics of the Anderson
model {36}, (37] (and Hubbard model [10]) was [ormulated recently using the modificd ver-
sion of Kadanoff-Baym method. Qur aim is to coinpare this approach with the equation-of
motion technique for two-time thermodynamic Green’s Functions, having in mind to find

the most suitable technique for subsequent descrption of a dynamlcs of few-impurity An-
derson model.



2 Model

The Hamiltonian of SIAM can be written in the form

= Z ket Cho + Z Eoa f3 foo +U/2 Z NgoTo-0 + Z Vilel, foo + fhero) (1)
o 4 ka

ka

where of and f& are respectively the creation operators for conduction and localized
clectrons; ¢k is the conduction clectron energy, Eo, is the localized electron energy level
and {/ is the intra-atomic Coulomb interaction at the impurity site. Vi represents the
s — f hybridisation.

Our goal is to propose the new combined many-body approach for description of the
many-body quasiparticle dynamics of SIAM at finite temperatures. The interplay and
competition of the kinetic energy (ck), potential energy (U) and hybridisation (V) affects
substantially the electronic spectrum. The renormalised electron energies are temperature
dependent and clectronic states have a finite life times. These effects are most suitable
accounted for the Green functions method (1], [2]. The way of derivation of the "exact”
solution {8] gives Lo us an opportunity to emphasize some important issucs about the
relevant dynamical solutions of the strongly correlated electron models (SIAM, TIAM,
Hubbard model, PAM etc.) and to formulate in a more sharp form the ideas of the method
of the Irreducible Green’s Functions (IGF) [3]. This IGF method allows one to describe
the quasiparticle spectra with damping of the strongly corrclated electron systems in
a very general and natural way and to construct the relevant dynamical solution in a
sclf-consistent way on the level of Dyson equation without decoupling the chain of the
equation of motion for the GFs.

3 Dynamical Properties

At this point it is worthwhile.to underline that despite that the fully consistent dynamical
solution of SIAM is still lacking, a few important contributions has been done previously
with the equations of motion for the GF's. To give a more instructive discussion let us
consider the single-particle GF of localized clectrons, which is defined as

Go(t) =<< foo(t), foo >>= =ib(t) < [foa(t), S }+ >=

+00
1/271'/ dw exp(—iwt)G, (w) (2)
The simplest approximative "interpolating” solution of SIAM has the form (9]:
1 U< no,y >
Ga = g =
)= T =5 T G Fa S = V) = Ber = 5(0))
l— < ng_g > < Mgy > (3)
w=—Eg ~ S(w)  w—Ep - S(w)-U
where Vi
k
S(w) = ; oG (4)



The values of n, should to be determined through the selfconsistency equation
1
g =< ngp >= —= / dEf(E)YImG, (¥, n,) (5)

where
JE) = ezp(BE) + 1]

This solution is valid at small V only and was analyzed in details in paper [24] in the
context of screening effects in the core-level spectra of mixed-valence compounds, where
it was shown that solution (3) is valid for V < 0.5 ¢V (with core-hole interaction). The
Yatomic-like” interpolating solution (3) reproduces correctly the two important limits:

- < ng-s > < Nogog >
Gy (w) = <
0( ) w--Eo,, w—Eog—'U’

1
Gol) = ST~ 5)’

for V=0
Jor U=0 (6)

The important point about formulas (6) is that any approximate solution of SIAM should
be consistent with it. Let us remind how to get solution (3). It follows from the system
of equation for small-V limit:

(w — Eos — S(w)) << foolfdhy >>u= 14U << fosno-olff >>0,  (7)
(w = Froo = U) << formo-ol e, >>uR< 0-0 >+ Y Vs << honoolfth, >>0r  (8)
k

(w - (k) << Ckuno—alf(:; >>u= Vi << fOunD—olf(:; >>u (9)

The equation { 8) is approximative; it include two more terms, which were threated in
the limit of small V in paper [34]. The solution (3) has been obtained in paper [8]
and presented as an “exact”. We shall see later on that, in fact, all results in [8] arc
approximative and are valid in the lowest order in V.

Another advanced many-body approach to analytical solution of SIAM was proposed in
paper [36]. A modified Kadanoff-Baym equation-of motion technique has been used in
{36} to get a solution, which have a number of truly remarkable properties. This solution
was first found analytically {36], then only recently verified numerically (37}, To find
more complex expansion, including both {/ and V, the "mean-fields” in paper [36] were
"introduced” as follows:

<< foo - oCh-alfdh, >>n< i k-0 ><< fool [ >>,
<< Jooof_gJo-a|fd-g >>%< &f_, fomo ><< Joolfdy >>,
<< Cho fooCpmolfh >R [ o0 ><< Cholfog >>,
<< CkoCh_y fo-ol Sy DO}, fo-o ><< Colfey >> (10)
In fact, the procedure of introduction of the mean field corrections in the paper [36] remind

(but not coincide) with that of the more systematic IGF method. The inelastic scattering
corrections (self- energy) and elastic ones (mean-ficld) are separated in the IGF method



in the most consistent and general way. The Neal’s definition (10) will be clearer if one
rewrite the "effective mean-field” part of the full Neal’s solution in the following form

1
Co = TS —Zow) *
Un., (1)
(w— Eps — S(w) — U)(w — Eop — S(w) — Z,(w))
Herc
Zo= s _US (1+Z _C), ijv,,(< s > = < Cofoes >)

(12)
Since the symmetry properties of < cj, fo, >, the connection of the GFs (11) and (3) can
now be made by noting that Z, = 0.

4 Generalised Mean Fields

We now proceed to the details. In the important paper [34] the calculation of the GF
(2) has been considered in the limit of infinitely strong Coulomb correlation U and small
hybridisation V., It was shown, with the using the decoupling procedure for the higher-
order GF's, that the obtained solution gives the correct result in the Kondo limit at low
temperatures and for some other limits. The functional structure of the Lacroix’s solution
generalize the solution (3). The paper [34] deal with the GF (2). The starting point is
the system of equations:

(w = Ego ~ S(w)) << foolfd >>=14U << foono-olfd, >> (13)
(w— Egy — U) << foono-olfth >>=< no-s > +Z Vi(<< crono-olfd, >> =
k
<< Cheo S o foalfih, >> + << &t oo fo-ol Sy >>)  (14)

Using the relatively simple decoupling procedure for higher-order equation of motion, the
qualitatively correct low-temperature spectral intensity has been calculated. The final
expression for the GF (2) for finite U has the form

1
w— B — 8@ 7 UGS () T
U <no_s > +UF (w) (15)
K(w)(w - Eo, - S(w) + US]_(W))
where Fy, S; and K are certain complicated expressions, which can be easyly derived.
We shall write down explicitly the infinite U approximate GF [34]:

<< foolfd >>=

1= <ng_p > -F,(w)
w— Eo, ~ S(w) — Z}(w)

<< foolf >>= (16)



The following notations have been used

< fD—vc‘E-ﬂ
=V § =% (17)

<ct 0 > < S ko
7=V S sy Y S )

9.k

The functional structure of the single-particle GF (16) is quite transparent, The expression
in numerator of (16) play a role of "dynamical mean-field”, which is proportional to
< f& ,¢k-s >. In the denominator instead of bare shift S(w) (4) we have an "effective
shift” §' = S(w) + Z}(w). The choice of the specific procedure of decoupling for the
higher-order equation of mution specify the selected "generalised mean fields” (GMFs)
and "effective shifts”, This is a central statement of the present considerations which we
shall illustrate below in details. .

5 Interpolating Solution

It will be quite revealing to discuss briefly the general concepts of constructing of inter-
polative dynamical solution of the strongly correlated electron models. The very problem
of the consistent interpolation solution of the many-body electron models was formulated
explicitly by Hubbard [44] in the context of Hubbard model and by Kim [45] in context of
SIAM. Hubbard clearly ponted out one particular feature of consistent theory, insisting
that it should gives exact resultsin the two opposite limits of very wide and very narrow
bands. It was argued by IHubbard [44], ” that this was a desirable feature of a theory
which was intended to interpolate between these limits”. The same remarks was made by
Kim [45) for STAM.

The functional structure of required interpolating solution can be clarified if one consider
the atomic (very narrow band) solution of the Hubbard model:

l-n_, N_g 1

at = =
G*(w) w—ly w—to—U w-—to— W) (19)
where -
. n_U
2w) = T (20)
w—lg
Let us consider the expansion in terms of U:
(W) & 1y U +ng (1 = nog)U* =+ O(V) (21)
—to
The well known "Hubbard 1” solution can be written as
1
Gy = . (22)

T W= k) - Dw) (G + to — e(k)



The partial "Hubbard 111" solution, which called "alloy analogy” approximation has the

form:
n_.U

1 — (U - Z(w))G(w)
Equation (23) is possible to get from (20) taking into account the following relationship:

! 1

x
w=—1g l-=-n_,

L(w) =

(23)

G(w) - E(w)G(w) (24)

The Coherent Potential Approximation (CPA) provide a basis for physical interpretation
of equation (23), which correspond to climination of the dynamics of —¢ electrons. In
analogy with (21) it is posible to expand:

n_,U
U - S@)G)

The solution (16) does not reproduce correctly the U-perturbation cxpansnon (c.f. [41])
for the self-energy of the GI* (2):

U + n_,UU ~ B)G%%w — T) + O(U) (25)

My(w) ~U < ng_g > +
2 JUENS(E)1 = J(E3)) + (1 = JUIE)(1 = [(E2))f(Es)
U /(11,,/(11,2/(11“ ! o E—Ftln 2
ImGo(E)ImG_o(E)ImG_,(Es) (26)

1t will be shown in separate publication elsewhere that it is possible to find certain way
to incorporate this U? perturbation theory expansion in the functional structure of the
interpolating dynamical solution of SIAM in a self-consistent way on the level of the
higher-order GFs. A heuristic semi-empirical approach for the constructing such a solution
for SIAM and periodic Anderson Model (PAM) has been praposed in paper {38] and for
Hubbard model in paper [46). The advanced many-body dynamical solution of papers
[36], [37], which correctly reproduces (6), does not incorporate (in one expression) (26),
too. The IGI approach [5], [41] with the using of minimal algebra of relevant operators
allows one to find an interpolating solution for weak and strong Coulomb interaction U
and to calculate explicitly the quasiparticle spectra and their damping for the both limits.
The U-perturbation expansion (26) is included in the IGF scheme in a sclf-consistent
way. That means that one can use the suitable iteratiun procedure for the system of
equations [41]:

1
oo 7
<< Joo /g )>_w_E0,—Un_a—S(w)—M6'0 @
te 4B \dEdE.
o 12 B et Ll N Y - f(E;) —
Mo~ U /-m TR B (B0 = J(E:) ~ f(Ea) +
JCE) S Ea)go-a{ E1)900{ £2)g0-0{ £3) {28)
Goo = —%lnl << foalfot >> (29)



If we take for the first iteration step in (28)
990 = 6(E — Egy — Un_,) {30)

we obtain

Eos + Un_o)(1 = f(Eps + Un_,))
w— DBy = Un_,

M) = U224

=U'N_o(1 - N, )Go(w)  (31)

where N_; = f(Egs + Un_,). This is well known "atomic” limit of the self-energy in the
sense of equation (25). The correct second-order contribution in the local approximation
for the ITubbard model has the form [46]

é - Gg <<L no_a|n9_, >>
4

(32)

n_g(l —n_,)

The same arguments should be valid for SIAM too.

6 Complex Expansion for a Propagator

We now proceed with analytical many-body consideration. One may attempt to consider
the suitable solution for the SIAM starting from the following cxact relation , which was
derived in paper [41]:

<< foolfoy >>=¢° + 4°Pg° (33)
¢+ 9% = (w— Epy — S(w))™" (34)
P=U<ng-e > ‘*‘U2 << foano_a|f(§,no_, >> (35)

The advantage of the equation (33) is that il is purely identity and does not include any
approximation. Ilaving emphasized the importance of the role of the equation (33) , let
us sce now what is the best possible fit for the higher-order GF in (35). We proceed by
considering the equation of motion for it:

(w — Eop — U) << fUanO—alf(-)tnO-a >>=< Ng_g. > +
Z Vi(<< ekong-el| fhno-0 >> +
k
<< g JoofoolfyT0-0 >> = << Chuo S, foo| [ 10000 >>) (36)

We can think of it as defining the new kinds of elastic and inelastic scattering processes
that contribute to the formation of the generalized mean fields and self-energy (damping)
corrections. The construction of the suitable mean fields can be quite non-trivial [5], [6]
and it is rather difficult to get it from an intuitive physical point of view. To describe these
contributions self-consistently let us consider, in analogy with paper [34], the equations
of motion for the higher-order GFs in the r.h.s. of (36).

(W — &) << CroNo=ol fin0-e >>=V << foono-s|fiyn0-0 >> +

S VI<< thofioCpmolfinomo >> = << kol fomo| fsmo-a >>) (37
P



(W =tk = Eoo 4 Eg_g) << Cheo S Joo|fhN0-0 >>= = < f§ jckoonos > —
V<< foano_,lf(-,tno_g >> +
Z V(<< oo fi-oCpo| S m0-0 >> — << Ck—aC,T..,anlfg;ﬂo-o >>) (38)
3

(Ld + € — EOU - EO—U - U) << Ct_afogfo_olfg;no_, SO == ck+-af00f(-)tf0—a >+
V << foono-o|fhno-o >> +
Z V(<< ct-acpﬂfo—a'fotno-a >> + << ¢}, forCp-o|fohno-e >>) (39)
]

Now let us see how to proceed forth to get the suitable functional structure of the relevant
solution. The intrinsic nature of the system of the equations of motion (37) - (39) suggest
to consider the following approximation:

(w—e) << ChoNomol| fhno-0 >>xV << Joono-o|fi,n0-0 >> (40)

(W = ek = Eog + Eog) << koo foo fool fgno-0 >>= — < f, Chuonos >
—V(<< foono-slfyno-0 >> — << cheo}_, foo| fin0-0 >>) (41)

(W ex — Eog ~ Eg_p = U) << ct_,fo:fo-dfo*,;"o-a >on—-< ct-afo,yf&fo—a >+
V(<< footo-s|fthno-0 >> + << c}_, fooCho | fi10-0 >>) (42)

It is transparent that the construction of the approximations (40)-(42) are related with
the small-V expansion and is not unique, but very natural. As a result we find the explicit
expression for the GF in (35)

< Ny—g > —F,‘(w)
w = Eyy = U = S1{w)

<< fosNo-olfdn0-0 >>n (43)

Here the following notations have been used

1 1
e FniBos wta-Ew—EL-0)

F; =) (VE+V'R)  (49)

Si(w) = Sw) + Y VI
k

k
< ct_, Joo o fo-s > < S yCh—aTtos >
F= (46)
w4 ek — Fog — Eo-o = U~ w — &~ Epy + Ep-s
<< CheoCi_g fool fn0-0 >> << ¢, fosthoolfEn0-0 >>
F= (47)

w_ek_EOa"'EO—a U+Ck—Eog—Eo_g—U

Now one can substitute the GF in (35) by the expression (43). This will give to us the
new approximative dynamical solution of SIAM where the complex expansion in both
U and V have been incorporated. The important observation is that this new solution
satisfies the both limits (6). For example, if we wish to get a lowest order approximation



up to U?, V2, it is very casy to notice that for V = 0:

<& kg >< 1020 >

<< foolt_yChes|fihn0-0 >>%

w - Eog -U
< ChooCf_, >< Ngoo >
<< Chmsl, fool [ M0 >>7 T ko 2 (48)
W= EOa -U

This results in the possibility to find explicitly all necessary quantities and, thus, to solve
the problem in a sclf-consistent way.

There are numerous other possibilities that lead to a more advanced and sophisticated
solutions. It will be shown in separate paper that the system of equations (40) - (42) lead
us to a possibility to incorporate the U-perturbation expansion (26) in our new solution
for the GF (35).

7 Irreducible Green Functions Approach

After developing somne of the basic facts about the correct functional structure of the rel-
cvant dynamical solution of the SIAM we are looking for, we shall give a more instructive
considerations. Thus we are led to search the most suitable choice for "generalised mean
fields” (GMF) and "effective shift” for SIAM. An advanced many-body method that had
led to the discovery of such GMF and interpolating solutions of the Anderson/Hubbard
model was proposed in papers [47], [5], [6), [41]. It turns out that the various solutions of
the Anderson/Hubbard model are in fact given by this IGF method for various different
choice of the relevant generalised ‘mean fields. The Neal’s approach remind (but not co-
incide with) that of the more systematic IGF method. In what follows, we shall pretend
to combine the above mentioned circle of ideas in a more consistent and unified scheme.
The cssense of the method of IGF is as follows. The introduction of the irreducible parts
of the GF's results in separation of all suitable renormalizations of the ”generalized mean
fields”(GMF). As a result, without having to make any truncation ‘of the hierarchy of
cquations for the GFs, one can write down a Dyson equation (in terms of retarded GFs)

G=G" 1+ GMFMG (49)

and obtain an exact analytical representation for the self-energy operator M in terms of
higher-order GFs

M= (GMF)y ' gt (50)

Approximate solutions are constructed as definite approximations for the self-encrgy, in
another words on the level of the higher-order GFs. It was demonstrated in papers (5], [41]
how to get relevant approximations for the self-energy by means of suitable approximation
for high-order GF. In the present work we will use an essentially new method. We shall
write an equation of motion for the higher-order GF and then, using an exact relation be-
tween initial and higher-order GFs, derive complex expansion in U and V for one-particle
propagator. It is necessary to emphasize that there is an intimate connection between ad-
equate introductions of mean ficlds and internal symmetries of the Hamiltonian. Though
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we do not want to go here into the mathematical subtletics of defining the correct mean
fields for different models, we shall mention only that GMF can exhibit a quite non-trivial
structure, especially for the strongly correlated case (5], (6]. To obtain this structure cor-
rectly, one must construct the full GI' from the complete algebra of relevant operators.
It was shown in [41), using the minimal algebra of relevant operators, that the construc-
tion of the GMFs for SIAM is quite non-trivial for the strongly correlated case and it is
rather difficult to get it from an intuitive physical point of view.

In this papers we want Lo continue this line of consideration dealing with a more extended
new algebra of operators from which the relevant matrix GF will be constructing, In the
same spirit it belongs to the most important intentions of this work to provide the basis
for futurc consideration of the sclf-consistent interpolation dynamical solutions of a few-
impurity Anderson model, which will be done in separate papers elsewhere,

We now return to the IGF method again and consider how generalise solution (3) with
IGT approach in a sclf-consistent way. Let us consider the following equation of motion

in the matrix formn
Y F(pk)Go(pw) = [+ V,D(p,w) , (51)
P P

where G is initial 4 x 4 matrix GF and D is the higher-order GF:

Gu G2 G Gu

_ | Gu Grn Gp Gu
Go = Gy Gn Gu Gu (52)
Gy G Gu Gy

llere the following notations have been used

G =<< epolef, >>; Gip =<< ewolf >4
Gis =<< colffn0-0 >>; Gy =<< cholch, M0-0 >>;
G =<< foolcf, >>; G =<< foolfd, >>;
Gy =<< fo,lf&',no_, >>; G =<< IOaICt,nO-a >>; (53)
G =<< foolio-slcl, >>; Ga2 =<< foono-olfd, >>;
Gz =<< fooho-ol|fhnu-0 >>; Gas =<< fosttu-olct,n0o0 >>;
Gy =<< Ck‘,?lo_glcta >>; G =<< Ckano—alfg; >2>;
Gz =<< ChoNomolfihN0-0 >>; Gag =<< Ckaﬂo-a|CI,Tlo-a >>;

We avoid to write down explicitly the relevant 16 GFs from which matrix GF D consist
of for the brevity. For our aims here it will be enough to proceed forth in the following
way.

The cquation (51) results from the first-time differentiation of the GF G and :, a starting
point for the IGF approach. Let us introduce the irreducible part for the higher-order GF
D, by definition, in the following way (c.f. [5], [41]):

Df =D5—Y 17Gog; (a.f) =(1,2,3,4) (54)
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and definc the GMF GI' according to
Z F(P, k)vawF(Paw) =1, (55)
p

then we will be able to write down explicitly the Dyson equation (49) and the exact
expression for the self-ecnergy M (50) in the matrix form:

00 O 0
=} 00 0 0 -1
M, (k,w) ="' YWY, 00 Mx My’ (56)
- 0 0 My My
Here matrix [ is given by
1 0 0 < Noug >
0 1 < Noeg > 0
0 <Noeg > < Nomo > 0
<Ngeg > 0 0 < Noeg >

and the the matrix elements of M have the form:
Mgz =<< A (D)| B (q) >>, Mg =<< A{ (p)) B} (k, g) >>

Mz =<< A (k,p)|BY (q) >>, Mag =< < A} (k,p)| B (k,q) >>

where

Al(P) = (c:—dfoﬂfo—d - cP-afg-—aan);
Az(k,p) = (ckdfg-acp—d - ckvc:-afo-u);
Bi(p) = (J& ¢} _ofo-o = S foaCp-a); . (67
Bz(k,l’) = (Cta‘::.gfo-a - ctqf(.)*‘-dcp"ﬂ);
Since self-energy M describes the processes of inelastic scattering of electrons (c-c,ffand
c-f types), its approximate representation would be defined by the nature of the physical
assumptions about this scattering.
To get an idea about the functional structure of our GMF solution (55) let us write down
the matrix element G}F:
< Nlgeg >
@~ EMF—U ~ SMF () ~ Y{w) T
< Moo > Z(w)

G%F =<< fw"a-alf;,ﬂo—a >>=

o EF-U- 80 - Y@ - B S@)
O e
206) = 5) ¥ e + 8 4 SO TR (0
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Here the coefficients L*', L*?, L?' and L®? arc the certain complicated averages (see defini-
tion (54)) from which the functional of the GMF is build. If we insert our GMF solution
(58) in (35) we shall get an essentially new dynamical solution of SIAM, which is con-
structed on the basis of the complex (combined) expansion of the propagator in both
U and V parameters and which reproduces the exact solutions of SIAM for V = 0 and
U = 0. It generalise (even on the mean-field level) the solutions of papers [34], [36)].

At this point it is worth to discuss some of the issues involved in deciding whether or
not the solution of paper [8] is "exact”. Let us consider the our first equation of motion
(51) , before introducing of the irreducible GFs (54). Let us put simply in this equation
the ]ngher order GF D = 0! To distinguish this simplest equation from the GMF one
(55) we write it in the following form

S F(p, k)G (p,w) =1 (61)
]
The corresponding matrix elements in which we are interesting in here reads
I- <nge > < Ngmg >
= + = o=0 o=~

Cor =<< foolloe >>= TGy Y o T R = S(@) 0 (62)

- + — <Moo >
GgS =<< foﬂnn—0|faa"’°-ﬂ >o>= w— Ena - S(U)) — U (63)
ng =<< foono-alfy >>= Ggs (64)

The conclusion is rather evident. The results of paper (8] follows from our matrix GF
(52) in the lowest order in V, even before introduction of GMF corrections, not speaking
about of the sclf-energy corrections. The two GFs G3; and G, are equal only in the
lowest order in V. It is quite clear, that the full our solution

G = [(GMF)™ ~ M| (65)

which includes the self-energy corrections (56), is much more richer.

In fact, it is very easy to rewrite the system of the equations of motion (2) - (4) of pa-
per [8] in the completely equivalent form, which coincide with equation (33). As was
mentioned above, identity (33) has been derived in paper [41]. Here we used this identity
in quite another way than in [41] to get the new complex expansion for the single-particle
propagator. The identity (33) permit also to reformulate the problem of the derivation of
the suitable interpolative solution of the SIAM, including the U-perturbation expansion,
on the rather different then the single-particle GF level, on the level of the higher-order
GFs as it will be shown in a separate publication.

It is worthwhile to underline that our 4 X 4 matrix GMF GF (52) gives only approximative
description of the suitable mean fields. If we shall consider more extended algebra, we
shall get the more correct structure of the relevant GMF. A more rigorous mathematical
derivation of this relevant algebra, showing its central importance for the self-consistent
‘dynamical solution ot SIAM, will be presented elsewhere.
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8 Discussion

In summary, we presented in this paper a consistent many-body approach to analytical
dynamical solution of SIAM at finite temperatures and for the broad interval of the values
of the model parameters, We used an exact result (33) to connect the single-particle GF
with the higher-order GF to obtain an complex combined e<pansion in terms of U and
V for the propagator, which is similar to that of paper [36] but differ in a more correct
identification and separation of clastic (mean fields) and inclastic (damping) contributions
to the self-energy. To summarize, we therefore reformulated the problem of searches for
appropriate many-body dynamical solution for SIAM in a way which provide us with
an effective and workable scheme for the constructing of advanced analytical approxima-
tive solutions for the single-particle GFs on the level of the higher-order GFs in a rather
systematic and a self-consistent way. This procedure has the advantage that it systemat-
ically use the principle of interpolating solution within equation-of-motion approach for
the GFs. The leading principle, which we have used here was to look more carefully for
the intrinsic functional structure of the required relevant solution and then to formulate
approximations for the higher-order GF's in accordance with this structure.

The main results of our [GF study are the exact Dyson equation (49} for the full 4x4
matrix GF (52) and the new derivation of the GMF GF (55). The approximative explicit
calculations of the inelastic self-energy corrections are quite straightforward but tedious
and too extended for the presentation it here. It will be done in the following paper
soon, Here we want to emphasize the essentially new point of view on the derivation of
the Generalized Mcan Ficlds for SIAM when we are interesting in the interpolating fi-
nite temperature solution for the single-particle propagator. Our final solution ((33) with
(58)) has the correct functional structure and differ essentially from our previous solution
of paper [41] where the different algebra of the relevant operators has been used.

Of course, there are important criteria to be met (mainly numerically) , such as the
question left open, whether the present approximation satisfies the Friedel sumrule (this
question left open by [36] and [34] too). A quantitative numecrical comparison of self-
consistent results (e.g. the width and shape of the Kondo resonance in the near-integer
regime of the SIAM) would be crucial too. In the present paper we has concentrated on
the problem of correct functional structure of the single-particle GF itself. The numerical
calculations will be done in separate publication elsewhere. Our main result reveal the
fundamental importance of the adequale definition of the Generalised Mcan Fields at
finite temperatures, which results in a more deep insight into the nature of quasiparticle
states of the correlated lattice fermions. We believe that our approach offer a new way for
the systematic constructions of the approximative dynarnical solutions of SIAM, TIAM,
PAM and other models of the strongly correlated clectron systems. The work in this
direction is in progress.
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Kysemcxnit AJL . E17-96-23
Kpasnuacriunas giniaMnka Mogenn Augepcona

B pabore niyuwinen AMHAMHUCCKHE CBOICTRA oMHONPHMECHOit Monein Annep-
coHa 1IPH  KOHEHHLIX TEMIICparypaX € TOYKHM 3pelHs QUeKBaTHOTO OlHCaHHud
KBABHUACTHYIBIX COCTOSIMI B PAMKAX TEOPHH MHOIHMX TeJi M METONa ypaBHenwii
Januxennst, Hajineno 11080e TOXACCTHO, CRA3LIBAIOLIEE OAHOYACTHUHYIO H MHOIO-
nacTHaityio dynkisin Fpitta. Ha ociose 3Tor0 TOXIECTBA YAAnoch passuTh 110cse-
IOBATESIBIBIT CAMOCOTIIACOBAHIBIT HOUXOML IS 110CTpOCHHS 0606WEHNLIX CpeitiX
nosteli (1IONpaBkH YHpyroro paccests) u BhIBOAA TOUHOFO NPEACTAWIEHMS wis
MaCccoBOIO  oneparopa (11011PasKi HEYNPYIOr0 paccesting) B pamkax ypam«emm
Haitcota, Dro H03BOMUIO HOAYHHTS HOBOE UPHEHHXENIOE BRIPAXCHSE VIS OO~
HACTHUHOTO HPONAFATOPA, BKIIOHAIOWEE OLIIOBPEMEHNO PAVIOXKEHHE 110 CTCICHAM
KyJIOHOBCKO Koppensiwtt U 1 napamerpa rubpiygisawns V. Tpenaraemprii noaxon
JIACT BOSMOKHOCTD CHCTEMATHUCCKOIO HHOCTPOCHHA WITCPHONALHOHNBIX AHHAMM-
HecKuX peternii Mojieneil ¢ CHAbHOI MEKTPOHHOI Koppensune.

PaGora seionnena 8 JlaGoparopui Teopetieckoii ik um. H.H.Boromo-
Gosa OUSTH. ’

CooObitestite OGLEIHCHHOTO NHCTHTYTA sucplibix Heccuopansii. yGna, 1996

Kuzemsky A.L. E17-96-23
Quasiparticle Many-Body Dynamics of the Anderson Model

The paper addresses the many-body quasiparticle dynamics of the Anderson
impurity model at finite temperatures in the framework of the equation-of-motion
method. We find a new exact identity relating the one-particle and many-particle
Green’s Functions. Using this identity we present a consistent and general scheme
for a construction of generalised mean fields (clastic scattering corrections) and
self-energy (inelastic scattering) in terms of Dyson equation. A new approach for
the complex expansion for the single-particle propagator in terms of Coulomb
repulsion ¥ and hybridisation V is proposed. Using the exact identity, the essentis!ly
new many-body dynamical solution of SIAM has been derived. This approach offer
a new way for the systematic construction of the approximative interpolating
dynamical solutions of the strongly correlated electron systems.

The investigation has been performed at the Bogoliubov Laboratory of
Theoretical Physics, JINR.
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