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1. – Introduction

The basic problems of field theory and statistical mechanics are much similar in
many aspects, especially, when we use the method of second quantization and Green
functions [1]. In both the cases, we are dealing with systems possessing a large number
of degrees of freedom (the energy spectrum is practically a continuous one) and with
averages of quantum-mechanical operators [2]. In quantum field theory, we mostly con-
sider averages over the ground state, while in statistical mechanics, we consider finite
temperatures (ensemble averages) as well as ground-state averages. Great advances have
been made during the last decades in statistical physics and condensed-matter theory
through the use of methods of quantum field theory [3-5]. It was widely recognized that
a successful approximation for determining excited states is based on the quasi-particle
concept and the Green function method. For example, the study of highly correlated
electron systems has attracted much attention recently [6-9], especially after discovery
of copper oxide superconductors, a new class of heavy fermions [7], and low-dimensional
compounds [3, 8]. Although much work for strongly correlated systems has been per-
formed during the last years, it is worthy to remind that the investigation of excitations
in many-body systems has been one of the most important and interesting subjects for
the last few decades.

The quantum field theoretical techniques have been widely applied to statistical treat-
ment of a large number of interacting particles. Many-body calculations are often done
for model many-particle systems by using a perturbation expansion. The basic proce-
dure in many-body theory [10] is to find a suitable unperturbed Hamiltonian and then
to take into account a small perturbation operator. This procedure that works well for
weakly interacting systems needs a special reformulation for many-body systems with
complex spectra and strong interaction. For many practically interesting cases (e.g., in
quantum chemistry problems), the standard schemes of perturbation expansion must be
reformulated greatly [11-15]. Moreover, many-body systems on a lattice have their own
specific features and in some important aspects differ greatly from continuous systems.

In this review that is largely pedagogical we are primarily dealing with the spectra of
elementary excitations to learn about quasi-particle many-body dynamics of interacting
systems on a lattice. Our analysis is based on the equation-of-motion approach, the
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derivation of the exact representation of the Dyson equation and construction of an
approximate scheme of calculations in a self-consistent way. In this review only some
topics in the field are discussed. The emphasis is on the methods rather than on a detailed
comparison with the experimental results. We attempt to prove that the approach we
suggest produces a more advanced physical picture of the problem of the quasi-particle
many-body dynamics.

The most characteristic feature of the recent advancement in the basic research on
electronic properties of solids is the development of variety of the new classes of materials
with unusual properties: high-Tc superconductors, heavy-fermion compounds, complex
oxides, diluted magnetic semiconductors, perovskite manganites, etc. Contrary to simple
metals, where the fundamentals are very well known and the electrons can be represented
so that they weakly interact with each other, in these materials, the electrons interact
strongly, and moreover their spectra are complicated, i.e. have many branches. This
gives rise to interesting phenomena [16] such as magnetism, metal-insulator transition in
oxides, heavy fermions, colossal negative magnetoresistance in manganites, etc., but the
understanding of what is going on is in many cases only partial.

The subject of the present paper is a microscopic many-body theory of strongly cor-
related electron models. A principle importance of these studies is concerned with a
fundamental problem of electronic solid-state theory, namely with the tendency of 3d(4d)
electrons in transition metal compounds and 4f(5f) electrons in rare-earth metal com-
pounds and alloys to exhibit both the localized and delocalized (itinerant) behaviour.
Interesting electronic and magnetic properties of these substances are intimately related
to this dual behaviour of electrons [17-19].

The problem of adequate description of strongly correlated electron systems has been
studied intensively during the last decade [20, 21], especially in context of the physics
of magnetism, heavy fermions and high-Tc superconductivity [7]. The understanding
of the true nature of electronic states and their quasi-particle dynamics is one of the
central topics of the current experimental and theoretical studies in the field. A plenty of
experimental and theoretical results show that this many-body quasi-particle dynamics
is quite nontrivial. A vast amount of theoretical searches for a suitable description of
strongly correlated fermion systems deal with simplified model Hamiltonians. These
include, as workable patterns, the single-impurity Anderson model (SIAM) and Hubbard
model. In spite of certain drawbacks, these models exhibit the key physical feature:
the competition and interplay between kinetic energy (itinerant) and potential energy
(localized) effects. A fully consistent theory of quasi-particle dynamics of both the models
is believed to be crucially important for a deeper understanding of the true nature of
electronic states in the above-mentioned class of materials. In spite of experimental
and theoretical achievements, it remains still much to be understood concerning such
systems [18,22].

Recent theoretical investigations of strongly correlated systems have brought forth a
significant variety of the approaches to solve these controversial problems. There is an
important aspect of the problem under consideration, namely, how to take adequately
into account the lattice (quasi-localized) character of charge carriers, contrary to simpli-
fied theories of the type of a weakly interacting electron gas. To match such a trend, we
need to develop a systematic theory of correlated systems, to describe, from the first prin-
ciples of the condensed-matter theory and statistical mechanics, the physical properties
of this class of materials.

In previous papers, we set up the practical technique of the method of the irreducible
Green functions (IGF) [23-33]. This IGF method allows one to describe quasi-particle
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spectra with damping for systems with complex spectra and strong correlation in a very
general and natural way. This scheme differs from the traditional methods of decoupling
or terminating an infinite chain of the equations and permits one to construct the relevant
dynamic solutions in a self-consistent way on the level of the Dyson equation without
decoupling the chain of the equations of motion for the double-time temperature Green
functions. The essence of our consideration of dynamic properties of many-body system
with strong interaction is related closely with the field theoretical approach, and we use
the advantage of the Green-function language and the Dyson equation. It is possible to
say that our method emphasizes the fundamental and central role of the Dyson equa-
tion for the single-particle dynamics of many-body systems at finite temperature. This
approach has been suggested as essential for various many-body systems, and we believe
that it bears the real physics of interacting many-particle interacting systems [24,25].

It is the purpose of the present paper to introduce the concepts of irreducible Green
functions (or irreducible operators) and Generalized Mean Fields (GMF) in a simple and
coherent fashion to assess the validity of quasi-particle description and mean-field theory.
The irreducible Green-function method is a reformulation of the equation-of-motion ap-
proach for the double-time thermal GFs, aimed of operating with the correct functional
structure of the required solutions. In this sense, it has all advantages and shortcomings
of the Green-function method in comparison, say, with the functional integration tech-
nique, that, in turn, has also its own advantages and shortcomings. The usefulness of one
or another method depends on the problem we are trying to solve. For the calculation
of quasi-particle spectra, the Green-function method is the best. The irreducible-Green-
function method adds to this statement: “for the calculation of the quasi-particle spectra
with damping” and gives a workable recipe how to do this in a self-consistent way.

The distinction between elastic- and inelastic-scattering effects is a fundamental one in
the physics of many-body systems, and it is also reflected in a number of other ways than
in the mean-field and finite lifetimes. The present review attempts to offer a balanced
view of quasi-particle interaction effects in terms of division into elastic- and inelastic-
scattering characteristics. For this aim, in the present paper, we discuss the background
of the IGF approach more thoroughly. To demonstrate the general analysis, we consider
here the calculation of quasi-particle spectra and their damping within various types of
correlated electron models to extend the applicability of the general formalism and show
flexibility and practical usage of the IGF method.

2. – Varieties of Green functions

It is appropriate to remind the ideas underlying the Green-function method, and to
discuss briefly why they are particularly useful in the study of interacting many-particle
systems.

The Green functions of potential theory [34] were introduced to find the field which
is produced by a source distribution (e.g., the electromagnetic field which is produced
by current and charge distribution). The Green functions in field theory are the so-
called propagators which describe the temporal development of quantized fields, in its
particle aspect, as was shown by Schwinger in his seminal works [35-37]. The idea of
the Green function method is contained in the observation that it is not necessary to
attempt to calculate all the wave functions and energy levels of a system. Instead, it
is more instructive to study the way in which it responds to simple perturbations, for
example, by adding or removing particles, or by applying external fields.

There is a variety of Green functions [4] and there are Green functions for one particle,
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two particles..., n particles. A considerable progress in studying the spectra of elementary
excitations and thermodynamic properties of many-body systems has been for most part
due to the development of the temperature-dependent Green-functions methods.

2.1. Temperature Green functions. – The temperature-dependent Green functions
were introduced by Matsubara [38]. He considered a many-particle system with the
Hamiltonian

H = H0 + V(1)

and observed a remarkable similarity that exists between the evaluation of the grand
partition function of the system and the vacuum expectation of the so-called S-matrix
in quantum field theory

Z = Tr exp[(µN −H0)β]S(β); S(β) = 1 −
∫ β

0

V (τ)S(τ)dτ ,(2)

where β = (kT )−1. In essence, Matsubara observed and exploited, to great advan-
tage, formal similarities between the statistical operator exp[−βH] and the quantum-
mechanical time-evolution operator exp[iHt]. As a result, he introduced thermal (tempera-
ture-dependent) Green functions which we call now the Matsubara Green functions.

We note that the thermodynamic perturbation theory has been invented by Peierls [39].
For the free energy of a weakly interacting system he derived the expansion up to second
order in perturbation:

F = F0 +
∑
n

Vnnρn +
∑
m,n

|Vnm|2ρn
E0
n − E0

m

− β

2

∑
n

V 2
nnρn +

β

2

(∑
n

Vnnρn

)2
,(3)

where ρn = exp[β(F0 − E0
n)] and exp[−βF0] =

∑
n exp[−βE0

n]. By using the expansion
of S(β) up to second order

S(β) = 1 −
∫ β

0

V (τ)dτ +
∫ β

0

dτ1
∫ τ1

0

dτ2V (τ1)V (τ2) + ...(4)

and rearranging the terms in the expression for Z, it can be shown that the Peierls result
for the thermodynamic potential Ω can be reproduced by the Matsubara technique (for
a canonical ensemble).

Though the use of Green functions is related traditionally with the perturbation
theory through the use of diagram techniques, in paper [35] a prophetic remark has been
made:

“... it is desirable to avoid founding the formal theory of the Green functions
on the restricted basis provided by the assumption of expandability in powers
of coupling constants”.

Since the most important aspect of the many-body theory is the necessity of taking prop-
erly into account the interaction between particles, that changes (sometimes drastically)
the behaviour of non-interacting particles, this remark of Schwinger is still extremely
actual and important.
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Since that time, a great deal of work has been done, and many different variants of
the Green functions have been proposed for studies of equilibrium and non-equilibrium
properties of many-particle systems. We can mention, in particular, the methods of
Martin and Schwinger [36] and of Kadanoff and Baym [40]. Martin and Schwinger
formulated the GF theory not in terms of conventional diagrammatic techniques, but in
terms of functional-derivative techniques that reduces the many-body problem directly
to the solution of a coupled set of nonlinear integral equations (see also [41]). The
approach of Kadanoff and Baym establishes general rules for obtaining approximations
which preserve the conservation laws (sometimes called conserving approximations [6]).
As many transport coefficients are related to conservation laws, one should take care of
it when calculating the two-particle and one-particle Green functions [41]. The random-
phase approximation, that is an essential point of the whole Kadanoff-Baym method, does
this and so preserves the appropriate conservation laws. It should be noted, however, that
the Martin-Schwinger and Kadanoff-Baym methods in their initial form were formulated
for treating the continuum models and should be adapted to study lattice models, as
well.

However, as was claimed by Matsubara in his subsequent paper [42], the most con-
venient way to describe the equilibrium average of any observable or time-dependent
response of a system to external disturbances is to express them in terms of a set of the
double-time, or Bogoliubov-Tyablikov, Green functions.

The aim of the present paper is to suggest and justify that an approach , the irreducible
Green functions (IGF) method [43, 24], that is in essence a suitable reformulation of an
equation-of-motion approach for the double-time temperature-dependent Green functions
provides an effective and self-consistent scheme for description the many-body quasi-
particle dynamics of strongly interacting many-particle systems with complex spectra.
This IGF method provides some systematization of approximations and removes (at
least partially) the difficulties usually encountered in the termination of the hierarchy of
equations of motion for the GF.

2.2. Double-time Green functions. – In this subsection, we briefly review the double-
time temperature-dependent Green functions.

The double-time temperature-dependent Green functions were introduced by Bogoli-
ubov and Tyablikov [44] and reviewed by Zubarev [45] and Tyablikov [46].

Consider a many-particle system with the time-independent Hamiltonian H = H −
µN ; µ is the chemical potential, N is the operator of the total number of particles, and
we have chosen our units so that h̄ = 1. Let A(t) and B(t′) be some operators. The time
development of these operators in the Heisenberg representation is given by

A(t) = exp[iHt]A(0) exp[−iHt] .(5)

We define three types of Green functions, the retarded, advanced, and causal Green
functions:

Gr = 〈〈A(t), B(t′)〉〉r = −iθ(t− t′)〈[A(t)B(t′)]η〉, η = ±1.(6)
Ga = 〈〈A(t), B(t′)〉〉a = iθ(t′ − t)〈[A(t)B(t′)]η〉, η = ±1.(7)
Gc = 〈〈A(t), B(t′)〉〉c = iT 〈A(t)B(t′)〉 =(8)

= iθ(t− t′)〈A(t)B(t′)〉 + ηiθ(t′ − t)〈B(t′)A(t)〉, η = ±1 ,
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where 〈...〉 is the average over a grand-canonical ensemble, θ(t) is a step function, and
square brackets represent the commutator or anticommutator

[A,B]η = AB − ηBA .(9)

Differentiating a Green function with respect to one of the arguments, for example, the
first argument, we can obtain the equation (equation-of-motion) describing the develop-
ment of this function with time

id/dtGα(t, t′) = δ(t− t′)〈[A,B]η〉 + 〈〈[A,H](t), B(t′)〉〉α; α = r, a, c .(10)

Since this differential equation contains an inhomogeneous term with δ-type factors, we
are dealing formally with the equation similar to the usual one for the Green function [34]
and for this reason, we use the term the Green function. We note that the equation of
motion is of the same functional form for all the three types of Green functions (i.e.
retarded, advanced, and causal). However, the boundary conditions for t are different
for the retarded, advanced, and causal functions [44].

The next differentiation gives an infinite chain of coupled equations of motion

(i)ndn/dtnG(t, t′) =(11)
n∑
k=1

(i)n−kdn−k/dtn−kδ(t− t′)〈[[...[A,H]...H]︸ ︷︷ ︸
k−1

, B]η〉 +

+〈〈[[...[A,H]...H]︸ ︷︷ ︸
n

(t), B(t′)〉〉 .

To solve the differential equation-of-motion, we should consider the Fourier time trans-
forms of the Green functions:

GAB(t− t′) = (2π)−1

∫ ∞

∞
dωGAB(ω) exp[−iω(t− t′)] ,(12)

GAB(ω) = 〈〈A|B〉〉ω =
∫ ∞

∞
dtGAB(t) exp[iωt] .(13)

By inserting (12) into (10) and (11), we obtain

ωGAB(ω) = 〈[A,B]η〉 + 〈〈[A,H]|B〉〉ω;(14)

ωnGAB(ω) =
n∑
k=1

ωn−k〈[[...[A,H]...H]︸ ︷︷ ︸
k−1

, B]η〉 +(15)

+〈〈[[...[A,H]...H︸ ︷︷ ︸
n

]|B〉〉ω .

It is often convenient to differentiate of the Green function with respect to the second
time t′. In terms of Fourier time transforms, the corresponding equations of motion read

−ωGAB(ω) = −〈[A,B]η〉 + 〈〈A|[B,H]〉〉ω;(16)
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(−1)nωnGAB(ω) = −
n∑
k=1

(−1)n−kωn−k〈[A, [...[B,H]...H]︸ ︷︷ ︸
k−1

]η〉 +(17)

+〈〈A|[...[B,H]...H︸ ︷︷ ︸
n

]〉〉ω .

It is rather difficult problem to solve the infinite chain of coupled equations of mo-
tion (15) and (17). It is well established now that the usefulness of the retarded and ad-
vanced Green functions is deeply related with the dispersion relations [44], that provide
the boundary conditions in the form of spectral representations of the Green functions.

2.3. Spectral representations. – The GFs are linear combinations of the time correla-
tion functions:

FAB(t− t′) = 〈A(t)B(t′)〉 =
1
2π

∫ +∞

−∞
dω exp[iω(t− t′)]AAB(ω) ,(18)

FBA(t′ − t) = 〈B(t′)A(t)〉 =
1
2π

∫ +∞

−∞
dω exp[iω(t′ − t)]ABA(ω) .(19)

Here, the Fourier transforms AAB(ω) and ABA(ω) are of the form

ABA(ω) = Q−12π
∑
m,n

exp[−βEn](ψ†
nBψm)(ψ†

mAψn)δ(En − Em − ω) ,(20)

AAB = exp[−βω]ABA(−ω) .(21)

The expressions (20) and (21) are spectral representations of the corresponding time
correlation functions. The quantities AAB and ABA are spectral densities or spectral
weight functions.

It is convenient to define

FBA(0) = 〈B(t)A(t)〉 =
1
2π

∫ +∞

−∞
dωA(ω) ,(22)

FAB(0) = 〈A(t)B(t)〉 =
1
2π

∫ +∞

−∞
dω exp[βω]A(ω) .(23)

Then, the spectral representations of the Green functions can be expressed in the form

Gr(ω) = 〈〈A|B〉〉rω =
1
2π

∫ +∞

−∞

dω′

ω − ω′ + iε
[exp(βω′) − η]A(ω′) ,(24)

Ga(ω) = 〈〈A|B〉〉aω =
1
2π

∫ +∞

−∞

dω′

ω − ω′ − iε
[exp(βω′) − η]A(ω′) .(25)

The most important practical consequence of spectral representations for the retarded
and advanced GFs is the so-called spectral theorem. The spectral theorem can be written
as

〈B(t′)A(t)〉 = − 1
π

∫ +∞

−∞
dω exp[iω(t− t′)][exp[βω] − η]−1ImGAB(ω + iε) ,(26)
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〈A(t)B(t′)〉 = −1
π

∫ +∞

−∞
dω exp[βω] exp[iω(t−t′)][exp[βω]−η]−1ImGAB(ω+iε) .(27)

Expressions (26) and (27) are of fundamental importance. They directly relate the
statistical averages with the Fourier transforms of the corresponding GFs. The problem
of evaluating the latter is thus reduced to finding their Fourier transforms, providing the
practical usefulness of the Green functions technique [45,46].

3. – Irreducible Green functions method

In this section, we discuss the main ideas of the IGF approach which allows one to
describe completely quasi-particle spectra with damping in a very natural way.

We reformulated the two-time GF method [43, 24] to the form, which is especially
adjusted [23, 43] for correlated fermion systems on a lattice and systems with complex
spectra [26, 27]. A similar method was proposed in paper [47] for Bose systems (an-
harmonic phonons and spin dynamics of Heisenberg ferromagnet). The very important
concept of the whole method is the Generalized Mean Field (GMF), as it was formu-
lated in ref. [24]. These GMFs have a complicated structure for the strongly correlated
case and complex spectra and are not reduced to the functional of mean densities of the
electrons or spins when one calculates excitation spectra at finite temperatures.

3.1. Outline of IGF method . – To clarify the foregoing, let us consider a retarded GF
of the form [46]

Gr = 〈〈A(t), A†(t′)〉〉 = −iθ(t− t′)〈[A(t)A†(t′)]η〉, η = ±1 .(28)

As an introduction to the concept of IGFs, let us describe the main ideas of this approach
in a symbolic and simplified form. To calculate the retarded GF G(t − t′), let us write
down the equation of motion for it:

ωG(ω) = 〈[A,A†]η〉 + 〈〈[A,H]− | A†〉〉ω .(29)

The essence of the method is as follows [24]: It is based on the notion of the “IRRE-
DUCIBLE” parts of GFs (or the irreducible parts of the operators, A and A†, out of
which the GF is constructed) in terms of which it is possible, without recourse to a
truncation of the hierarchy of equations for the GFs, to write down the exact Dyson
equation and to obtain an exact analytic representation for the self-energy operator. By
definition, we introduce the irreducible part (ir) of the GF

(ir)〈〈[A,H]−|A†〉〉 = 〈〈[A,H]− − zA|A†〉〉 .(30)

The unknown constant z is defined by the condition (or constraint)

〈[[A,H](ir)− , A†]η〉 = 0 ,(31)

which is an analogue of the orthogonality condition in the Mori formalism (see ref. [48]).
From the condition (31) one can find

z =
〈[[A,H]−, A†]η〉

〈[A,A†]η〉 =
M1

M0
.(32)
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Here M0 and M1 are the zeroth- and first-order moments of the spectral density. There-
fore, the irreducible GFs are defined so that they cannot be reduced to the lower-order
ones by any kind of decoupling. It is worth noting that the term “irreducible” in a group
theory means a representation of a symmetry operation that cannot be expressed in terms
of lower dimensional representations. Irreducible (or connected) correlation functions are
known in statistical mechanics (cf. [41]). In the diagrammatic approach, the irreducible
vertices are defined as graphs that do not contain inner parts connected by the G0-line.
With the aid of the definition (30) these concepts are translated into the language of
retarded and advanced GFs. This procedure extracts all relevant (for the problem under
consideration) mean-field contributions and puts them into the generalized mean-field
GF which is defined here as

G0(ω) =
〈[A,A†]η〉
(ω − z)

.(33)

To calculate the IGF (ir)〈〈[A,H]−(t), A†(t′)〉〉 in (29), we have to write the equation of
motion for it after differentiation with respect to the second time variable t′. It should be
noted that the trick of two-time differentiation with respect to the first time t and second
time t′ (in one equation of motion) was introduced for the first time by Tserkovnikov [49].

The condition of orthogonality (31) removes the inhomogeneous term from this equa-
tion and is a very crucial point of the whole approach. If one introduces the irreducible
part for the right-hand side operator as discussed above for the “left” operator, the
equation of motion (29) can be exactly rewritten in the following form:

G = G0 +G0PG0 .(34)

The scattering operator P is given by

P = (M0)−1( (ir)〈〈[A,H]−|[A†,H]−〉〉(ir))(M0)−1 .(35)

The structure of eq. (34) enables us to determine the self-energy operator M , by analogy
with the diagram technique

P = M +MG0P .(36)

From the definition (36) it follows that the self-energy operator M is defined as a proper
(in the diagrammatic language, “connected”) part of the scattering operator M = (P )p.
As a result, we obtain the exact Dyson equation for the thermodynamic double-time
Green functions:

G = G0 +G0MG.(37)

The difference between P and M can be regarded as two different solutions of two integral
equations (34) and (37). But from the Dyson equation (37) only the full GF is seen to
be expressed as a formal solution of the form

G = [(G0)−1 −M ]−1 .(38)

Equation (38) can be regarded as an alternative form of the Dyson equation (37) and
the definition of M provided that the generalized mean-field GF G0 is specified. On the
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contrary, for the scattering operator P , instead of property G0G−1 +G0M = 1, one has
the property

(G0)−1 −G−1 = PG0G−1 .

Thus, the very functional form of the formal solution (38) determines the difference
between P and M precisely.

Thus, by introducing irreducible parts of GF (or irreducible parts of the operators,
out of which the GF is constructed) the equation of motion (29) for the GF can exactly
be (but using orthogonality constraint (31)) transformed into the Dyson equation for the
double-time thermal GF (37). This result is very remarkable, because the traditional
form of the GF method does not include this point. Notice that all quantities thus
considered are exact. Approximations can be generated not by truncating the set of
coupled equations of motions but by a specific approximation of the functional form of
the mass operator M within a self-consistent scheme, expressing M in terms of initial
GF

M ≈ F [G] .

Different approximations are relevant to different physical situations.
The projection operator technique [50] has essentially the same philosophy, but with

using the constraint (31) in our approach we emphasize the fundamental and central
role of the Dyson equation for the calculation of single-particle properties of many-body
systems. The problem of reducing the whole hierarchy of equations involving higher-order
GFs by a coupled nonlinear set of integro-differential equations connecting the single-
particle GF to the self-energy operator is rather nontrivial (cf. [41]). A characteristic
feature of these equations is that, besides the single-particle GF, they involve also higher-
order GF. The irreducible counterparts of the GFs, vertex functions, etc., serve to identify
correctly the self-energy as

M = G−1
0 −G−1 .

The integral form of Dyson equation (37) gives M the physical meaning of a nonlocal
and energy-dependent effective single-particle potential. This meaning can be verified
for the exact self-energy through the diagrammatic expansion for the causal GF.

It is important to note that for the retarded and advanced GFs, the notion of the
proper part M = (P )p is symbolic in nature [24]. In a certain sense, it is possible to
say that it is defined here by analogy with the irreducible many-particle T -matrix [41].
Furthermore, by analogy with the diagrammatic technique, we can also introduce the
proper part defined as a solution to the integral equation (36). These analogues allow
us to understand better the formal structure of the Dyson equation for the double-time
thermal GF but only in a symbolic form . However, because of the identical form of the
equations for GFs for all three types (advanced, retarded, and causal), we can convert in
each stage of calculations to causal GF and, thereby, confirm the substantiated nature
of definition (36)! We therefore should speak of an analogy of the Dyson equation.
Hereafter, we drop this stipulating, since it does not cause any misunderstanding. In a
sense, the IGF method is a variant of the Gram-Schmidt orthogonalization procedure
(see Appendix A).
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It should be emphasized that the scheme presented above gives just a general idea of
the IGF method. A more exact explanation why one should not introduce the approxi-
mation already in P , instead of having to work out M , is given below when working out
the application of the method to specific problems.

The general philosophy of the IGF method is in the separation and identification
of elastic-scattering effects and inelastic ones. This latter point is quite often underesti-
mated, and both effects are mixed. However, as far as the right definition of quasi-particle
damping is concerned, the separation of elastic- and inelastic-scattering processes is be-
lieved to be crucially important for many-body systems with complicated spectra and
strong interaction.

From a technical point of view, the elastic GMF renormalizations can exhibit quite
a nontrivial structure. To obtain this structure correctly, one should construct the full
GF from the complete algebra of relevant operators and develop a special projection
procedure for higher-order GFs in accordance with a given algebra. Then the natural
question arises how to select the relevant set of operators {A1, A2, ...An}, describing
the “relevant degrees of freedom”. The above consideration suggests an intuitive and
heuristic way to the suitable procedure as arising from an infinite chain of equations of
motion (14). Let us consider the column



A1

A2
...
An


 ,

where

A1 = A, A2 = [A,H], A3 = [[A,H],H], . . . An = [[...[A,H]...H︸ ︷︷ ︸
n

] .

Then the most general possible Green function can be expressed as a matrix

Ĝ =

〈〈

A1

A2
...
An


 | (A†

1 A†
2 . . . A†

n

)〉〉
.

This generalized Green function describes the one-, two- and n-particle dynamics. The
equation of motion for it includes, as a particular case, the Dyson equation for single-
particle Green function, the Bethe-Salpeter equation, which is the equation of motion
for the two-particle Green function and which is an analogue of the Dyson equation, etc.
The corresponding reduced equations should be extracted from the equation of motion
for the generalized GF with the aid of the special techniques such as the projection
method and similar techniques. This must be a final goal towards a real understanding
of the true many-body dynamics. At this point, it is worthwhile to underline that
the above discussion is a heuristic scheme only but not a straightforward recipe. The
specific method of introducing the IGFs depends on the form of operators An, the type
of the Hamiltonian, and conditions of the problem. The irreducible parts in higher-order
equations and connection with Mori formalism was considered by Tserkovnikov [51].
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The incorporation of irreducible parts in higher-order equations and connection with the
moment expansion was studied in ref. [25] (see Appendix B).

Here a sketchy form of the IGF method is presented. The aim to introduce the gen-
eral scheme and to lay the groundwork for generalizations and specific applications is ex-
pounded in the next sections. We demonstrate below that the IGF method is a powerful
tool for describing the quasi-particle excitation spectra, allowing a deeper understand-
ing of elastic and inelastic quasi-particle scattering effects and corresponding aspects
of damping and finite lifetimes. In the present context, it provides a clear link between
the equation-of-motion approach and the diagrammatic methods due to derivation of the
Dyson equation (37). Moreover, due to the fact that it allows the approximate treatment
of the self-energy effects on a final stage, it yields a systematic way of the construction
of approximate solutions.

It is necessary to emphasize that there is an intimate connection between an adequate
introduction of mean fields and internal symmetries of the Hamiltonian. To test these
ideas further, in the following sections, we analyze the mean field and generalized mean-
field concepts for various many-body systems on a lattice.

4. – Many-particle interacting systems on a lattice

4.1. Spin systems on a lattice. – There exists a big variety of magnetic materials.
The group of magnetic insulators is of a special importance. For the group of systems
considered in this section, the physical picture can be represented by a model in which
the localized magnetic moments originating from ions with incomplete shells interact
through a short-range interaction. Individual spin moments form a regular lattice. The
first model of a lattice spin system was constructed to describe a linear chain of projected
electron spins with nearest-neighbor coupling. This was the famous Lenz-Izing model
which was thought to yield a more sophisticated description of ferromagnetism than the
Weiss uniform molecular field picture. However, in this model, only one spin component
is significant. As a result, the system has no collective dynamics. The quantum states
that are eigenstates of the relevant spin components are stationary states. The collective
dynamics of magnetic systems is of great importance since it is related to the study
of low-lying excitations and their interactions. This is the main aim of the present
consideration. Although the Izing model was an intuitively right step forward from
the uniform Weiss molecular-field picture, the physical meaning of the model coupling
constant remained completely unclear. The concept of the exchange coupling of spins of
two or more nonsinglet atoms appeared as a result of the Heitler-London consideration
of chemical bond. This theory and the Dirac analysis of the singlet-triplet splitting in
the helium spectrum stimulated Heisenberg to make a next essential step. Heisenberg
suggested that the exchange interaction could be the relevant mechanism responsible for
ferromagnetism.

4.1.1. Heisenberg ferromagnet. The Heisenberg model of a system of spins
on various lattices (which was actually written down explicitly by van Vleck) is termed
the Heisenberg ferromagnet and establishes the origin of the coupling constant as the
exchange energy. The Heisenberg ferromagnet in a magnetic field H is described by the
Hamiltonian

H = −
∑
ij

J(i− j)+Si+Sj − gµBH
∑
i

Szi .(39)
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The coupling coefficient J(i−j) is the measure of the exchange interaction between spins
at the lattice sites i and j and is defined usually to have the property J(i− j = 0) = 0.
This constraint means that only the inter-exchange interactions are taken into account.
However, in some complicated magnetic salts, it is necessary to consider an “effective”
intra-site (see [52]) interaction (Hund-rule–type terms). The coupling, in principle, can
be of a more general type (non-Heisenberg terms). These aspects of construction of a
more general Hamiltonian are very interesting, but we do not pause here to give the
details.

For crystal lattices in which every ion is at the centre of symmetry, the exchange
parameter has the property

J(i− j) = J(j − i).

We can rewrite then the Hamiltonian (39) as

H = −
∑
ij

J(i− j)(Szi S
z
j + S+

i S
−
j ) .(40)

Here S± = Sx ± iSy are the raising and lowering spin angular-momentum operators.
The complete set of spin commutation relations is

[S+
i , S

−
j ]− = 2Szi δij ; [S+

i , S
−
i ]+ = 2S(S + 1) − 2(Szi )

2;

[S∓
i , S

z
j ]− = ±S∓

i δij ; Szi = S(S + 1) − (Szi )
2 − S−

i S
+
i ;

(S+
i )2S+1 = 0, (S−

i )2S+1 = 0 .

We omit the term of interaction of the spin with an external magnetic field for the
brevity of notation. The statistical mechanical problem involving this Hamiltonian was
not exactly solved, but many approximate solutions were obtained.

To proceed further, it is important to note that for the isotropic Heisenberg model,
the total z-component of spin Sztot =

∑
i S
z
i is a constant of motion, i.e.

[H,Sztot] = 0.

There are cases when the total spin is not a constant of motion, as, for instance, for the
Heisenberg model with the dipole terms added.

Let us define the eigenstate |ψ0〉 so that S+
i |ψ0〉 = 0 for all lattice sites Ri. It is clear

that |ψ0〉 is a state in which all the spins are fully aligned and for which Szi |ψ0〉 = S|ψ0〉.
We also have

J�k =
∑
i

e(i
�k �Ri)J(i) = J−�k,

where the reciprocal vectors +k are defined by cyclic boundary conditions. Then we obtain

H|ψ0〉 = −
∑
ij

J(i− j)S2 = −NS2J0.

Here N is the total number of ions in the crystal. So, for the isotropic Heisenberg
ferromagnet, the ground state |ψ0〉 has an energy −NS2J0.
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The state |ψ0〉 corresponds to a total spin NS.
Let us consider now the first excited state. This state can be constructed by creating

one unit of spin deviation in the system. As a result, the total spin is NS− 1. The state

|ψk〉 =
1√

(2SN)

∑
j

e(i
�k �Rj)S−

j |ψ0〉

is an eigenstate of H which corresponds to a single magnon of the energy

ω
(FM)
0 (k) = 2S(J0 − Jk) .(41)

Note that the role of translational symmetry, i.e. the regular lattice of spins, is essential,
since the state |ψk〉 is constructed from the fully aligned state by decreasing the spin at
each site and summing over all spins with the phase factor ei�k �Rj . It is easy to verify that

〈ψk|Sztot|ψk〉 = NS − 1 .

The above consideration was possible because we knew the exact ground state of the
Hamiltonian. There are many models where this is not the case. For example, we do
not know the exact ground state of a Heisenberg ferromagnet with dipolar forces and the
ground state of the Heisenberg antiferromagnet.

4.1.2. Heisenberg antiferromagnet. We now discuss the Heisenberg model
of the antiferromagnet which is more complicated to analyse. The fundamental prob-
lem here is that the exact ground state is unknown. We consider, for simplicity, a
two-sublattice structure in which nearest-neighbour ions on opposite sublattices interact
through the Heisenberg exchange. For a system of ions on two sublattices, the Hamilto-
nian is

H = J
∑
m,δ

+Sm+Sm+δ + J
∑
n,δ

+Sn+Sn+δ .(42)

Here the notation m = +Rm means the position vectors of ions on one sublattice (a)
and n for the ions on the other (b). Nearest-neighbor ions on different sublattices are a
distance |+δ| apart. (The anisotropy field µHA(

∑
m Szm − ∑

n S
z
n), which is not written

down explicitly, is taken to be parallel to the z-axis.) The simplest crystal structures that
can be constructed from two interpenetrating identical sublattices are the body-centered
and simple cubic.

The exact ground state of this Hamiltonian is not known. One can use the approxi-
mation of taking the ground state to be a classical ground state, usually called the Neel
state, in which the spins of the ions on each sublattice are oppositely aligned along the
z-axis. However, this state is not even an eigenstate of the Hamiltonian (42). Let us
remark that the total z-component of the spin commutes with the Hamiltonian (42).
It would be instructive to consider here the construction of a spin wave theory for the
low-lying excitations of the Heisenberg antiferromagnet in a sketchy form to clarify the
foregoing.

To demonstrate the specifics of Heisenberg antiferromagnet more explicitly, it is con-
venient to rotate the axes of one sublattice through π about the x-axis. This transforma-
tion preserves the spin operator commutation relations and therefore is canonical. Let
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us perform the transformation on the +Rn, or b-sublattice

Szn → −S̃zn; S±
n → S̃∓

n .

The operators Sαm and S̃βn commute, because they refer to different sublattices.
The transformation to the momentum representation is modified in comparison with

the ferromagnet case

S±
m =

1
N

∑
�q

e(±i�q �Rm)S±
q ; S̃±

m =
1
N

∑
�q

e(∓i�q �Rm)S̃±
q .

Here +q is the reciprocal lattice vectors for one sublattice, each sublattice containing N
ions. After these transformations, the Hamiltonian (42) can be rewritten as

H =
1

2SN

∑
q

2zJS[(S−
q S

+
q + S̃−

q S̃
+
q ) + γq(S+

q S̃
+
q + S−

q S̃
−
q )] .(43)

In (43), γq is defined as zγq =
∑
m=n.n. exp[i+q +Rm], and z is the number of nearest

neighbors; the constant terms and the products of four operators are omitted. Thus the
Hamiltonian of the Heisenberg antifferomagnet is more complicated than that for the
ferromagnet. Because it contains two types of spin operators that are coupled together,
the diagonalization of (43) has its own specificity.

To diagonalize (43), let us make a linear transformation to new operators (Bogoliubov
transformation)

S+
q = uqaq + vqb

†
q; S̃−

q = uqb
†
q + vqaq(44)

with

[aq, a
†
q′ ] = δq,q′ ; [bq, b

†
q′ ] = δq,q′ .

The transformation coefficients uk and vk are purely real. To preserve the commutation
rules for the spin operators

[S+
k , S

−
k′ ] = 2SNδk,k′ ,

they should satisfy u2k− v2k = 2SN . The transformations from the operators (S+
q , S̃

−
q ) to

the operators (aq, b†q) give

[(S−
q S

+
q + S̃−

q S̃
+
q ) + γq(S+

q S̃
+
q + S−

q S̃
−
q )] =(45)

= (a†qaq + b†qbq)[(u
2
q + v2q) + 2uqvqγq]+

+(aqbq + a†qb
†
q)[(u

2
q + v2q)γq + 2uqvq]+

+2uqvqγq + 2v2q .

We represented Hamiltonian (43) as a form quadratic in the Bose operators (aq, b†q). We
shall now consider the problem of diagonalization of this form [46]. To diagonalize (43),
we should require that

2uqvq + (u2q + v2q )γq = 0 .
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Then we obtain

2u2q = 2SN
(1 + κq)

κq
; 2v2q = 2SN

(1 − κq)
κq

.(46)

Here the following notation was introduced: κq =
√

(1 − γ2q ) and 2uqvq = −2SNγq/κq .

After the transformation (44), we get, instead of (43),

H =
∑
k

ω
(AFM)
0 (k)(a†qaq + b†qbq)(47)

with

ω
(AFM)
0 (k) = 2zJS

√
1 − γ2k .(48)

Expression (47) contains two terms, each with the same energy spectrum. Thus, there
are two degenerate spin wave modes, because there can be two kinds of precession of the
spin about the anisotropy direction. The degeneracy is lifted by the application of an
external magnetic field in the z direction, because in this case the two sublattices become
nonequivalent. These results should be kept in mind when discussing the quasi-particle
many-body dynamics of the spin lattice models.

4.2. Correlated electrons on a lattice. – The importance of intra-atomic correlation
effects in determining the magnetic properties of transition metals and their compounds
and oxides was recognized many years ago. The essential basis of studies of metallic
magnetism, namely, that the dominant physical mechanism responsible for the observed
magnetic properties of the transition metals and their compounds and alloys is the strong
intra-atomic correlation in an otherwise tight-binding picture, is generally accepted as
being most suitable. The problem of the adequate description of strongly correlated elec-
tron systems on a lattice was studied intensively during the last decade, especially in the
context of metallic magnetism, heavy fermions, and high-Tc superconductivity [7]. The
understanding of the true nature of electronic states and their quasi-particle dynamics is
one of the central topics of the current experimental and theoretical efforts in the field.
The source of spin magnetism in solids is, of course, the Pauli exclusion principle as man-
ifested in the exchange interaction and higher-order mechanism. Of particular interest
is the fact that the Hartree-Fock or mean-field theory, i.e. the theory including exchange
but not correlation effects, invariably overestimates the tendency to magnetism. This
fact obviously complicated the already complicated problem of magnetism in a metal
with the d-band electrons which, as was mentioned above, are really neither “local” nor
“itinerant” in a full sense.

The strongly correlated electron systems are systems in which electron correlations
dominate. The theoretical studies of strongly correlated systems had as a consequence the
formulation of two model Hamiltonians which play a central role in our attempts to get
an insight into this complicated problem. These are the Anderson single-impurity model
(SIAM) [53] and Hubbard model [54]. It was only relatively recently recognized that
both the models have a very complicated many-body dynamics, and their “simplicity”
manifests itself in the dynamics of two-particle scattering, as was shown via elegant
Bethe-anzatz solutions.
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4.2.1. Hubbard model. The model Hamiltonian usually referred to as the Hubbard
Hamiltonian [54,22]

H =
∑
ijσ

tija
†
iσajσ + U/2

∑
iσ

niσni−σ(49)

includes the intra-atomic Coulomb repulsion U and the one-electron hopping energy
tij . The electron correlation forces electrons to localize in the atomic orbitals which are
modelled here by a complete and orthogonal set of the Wannier wave functions [φ(+r− +Rj)].
On the other hand, the kinetic energy is reduced when electrons are delocalized. The
main difficulty in solving the Hubbard model correctly is the necessity of taking into
account both these effects simultaneously. Thus, the Hamiltonian (49) is specified by
two parameters: U and the effective electron bandwidth

∆ =


N−1

∑
ij

|tij |2

1/2

.

The band energy of Bloch electrons ε(+k) is defined as follows:

tij = N−1
∑
�k

ε(+k) exp[i+k(+Ri − +Rj ] ,

where N is the number of lattice sites. It is convenient to count the energy from the
center of gravity of the band, i.e. tii = t0 =

∑
k ε(k) = 0 (sometimes it is useful to retain

t0 explicitly).
This conceptually simple model is mathematically very complicated [54-60]. The

effective electron bandwidth ∆ and Coulomb intra-site integral U determine different
regimes in 3 dimensions depending on the parameter γ = ∆/U . In addition, the Pauli
exclusion principle that does not allow two electrons of common spin to be at the same
site, i.e. n2iσ = niσ, plays a crucial role, and it should be taking into account properly
while making any approximations. It is usually rather a difficult task to find an interpo-
lating solution for dynamic properties of the Hubbard model for various mean particle
densities. To solve this problem with a reasonably accuracy and to describe correctly an
interpolated solution from the “band” limit (γ � 1) to the “atomic” limit (γ → 0), one
needs a more sophisticated approach than usual procedures developed for description of
the interacting electron gas problem [4]. We have evidently to improve the early Hubbard
theory taking into account of variety of possible regimes for the model depending on the
electron density, temperature, and values of γ. The single-electron GF

Gijσ(ω) = 〈〈aiσ|a†jσ〉〉 = N−1
∑
�k

Gσ(+k, ω) exp[−i+k(+Ri − +Rj)],(50)

calculated by Hubbard [54,55], has the characteristic two-pole functional structure

Gσ(k, ω) = [Fσ(ω) − ε(k)]−1 ,(51)
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where

F−1
σ (ω) =

ω − (n+−σE− + n−
−σE+) − λ

(ω − E+ − n−
−σλ)(ω − E− − n+−σλ) − n+−σn

−
−σλ2

.(52)

Here n+ = n , n− = 1 − n; E+ = U , E− = 0, and λ is a certain function which depends
on parameters of the Hamiltonian. In this approximation, Hubbard took account of the
scattering effect of electrons with spins σ by electrons with spin −σ which are frozen as
well as the “resonance broadening” effect due to the motion of the electrons with spin
−σ. The “Hubbard III” decoupling procedure suffered of serious limitations. However, in
spite of the limitations, this solution gave the first clue to the qualitative understanding
of the property of narrow-band system like the metal-insulator transition.

If λ is small (λ → 0), then expression (52) takes the form

F−1
σ (ω) ≈ n−

−σ
ω − E− − n+−σλ

+
n+−σ

ω − E+ − n−
−σλ

,

which corresponds to two shifted subbands with the gap

ω1 − ω2 = (E+ − E−) + (n−
−σ − n+−σ)λ = U + λ2n+−σ .

If λ is very big, then we obtain

F−1
σ (ω) ≈ λ

[(ω − E−)n−
−σ + (ω − E+)n+−σ]λ

=
1

ω − (n+−σE+ − n−
−σE−)

.

The latter solution corresponds to a single band centered at the energy ω ≈ n+−σU . Thus,
this solution explains qualitatively the appearance of a gap in the density of states when
the value of the intra-atomic correlation exceeds a certain critical value, as it was first
conjectured by N. Mott.

The two-pole functional structure of the single-particle GF is easy to understand
within the formalism that describes the motion of electrons in binary alloys [55, 60]. If
one introduces the two types of the scattering potentials t± ≈ (ω−E±)−1, then the two
kinds of the t-matrix T+ and T− appears which satisfy the following system of equations:

T+ = t+ + t+G
0
++T+ + t+G

0
+−T− ,

T− = t− + t−G0
−−T− + t−G0

−+T+ ,

where G0
αβ is the bare propagator between the sites with energies E±. The solution of

this system is of the following form:

T± =
t± + t±G0

±t±
(1 − t+G0

++)(1 − t−G0−−) −G0−+G
0
+−t+t−

=(53)

t−1
∓ +G0

±
(t−1
+ −G0

++)(t−1
− −G0−−) −G0−+G

0
+−

.



20 A. L. KUZEMSKY

Thus, by comparing this functional two-pole structure and the “Hubbard III” solu-
tion [55,60]

Σσ(ω) = ω − Fσ(ω) ,

it is possible to identify the “scattering corrections” and “resonance broadening correc-
tions” in the following way:

Fσ(ω) =
ω(ω − U) − (ω − Un−σ)Aσ(ω)

ω − U(1 − n−σ) −Aσ(ω)
,

Aσ(ω) = Yσ(ω) + Y−σ(ω) − Y ∗
−σ(U − ω) ,

Yσ = Fσ(ω) −G−1
0σ (ω);G0σ(ω) = N−1

∑
k

Gkσ(ω) .

If we put Aσ(ω) = 0, we immediately obtain the “Hubbard I” solution [54]

G(H1)
σ (k, ω) ≈ n−σ

ω − U − ε(k)n−σ
+

1 − n−σ
ω − ε(k)(1 − n−σ)

.(54)

Despite that this solution is exact in the atomic limit (tij = 0), the “Hubbard I” solu-
tion has many serious drawbacks. The corresponding spectral function consists of two
δ-function peaks. The “Hubbard III” solution includes several corrections, including
scattering corrections which broadens the peaks and shift them when U is changed.

The “alloy analogy” approximation corresponds to Aσ(ω) ≈ Yσ(ω). An interesting
analysis of the “Hubbard III” solution was performed in paper [60]. The Hubbard sub-
band structure was obtained in an analytic form in the “Hubbard III” approximation,
using the Lorentzian form for the density of states for non-interacting electrons. This
resulted in an analytical form for the self-energy and the density of states for interacting
electrons. Note that the “Hubbard III” self-energy operator Σσ(ω) is local, i.e. does not
depend on the quasi-momentum. Another drawback of this solution is a very inconvenient
functional representation of elastic- and inelastic-scattering processes.

The conceptually new approach to the theory of very strong but finite electron correla-
tion for the Hubbard model was proposed by Roth [61]. She clarified microscopically the
origination of the two-pole solution of the single-particle GF in the strongly correlated
limit

G(R)
σ (k, ω) ≈ n−σ

ω−U−ε(k)n−σ −Wk−σ(1−n−σ)
+

1 − n−σ
ω−ε(k)(1−n−σ)−n−σWk−σ

.(55)

We see that, in addition to a band narrowing effect, there is an energy shift Wk−σ given
by

nσ(1 − nσ)Wkσ =
∑
ij

tij〈a†iσajσ(1 − ni−σ − nj−σ)〉 −
∑
ij

tij exp[ik(j − i)] ·(56)

· (n2σ − 〈niσnjσ〉 + 〈a†j−σa†iσajσai−σ〉 + 〈a†j−σa†jσaiσai−σ〉) .
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This energy shift corrects the situation with the “Hubbard I” spectral function and
recovers, in principle, the possibility of describing the ferromagnetic solution. Thus, the
Roth solution gives an improved version of “Hubbard I” two-pole solution and includes
the band shift, that is most important in the case of a nearly-half-filled band. It is
worth noting that this result was a very unusual fact from the point of view of the
standard Fermi-liquid approach, showing that the naive one-electron approximation of
band structure calculations is not valid for the description of electron correlations of
lattice fermions.

It is this feature—the strong modification of single-particle states by many-body cor-
relation effects—whose importance we wish to emphasize here.

Various attempts were made to describe the properties of the Hubbard model in
both the strong and weak coupling regimes and to find a better solution (e.g., [56-58]).
Different schemes of decoupling of the equations of motion for the GFs analysed and
compared in paper [59], when calculating the electron contribution to the cohesive energy
in a narrow band system. These calculations showed importance of the correlation effects
and the right scheme of approximation.

Thus, a sophisticated many-body technique is to be used for calculating the excitation
spectra and other characteristics at finite temperatures. We shall show here following pa-
pers [43,23] that the IGF method permits us to improve substantially both the solutions,
Hubbard and Roth, by defining the correct Generalized Mean Fields for the Hubbard
model.

4.2.2. Single Impurity Anderson Model (SIAM). The Hamiltonian of SIAM
can be written in the form [53]

H =
∑
kσ

εkc
†
kσckσ +

∑
σ

E0σf
†
0σf0σ + U/2

∑
σ

n0σn0−σ +
∑
kσ

Vk(c
†
kσf0σ + f†

0σckσ) ,(57)

where c†kσ and f†
0σ are, respectively, the creation operators for conduction and localized

electrons; εk is the conduction electron energy, E0σ is the localized electron energy level,
and U is the intra-atomic Coulomb interaction at the impurity site; Vk represents the
s-(d)f hybridization interaction term and was written in paper [53] in the following form:

Vk =
1√
N

∑
j

Vf (Rj) exp[ikRj ] .(58)

The hybridization matrix element is

Vf (Rj) =
∫

ψ†
k(+r)H

HFφ(+r − +Rj)dr .

The use of Hartree-Fock term here is notable, since it justifies the initial treatment of
SIAM in [53] entirely in the HF approximation. A number of approaches for SIAM
and other correlated electronic systems was proposed, aimed at answering the Anderson
question: “...whether a real many-body theory would give answer radically different from
the Hartree-Fock results?” [53].

Our goal is to propose a new combined many-body approach for the description
of many-body quasi-particle dynamics of SIAM at finite temperatures. The interplay
and competition of the kinetic energy (εk), potential energy (U), and hybridization (V )
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substantially influence the electronic spectrum. The renormalized electron energies are
temperature-dependent, and electronic states have finite lifetimes. These effects are
described most suitable by the Green functions method. The purpose of the present
approach is to find the electronic quasi-particle spectrum renormalized by interactions
(U - and V -terms) in a wide range of temperatures and model parameters and to calculate
explicitly the damping of the electronic states.

4.2.3. Periodic Anderson Model (PAM). Let us now consider a lattice gener-
alization of SIAM, the so-called periodic Anderson model (PAM). The basic assumption
of the periodic impurity Anderson model is the presence of two well-defined subsystems,
i.e. the Fermi sea of nearly free conduction electrons and the localized impurity orbitals
embedded into the continuum of conduction electron states (in rare-earth compounds,
for instance, the continuum is actually a mixture of s, p, and d states, and the localized
orbitals are f states). The simplest form of PAM

H =
∑
kσ

εkc
†
kσckσ +

∑
iσ

E0f
†
iσfiσ + U/2

∑
iσ

niσni−σ +(59)

+
V√
N

∑
ikσ

(exp[ikRi]c
†
kσfiσ + exp[−ikRi]f†

iσckσ)

assumes a one-electron energy level E0, hybridization interaction V , and the Coulomb
interaction U at each lattice site. Using the transformation

c†kσ =
1√
N

∑
j

exp[−ikRj ]c†jσ; ckσ =
1√
N

∑
j

exp[ikRj ]cjσ ,

the Hamiltonian (59) can be rewritten in the Wannier representation:

H =
∑
ijσ

tijc
†
iσcjσ +

∑
iσ

E0f
†
iσfiσ + U/2

∑
iσ

niσni−σ + V
∑
iσ

(c†iσfiσ + f†
iσciσ) .(60)

If one retains the k-dependence of the hybridization matrix element Vk in (60), the
last term in the PAM Hamiltonian describing the hybridization interaction between the
localized impurity states and extended conduction states and containing the essence of
a specificicity of the Anderson model, is as follows:

∑
ijσ

Vij(c
†
iσfiσ + f†

iσciσ); Vij =
1
N

∑
k

Vk exp[ik(Rj −Ri)] .

The on-site hybridization Vii is equal to zero for symmetry reasons. A detailed analysis
of the hybridization problem from a general point of view and in the context of PAM
was made in paper [62]. The Hamiltonian of PAM in the Bloch representation takes the
form

H =
∑
kσ

εkc
†
kσckσ +

∑
iσ

Ekf
†
kσfkσ + U/2

∑
iσ

niσni−σ +
∑
kσ

Vk(c
†
kσfkσ + f†

kσckσ) .(61)
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Note that as compared to the SIAM, the PAM has its own specific features. This can
lead to peculiar magnetic properties for concentrated rare-earth systems where the cri-
terion for magnetic ordering depends on the competition between indirect RKKY-type
interaction [63] (not included into SIAM) and the Kondo-type singlet-site screening (con-
tained in SIAM). The inclusion of inter-impurity correlations makes the problem more
difficult. Since these inter-impurity effects play an essential role in physical behaviour
of real systems [63, 64], it is instructive to consider the two-impurity Anderson model
(TIAM) too.

4.2.4. Two-Impurity Anderson Model (TIAM). The two-impurity Anderson
model was considered by Alexander and Anderson [65]. They put forward a theory
which introduces the impurity-impurity interaction within a game of parameters. The
Hamiltonian of TIAM reads

H =
∑
ijσ

tijc
†
iσcjσ +

∑
i=1,2σ

E0if
†
iσfiσ + U/2

∑
i=1,2σ

niσni−σ +(62)

+
∑
iσ

(Vkic
†
iσfiσ + Vikf

†
iσciσ) +

∑
σ

(V12f
†
1σf2σ + V21f

†
2σf1σ) ,

where E0i are the position energies of localized states (for simplicity, we consider identical
impurities and s-type (i.e. non-degenerate) orbitals: E01 = E02 = E0. Let us recall that
the hybridization matrix element Vik was defined in (58). As for the TIAM, the situation
with the right definition of the parameters V12 and Vik is not very clear. The definition
of V12 in [65] is the following:

V12 = V †
21 =

∫
φ†
1(+r)Hfφ2(+r)dr

(now Hf without “HF” mark). The essentially local character of the Hamiltonian Hf
clearly shows that V12 describes the direct coupling between nearest-neighboring sites (for
a detailed discussion see [29] where the hierarchy of the Anderson models was discussed
too).

5. – Effective and generalized mean fields

5.1. Molecular-field approximation. – The most common technique for studying the
subject of interacting many-particle systems is to use the mean-field theory. This ap-
proximation is especially popular in the theory of magnetism [66]. Nevertheless, it was
pointed [67] that

“the Weiss molecular-field theory plays an enigmatic role in statistical me-
chanics of magnetism”.

To calculate the susceptibility and other characteristic functions of a system of localized
magnetic moments, with a given interaction Hamiltonian, the approximation, termed the
“molecular field approximation” was used widely. However, it is not an easy task to give
the formal unified definition what the mean field is. In a sense, the mean field is the
umbrella term for a variety of theoretical methods of reducing the many-particle problem
to the single-particle one. Mean-field theory, that approximates the behaviour of a system
by ignoring the effect of fluctuations and those spin correlations which dominate the
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collective properties of the ferromagnet usually provides a starting and estimating point
only, for studying phase transitions. The mean-field theories miss important features
of the dynamics of a system. The main intention of the mean-field theories, starting
from the works of van der Waals and P. Weiss, is to take into account the cooperative
behaviour of a large number of particles. It is well known that earlier theories of phase
transitions based on the ideas of van der Waals and Weiss lead to predictions which
are qualitatively at variance with results of measurements near the critical point. Other
variants of simplified mean-field theories such as the Hartree-Fock theory for electrons in
atoms, etc. lead to discrepancies of various kinds too. It is therefore natural to analyze
the reasons for such drawbacks of earlier variants of the mean-field theories.

5.2. Effective field theories. – A number of effective field theories which are improved
versions of the “molecular-field approximation” were proposed. It is the purpose of this
study to stress a specificity of strongly correlated many-particle systems on a lattice con-
trary to continuum (uniform) systems. Although many important questions remain still
unresolved, a vision of useful synthesis begins to emerge. As a workable eye-guide, the
set of mean-field theories (most probably incomplete) is shown in table I. The meaning of
many these entries and terms will become clearer in the forthcoming discussion and will
put them in a clearer perspective. My main purpose is to elucidate (at least in the mathe-
matical structure) and to give plausible arguments for the tendency, which expounded in
table I. This tendency shows the following. The earlier concepts of molecular field were
described in terms of a functional of mean magnetic moments (in magnetic terminology)
or mean particle densities (Hartree-Fock field). The corresponding mean-field functional
F [〈n〉, 〈Sz〉] describes the uniform mean field.

Actually, the Weiss model was not based on discrete “spins” as is well known, but the
uniformity of the mean internal field was the most essential feature of the model. In the
modern language, one should assume that the interaction between atomic spins Si and
its neighbors is equivalent to a mean (or molecular) field, Mi = χ0[h

(ext)
i +h

(mf)
i ] and that

the molecular field h
(mf)
i is of the form h(mf) =

∑
i J(Rji)〈Si〉 (above Tc). Here hext is an

applied conjugate field, χ0 is the response function, and J(Rji) is an interaction. In other
words, the mean-field approximation reduces the many-particle problem to a single-site
problem in which a magnetic moment at any site can be either parallel or antiparallel
to the total magnetic field composed of the applied field and the molecular field. The
average interaction of i neighbors was taken into account only, and the fluctuations were
neglected. One particular example, where the mean-field theory works relatively well is
the homogeneous structural phase transitions; in this case the fluctuations are confined
in phase space.

The next important step was made by L. Neel [68]. He conjectured that the Weiss
internal field might be either positive or negative in sign. In the latter case, he showed
that below a critical temperature (Neel temperature) an ordered arrangement of equal
numbers of oppositely directed atomic moments could be energetically favorable. This
new magnetic structure was termed antiferromagnetism. It was conjectured that the
two-sublattice Neel (classical) ground state is formed by local staggered internal mean
fields.

There is a number of the “correlated effective field” theories, that tend to repair
the limitations of simplified mean-field theories. The remarkable and ingenious one is
the Onsager “reaction field approximation” [69]. He suggested that the part of the
molecular field on a given dipole moment which comes from the reaction of neighboring
molecules to the instantaneous orientation of the moment should not be included into the
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Table I. – Evolution of the mean-field concept.

Type of the mean field Author Year
Uniform molecular field
in dense gases van der Waals 1873
Uniform internal mean field
in magnets P.Weiss 1905
Thomas-Fermi model L. H. Thomas, E.Fermi 1926-28
Uniform mean field
in many-electron atoms D. Hartree, V. Fock 1928-32
Molecular mean field in
Heisenberg ferromagnet F.Bloch 1930
Non-uniform (local) staggered
mean field in antiferromagnet L.Neel 1932
Reaction and cavity field in
polar substances L.Onsager 1936
Stoner mean-field model
of band magnetism E.Stoner 1938
Slater mean-field model
of band antiferromagnetism J.Slater 1951
BCS-Bogoliubov mean field in
superconductors N. N. Bogoliubov 1958
Tyablikov decoupling
for Heisenberg ferromagnet S. Tyablikov 1959
Mean-field theory for SIAM P. W. Anderson 1961
Density Functional Theory
for inhomogeneous electron gas W. Kohn 1964
Callen decoupling
for Heisenberg ferromagnet H. B. Callen 1963
Alloy analogy (mean field) approximation
in strongly correlated model J. Hubbard 1964
Generalized mean fields
in Heisenberg ferromagnet N. Plakida 1973
Spin glass mean-field model S. F. Edwards, P. W. Anderson 1975
Generalised mean fields in strongly
correlated Hubbard model A. L. Kuzemsky 1975-78
Generalized mean fields
in Heisenberg antiferromagnet A. L. Kuzemsky, D. Marvakov 1990
Generalized mean fields
for itinerant antiferromagnet A. L. Kuzemsky 1999

effective orienting field. This “reaction field” simply follows the motion of the moment
and thus does not favor one orientation over another. The meaning of the mean-field
approximation for the spin glass problem is very interesting but specific, and we will
not discuss it here. A single-site molecular-field model for randomly dilute ferro- and
antiferromagnets in the framework of the double-time thermal GFs was presented in
paper [70].

5.3. Generalized mean fields. – It was shown [39, 46, 71] that mean-field approxima-
tions, for example the molecular-field approximation for a spin system, the Hartree-Fock
approximation and the BCS-Bogoliubov approximation for an electron system are uni-
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versally formulated by the Peierls-Bogoliubov-Feynman (PBF) inequality:

−β−1 ln (Tr e[−βH]) ≤ −β−1 ln (Tr e[−βH
mf ]) +

Tr e[−βH
mf ](H −Hmf)

Tr e[−βHmf ]
.(63)

Here F is the free energy, and Hmf is a “trial” or a “mean-field” approximating Hamilto-
nian. This inequality gives the upper bound of the free energy of a many-body system. It
is important to emphasize that the BCS-Bogoliubov theory of superconductivity [10,72]
was formulated on the basis of a trial Hamiltonian which consists of a quadratic form of
creation and annihilation operators, including “anomalous” (off-diagonal) averages [10].
The functional of the mean field (for the superconducting single-band Hubbard model)
is of the following form [72]:

Σcσ = U

( 〈a†i−σai−σ〉 −〈aiσai−σ〉
−〈a†i−σa†iσ〉 −〈a†iσaiσ〉

)
.(64)

The “anomalous” off-diagonal terms fix the relevant BCS-Bogoliubov vacuum and select
the appropriate set of solutions.

Another remark about the BCS-Bogoliubov mean-field approach is instructive. Speak-
ing in physical terms, this theory involves a condensation correctly, in spite that such
a condensation cannot be obtained by an expansion in the effective interaction between
electrons. Other mean-field theories, e.g., the Weiss molecular-field theory and the van
der Waals theory of the liquid-gas transition are much less reliable. The reason why
a mean-field theory of the superconductivity in the BCS-Bogoliubov form is successful
would appear to be that the main correlations in metal are governed by the extreme
degeneracy of the electron gas. The correlations due to the pair condensation, although
they have dramatic effects, are weak (at least in the ordinary superconductors) in com-
parison with the typical electron energies, and may be treated in an average way with
a reasonable accuracy. All above remarks have relevance to ordinary low-temperature
superconductors. In high-Tc superconductors, the corresponding degeneracy tempera-
ture is much lower, and the transition temperatures are much higher. In addition, the
relevant interaction responsible for the pairing and its strength are unknown. From this
point of view, the high-Tc systems are more complicated. It should be clarified what
governs the scale of temperatures, i.e. critical temperature, degeneracy temperature,
interaction strength or their complex combination, etc. In this way a useful insight into
this extremely complicated problem would be gained.

Generalization of the molecular-field approximation on the basis of the PBF inequality
is possible when we know a particular solution of the model (e.g., for one-dimensional
Ising model we know the exact solution in the field). One can use this solution to get
a better approximation than the mean-field theory. There are some other methods of
improvement of the molecular-field theory [73, 74]. Unfortunately, these approaches are
nonsystematic.

From the point of view of quantum many-body theory, the problem of adequate intro-
duction of mean fields for system of many interacting particles can be most consistently
investigated in the framework of the IGF method. A correct calculation of the quasi-
particle spectra and their damping, particularly, for systems with a complicated spectrum
and strong interaction [24] reveals, as it will be shown below, that the generalized mean
fields can have very complicated structure which cannot be described by a functional of
the mean-particle density.
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To illustrate the actual distinction of description of the generalized mean field in the
equation-of-motion method for the double-time Green functions, let us compare the two
approaches, namely, that of Tyablikov [46] and of Callen [75]. We shall consider the
Green function 〈〈S+|S−〉〉 for the isotropic Heisenberg model

H = −1
2

∑
ij

J(i− j)+Si+Sj .(65)

The equation of motion (14) for the spin Green function is of the form

ω〈〈S+
i |S−

j 〉〉ω = 2〈Sz〉δij +
∑
g

J(i− g)〈〈S+
i S

z
g − S+

g S
z
i |S−

j 〉〉ω .(66)

The Tyablikov decoupling expresses the second-order GF in terms of the first (initial)
GF:

〈〈S+
i S

z
g |S−

j 〉〉 = 〈Sz〉〈〈S+
i |S−

j 〉〉 .(67)

This approximation is an RPA-type; it does not lead to the damping of spin wave exci-
tations (cf. (41))

E(q) =
∑
g

J(i− g)〈Sz〉 exp[i(+Ri − +Rg)+q] = 2〈Sz〉(J0 − Jq) .(68)

The reason for this is rather transparent. This decoupling does not take into account the
inelastic magnon-magnon scattering processes. In a sense, the Tyablikov approximation
consists of approximating the commutation relations of spin operators to the extent of
replacing the commutation relation [S+

i , S
−
j ]− = 2Szi δij by [S+

i , S
−
j ]− = 2〈Sz〉δij .

Callen [75] has proposed an improved decoupling approximation in the method of
Tyablikov in the following form:

〈〈SzgS+
f |B〉〉 → 〈Sz〉〈〈S+

f |B〉〉 − α〈S−
g S

+
f 〉〈〈S+

g |B〉〉 .(69)

Here 0 ≤ α ≤ 1. To clarify this point, it should be reminded that for spin 1/2 (the
procedure was generalized by Callen to an arbitrary spin), the spin operator Sz can be
written as Szg = S − S−

g S
+
g or Szg = 1

2 (S
+
g S

−
g − S−

g S
+
g ). It is easy to show that

Szg = αS +
1 − α

2
S+
g S

−
g − 1 + α

2
S−
g S

+
g .

The operator S−
g S

+
g represents the deviation of 〈Sz〉 from S. In the low-temperature

region, this deviation is small, and α ∼ 1. Similarly, the operator 1
2 (S

+
g S

−
g − S−

g S
+
g )

represents the deviation of 〈Sz〉 from 0. Thus, when 〈Sz〉 approaches to zero, one can
expect that α ∼ 0. Thus, in this way, it is possible to obtain a correction to the Tyablikov
decoupling with either a positive or negative sign, or no correction at all, or any interme-
diate value, depending on the choice of α. The above Callen arguments are not rigorous,
for, although the difference in the operators S+S− and S−S+ is small if 〈Sz〉 ∼ 0, each
operator makes a contribution of the order of S, and it is each operator which is treated
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approximately, not the difference. There are some other drawbacks of the Callen decou-
pling scheme. Nevertheless, the Callen decoupling was the first conceptual attempt to
introduce the interpolation decoupling procedure. Let us note that the choice of α = 0
over the entire temperature range is just the Tyablikov decoupling (67).

The energy spectrum for the Callen decoupling is given by

E(q) = 2〈Sz〉
(

(J0 − Jq) +
〈Sz〉
NS2

∑
k

[J(k) − J(k − q)]N(E(k))

)
.(70)

Here N(E(k)) is the Bose distribution function N(E(k)) = [exp[E(k)β]−1]−1. This is an
implicit equation for N(E(k)), involving the unknown quantity 〈Sz〉 . For the latter an
additional equation is given [75]. Thus, both these equations constitute a set of coupled
equations which must be solved self-consistently for 〈Sz〉.

This formulation of the Callen decoupling scheme displays explicitly the tendency of
the improved description of the mean field. In a sense, it is possible to say that the Callen
work dates really the idea of the generalized mean field within the equation-of-motion
method for double-time GFs, however, in a semi-intuitive form. The next essential steps
were made by Plakida [47] for the Heisenberg ferromagnet and by Kuzemsky [43,23] for
the Hubbard model. As was mentioned above, the correct definition of generalized mean
fields depends on the condition of the problem, the strength of interaction, the choice of
relevant operators, and on the symmetry requirements.

5.4. Symmetry broken solutions. – In many-body interacting systems, the symmetry
is important in classifying different phases and in understanding the phase transitions be-
tween them [76]. According to Bogoliubov [76] (cf. refs. [77-79]) in each condensed phase,
in addition to the normal process, there is an anomalous process (or processes) which
can take place because of the long-range internal field, with a corresponding propagator.
Additionally, the Goldstone theorem [80] states that, in a system in which a continuous
symmetry is broken (i.e. a system such that the ground state is not invariant under the
operations of a continuous unitary group whose generators commute with the Hamilto-
nian), there exists a collective mode with frequency vanishing, as the momentum goes to
zero. For many-particle systems on a lattice, this statement needs a proper adaptation.
In the above form, the Goldstone theorem is true only if the condensed and normal phases
have the same translational properties. When translational symmetry is also broken, the
Goldstone mode appears at a zero frequency but at nonzero momentum, e.g., a crystal
and a helical spin-density-wave (SDW) ordering (see for discussion [81]- [83]).

The anomalous propagators for an interacting many-fermion system corresponding to
the ferromagnetic (FM), antiferromagnetic (AFM), and superconducting (SC) long-range
ordering are given by

FM : GFM ∼ 〈〈akσ; a†k−σ〉〉 ,(71)

AFM : GAFM ∼ 〈〈ak+Qσ; a†k+Q′σ′〉〉 ,
SC : GSC ∼ 〈〈akσ; a−k−σ〉〉 .

In the SDW case, a particle picks up a momentum Q − Q′ from scattering against the
periodic structure of the spiral (nonuniform) internal field, and has its spin changed from
σ to σ′ by the spin-aligning character of the internal field. The Long-Range-Order (LRO)
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parameters are

FM : m = 1/N
∑
kσ

〈a†kσak−σ〉 ,(72)

AFM : MQ =
∑
kσ

〈a†kσak+Q−σ〉 ,

SC : ∆ =
∑
k

〈a†−k↓a†k↑〉 .

It is important to note that the long-range order parameters are functions of the internal
field, which is itself a function of the order parameter. There is a more mathematical
way of formulating this assertion. According to the paper [76], the notion “symmetry
breaking” means that the state fails to have the symmetry that the Hamiltonian has.

A true breaking of symmetry can arise only if there are infinitesimal “source fields”.
Indeed, for the rotationally and translationally invariant Hamiltonian, suitable source
terms should be added:

FM : εµBHx
∑
kσ

a†kσak−σ ,(73)

AFM : εµBH
∑
kQ

a†kσak+Q−σ ,

SC : εv
∑
k

(a†−k↓a
†
k↑ + ak↑a−k↓) ,

where ε → 0 is to be taken at the end of calculations.
For example, broken symmetry solutions of the SDW type imply that the vector Q

is a measure of the inhomogeneity or breaking of translational symmetry. The Hubbard
model is a very interesting tool for analyzing the symmetry broken concept. It is possible
to show that antiferromagnetic state and more complicated states (e.g., ferrimagnetic)
can be made eigenfunctions of the self-consistent field equations within an “extended”
mean-field approach, assuming that the “anomalous” averages 〈a†iσai−σ〉 determine the
behaviour of the system on the same footing as the “normal” density of quasi-particles
〈a†iσaiσ〉. It is clear, however, that these “spin-flip” terms break the rotational symmetry
of the Hubbard Hamiltonian. For the single-band Hubbard Hamiltonian, the averages
〈a†i−σai,σ〉 = 0 because of the rotational symmetry of the Hubbard model. The inclusion
of “anomalous” averages leads to the so-called “unresricted” HF approximation (UHFA).
This type of approximation was used sometimes also for the single-band Hubbard model
for calculating the density of states. For this aim, the following definition of UHFA:

ni−σaiσ ≈ 〈ni−σ〉aiσ − 〈a†i−σaiσ〉ai−σ(74)

was used. Thus, in addition to the standard HF term, the new so-called “spin-flip” terms
are retained. This example clearly shows that the structure of mean field follows from
the specificity of the problem and should be defined in a proper way. So, one needs
a properly defined effective Hamiltonian Heff . In paper [84] we thoroughly analyzed
the proper definition of the irreducible GFs which includes the “spin-flip” terms for the
case of itinerant antiferromagnetism [85] of correlated lattice fermions. For the single-
orbital Hubbard model, the definition of the “irreducible” part should be modified in the
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following way:

(ir)〈〈ak+pσa†p+q−σaq−σ|a†kσ〉〉ω = 〈〈ak+pσa†p+q−σaq−σ|a†kσ〉〉ω −(75)

−δp,0〈nq−σ〉Gkσ − 〈ak+pσa†p+q−σ〉〈〈aq−σ|a†kσ〉〉ω .

From this definition it follows that this way of introduction of the IGF broadens the
initial algebra of operators and the initial set of the GFs. This means that the “actual”
algebra of operators must include the spin-flip terms from the beginning, namely: (aiσ,
a†iσ, niσ, a

†
iσai−σ). The corresponding initial GF will be of the form

( 〈〈aiσ|a†jσ〉〉 〈〈aiσ|a†j−σ〉〉
〈〈ai−σ|a†jσ〉〉 〈〈ai−σ|a†j−σ〉〉

)
.

With this definition, one introduces the so-called anomalous (off-diagonal) GFs which
fix the relevant vacuum and select the proper symmetry broken solutions. In fact, this
approximation was investigated earlier by Kishore and Joshi [86]. They clearly pointed
out that they assumed a system to be magnetised in the x-direction instead of the
conventional z-axis.

The problem of finding the ferromagnetic and antiferromagnetic “symmetry broken”
solutions of the correlated lattice fermion models within IGF method was investigated
in ref. [84]. A unified scheme for the construction of Generalized Mean Fields (elastic-
scattering corrections) and self-energy (inelastic scattering) in terms of the Dyson equa-
tion was generalized in order to include the “source fields”. The “symmetry broken”
dynamic solutions of the Hubbard model which correspond to various types of itinerant
antiferromagnetism were discussed. This approach complements previous studies of mi-
croscopic theory of the Heisenberg antiferromagnet [30] and clarifies the concepts of Neel
sublattices for localized and itinerant antiferromagnetism and “spin-aligning fields” of
correlated lattice fermions.

6. – Quasi-particle many-body dynamics

In this section, we discuss the microscopic view of a dynamic behaviour of interacting
many-body systems on a lattice. It was recognized for many years that the strong
correlation in solids exist between the motions of various particles (electrons and ions, i.e.
the fermion and boson degrees of freedom) which arise from the Coulomb forces [87,88].
The most interesting objects are metals and their compounds. They are invariant under
the translation group of a crystal lattice and have lattice vibrations as well as electron
degrees of freedom. There are many evidences for the importance of many-body effects
in these systems. Within the Landau semi-phenomenological theory it was suggested
that the low-lying excited states of an interacting Fermi gas can be described in terms of
a set of “independent quasi-particles”. However, this was a phenomenological approach
and did not reveal the nature of relevant interactions.

6.1. Green function picture of quasi-particles. – An alternative way of viewing quasi-
particles, more general and consistent, is through the Green function scheme of many-
body theory [4], which we sketch below for completeness and for pedagogical reasons.

We should mention that there exist a big variety of quasi-particles in many-body
systems. At sufficiently low temperatures, few quasi-particles are excited, and therefore
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this dilute quasi-particle gas is nearly a non-interacting gas in the sense that the quasi-
particles rarely collide. The success of the quasi-particle concept in an interacting many-
body system is particularly striking because of a great number of various applications.
However, the range of validity of the quasi-particle approximation, especially for strongly
interacting lattice systems, was not discussed properly in many cases. In systems like
simple metals, quasi-particles constitute long-lived, weakly interacting excitations, since
their intrinsic decay rate varies as the square of the dispersion law, thereby justifying
their use as the building blocks for the low-lying excitation spectrum.

Unfortunately, there are many strongly correlated systems on a lattice for which we do
not have at present the truly the first-principles proof of a similar correspondence of the
low-lying excited states of noninteracting and interacting systems, adiabatic switching on
of the interaction, a simple effective mass spectrum, long lifetimes of quasi-particles, etc.
These specific features of strongly correlated systems are the main reason of why the
usual perturbation theory starting from noninteracting states does not work properly.
Many other subtle nonanalytic effects which are present even in normal systems have the
similar nature. This lack of a rigorous foundation for the theory of strongly interacting
systems on a lattice is not only a problem of the mathematical perfectionism, but also
that of the correct physics of interacting systems.

As we mentioned earlier, to describe a quasi-particle correctly, the Green functions
method is a very suitable and useful tool. What concerns us here are formal expression
for the single-particle GF (38) and the corresponding quasi-particle excitation spectrum.
From eq. (24) it is thus seen that the GF is completely determined by the spectral weight
function A(ω). The spectral weight function reflects the microscopic structure of the sys-
tem under consideration. The other term in (24) is a separation of the purely statistical
aspects of GF. From eq. (20) it follows that the spectral weight function can be written
formally in terms of many-particle eigenstates. Its Fourier transform origination (18) is
then the density of states that can be reached by adding or removing a particle of a given
momentum and energy.

Consider a system of interacting fermions as an example. For a noninteracting system,
the spectral weight function of the single-particle GF Gk(ω) = 〈〈akσ; a†kσ〉〉 has the simple
peaked structure

Ak(ω) ∼ δ(ω − εk) .

For an interacting system, the spectral function Ak(ω) has no such a simple peaked
structure, but it obeys the following conditions:

Ak(ω) ≥ 0;
∫

Ak(ω)dω = 〈[akσ, a†kσ]+〉 = 1 .

Thus, we can see from these expressions that for a noninteracting system, the sum rule is
exhausted by a single peak. A sharply peaked spectral function for an interacting system
means a long-lived single-particle–like excitation. Thus, the spectral weight function was
established here as the physically significant attribute of GF. The question of how best
to extract it from a microscopic theory is the main aim of the present review.

The GF for the non-interacting system is Gk(ω) = (ω−εk)−1. For a weakly interacting
Fermi system, we have Gk(ω) = (ω− εk−Mk(ω))−1, where Mk(ω) is the mass operator.
Thus, for a weakly interacting system, the δ-function for Ak(ω) is spread into a peak of
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finite width due to the mass operator. We have

Mk(ω ± iε) = ReMk(ω) ∓ ImMk(ω) = ∆k(ω) ∓ Γk(ω) .

The single-particle GF can be written in the form

Gk(ω) = {ω − [εk + ∆k(ω)] ± Γk(ω)}−1 .(76)

In the weakly interacting case, we can thus find the energies of quasi-particles by looking
for the poles of single-particle GF (76)

ω = εk + ∆k(ω) ± Γk(ω) .

The dispersion relation of a quasi-particle

ε(k) = εk + ∆k[ε(k)] ± Γk[ε(k)]

and the lifetime 1/Γk then reflects the inter-particle interaction. It is easy to see the
connection between the width of the spectral weight function and decay rate. We can
write

Ak(ω) = (exp[βω] + 1)−1(−i)[Gk(ω + iε) −Gk(ω − iε)] =(77)

= (exp[βω] + 1)−1 2Γk(ω)
[ω − (εk + ∆k(ω))]2 + Γ2

k(ω)
.

In other words, for this case, the corresponding propagator can be written in the form

Gk(t) ≈ exp[−iε(k)t] exp[−Γkt] .

This form shows under which conditions, the time-development of an interacting system
can be interpreted as the propagation of a quasi-particle with a reasonably well-defined
energy and a sufficiently long lifetime. To demonstrate this, we consider the following
conditions:

∆k[ε(k)] � ε(k); Γk[ε(k)] � ε(k) .

Then we can write

Gk(ω) =
1

[ω − ε(k)][1 − d∆k(ω)
dω |ω=ε(k)] + iΓk[ε(k)]

,(78)

where the renormalized energy of excitations is defined by

ε(k) = εk + ∆k[ε(k)] .

In this case, we have, instead of (77),

Ak(ω) = [exp[βε(k)] + 1]−1[1 − d∆k(ω)
dω

|ε(k)]−1 2Γ(k)
(ω − ε(k))2 + Γ2(k)

.(79)
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As a result, we find

Gk(t) = 〈〈akσ(t); a†kσ〉〉 = −iθ(t) exp[−iε(k)t] exp[−Γ(k)t][1 − d∆k(ω)
dω

|ε(k)]−1 .(80)

A widely known strategy to justify this line of reasoning is the perturbation theory [4].
A detailed analysis of various successful approximations for the determination of excited
states in the framework of the quasi-particle concept and the Green functions method in
metals, semiconductors, and insulators was done in review paper [87].

There are examples of weakly interacting systems, e.g., the superconducting phase,
which are not connected perturbatively with noninteracting systems. Moreover, the su-
perconductor is a system in which the interaction between electrons qualitatively changes
the spectrum of excitations. However, quasi-particles are still of use even in this case,
due to the correct redefinition of the relevant generalized mean field which includes the
anomalous averages (see (72)). In a strongly interacted system on a lattice with complex
spectra, the concept of a quasi-particle needs a suitable adaptation and a careful exam-
ination. It is therefore useful to have the workable and efficient IGF method which, as
we shall see, permits one to determine and correctly separate the elastic and inelastic-
scattering renormalizations through a correct definition of the generalized mean field
and to calculate real quasi-particle spectra, including the damping and lifetime effects.
A careful analysis and detailed presentations of the IGF method will provide an im-
portant step to the formulation of the consistent theory of strongly interacting systems
and the justification of approximate methods presently used within equation-of-motion
approaches. These latter remarks will not be substantiated until next sections, but it is
important to emphasize that the development which follows is not a merely formal exer-
cise but essential for the proper and consistent theory of strongly interacting many-body
systems on a lattice.

6.2. Spin-wave scattering effects in Heisenberg ferromagnet . – In this subsection, we
briefly describe, mainly for pedagogical reasons, how the formulation of the quasi-particle
picture depends in an essential way on an analysis of the sort introduced in subsect. 3.1.
We consider here the most studied case of a Heisenberg ferromagnet [47] with the Hamil-
tonian (65) and the equation of motion (66). In an earlier discussion in subsect. 4.11 and
5.3, we described the Tyablikov decoupling procedure (67) based on replacing Szi by 〈Szi 〉
in the last term of (66). We also discussed an alternative method of decoupling proposed
by Callen (69). Both these decoupling procedures retain only the elastic spin-wave scat-
tering effects. But for our purposes, it is essential to retain also the inelastic-scattering
effects, and therefore, we must carefully identify and separate the elastic and inelastic
spin-wave scattering. This is directly related with the correct definition of generalized
mean fields. Thus, the purpose of the present consideration is to justify the use of IGF
method for the self-consistent theory of spin-wave interactions.

The irreducible part of GF is introduced according to the definition (30) as

(ir)〈〈(S+
i S

z
g − S+

g S
z
i )|S−

j 〉〉 = 〈〈(S+
i S

z
g − S+

g S
z
i ) −AigS

+
i −AgiS

+
g |S−

j 〉〉 .(81)

Here the unknown quantities Aig are defined on the basis of orthogonality constraint (31)

〈[(S+
i S

z
g − S+

g S
z
i )

(ir), S−
j ]〉 = 0 .



34 A. L. KUZEMSKY

We have (i �= g)

Aig = Agi =
2〈Szi Szg 〉 + 〈S−

i S
+
g 〉

2〈Sz〉 .(82)

The definition (see eq. (33)) of a generalized mean field GF GMF is given by the equation

ωGMF
ij = 2〈Sz〉δij +

∑
g

JigAig(GMF
ij −GMF

gj ) .(83)

From the Dyson equation in the form (37) we find

Mij = (Pij)p = 〈2Sz〉−2
∑
gl

JigJlj〈〈(S+
i S

z
g − S+

g S
z
i )

(ir)|((S+
i S

z
g − S+

g S
z
i )

(ir))†〉〉(p) .(84)

where the proper (p) part of the irreducible GF is defined by eq. (36)

Pij = Mij +
∑
gl

MigG
MF
gl Plj ; Mij = (Pij)p

(in the diagrammatic language, this means that it has no parts connected by one GMF-
line). The formal solution of the Dyson equation is of the form (38):

Gij(ω) = 2〈Sz〉N−1
∑
k

exp[ik(Ri −Rj)][ω − ω(k) − 2〈Sz〉Mk(ω)]−1 .(85)

The spectrum of spin excitations in the generalized mean-field approximation is given by

ω(k) = N−1
∑
ig

JigAig{1 − exp[ik(Ri −Rj)]} .(86)

Now it is not difficult to see that the result (86) includes both the simplest spin-wave
dispersion law (41) and the result of Tyablikov decoupling (67) as the limiting cases

ω(k) = 〈Sz〉(J0 − Jk) + (〈2Sz〉N)−1
∑
q

(Jq − Jk−q)(ψ−+
q + 2ψzzq ) ,(87)

where

ψ−+
q =

∑
ij

〈S−
i S

+
j 〉 exp[iq(Ri −Rj)] .

It is seen that due to the correct definition of generalized mean fields (82) we get the spin
excitation spectrum in a general way. In the hydrodynamic limit, it leads to ω(k) ∼ k2.
The procedure is straightforward, and the details are left as an exercise.

Let us remind that till now no approximation has been made. The expressions (84),
(85), and (86) are very useful as the starting point for approximate calculation of the
self-energy, a determination of which can only be approximate. To do this, it is first
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necessary to express, using the spectral theorem (26), the mass operator (84) in terms of
correlation functions

〈2Sz〉Mk(ω) =
1
2π

∫ +∞

−∞

dω′

ω − ω′ (exp[βω′] − 1)
∫ +∞

−∞
dt exp[iω′t]N−1

∑
ijgl

JigJlj ·(88)

· exp[ik(Ri −Rj)] · 1
〈2Sz〉 〈((S

+
l (t)Szj (t) − S+

j (t)Szl (t))
(ir))†|(S+

i S
z
g − S+

g S
z
i )

(ir)〉(p) .

This representation is exact, and only the algebraic properties were used to derive it.
Thus, the expression for the analytic structure of the single-particle GF (or the propaga-
tor) can be deduced without any approximation. A characteristic feature of eq. (84) is
that it involves the higher-order GFs. A whole hierarchy of equations involving higher-
order GFs could thus be rewritten compactly. Moreover, it not only gives a convenient
alternative representation, but avoids some of the algebraic complexities of higher-order
Green-function theories. Objective of the present consideration is to give a plausible
self-consistent scheme of the approximate calculation of the self-energy within the IGF
method. To this end, we should express the higher-order GFs in terms of the initial ones,
i.e. find the relevant approximate functional form

M ≈ F [G].

It is clear that this can be done in many ways. As a start, let us consider how to express
higher-order correlation function in (88) in terms of the low-order ones. We use the
following form [47]:

〈 ((S+
l (t)Szj (t) − S+

j (t)Szl (t))
(ir))†|(S+

i S
z
g − S+

g S
z
i )

(ir)〉(p) ≈(89)

≈ ψzzjg (t)ψ
−+
li (t) − ψzzlg (t)ψ−+

ji (t) − ψzzji (t)ψ
−+
lg (t) + ψzzli (t)ψ−+

jg (t) .

We find

〈2Sz〉Mk(ω) =
1
2π

∫ +∞

−∞

dω′

ω − ω′ (exp[βω′] − 1)
∫ +∞

−∞
dt exp[iω′t] ·(90)

· N−1
∑
ijgl

JigJlj exp[ik(Ri −Rj)]
1

〈2Sz〉
(
ψzzjg (t)ψ

−+
li (t) −(91)

−ψzzlg (t)ψ−+
ji (t) − ψzzji (t)ψ

−+
lg (t) + ψzzli (t)ψ−+

jg (t)
)
.

It is reasonable to approximate the longitudinal correlation function by its static value
ψzzji (t) ≈ ψzzji (0). The transversal spin correlation functions are given by the expression

ψ−+
ji (t) =

∫ ∞

−∞

dω
2π

[exp[βω] − 1]−1 exp[iωt](−2Im 〈〈S+
i |S−

j 〉〉ω+iε) .(92)

After the substitution of eq. (92) into eq. (90) for the self-energy, we find an approxi-
mate expression in the self-consistent form, which, together with the exact Dyson equa-
tion (85), constitute a self-consistent system of equations for the calculation of the GF.
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As an example, we start the calculation procedure (which can be made iterative) with
the simplest first “trial” expression

(−2Im 〈〈S+
i |S−

j 〉〉ω+iε) ≈ δ(ω − ω(k)) .

After some algebraic transformations we find

〈2Sz〉Mk(ω) ≈ N−1
∑
q

(Jq − Jk−q)2(ω − ω(q − k))−1ψzzq .(93)

This expression gives a compact representation for the self-energy of the spin-wave prop-
agator in a Heisenberg ferromagnet. The above calculations show that the inelastic
spin-wave scattering effects influence the single-particle spin-wave excitation energy

ω(k, T ) = ω(k) + ReMk(ω(k))

and the energy width

Γk(T ) = ImMk(ω(k)) .

Both these quantities are observable, in principle, via the ferromagnetic resonance or
inelastic scattering of neutrons. There is no time to go into details of this aspect of
spin-wave interaction effects. It is worthy to note only that it is well known that spin-
wave interactions in ferromagnetic insulators have a relatively well-established theoretical
foundation, in contrast to the situation with antiferromagnets.

7. – Heisenberg antiferromagnet at finite temperatures

As is mentioned above, in this article, we describe the foundation of the IGF method,
which is based on the equation-of-motion approach. The strength of this approach lies in
its flexibility and applicability to systems with complex spectra and strong interaction.
The microscopic theory of the Heisenberg antiferromagnet is of great interest from the
point of view of application to any novel many-body technique. This is not only because of
the interesting nature of the phenomenon itself but also because of the intrinsic difficulty
of solving the problem self-consistently in a wide range of temperatures. In this section,
we briefly describe how the generalized mean fields should be constructed for the case
of the Heisenberg antiferromagnet, which become very complicated when one uses other
many-body methods, like the diagrammatic technique [89]. Within our IGF scheme,
however, the calculations of quasi-particle spectra seem feasible and very compact.

7.1. Hamiltonian of the model . – The problem to be considered is the many-body
quasi-particle dynamics of the system described by the Hamiltonian [46]

H = −1
2

∑
ij

∑
αα′

Jαα
′
(i− j)+Siα+Sjα′ = −1

2

∑
q

∑
αα′

Jαα
′

q
+Sqα+S−qα′ .(94)

This is the Heisenberg-Neel model of an isotropic two-sublattice antiferromagnet (the
notation is slightly more general than in subsubsect. 4.1.2). Here Siα is a spin operator
situated on site i of sublattice α, and Jαα

′
(i− j) is the exchange energy between atoms
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on sites Riα and Rjα′ ; α, α′ takes two values (a, b). It is assumed that all of the atoms
on sublattice α are identical, with spin magnitude Sα. It should be noted that, in
principle, no restrictions are placed in the Hamiltonian (94) on the number of sublattices,
or the number of sites on a sublattice. What is important is that sublattices are to be
distinguished on the basis of differences in local magnetic characteristics rather than
merely differences in geometrical or chemical characteristics.

Let us introduce the spin operators S±
iα = Sxiα ± iSyiα. Then the commutation rules

for spin operators are

[S+
iα, S

−
jα′ ]− = 2(Sziα)δijδαα′ ; [S∓

iα, S
z
jα′ ]− = ±S∓

iαδijδαα′ .

For an antiferromagnet, an exact ground state is not known. Neel [68] introduced the
model concept of two mutually interpenetrating sublattices to explain the behaviour
of the susceptibility of antiferromagnets. However, the ground state in the form of two
sublattices (the Neel state) is only a classical approximation. In contrast to ferromagnets,
in which the mean molecular field is approximated relatively reasonably by a function
homogeneous and proportional to the magnetisation, in ferri- and antiferromagnets, the
mean molecular field is strongly inhomogeneous. The local molecular field of Neel [68]
is a more general concept. Here, we present the calculations [30] of the quasi-particle
spectrum and damping of a Heisenberg antiferromagnet in the framework of the IGF
method.

In what follows, it is convenient to rewrite (94) in the form

H = −1
2

∑
q

∑
αα′

Iαα
′

q (S+
qαS

−
−qα′ + SzqαS

z
−qα′) ,(95)

where

Iαα
′

q = 1/2(Jαα
′

q + Jα
′α

−q ) .

It will be shown that the use of “anomalous averages” which fix the Neel vacuum makes
it possible to determine uniquely generalized mean fields and to calculate, in a very com-
pact manner, the spectrum of spin-wave excitations and their damping due to inelastic
magnon-magnon scattering processes. A transformation from the spin operators to Bose
(or Pauli) operators is not required.

7.2. Quasi-particle dynamics of Heisenberg antiferromagnet . – In this subsection, to
make the discussion more concrete, we consider the retarded GF of localized spins defined
as GAB(t − t′) = 〈〈A(t), B(t′)〉〉. Our attention is focused on the spin dynamics of the
model. To describe the spin dynamics of the model (95) self-consistently, one should take
into account the full algebra of relevant operators of the suitable “spin modes” (“relevant
degrees of freedom”) which are appropriate for the case. This relevant algebra should be

described by the “spinor” A =
(S+

ka

S+
kb

)
, B = A†, according to the IGF strategy of sect. 3.

Once this has been done, we must introduce the generalized matrix GF of the form

( 〈〈S+
ka|S−

−ka〉〉 〈〈S+
ka|S−

−kb〉〉
〈〈S+

kb|S−
−ka〉〉 〈〈S+

kb|S−
−kb〉〉

)
= Ĝ(k;ω) .(96)
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To show the advantages of the IGF in the most full form, we carry out the calculations
in the matrix form.

To demonstrate the utility of the IGF method, we consider the following steps in a
more detailed form. Differentiating the GF 〈〈S+

ka|B〉〉 with respect to the first time, t,
we find

ω

〈〈
S+
ka|

(
S−
−ka

S−
−kb

)〉〉
ω

=(97)

=
{

2〈Sza〉
0

}
+

1
N1/2

∑
q

Iabq 〈〈Sabkq |Bab〉〉ω +
1

N1/2

∑
q

Iaaq 〈〈Saakq |Bab〉〉ω ,

where Sabkq = (S+
k−q,aS

z
qb − S+

qbS
z
k−q,a).

In (97), we introduced the notation

Bab =
{
S−
−ka

S−
−kb

}
; Bba =

{
S−
−kb

S−
−ka

}
.

Let us define the irreducible (ir) operators as (equivalently, it is possible to define the
irreducible GFs)

(Sabkq)
(ir) = Sabkq −Aabq S

+
ka +Abak−qS

+
kb ,(98)

(Szqα)
(ir) = Szqα −N1/2〈Szα〉δq,0 .(99)

The choice of the irreducible parts is uniquely determined by the “orthogonality” con-
straint (31) 〈[

(Sabkq)
(ir),

(
S−
−ka

S−
−kb

)]〉
= 0 .(100)

From eq. (100) we find that

Aabq =
2〈(Sz−qa)(ir)(Szqb)(ir)〉 + 〈S−

−qaS
+
qb〉

2N1/2〈Sza〉
.(101)

By using the definition of the irreducible parts (98), the equation of motion (97) can be
exactly transformed to the following form:

(ω − ωaa)〈〈S+
ka|Bab〉〉ω + ωab〈〈S+

kb|Bab〉〉ω =
{

2〈Sza〉
0

}
+ 〈〈Φ(ir)

a (k)|Bab〉〉ω ,(102)

(ω − ωbb)〈〈S+
kb|Bba〉〉ω + ωba〈〈S+

ka|Bba〉〉ω =
{

2〈Szb 〉
0

}
+ 〈〈Φ(ir)

b (k)|Bba〉〉ω .(103)

The following notation was used:

ωaa =
(
(Iaa0 − Iaak )〈Sza〉 + Iab0 〈Szb 〉 +

∑
q

[(Iaaq − Iaak−q)A
aa
Nq + Iabq AabNq]

)
,(104)
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ωab =
(
Iabk 〈Sza〉 +

∑
q

Iabk−qA
ba
Nq

)
,(105)

AαβNq = N−1/2Aαβq ,(106)

Φ(ir)
a (k) = N−1/2

∑
q

∑
γ=a,b

Iαγq [S+
k−q,a(S

z
qγ)

(ir) − S+
qγ(S

z
k−q,a)

(ir)](ir) .(107)

To calculate the irreducible GFs on the right-hand sides of eqs. (102) and (103), we use
the device of differentiating with respect to the second time t′. After introduction of the
corresponding irreducible parts into the resulting equations, the system of equations can
be represented in the matrix form which can be identically transformed to the standard
form (34)

Ĝ(k, ω) = Ĝ0(k, ω) + Ĝ0(k, ω)P̂ (k, ω)Ĝ0(k, ω) .(108)

Here we introduced the generalized mean-field (GMF) GF G0 and the scattering operator
P according to the following definitions:

Ĝ0 = Ω̂−1Î ,(109)

P̂ =
1

4〈Sza〉2
( 〈〈Φ(ir)

a (k)|Φ(ir)†
a (k)〉〉 〈〈Φ(ir)

a (k)|Φ(ir)†
b (k)〉〉

〈〈Φ(ir)
b (k)|Φ(ir)†

a (k)〉〉 〈〈Φ(ir)
b (k)|Φ(ir)†

b (k)〉〉

)
,(110)

where

Ω̂ =
(

(ω − ωaa) ωab
ωab (ω − ωbb)

)
.(111)

The Dyson equation can be written exactly in the form (37) where the mass operator M
is of the form

M̂(k, ω) = (P̂ (k, ω))(p) .(112)

It follows from the Dyson equation that

P̂ (k, ω) = M̂(k, ω) + M̂(k, ω)Ĝ0(k, ω)P̂ (k, ω) .

Thus, on the basis of these relations, we can speak of the mass operator M as the
proper part of the operator P by analogy with the diagram technique, in which the mass
operator is the connected part of the scattering operator. As is shown in sect. 3, the
formal solution of the Dyson equation is of the form (38). Hence, the determination of
the full GF Ĝ was reduced to the determination of Ĝ0 and M̂ .

7.3. Generalized mean-field GF . – From the definition (109), the GF matrix in the
generalized mean-field approximation reads

Ĝ0 =
(
Gaa0 (k, ω) Gab0 (k, ω)
Gba0 (k, ω) Gbb0 (k, ω)

)
=

2〈Sza〉
det Ω̂

(
(ω − ωaa) ωab

ωab (ω − ωbb)

)
,(113)
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where

detΩ̂ = (ω − ωaa)(ω − ωbb) − ωaaωab .

We find the poles of GF (113) from the equation

det Ω̂ = 0

from which it follows that

ω±(k) = ±
√

(ω2
aa(k) − ω2

ab(k)) .(114)

It is convenient to adopt here the Bogoliubov (u, v)-transformation notation by analogy
with that of subsubsect. 4.1.2. The elements of the matrix GF G0(k, ω) are found to be

Gaa0 (k, ω) = 2〈Sza〉
[ u2(k)
ω − ω+(k)

− v2(k)
ω − ω−(k)

]
= Gbb0 (k,−ω) ,(115)

Gab0 (k, ω) = 2〈Sza〉
[−u(k)v(k)
ω − ω+(k)

+
u(k)v(k)
ω − ω−(k)

]
= Gba0 (k, ω) ,(116)

where

u2(k) = 1/2[(1 − γ2k)
−1/2 + 1]; v2(k) = 1/2[(1 − γ2k)

−1/2 − 1] ,(117)

γk =
1
z

∑
i

exp[ikRi]; Iaaq = Ibbq = 0 .

The simplest assumption is that each sublattice is s.c. and ωαα(k) = 0 (α = a, b).
Although that we work in the GFs formalism, our expressions (115), (116) are in ac-
cordance with the results of the Bogoliubov (u, v)-transformation, but, of course, the
present derivation is more general. However, it is possible to say that we diagonalized
the generalized mean-field GF by introducing a new set of operators. We used the nota-
tion

S+
1 (k) = u(k)S+

ka + v(k)S+
kb; S+

2 (k) = v(k)S+
ka + u(k)S+

kb .(118)

This notation permits us to write down the results in a compact and convenient form,
but all calculations can be done in the initial notation too.

The spectrum of elementary excitations in the GMF approximation for an arbitrary
spin S is of the form

ω(k) = Iz〈Sza〉
[
1 − 1

N1/2〈Sza〉
∑
q

γqA
ab
q

]√
(1 − γ2k) ,(119)

where Iq = zIγq, and z is the number of nearest neighbors in the lattice. The first term
in (119) corresponds to the Tyablikov approximation (cf. (48)). The second term in (119)
describes the elastic scattering of the spin-wave quasi-particles. At low temperatures, the
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fluctuations of the longitudinal spin components are small, and, therefore, for (119) we
obtain

ω(k) ≈ ISz[1 − C(T )]
√

(1 − γ2k) .(120)

The function C(T ) determines the temperature dependence of the spin-wave spectrum

C(T ) =
1

2NS2

∑
q

(〈S−
−qaS

+
qa〉 + γq〈S−

−qaS
+
qb〉) .(121)

In the case when C(T ) → 0, we obtain the result of the Tyablikov decoupling for the
spectrum of the antiferromagnons

ω(k) ≈ I〈Sza〉z
√

(1 − γ2k) .(122)

In the hydrodynamic limit, when ω(k) ∼ D(T )|+k|, we can conclude that the stiffness
constant D(T ) = zIS(1 − C(T )) for an antiferromagnet decreases with temperature
because of the elastic magnon-magnon scattering as T 4. To estimate the contribution of
the inelastic-scattering processes, it is necessary to take into account the corrections due
to the mass operator.

7.4. Damping of quasi-particle excitations. – An antiferromagnet is a system with a
complicated quasi-particle spectrum. The calculation of the damping due to inelastic-
scattering processes in a system of that sort has some important aspects. When calcu-
lating the damping, it is necessary to take into account the contributions from all matrix
elements of the mass operator M

M = G−1
0 −G−1 .

It is then convenient to use the representation in which the generalized mean field GF
has a diagonal form. In terms of the new operators S1 and S2, the GF G takes the form

G̃(k;ω) =
( 〈〈S̃+

1 (k)|S̃−
1 (−k)〉〉 〈〈S̃+

1 (k)|S̃−
2 (−k)〉〉

〈〈S̃+
2 (k)|S̃−

1 (−k)〉〉 〈〈S̃+
2 (k)|S̃−

2 (−k)〉〉
)

=
(
G11 G12

G21 G22

)
.

In other words, the damping of the quasi-particle excitations is determined on the basis
of a GF of the form

G11(k, ω) =
2〈Sza〉

ω − ω(k) − 2〈Sza〉Σ(k, ω)
.(123)

Here, the self-energy operator Σ(k, ω) is determined by the expression

Σ(k, ω) = M11(k, ω) − 2〈Sza〉M12(k, ω)M21(k, ω)
ω + ω(k) − 2〈Sza〉M22(k, ω)

.(124)

In the case when k, ω → 0, one can be restricted to the approximation

Σ(k, ω) ≈ M11(k, ω) = u2(k)Maa + v(k)u(k)(Mab +Mba) + v2(k)Mbb .(125)
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It follows from (112) that to calculate the damping, it is necessary to find the GFs
〈〈Φ(ir)

α (k)|Φ(ir)†
β (k)〉〉. As an example, we consider the calculation of one of them. By

means of the spectral theorem (27), we can express the GF in terms of the correlation
function 〈Φ(ir)†

a (k)Φ(ir)
a (k, t)〉. We have

〈〈 Φ(ir)
a (k) |Φ(ir)†

a (k)〉〉 =(126)

=
1
2π

∫ +∞

−∞

dω′

ω − ω′ (exp[βω′] − 1)
∫ +∞

−∞
dt exp[iω′t]〈Φ(ir)†

a (k)Φ(ir)
a (k, t)〉 .

Thus, it is necessary to find a workable “trial” approximation for the correlation function
on the r.h.s. of (127). We consider an approximation of the following form:

〈( Sz−qb )(ir)S−
−(k−q′)aS

+
(k−q′)a(t)(S

z
q′b(t))

(ir)〉 ≈(127)

≈ 1
4NS2

∑
p

(
ψ−+
k−p,aa(t)ψ

−+
q+p,bb(t)ψ

+−
p,bb(t) + ψ−+

k−q,ab(t)ψ
−+
q+p,ab(t)ψ

+−
p,bb(t)

)
δq,q′ ,

where ψ−+
q,ab(t) = 〈S−

−qaS
+
qb(t)〉. By analogy with the diagram technique, we can say

that the approximation (127) corresponds to the neglect of the vertex corrections to the
magnon-magnon inelastic collisions. Using (127) in (127), we obtain

〈〈Φ(ir)
a (k)|Φ(ir)†

a (k)〉〉 ≈ 1
16NS4

∑
qp

∫
dω1dω2dω3

ω − ω1 − ω2 + ω3
F (ω1, ω2, ω3) ·(128)

·
[
− 1
π

ImGaa(k − q, ω1)
] [

− 1
π

ImGbb(q + p, ω2)
] [

− 1
π

ImGbb(p, ω3)
]
,

where

F (ω1, ω2, ω3) = N(ω2)[N(ω3) −N(ω1)] + [1 +N(ω1)]N(ω3) .(129)

Equations (37), (112), and (128) constitute a self-consistent system of equations. To solve
this system of equations, we can, in principle, use any convenient initial representation
for the GF, substituting it into the right-hand side of eq. (128). The system can then be
solved iteratively. To estimate the damping, it is usually sufficient, as the first iteration,
to use the simplest single-pole approximation

− 1
π

ImG(k, ω) ≈ δ(ω − ω(k)) .(130)

As a result, for the damping of the spin-wave excitations we obtain

Γ (k, ω) = −2S ImΣ(k, ω) =
π

N
(zI)2(1 − e(−βω)) ·(131)

·
∑
qp

Np(1 +Nq+p)(1 +Nk−q)M11(k, p; k − q, p+ q)δ(ω − ω(k − q) + ω(p)) .

The explicit expression for M11 is given in ref. [30]. In our approach, it is possible to take
into account the inelastic scattering of spin waves due to scattering by the longitudinal
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spin fluctuations too [30]. In general, the correct estimates of the temperature dependence
of the damping of antiferromagnons depend strongly on the reduced temperature and
energy scales and are rather a nontrivial task. However, under the normal conditions,
the damping is weak ω(k)/Γ ∼ 102–103, and the antiferromagnons are the well-defined
quasi-particle excitations [90].

In summary, in this section, we have shown that the IGF method permits us to
calculate the spectrum and the damping for a two-sublattice Heisenberg antiferromagnet
in a wide range of temperatures in a compact and self-consistent way. At the same time,
a certain advantage is that all the calculation can be made in the representation of spin
operators for an arbitrary spin S. The theory we have developed can be directly extended
to the case of a large number of magnetic sublattices with inequivalent spins, i.e. it can
be used to describe the complex ferrimagnets.

In the framework of our IGF approach, it was shown that the mean fields in an
antiferromagnet must include the “anomalous” averages which represent the local nature
of the Neel molecular fields. Thus, the mean field in an antiferromagnet, like the mean
field in a superconductor, has a more complicated structure.

8. – Quasi-particle dynamics of lattice fermion models

8.1. Hubbard model. Weak correlation. – The concept of GMFs and the relevant
algebra of operators from which GFs are constructed are important for our treatment
of electron correlations in solids. It is convenient (and much shorter) to discuss these
concepts for weakly and strongly correlated cases separately. First, we should construct
a suitable state vector space of a many-body system [10]. The fundamental assumption
implies that states of a system of interacting particles can be expanded in terms of states
of non-interacting particles [10]. This approach originates from perturbation theory and
finds support for weakly interacting many-particle systems. For the strongly correlated
case, this approach needs a suitable reformulation, and just at this point, the right
definition of the GMFs is vital. Let us consider the weakly correlated Hubbard model
(49). In some respect, this case is similar to the ordinary interacting electron gas but
with very local singular interaction. The difference is in the lattice (Wannier) character
of electron states. It is shown below that the usual creation a†iσ and annihilation aiσ
second-quantized operators with the properties

a†iΨ
(0) = Ψ(1)

i ; aiΨ(1) = Ψ(0) ,

aiΨ(0) = 0; ajΨ
(1)
i = 0 (i �= j) ,

are suitable variables for description of a system under consideration. Here Ψ(0) and Ψ(1)

are vacuum and single-particle states, respectively. The question now is how to describe
our system in terms of quasi-particles. For a translationally invariant system, to describe
the low-lying excitations of a system in terms of quasi-particles [4], one has to choose
eigenstates such that they all correspond to a definite momentum. For the single-band
Hubbard model (49), the exact transformation reads

a�kσ = N−1/2
∑
i

exp[−i+k +Ri]aiσ.
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Note that for a degenerate band model, a more general transformation is necessary [91].
Then the Hubbard Hamiltonian (49) in the Bloch vector state space is given by

H =
∑
kσ

ε(k)a†kσakσ + U/2N
∑
pqrs

a†p+r−qσapσa
†
q−σar−σ .(132)

If the interaction is weak, the algebra of relevant operators is very simple: it is an
algebra of a non-interacting fermion system (akσ, a

†
kσ, nkσ = a†kσakσ). To calculate of the

electron quasi-particle spectrum of the Hubbard model in this limit, let us consider the
single-electron GF defined as

Gkσ(t− t′) = 〈〈akσ, a†kσ〉〉 = −iθ(t− t′)〈[akσ(t), a†kσ(t′)]+〉 .(133)

The equation of motion for the Fourier transform of GF Gkσ(ω) is of the form

(ω − εk)Gkσ(ω) = 1 + U/N
∑
pq

〈〈ak+pσa†p+q−σaq−σ|a†kσ〉〉ω .(134)

Let us introduce an “irreducible” GF in the following way:

(ir)〈〈ak+pσa†p+q−σaq−σ|a†kσ〉〉ω = 〈〈ak+pσa†p+q−σaq−σ|a†kσ〉〉ω − δp,0〈nq−σ〉Gkσ .(135)

The irreducible (ir) GF in (135) is defined so that it cannot be reduced to GF of lower
order with respect to the number of fermion operators by an arbitrary pairing of operators
or, in other words, by any kind of decoupling. Substituting (135) into (134), we obtain

Gkσ(ω) = GMF
kσ (ω) +(136)

+GMF
kσ (ω)U/N

∑
pq

(ir)〈〈ak+pσa†p+q−σaq−σ|a†kσ〉〉ω .

Here we introduced the notation

GMF
kσ (ω) = (ω − ε(kσ))−1; ε(kσ) = ε(k) + U/N

∑
q

〈nq−σ〉 .(137)

In this paper, for brevity, we confine ourselves to considering the paramagnetic solutions,
i.e. 〈nσ〉 = 〈n−σ〉. To calculate the higher-order GF on the r.h.s. of (136), we have to
write the equation of motion obtained by means of differentiation with respect to the
second variable t′. Constraint (31) allows us to remove the inhomogeneous term from
this equation for d

dt′
(ir)〈〈A(t), a†kσ(t

′)〉〉.
For the Fourier components, we have

(ω − ε(k))(ir)〈〈A|a†kσ〉〉ω = 〈(ir)[A, a†kσ]+〉 + U/N
∑
rs

(ir)〈〈A|a†r−σar+s−σa†k+sσ〉〉ω.(138)

The anticommutator in (138) is calculated on the basis of the definition of the irreducible
part

〈 [(ir) (ak+pσa
†
p+q−σaq−σ), a

†
kσ]+〉 =(139)

= 〈[ak+pσa†p+q−σaq−σ − 〈a†p+q−σaq−σ〉ak+pσ, a†kσ]+〉 = 0 .
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If one introduces the irreducible part for the r.h.s. operators by analogy with expres-
sion (135), the equation of motion (134) takes the following exact form (cf. eq. (34)):

Gkσ(ω) = GMF
kσ (ω) +GMF

kσ (ω)Pkσ(ω)GMF
kσ (ω) ,(140)

where we introduced the following notation for the operator P (35):

Pkσ(ω) =
U2

N2

∑
pqrs

D
(ir)
kσ (p, q|r, s, ;ω) =(141)

=
U2

N2

∑
pqrs

((ir)〈〈ak+pσa†p+q−σaq−σ|a†r−σar+s−σa†k+sσ〉〉(ir)ω ) .

To define the self-energy operator according to (36), one should separate the “proper”
part in the following way:

D
(ir)
kσ (p, q|r, s;ω) = L

(ir)
kσ (p, q|r, s;ω) +(142)

+
U2

N2

∑
r′s′p′q′

L
(ir)
kσ (p, q|r′s′;ω)GMF

kσ (ω)D(ir)
kσ (p′, q′|r, s;ω) .

Here L
(ir)
kσ (p, q|r, s;ω) is the “proper” part of GF D

(ir)
kσ (p, q|r, s;ω) which, in accordance

with the definition (36), cannot be reduced to the lower-order one by any type of decou-
pling. We find

Gkσ = GMF
kσ (ω) +GMF

kσ (ω)Mkσ(ω)Gk,σ(ω) .(143)

Equation (143) is the Dyson equation for the single-particle double-time thermal GF.
According to (38), it has the formal solution

Gkσ(ω) = [ω − ε(kσ) −Mkσ(ω)]−1 ,(144)

where the self-energy operator M is given by

Mkσ(ω) =
U2

N2

∑
pqrs

L
(ir)
kσ (p, q|r, s;ω) =(145)

=
U2

N2

∑
pqrs

((ir)〈〈ak+pσa†p+q−σaq−σ|a†r−σar+s−σa†k+sσ〉〉(ir))(p) .
We wrote explicitly eq. (141) for P and eq. (145) for M to illustrate the general arguments
of sect. 3 and to give concrete equations for determining both the quantities, P and M .

The latter expression (145) is an exact representation (no decoupling was made till
now) for the self-energy in terms of higher-order GF up to second order in U (for the
consideration of higher-order equations of motion, see ref. [25]). The explicit difference
between P and M follows from the functional form (38). Thus, in contrast to the
standard equation-of-motion approach, the calculation of full GF was substituted by the
calculation of the mean-field GF GMF and the self-energy operator M . The main reason
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for this method of calculation is that the decoupling is only introduced into the self-energy
operator, as it will be shown in a detailed form below. The formal solution of the Dyson
equation (38) determines the right reference frame for the formation of the quasi-particle
spectrum due to its own correct functional structure. In the standard equation-of-motion
approach, that structure could be lost by using decoupling approximations before arriving
at the correct functional structure of the formal solution of the Dyson equation. This is
a crucial point of the IGF method.

The energies of electron states in the mean-field approximation are given by the poles
of GMF . Now let us consider the damping effects and finite lifetimes. To find an explicit
expression for the self-energy M (145), we have to evaluate approximately the higher-
order GF in it. It will be shown below that the IGF method permits one to derive
the damping in a self-consistent way simply and much more generally than within other
formulations. First, it is convenient to write down the GF in (145) in terms of correlation
functions by using the spectral theorem (26)

〈〈 ak+pσa†p+q−σaq−σ|a†k+sσa†r−σar+s−σ〉〉ω =(146)

=
1
2π

∫ +∞

−∞

dω′

ω − ω′ (exp[βω′] + 1)
∫ +∞

−∞
exp[iω′t] ·

· 〈a†k+sσ(t)a†r−σ(t)ar+s−σ(t)ak+pσa†p+q−σaq−σ〉 .

Further insight is gained if we select the suitable relevant “trial” approximation for the
correlation function on the r.h.s. of (146). In this paper, we show that the earlier for-
mulations based on the decoupling or/and diagrammatic methods can be obtained from
our technique but in a self-consistent way. It is clear that a relevant trial approximation
for the correlation function in (146) can be chosen in many ways. For example, the
reasonable and workable one can be the following “pair approximation” that is especially
suitable for a low density of quasi-particles:

〈 a†k+sσ(t)a
†
r−σ(t)ar+s−σ(t)ak+pσa

†
p+q−σaq−σ〉(ir) ≈(147)

≈ 〈a†k+pσ(t)ak+pσ〉〈a†q−σ(t)aq−σ〉〈ap+q−σ(t)a†p+q−σ〉δk+s,k+pδr,qδr+s,p+q .

Using (147) and (146) in (145) we obtain the self-consistent approximate expression for
the self-energy operator (the self-consistency means that we express approximately the
self-energy operator in terms of the initial GF, and, in principle, one can obtain the
required solution by a suitable iteration procedure):

Mkσ(ω) =
U2

N2

∑
pq

∫
dω1dω2dω3

ω + ω1 − ω2 − ω3
·(148)

·
[
n(ω2)n(ω3) + n(ω1)

(
1 − n(ω2) − n(ω3)

)]
gp+q−σ(ω1)gk+pσ(ω2)gq−σ(ω3) ,

where we used the notation

gkσ(ω) = − 1
π

ImGkσ(ω + iε); n(ω) = [exp[βω] + 1]−1 .

Equations (148) and (143) constitute a closed self-consistent system of equations for the
single-electron GF of the Hubbard model in the weakly correlated limit. In principle, we
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can use, on the r.h.s. of (148), any workable first iteration-step form of the GF and find
a solution by iteration (see Appendix D). It is most convenient to choose, as the first
iteration step, the following simple one-pole approximation:

gkσ(ω) ≈ δ(ω − ε(kσ)) .(149)

Then, using (149) in (148), we get, for the self-energy, the explicit and compact expression

Mkσ(ω) =
U2

N2

∑
pq

np+q−σ(1 − nk+pσ − nq−σ) + nk+pσnq−σ
ω + ε(p+ qσ) − ε(k + pσ) − ε(qσ)

.(150)

Formula (150) for the self-energy operator shows the role of correlation effects (inelastic-
scattering processes) in the formation of quasi-particle spectrum of the Hubbard model.
This formula can be derived by several different methods, including perturbation theory.
Here we derived it from our IGF formalism as a known limiting case. The numerical
calculations of the typical behaviour of real and imaginary parts of the self-energy (150)
were performed [91,31] for the model density of states of the FCC lattice. These calcula-
tions and many other (see e.g., [92, 93]) show clearly that the conventional one-electron
approximation of the band theory is not always a sufficiently good approximation for
transition metals like nickel. A more concrete discussion of the numerical calculations
and their comparison with experiments deserve a separate consideration and will be
considered elsewhere (for a detailed recent discussion, see [87]).

Although the solution deduced above is a good evidence for the efficiency of the IGF
formalism, there is one more stringent test of the method that we can perform. It is
instructive to examine other types of possible trial solutions for the six-operator correla-
tion function in eq. (146). The approximation we propose now reflects the interference
between the one-particle branch of the spectrum and the collective ones:

〈 a†k+sσ(t)a
†
r−σ(t)ar+s−σ(t)ak+pσa

†
p+q−σaq−σ〉(ir) ≈(151)

≈ 〈a†k+sσ(t)ak+pσ〉〈a†r−σ(t)ar+s−σ(t)a†p+q−σaq−σ〉 +

+ 〈ar+s−σ(t)a†p+q−σ〉〈a†k+sσ(t)a†r−σ(t)ak+pσaq−σ〉 +

+ 〈a†r−σ(t)aq−σ〉〈a†k+sσ(t)ar+s−σ(t)ak+pσa†p+q−σ〉 .

It is seen that the three contributions in this trial solution describe the self-energy cor-
rections that take into account the collective motions of electron density, the spin density
and the density of “doubles”, respectively. An essential feature of this approximation
is that a correct calculation of the single-electron quasi-particle spectra with damping
requires a suitable incorporation of the influence of collective degrees of freedom on
the single-particle ones. The most interesting contribution comes from spin degrees of
freedom, since the correlated systems are often magnetic or have very well developed
magnetic fluctuations.

We follow the above steps and calculate the self-energy operator (145) as

Mkσ(ω) =
U2

N

∫ +∞

−∞
dω1dω2

1 +N(ω1) − n(ω2)
ω − ω1 − ω2

·(152)

·
∑
i,j

exp[−i+k(+Ri − +Rj)]
(
− 1
π

Im 〈〈S±
i |S∓

j 〉〉ω1

)
·
(
− 1
π

Im 〈〈ai−σ|a†j−σ〉〉ω2

)
,
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where the following notation was used:

S+
i = a†i↑ai↓; S−

i = a†i↓ai↑ .

It is possible to rewrite (152) in a more convenient way:

Mkσ(ω) =
U2

N

∑
q

∫
dω′

(
cot

ω − ω′

2T
+ tan

ω′

2T

)
·(153)

·
(
− 1
π

Imχ∓±(k − q, ω − ω′)gqσ(ω′)
)
.

Equations (153) and (143) constitute again another self-consistent system of equations for
the single-particle GF of the Hubbard model. Note that both the expressions for the self-
energy depend on the quasi-momentum; in other words, the approximate procedure does
not break the momentum conservation law. The fundamental importance of eqs. (153)
and (148) can be appreciated by examining the problem of the definition of the Fermi
surface. It is rather clear, because the poles ω(k, σ) = ε(k, σ) − iΓk of GF (144) are
determined by the equation

ω − ε(kσ) − Re [Mkσ(ω)] = 0 .

It can be shown quite generally that Luttinger’s definition of the true Fermi surface [4]
is valid in the framework of the present theory. It is worthy to note that for electrons
in a crystal where there is a band index, and a quasi-momentum, the definition of the
Fermi surface is a little more complicated than the single-band one. Before the single
particle energies and Fermi surface are known, one should carry out a diagonalization in
the band index.

8.2. Hubbard model. Strong correlation. – Being convinced that the IGF method can
be applied successfully to the weakly correlated Hubbard model, we now show that the
IFG approach can be extended to the case of an arbitrarily strong but finite interac-
tion. This development incorporates main advantages of the IGF scheme and proves its
efficiency and flexibility.

When studying the electron quasi-particle spectrum of strongly correlated systems,
one should take care of at least three facts of major importance:

i) The ground state is reconstructed radically as compared with the weakly correlated
case. This fact makes it necessary to redefine single-particle states. Due to the
strong correlation, the initial algebra of operators is transformed into the new
algebra of complicated operators. In principle, in terms of the new operators, the
initial Hamiltonian can be rewritten as a bilinear form, and the generalized Wick
theorem can be formulated. It is very important to stress that the transformation to
the new algebra of relevant operators reflects some important internal symmetries
of the problem, and nowadays, this way of thinking is formulating in the elegant and
very powerful technique of the classification of the integrable models and exactly
soluble models (cf. [94]).

ii) The single-electron GF that describes dynamic properties, should have the two-pole
functional structure, which gives in the atomic limit, when the hopping integral
tends to zero, the exact two-level atomic solution.
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iii) The GMFs have, in the general case, a very non-trivial structure. The GMFs
functional, as a rule, cannot be expressed in terms of the functional of the mean
particle densities.

In this section, we consider the case of a large but finite Coulomb repulsion U in the
Hubbard Hamiltonian (49). Let us consider the single-particle GF (133) in the Wannier
basis

Gijσ(t− t′) = 〈〈aiσ(t); a†jσ(t′)〉〉 .(154)

It is convenient to introduce the new set of relevant operators [55]

diασ = nαi−σaiσ, (α = ±); n+iσ = niσ, n−
iσ = (1 − niσ);(155) ∑

nαiσ = 1; nαiσn
β
iσ = δαβn

α
iσ;

∑
α

diασ = aiσ .

The new operators diασ and d†jβσ have complicated commutation rules, namely,

[diασ, d
†
jβσ]+ = δijδαβn

α
i−σ .

The convenience of the new operators follows immediately if one writes down the equation
of motion for them

[diασ,H]− = Eαdiασ +
∑
ij

tij(nαi−σajσ + αaiσbij−σ) ,(156)

bijσ = (a†iσajσ − a†jσaiσ).

It is possible to interpret [54, 55] both contributions to this equation as alloy analogy
and resonance broadening corrections. Using the new operator algebra, it is possible
identically rewrite GF (154) in the following way:

Gijσ(ω) =
∑
αβ

〈〈diασ|d†jβσ〉〉ω =
∑
αβ

Fαβijσ(ω) .(157)

The equation of motion for the auxiliary matrix GF

Fαβijσ(ω) =
( 〈〈di+σ|d†j+σ〉〉ω 〈〈di+σ|d†j−σ〉〉ω
〈〈di−σ|d†j+σ〉〉ω 〈〈di−σ|d†j−σ〉〉ω

)
(158)

is of the following form:

(EFijσ(ω) − Iδij)αβ =
∑
l 
=i

til〈〈nαi−σalσ + αaiσbil−σ|d†jβσ〉〉ω ,(159)

where the following matrix notations was used:

E =
(

(ω − E+) 0
0 (ω − E−)

)
; I =

(
n+−σ 0
0 n−

−σ

)
.(160)
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In accordance with the general method of sect. 3, we introduce by definition the matrix
IGF:

D(ir)
il,j(ω) =

( 〈〈Z11|d†j+σ〉〉ω 〈〈Z12|d†j−σ〉〉ω
〈〈Z21|d†j+σ〉〉ω 〈〈Z22|d†j−σ〉〉ω

)
−(161)

−
∑
α′

([
A+α′
il

A−α′
il

]
[Fα

′+
ijσ Fα

′−
ijσ ] −

[
B+α′
li

B−α′
li

]
[Fα

′+
ljσ Fα

′−
ljσ ]

)
.

Here the notation

Z11 = Z12 = n+i−σalσ + aiσbil−σ; Z21 = Z22 = n−
i−σalσ − aiσbil−σ

was used. It is to be emphasized that the definition (159) is the most important and
crucial point of the whole our approach to description of the strong correlation. The
coefficients A and B are determined by the orthogonality constraint (31), namely,

〈[(D(ir)
il,j)αβ , d

†
jβσ]+〉 = 0 .(162)

After some algebra, we obtain from (162) (i �= j)

[Ail]αβ = α(〈d†iβ−σal−σ〉 + 〈di−β−σa†l−σ〉)(nβ−σ)−1 ,(163)

[Bli]αβ = [〈nβl−σnαi−σ〉 + αβ(〈aiσa†i−σal−σa†lσ〉 − 〈aiσai−σa†l−σa†lσ〉)](nβ−σ)−1 .

As previously, we introduce now GMF GF F0
ijσ; however, as it is clear from (163), the

actual definition of the GMF GF is very nontrivial. After the Fourier transformation,
we get (

F 0++
kσ F 0+−

kσ

F 0−+
kσ F 0−−

kσ

)
=

1
ab− cd

(
n+−σb n−

−σd
n+−σc n−

−σa

)
.(164)

The coefficients a, b, c, d are equal to

a

b
=

(
ω − E± −N−1

∑
p

ε(p)[A±±(−p) −B±±(p− q)]

)
,(165)

c

d
= N−1

∑
p

ε(p)[A∓±(−p) −B∓±(p− q)] .

Then, using the definition (158), we find the final expression for GMF GF

GMF
kσ (ω) =

ω − (n+−σE− + n−
−σE+) − λ(k)

(ω −E+ − n−
−σλ1(k))(ω − E− − n+−σλ2(k)) − n−

−σn
+
−σλ3(k)λ4(k)

.(166)

Here we introduced the following notation:

λ1(k)
λ2(k)

=
1

n∓
−σ

∑
p

ε(p)[A±±(−p) −B±±(p− k)] ,(167)
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λ3(k)
λ4(k)

=
1

n∓
−σ

∑
p

ε(p)[A±∓(−p) −B±∓(p− k)] ,(168)

λ(k) = (n−
−σ)

2(λ1 + λ3) + (n+−σ)
2(λ2 + λ4) .

From eq. (166) it is obvious that our two-pole solution is more general than the “Hub-
bard III” [55] solution and the Roth [61] solution. Our solution has the correct nonlocal
structure and, thus, takes into account the non-diagonal scattering matrix elements more
accurately. Those matrix elements describe the virtual “recombination” processes and re-
flect the extremely complicated structure of single-particle states which virtually include
a great number of intermediate scattering processes.

The spectrum of mean-field quasi-particle excitations follows from the poles of the
GF (166) and consists of two branches

ω
1
2
(k) = 1/2[(E+ − E− + a1 + b1) ±

√
(E+ + E− − a1 − b1)2 − 4cd] ,(169)

where a1 = ω − E± − a; b1 = ω − E± − b. Thus, the spectral weight function Akσ(ω)
of GF (166) consists of two peaks separated by the distance

ω1 − ω2 =
√

(U − a1 − b1)2 − cd ≈ U(1 − a1 − b1
U

) +O(γ) .(170)

For a deeper insight into the functional structure of the solution (166) and to compare
with other solutions, we rewrite (166) in the following form:

F0
kσ(ω) =


 ( a

n+
−σ

− db−1c
n+
−σ

)−1 d
a (

b
n−
−σ

− da−1c
n−
−σ

)−1

c
b (

a
n+
−σ

− db−1c
n+
−σ

)−1 ( b
n−
−σ

− db−1c
n−
−σ

)−1


(171)

from which we obtain for GMF
σ (k, ω)

GMF
kσ (ω) =

n+−σ(1 + cb−1)
a− db−1c

+
n−
−σ(1 + da−1)
b− ca−1d

≈(172)

≈ n−
−σ

ω − E− − n+−σW
−
k−σ

+
n+−σ

ω − E+ − n−
−σW

†
k−σ

,

where

n+−σn
−
−σW

±
k−σ = N−1

∑
ij

tij exp[−ik(Ri −Rj)] ·(173)

·
(
(〈a†i−σn±

iσaj−σ > +〈ai−σn∓
iσa

†
j−σ〉) +

+(〈n±
j−σn

±
i−σ〉 + 〈aiσa†i−σaj−σa†jσ〉 − 〈aiσai−σa†j−σa†jσ〉)

)
are the shifts for upper and lower splitted subbands due to the elastic scattering of
carriers in the generalized mean field. The quantities W± are functionals of the GMF.
The most important feature of the present solution of the strongly correlated Hubbard
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model is a very nontrivial structure of the mean-field renormalizations (172), which is
crucial for understanding the physics of strongly correlated systems. It is important to
emphasize that just this complicated form of GMF is only relevant to the essence of the
physics under consideration. The attempts to reduce the functional of GMF to a simpler
functional of the average density of electrons are incorrect from the point of view of real
physics of strongly correlated systems. This physics clearly shows that the mean-field
renormalizations cannot be expressed as functionals of the electron mean density. To
explain this statement, let us derive the “Hubbard I” solution [54] (54) from our GMF
solution (166). If we approximate (172) as

n+−σn
−
−σW

±(k) ≈ N−1
∑
ij

tijexp[−ik(Ri −Rj)]〈n±
j−σn

±
i−σ〉(174)

and make the additional approximation, namely,

〈nj−σni−σ〉 ≈ n2−σ

then solution (166) turns into the “Hubbard I” solution (54). This solution, as is well
known, is unrealistic from many points of view.

As to our solution (166), the second important aspect is that the parameters λi(k) do
not depend on frequency, since they depend essentially on elastic-scattering processes.
The dependence on frequency arises due to inelastic-scattering processes which are con-
tained in our self-energy operator. We proceed now with the derivation of the explicit
expression for the self-energy.

To calculate a high-order GF on the r.h.s. of (159), we should use the second time
variable (t′) differentiation of it again. If one introduces the irreducible parts for the
right-hand-side operators by analogy with the expression (161), the equation of motion
(159) can be rewritten exactly in the following form:

Fkσ(ω) = F0
kσ(ω) + F0

kσ(ω)Pkσ(ω)F0
kσ(ω) .(175)

Here the scattering operator P (36) is of the form

Pqσ(ω) = I−1

[∑
lm

tiltmj〈〈D(ir)
il,j |D(ir)†

i,mj 〉〉ω
]
q

I−1.(176)

In accordance with the definition (37), we write down the Dyson equation

F = F0 + F0MF .(177)

The self-energy operator M is defined by eq. (37). Let us note again that the self-
energy corrections, according to (38), contribute to the full GF as additional terms.
This is an essential advantage in comparison with the “Hubbard III” solution and other
two-pole solutions. It is clear from the form of Roth solution (55) that it includes the
elastic-scattering corrections only and does not incorporate the damping effects and finite
lifetimes.
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For the full GF we find, using the formal solution of Dyson equation (38), that it is
equal to

Gkσ(ω) =

(
1

n+−σ
(a− n+−σM

++
kσ (ω)) +

1
n−
−σ

(b− n−
−σM

−−
kσ (ω))+(178)

+
1

n+−σ
(d+ n+−σM

+−
kσ (ω)) +

1
n−
−σ

(c+ n−
−σM

−+
kσ (ω))

)
·

· [det
(
(F 0
kσ(ω))−1 −Mkσ(ω)

)
]−1 .

After some algebra, we can rewrite this expression in the following form which is essen-
tially new and, in a certain sense, is the central result of the present theory:

G =
ω − (n+E− + n−E+) − L

(ω −E+ − n−L1)(ω − E− − n+L2) − n−n+L3L4
,(179)

where

L1(k, ω) = λ1(k) −
n+−σ
n−
−σ

M++
σ (k, ω);(180)

L2(k, ω) = λ2(k) −
n−
−σ

n+−σ
M−−
σ (k, ω);

L3(k, ω) = λ3(k) +
n−
−σ

n+−σ
M+−
σ (k, ω);

L4(k, ω) = λ4(k) +
n+−σ
n−
−σ

M−+
σ (k, ω);

L(k, ω) = λ(k) + n+−σn
−
−σ(M

++ +M−− −M−+ −M+−) .

Thus, now we have to find explicit expressions for the elements of the self-energy matrix
M . To this end, we should use the spectral theorem again to express the GF in terms of
correlation functions

Mα,β
kσ (ω) ∼ 〈D(ir)†

mj,β(t)D
(ir)
il,α〉 .(181)

For the approximate calculation of the self-energy, we propose to use the following trial
solution:

〈D(ir)†(t)D(ir)〉 ≈ 〈a†mσ(t)alσ〉〈nβj−σ(t)nαi−σ〉 +(182)

+〈a†mσ(t)nαi−σ〉〈nβj−σ(t)alσ〉 + β〈b†mj−σ(t)alσ〉〈a†jσ(t)nαi−σ〉 +

+β〈b†mj−σ(t)nαi−σ〉〈a†jσ(t)alσ〉 + α〈a†mσ(t)aiσ〉〈nβj−σ(t)bil−σ〉 +

+α〈a†mσ(t)bil−σ〉〈nβj−σ(t)bil−σ〉 + +αβ〈b†mj−σ(t)aiσ〉〈a†jσ(t)bil−σ〉 +

+αβ〈b†mj−σ(t)bil−σ〉〈a†jσ(t)aiσ〉 .

It is quite natural to interpret the contributions into this expression in terms of scattering,
resonance-broadening, and interference corrections of different types. For example, let
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us consider the simplest approximation. For this aim, we retain the first contribution
in (182):

[IMI]αβ =
∫ +∞

−∞

dω′

ω − ω′ (exp[βω′] + 1) ·(183)

·
∫ +∞

−∞

dt
2π

exp[iω′t]N−1
∑
ijlm

exp[−ik(Ri −Rj)]tiltmj ·

·
∫

dω1n(ω1) exp[iω1t]gmlσ(ω1)
(
− 1
π

ImKαβij (ω1 − ω′)
)
.

Here Kαβij (ω) = 〈〈nαi−σ|nβj−σ〉〉ω is the density-density GF. It is worthy to note that the
mass operator (183) contains the term tiltmj contrary to the expression (148) that con-
tains the term U2. The pair of eqs. (183) and (177) is a self-consistent system of equations
for the single-particle Green function. For a simple estimation, for the calculation of the
self-energy (183), it is possible to use any initial relevant approximation of the two-pole
structure. As an example, we take the expression (54). We then obtain

[IMI]αβ ≈
∑
q

|ε(k − q)|2Kαβq ·(184)

·
[

n−σ
ω − U − ε(k − q)n−σ

+
1 − n−σ

ω − ε(k − q)(1 − n−σ)

]
.

In the same way, one can use, instead (54), another initial two-pole solution, e.g., the
Roth solution (55), etc.

On the basis of the self-energy operator (184) we can explicitly find the energy shift
and damping due to inelastic scattering of quasi-particles. This is a great advantage of
the present approach.

In summary, in this section, we obtained the most complete solution to the Hubbard
model Hamiltonian in the strongly correlated case. It has correct functional structure,
and, moreover, it represents correctly the effects of elastic and inelastic scattering in a
systematic and convenient way. The mass operator contains all inelastic-scattering terms
including various scattering and resonance broadening terms in a systematic way. The
obtained solution (179) is valid for all band filling and for arbitrarily strong but finite
strength of the Coulomb repulsion. Our solution contains no approximations except those
contained in the final calculation of the mass operator. Therefore, we conclude that our
solutions to the Hubbard model in the weakly correlated case (144) and in the strongly
correlated case (179) describe most fully and self-consistently the correlation effects in the
Hubbard model and give a unified interpolation description of the correlation problem.
This result is to be contrasted with Hubbard , Roth and many other results in which
this interpolation solution cannot be derived within the unified scheme.

It is clear from the present consideration that for the systematic construction of the
advanced approximate solutions we need to calculate the collective correlation functions
of the electron density and spin density and the density of doubles, but this problem
must be considered separately.

8.3. Correlations in random Hubbard model . – In this subsection, we apply the IGF
method to consider the electron-electron correlations in the presence of disorder to
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demonstrate the advantage of our approach. The treatment of the electron motion in
substitutionally disordered AxB1−x transition metal alloys is based upon a certain gen-
eralization of the Hubbard model, including random diagonal and off-diagonal elements
caused by substitutional disorder in a binary alloy. The electron-electron interaction
plays an important role for various aspects of behaviour in alloys, e.g., for the weak lo-
calization [95]. The approximation which is used widely for treating disordered alloys is
the single-site Coherent Potential Approximation (CPA) [96]. The CPA has been refined
and developed in many papers (e.g., [97, 98]) and till now is the most popular approx-
imation for the theoretical study of alloys. But the simultaneous effect of disorder and
electron-electron inelastic scattering has been considered for some limited cases only and
not within the self-consistent scheme.

Let us consider the Hubbard model Hamiltonian (49) on a given configuration of an
alloy (ν)

H(ν) = H
(ν)
1 +H

(ν)
2 ,(185)

where

H
(ν)
1 =

∑
iσ

ενi niσ +
∑
ijσ

tνµij a
†
iσajσ ,(186)

H
(ν)
2 =

1
2

∑
iσ

Uνi niσni−σ .

Contrary to the periodic model (49), the atomic level energy ενi , the hopping integrals tνµij ,
as well as the intraatomic Coulomb repulsion Uνi are here random variables which take
the values εν , tνµ, and Uν , respectively; the superscript ν(µ) refers to atomic species
(ν, µ = A,B) located on site i(j). The nearest-neighbor hopping integrals were only
included.

To unify the IGF method and CPA into a completely self-consistent scheme let us
consider the single-electron GF (154) Gijσ in the Wannier representation for a given
configuration (ν). The corresponding equation of motion is of the form (for brevity we
omit the superscript (ν) where its presence is clear)

(ω − εi)〈〈aiσ|a†jσ〉〉ω = δij +
∑
n

tin〈〈anσ|a†jσ〉〉ω + Ui〈〈ni−σaiσ|a†jσ〉〉ω .(187)

In the present paper, for brevity, we confine ourselves to the weak correlation and the
diagonal disorder case. The generalization to the case of strong correlation or off-diagonal
disorder is straightforward, but its lengthy consideration preclude us from discussing it
this time.

Using the definition (30), we define the IGF for a given (fixed) configuration of atoms
in an alloy as follows:

(ir)〈〈ni−σaiσ|a†jσ〉〉 = 〈〈ni−σaiσ|a†jσ〉〉 − 〈ni−σ〉〈〈aiσ|a†jσ〉〉 .(188)

This time, contrary to (164), because of lack of translational invariance we must take into
account the site dependence of 〈ni−σ〉. Then we rewrite the equation of motion (187) in
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the following form:∑
n

[(ω − εi − Ui〈ni−σ〉)δij − tin]〈〈anσ|a†jσ〉〉ω = δij + Ui((ir)〈〈ni−σaiσ|a†jσ〉〉ω) .(189)

In accordance with the general method of sect. 3, we find then the Dyson equation for a
given configuration (ν):

Gijσ(ω) = G0
ijσ(ω) +

∑
mn

G0
imσ(ω)Mmnσ(ω)Gnjσ(ω) .(190)

The GMF GF G0
ijσ and the self-energy operator M are defined as∑

m

HimσG
0
mjσ(ω) = δij ,(191)

Pmnσ = Mmnσ +
∑
ij

MmiσG
0
ijσPjnσ ,

Himσ = (ω − εi − Ui〈ni−σ〉)δim − tim ,

Pmnσ(ω) = Um((ir)〈〈nm−σamσ|nn−σa†nσ〉〉(ir)ω )Un .

In order to calculate the self-energy operator M self-consistently, we have to express it
approximately by the lower-order GFs. Employing the same pair approximation as (147)
(now in the Wannier representation) and the same procedure of calculation, we arrive at
the following expression for M for a given configuration (ν):

M (ν)
mnσ(ω) = UmUn

1
2π4

∫
R(ω1, ω2, ω3) ·(192)

· ImG
(ν)
nm−σ(ω1) ImG

(ν)
mn−σ(ω2)ImG(ν)

mnσ(ω3) ;

R =
dω1dω2dω3

ω + ω1 − ω2 − ω3

(1 − n(ω1))n(ω2)n(ω3)
n(ω2 + ω3 − ω1)

.

As we mentioned previously, all the calculations just presented were made for a given
configuration of atoms in an alloy. All the quantities in our theory (G, G0, P , M)
depend on the whole configuration of the alloy. To obtain a theory of a real macroscopic
sample, we have to average over various configurations of atoms in the sample. The
configurational averaging cannot be exactly made for a macroscopic sample. Hence we
must resort to an additional approximation. It is obvious that the self-energy M is in
turn a functional of G, namely M = M [G]. If the process of making configurational
averaging is denoted by Ḡ, then we have

Ḡ = Ḡ0 +G0MG.

A few words are now appropriate for the description of general possibilities. The calcu-
lations of Ḡ0 can be performed with the help of any relevant available scheme. In the
present work, for the sake of simplicity, we choose the single-site CPA [96], namely, we
take

Ḡ0
mnσ(ω) = N−1

∑
k

exp[ik(Rm −Rn)]
ω − Σσ(ω) − ε(k)

.(193)
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Here ε(k) =
∑z
n=1 tn,0 exp[ikRn], z is the number of nearest neighbors of the site 0, and

the coherent potential Σσ(ω) is the solution of the CPA self-consistency equations. For
the AxB1−x, we have

Σσ(ω) = xεσA + (1 − x)εσB − (εσA − Σσ)F σ(ω,Σσ)(εσB − Σσ) ;(194)
F σ(ω,Σσ) = Ḡ0

mmσ(ω) .

Now, let us return to the calculation of the configurationally averaged total GF Ḡ. To
perform the remaining averaging in the Dyson equation, we use the approximation

G0MG ≈ Ḡ0M̄Ḡ .

The calculation of M̄ requires further averaging of the product of matrices. We again
use the prescription of the factorizability there, namely

M̄ ≈ (UmUn) (ImG) (ImG) (ImG) .

However, the quantities UmUn entering into M̄ are averaged here according to

UmUn = U2 + (U1 − U2)δmn ,(195)
U1 = x2U2

A + 2x(1 − x)UAUB + (1 − x)2U2
B ,

U2 = xU2
A + (1 − x)U2

B .

The averaged value for the self-energy is

M̄mnσ (ω) =
U2

2π4

∫
R(ω1, ω2, ω3) Im Ḡnm−σ(ω1) Im Ḡmn−σ(ω2) Im Ḡmnσ(ω3) +(196)

+
U1 − U2

2π4
δmn

∫
R(ω1, ω2, ω3) Im Ḡnm−σ(ω1) Im Ḡmn−σ(ω2)Im Ḡmnσ(ω3) .

The averaged quantities are periodic, so we can introduce the Fourier transform of them,
i.e.

M̄mnσ(ω) = N−1
∑
k

M̄kσ(ω) exp[ik(Rm −Rn)]

and similar formulae for Ḡ and Ḡ0. Performing the configurational averaging of the
Dyson equation and Fourier transforming of the resulting expressions according to the
above rules, we obtain

Ḡkσ(ω) = [ω − ε(k) − Σσ(ω) − M̄kσ(ω)]−1 ,(197)

where

M̄kσ(ω) =
1

2π4
∑
pq

∫
R(ω1, ω2, ω3)N−2 Im Ḡp−q−σ(ω1)Im Ḡq−σ(ω2) ·(198)

·
[
U2 Im Ḡk+pσ(ω3) +

(U1 − U2)
N

∑
g

Im Ḡk+p−g(ω3)

]
.
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The simplest way to obtain an explicit solution for the self-energyM̄ is to start with a
suitable initial trial solution as it was done for the periodic case. For a disordered system,
it is reasonable to use, as the first iteration approximation the so-called Virtual Crystal
Approximation (VCA):

−1
π

Im ḠVCA
kσ (ω + iε) ≈ δ(ω − Eσk ) ,

where for the binary alloy AxB1−x this approximation reads

V̄ = xV A + (1 − x)V B ; Eσk = ε̄σi + ε(k) ;

ε̄σi = xεσA + (1 − x)εσB .

Note that the use of VCA here is by no means a solution of the correlation problem in
VCA. It is only the use of the VCA for the parametrization of the problem, to start with
VCA input parameters. After the integration of (198) the final result for the self-energy is

M̄kσ(ω) =
U2

N2

∑
pq

n(E−σ
p+q)[1 − n(E−σ

q ) − n(Eσk+p)] + n(Eσk+p)n(E−σ
q )

ω + E−σ
p+q − E−σ

q − Eσk+p
+(199)

+
(U1 − U2)

N3

∑
pqg

n(E−σ
p+q)[1 − n(E−σ

q ) − n(Eσk+p−g)] + n(Eσk+p−g)n(E−σ
q )

ω + E−σ
p+q − E−σ

q − Eσk+p−g
.

It is to be emphasized that eqs. (196)-(199) give the general microscopic self-consistent
description of inelastic electron-electron scattering in an alloy in the spirit of the CPA. We
took into account the randomness not only through the parameters of the Hamiltonian
but also in a self-consistent way through the configurational dependence of the self-energy
operator.

8.4. Electron-lattice interaction and MTBA. – To understand quantitatively the elec-
trical, thermal, and superconducting properties of metals and their alloys, one needs
a proper description of an electron-lattice interaction too [99-103]. A systematic, self-
consistent simultaneous treatment of the electron-electron and electron-phonon interac-
tion plays an important role in recent studies of strongly correlated systems. It was
argued from different points of view that to understand quantitatively the phenomenon
of high-temperature superconductivity one needs a proper inclusion of electron-phonon
interaction, too. A lot of theoretical searches for the relevant mechanism of high tem-
perature superconductivity deal with strong electron-phonon interaction models. The
natural approach to the description of superconductivity in that type of compounds is
the modified tight-binding approximation (MTBA) [99,102]. The papers [72,99-101] con-
tain a self-consistent microscopic theory of the normal and superconducting properties of
transition metals and strongly disordered binary alloys in the framework of the Hubbard
model (49) and random Hubbard model (185). Here we derive a system of equations for
the superconductivity for tight-binding electrons of a transition metal interacting with
phonons within the IGF approach. We write the total Hamiltonian of the electron-ion
system as the sum [72]

H = He +Hi +He-i ,(200)
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where He is the electron part of the Hamiltonian represented by the Hubbard opera-
tor (49). The Hamiltonian of an ion subsystem and the operator of electron-ion interac-
tion have the form

Hi =
1
2

∑
n

P 2
n

2M
+

1
2

∑
mnαβ

Φαβnmu
α
nu
β
m ,(201)

He-i =
∑
σ

∑
n,i 
=j

V αij (+R
0
n)a

†
iσajσu

α
n ,(202)

where

∑
n

V αij (+R
0
n)u

α
n =

∂tij(+R0
ij)

∂R0
ij

(+ui − +uj) .(203)

Here Pn is the momentum operator, M is the mass of an ion, and un is the displacement
of the ion from the equilibrium position at the lattice site Rn.

In a more convenient notation the electron-phonon interaction Hamiltonian in the
modified tight-binding approximation reads [99]

He-i =
∑
νσ

∑
kq

V ν(+k,+k + +q)Q�qνa
†
k+qσakσ ,(204)

where

V ν(+k,+k + +q) =
2iq0

(NM)1/2
∑
α

t(+aα)eαν (+q)[sin+aα+k − sin+aα(+k − +q)] ;(205)

here q0 is the Slater coefficient [99] having the origin in the exponential decrease of the
wave functions of d-electrons, N is the number of unit cells in the crystal, and M is the
ion mass. The quantities +eν(+q) are polarization vectors of the phonon modes.

For the ion subsystem, we have

Hi =
1
2

∑
qν

(P †
qνPqν + ω2(+qν)Q†

qνQqν) ,(206)

where Pqν and Qqν are normal coordinates, and ω(qν) are acoustical phonon frequencies.
It is important to note that in spite of the fact that in Hubbard model (49), the d-
and s(p)-bands are replaced by one effective band , the s-electrons give rise to screening
effects and were taken into effects by choosing the proper values of U and the acoustical
phonon frequencies.

8.5. Equations of superconductivity . – To derive the superconductivity equations, we
use the IGF method of sect. 3 in which the decoupling procedure is carried out only for
approximate calculation of the mass operator of the matrix electron GF. According to
the arguments of subsect. 5.3, eq. (64), the relevant matrix GF is of the form

Gij(ω) =
(
G11 G12

G21 G22

)
=
( 〈〈aiσ|a†jσ〉〉 〈〈aiσ|aj−σ〉〉
〈〈a†i−σ|a†jσ〉〉 〈〈a†i−σ|aj−σ〉〉

)
.(207)
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As was discussed in subsect. 5.4, with this definition, one introduces the so-called anoma-
lous (off-diagonal) GFs which fix the relevant BCS-Bogoliubov vacuum and select proper
symmetry broken solutions. Differentiation of Gij(t − t′) with respect to the first time
gives for the Fourier components of the equations of motion

∑
j

(ωδij − tij)〈〈ajσ|a†i′σ〉〉 = δii′ + U〈〈aiσni−σ|a†i′σ〉〉 +
∑
nj

Vijn〈〈ajσun|a†i′σ〉〉 ,(208)

∑
j

(ωδij + tij)〈〈a†j−σ|a†i′σ〉〉 = −U〈〈a†i−σniσ|a†i′σ〉〉 +
∑
nj

Vjin〈〈a†j−σun|a†i′σ〉〉 .(209)

Following the general strategy of the IGF method, we separate the renormalization of
the electron energy in the Hartree-Fock-Bogoliubov generalized mean-field approximation
(including anomalous averages) from the renormalization of higher-order due to inelastic
scattering. For this, we introduce irreducible parts of the GF in accordance with the
definition (as an example, we take two of the four Green functions)

((ir)〈〈aiσa†i−σai−σ|a†i′σ〉〉ω) = 〈〈 aiσa†i−σai−σ|a†i′σ〉〉ω −(210)

− 〈ni−σ〉G11 + 〈aiσai−σ〉〈〈a†i−σ|a†i′σ〉〉ω ,
((ir)〈〈a†iσaiσa†i−σ|a†i′σ〉〉ω) = 〈〈 a†iσaiσa†i−σ|a†i′σ〉〉ω −

− 〈niσ〉G21 + 〈a†iσa†i−σ〉〈〈aiσ|a†i′σ〉〉ω .

From this definition it follows that this way of introducing the IGF broadens the initial
algebra of the operators and the initial set of the GFs. This means that “actual” algebra
of the operators must include the anomalous terms from the beginning, namely: (aiσ, a

†
iσ,

niσ, a
†
iσa

†
i−σ, ai−σa

†
iσ). The corresponding initial GF is the form (207). The choice of the

irreducible parts of the GF in (210) is specified by the “orthogonality” constraint (31),
which makes it possible to introduce unambiguously the irreducible parts and make the
inhomogeneous terms in the equations for them vanish. Using (210), we rewrite eqs.(208)
and (209) in the form

∑
j

(
(ω − U〈nj−σ〉)δij − tij

)
〈〈ajσ|a†i′σ〉〉 = δii′ −(211)

−U〈aiσai−σ〉〈〈aiσ|a†i′σ〉〉 +
∑
j

〈〈(ajσρijσ)(ir)|a†i′σ〉〉 ,
∑
j

(
(ω + U〈njσ〉)δij + tji

)
〈〈a†j−σ|a†i′σ〉〉 =(212)

+U〈a†iσa†i−σ〉〈〈aiσ|a†i′σ〉〉 −
∑
j

〈〈(ρji−σa†j−σ)(ir)|a†i′σ〉〉 ,

where

ρijσ = Unj−σδij +
∑
n

Vijnun(1 − δij) .(213)
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In the representation of the Nambu operators [72]

ψi,−σ =
(
ai−σ
a†iσ

)
ψ†
i,−σ = (a†i−σ, aiσ) ,(214)

the equation of motion for GF (211) can be represented as

∑
j

(ωτ0δij − tijτ3 − Σciσ)〈〈ψj |ψ†
i′〉〉 = δii′τ0 +

∑
j

〈〈(ρijτ3ψj)(ir)|ψ†
i′〉〉 .(215)

Here the Hartree-Fock-Bogoliubov elastic Coulomb term (64) is of the form

Σciσ = −Uτ3〈ψi,−σψ†
i,−σ > τ3 +

U

2
(τ0 + τ3) .(216)

To calculate the irreducible matrix GF in (215), we write down for it the equation of
motion with respect to the second time t′ and then separate the irreducible part with
respect to the operators on the right-hand-side of the corresponding GF. This gives the
Dyson equation in the matrix form

Ĝii′(ω) = Ĝ0
ii′(ω) +

∑
jj′

Ĝ0
ij(ω)M̂jj′(ω)Ĝj′i′(ω) .(217)

The generalized mean field GF G0 and the mass operator are defined by

∑
j

(ωτ0δij − tijτ3 − Σciσ)G
0
ji′ = δii′τ0 ,(218)

Mkk′ =
∑
jj′

(〈〈(ρkjτ3ψj)(ir)|(ψ†
j′τ3ρj′k′)

(ir)〉〉)(p)ω .(219)

The explicit expression for the mass operator (219) is of the form

M̂ii′(ω)=
∑
jj′

(
((ir)〈〈aj↑ρij↑|ρj′i′↑a†j′↑〉〉(ir))(p) ((ir)〈〈aj↑ρij↑|ρj′i′↓aj′↓〉〉(ir))(p)
((ir)〈〈a†j↓ρji↓|ρj′i′↑a†j′↑〉〉(ir))(p) ((ir)〈〈a†j↓ρji↓|ρi′j′↓aj′↓〉〉(ir))(p)

)
.(220)

The mass operator (220) describes inelastic scattering of electrons (the elastic part is
contained in Σciσ) on fluctuations of the density of a total electron-ion charge in the
lattice. To find an approximating expression for the mass operator (220), we adopt the
following trial approximation:

〈ρj′i′σ(t)a†j′σ(t)ajσρijσ〉(ir) ≈ 〈ρj′i′σ(t)ρijσ〉〈a†i′σ(t)ajσ〉 .(221)

This approximation was made in the spirit of the approximation of “two interacting
modes” and means ignoring the renormalization of the vertex, i.e. the correlation in the
propagation of an electron (hole) and the propagation of charge density fluctuations.
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Writing down further spectral representation for the correlation functions in (221),
we represent the mass operator by the sum

M̂ii′(ω) = M̂1
ii′(ω) + M̂2

ii′(ω) .(222)

The first contribution M1 has a form characteristic of an interacting electron-phonon
system

M1
ii′(ω) =

∑
nn′

∑
jj′

VijnVj′i′n′
1
2

∫ +∞

−∞

dω1dω2
ω − ω1 − ω2

(
cot

βω1
2

+ tan
βω2
2

)
·(223)

·
(
− 1
π

Im 〈〈un|un′〉〉ω2

)(
− 1
π
τ3 Im 〈〈ψj |ψ†

j′〉〉ω1τ3

)
.

The contribution M2
ii′ has a more complicated structure

M2
ii′ =

U2

2

∫ +∞

−∞

dω1dω2
ω − ω1 − ω2

(
cot

βω1
2

+ tan
βω2
2

)(
m11 m12

m21 m22

)
,(224)

where

m11 =
(
− 1
π

Im 〈〈ni↓|ni′↓〉〉ω2

)(
− 1
π

Im 〈〈ai↑|a†i′↑〉〉ω1

)
,

m12 =
(

1
π

Im 〈〈ni↓|ni′↑〉〉ω2

)(
− 1
π

Im 〈〈ai↑|a†i′↓〉〉ω1

)
,

m21 =
(

1
π

Im 〈〈ni↑|ni′↓〉〉ω2

)(
− 1
π

Im 〈〈ai↓|a†i′↑〉〉ω1

)
,

m22 =
(
− 1
π

Im 〈〈ni↑|ni′↑〉〉ω2

)(
− 1
π

Im 〈〈ai↓|a†i′↓〉〉ω1

)
.

Equations (217) and (222) constitute a self-consistent system of equations for the single-
particle GF of the Hubbard model on a vibrating lattice. Note that these equations of
superconductivity can be in an obvious way transformed to the standard form of the
Eliashberg equations [99]. The numerical calculations of the electron-phonon spectral
function α2(ω)F (ω) for a few transition metals were done in ref. [102]. It is worthy to
emphasize that in paper [101] a very detailed microscopic theory of the strong coupling
superconductivity in highly disordered transition metal alloys was developed on the basis
of the IGF method within the MTBA reformulated approach [100]. The Eliashberg-type
strong-coupling equations for highly disordered alloys were derived. It was shown that the
electron-phonon spectral function in alloys is modified strongly. Thus, the self-consistent
system of superconductivity equations obtained in the Wannier representation makes it
possible to investigate real transition metals, their alloys, and compounds from a unified
point of view.

9. – Quasi-particle dynamics of Anderson models

9.1. Quasi-particle dynamics of SIAM . – In this subsection, we consider the many-
body quasi-particle dynamics of the Anderson impurity model at finite temperatures in
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the framework of the equation-of-motion method. In spite of many theoretical efforts,
there is no complete solution of the dynamic problem for the “simple” Anderson/Hubbard
model. One of the main reasons for this is that it has been recognized relatively recently
only that the simplicity of the Anderson model manifests itself not in the many-body
dynamics (the right definition of quasi-particles via the poles of GF; see subsect. 6.1) but
rather at quite a different level—in the dynamics of two-particle scattering, resulting in
the elegant Bethe-ansatz solution (for the relativistic spectrum linear in k), which gives
the static characteristics (static susceptibility, specific heat, etc). In this sense, as to the
true many-body dynamics, the complete analytic solution of this problem is still quite an
open subject. This section is primarily devoted to the analysis of the relevant many-body
dynamic solution of the SIAM and its correct functional structure. We wish to determine
which solution actually arises both from the self-consistent many-body approach and
intrinsic nature of the model itself. We believe highly that before numerical calculations of
the spectral intensity of the Green function at low energy and low temperature it is quite
important to have a consistent and closed analytic representation for the one-particle
GF of the SIAM and Hubbard model. The paper [104] clearly shows the importance
of the calculation of the GF and spectral densities for SIAM in a self-consistent way.
An alternative approach to dynamics of the Anderson model was formulated within
a modified version of the Kadanoff-Baym method [105, 106]. Unfortunately, the Neal
approach also have certain drawbacks.

A proper many-body description of dynamic correlations is very actual also for the
investigation of the dynamics of the many-impurity Anderson model, where standard ad-
vanced many-body methods do not work properly in usual formulation. Recently, a lot of
efforts were devoted to a better understanding of the static and dynamic properties of the
Anderson model in the context of many-impurity case [29]. This field is quite important
for the description of magnetic properties of anomalous rare-earth compounds [63, 64].
The problem of an adequate and consistent description of dynamics of single-impurity
and many-impurity Anderson models (SIAM and MIAM) and other models of correlated
lattice electrons was not yet solved analytically completely. During the last decades, a
lot of theoretical papers were published, attacking the Anderson model by many refined
many-body analytic methods. Nevertheless, a fully consistent dynamic analytic solution
in the closed form for a single-particle propagator of SIAM is still lacking. In this section,
the problem of consistent analytic description of the many-body dynamics of SIAM is
discussed in the framework of the equation-of-motion approach for double-time thermo-
dynamic GFs. In addition to the IGF approach, we find a new exact identity relating
the one-particle and many-particle GFs. Using this identity, we present a consistent and
general scheme for construction of generalized solutions of SIAM. A new approach for the
complex expansion for the single-particle propagator in terms of Coulomb repulsion U
and hybridization V is proposed. Using the exact identity, an essentially new many-body
dynamic solution of SIAM is derived. This approach offers a new way for the system-
atic construction of approximate interpolation dynamic solutions of strongly correlated
electron systems.

9.2. IGF approach to SIAM . – After discussing some of the basic facts about the
correct functional structure of the relevant dynamic solution of correlated electron models
we are looking for, described in previous sections, we give a similar consideration for
SIAM. It was shown in [28], using the minimal algebra of relevant operators, that the
construction of the GMFs for SIAM is quite nontrivial for the strongly correlated case,
and it is rather difficult to get it from an intuitive physical point of view. Let us consider
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first the following matrix GF:

Ĝ(ω) =
( 〈〈ckσ|c†kσ〉〉 〈〈ckσ|f†

0σ〉〉
〈〈f0σ|c†kσ〉〉 〈〈f0σ|f†

0σ〉〉
)
.(225)

Performing the first-time differentiation and defining the irreducible GF

((ir)〈〈f0σf†
0−σf0−σ|f†

0σ〉〉ω) = 〈〈f0σf†
0−σf0−σ|f†

0σ〉〉ω − 〈n0−σ〉〈〈f0σ|f†
0σ〉〉ω ,(226)

we obtain the following equation of motion in the matrix form:∑
p

F̂p(ω)Ĝp(ω) = 1̂ + UD̂(ir)(ω) ,(227)

where all definitions are rather evident. Proceeding further with the IGF technique, the
equation of motion (227) is exactly rewritten in the form of the Dyson equation

Ĝ(ω) = Ĝ0(ω) + Ĝ0(ω)M̂(ω)Ĝ(ω) .(228)

The generalized mean field GF G0 is defined by∑
p

Fp(ω)G0
p(ω) = Î .(229)

The explicit solutions for diagonal elements of G0 are

〈〈f0σ|f†
0σ〉〉0ω =

(
ω − E0σ − Un−σ − S(ω))

)−1

,(230)

〈〈ckσ|c†kσ〉〉0ω =
(
ω − εk − |Vk|2

ω −E0σ − Un−σ

)−1

,(231)

where

S(ω) =
∑
k

|Vk|2
ω − εk

.(232)

The mass operator, which describes inelastic-scattering processes, has the following ma-
trix form:

M̂(ω) =
(

0 0
0 M0σ

)
,(233)

where

M0σ = U2((ir)〈〈f0σn0−σ|f†
0σn0−σ〉〉(ir)ω )(p) .(234)

From the formal solution of the Dyson equation (38) one obtains

〈〈f0σ|f†
0σ〉〉ω =

(
ω −E0σ − Un−σ −M0σ − S(ω)

)−1

,(235)

〈〈ckσ|c†kσ〉〉ω =
(
ω − εk − |Vk|2

ω − E0σ − Un−σ −M0σ

)−1

.(236)
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To calculate the self-energy in a self-consistent way, we have to approximate it by lower-
order GFs. Let us start by analogy with the Hubbard model with a pair-type approxi-
mation (147)

M0σ(ω) = U2

∫
dω1dω2dω3

ω + ω1 − ω2 − ω3
·(237)

· [n(ω2)n(ω3) + n(ω1)(1 − n(ω2) − n(ω3))]g0−σ(ω1)g0σ(ω2)g0−σ(ω3) ,

where we used the notation

g0σ(ω) = − 1
π

Im 〈〈f0σ|f†
0σ〉〉ω.

Equations (228) and (237) constitute a closed self-consistent system of equations for the
single-electron GF for SIAM model, but only for weakly correlated limit. In principle,
we can use, on the r.h.s. of (237), any workable first iteration-step form of the GF and
find a solution by repeated iteration. If we take for the first iteration step the expression

g0σ(ω) ≈ δ(ω − E0σ − Un−σ),(238)

we get, for the self-energy, the explicit expression

M0σ(ω) = U2n(E0σ + Un−σ)(1 − n(E0σ + Un−σ))
ω − E0σ − Un−σ

= U2N−σ(1 −N−σ)G0
σ(ω) ,(239)

where N−σ = n(E0σ + Un−σ). This is the well-known “atomic” limit of the self-energy.
Let us try again another type of the approximation for M . The approximation which

we will use reflects the interference between the one-particle branch and the collective
one

〈f0σ(t)f†
0−σ(t)f0−σ(t)f

†
0−σf0−σf

†
0σ〉(ir) ≈ 〈f†

0σ(t)f0σ〉〈n0−σ(t)n0−σ〉 +(240)

+〈f†
0−σ(t)f0−σ〉〈f†

0−σ(t)f0σ(t)f
†
0σf0−σ〉 + 〈f†

0−σ(t)f0−σ〉〈f0−σ(t)f0σ(t)f†
0σf

†
0−σ〉 .

If we retain only the first term in (240) and make use of the same iteration as in (238),
we obtain

M0σ(ω) ≈ U2 (1 − n(E0σ + Un−σ))
ω − E0σ − Un−σ

〈n0−σn0−σ〉 .(241)

If we retain the second term in (240), we obtain

M0σ(ω) = U2

∫ +∞

−∞
dω1dω2

1 +N(ω1) − n(ω2)
ω − ω1 − ω2

·(242)

·
(
− 1
π

Im 〈〈S±
0 |S∓

0 〉〉ω1

)
·
(
− 1
π

Im 〈〈f0σ|f†
0σ〉〉ω2

)
,

where the following notation was been used:

S+
0 = f†

0↑f0↓; S−
0 = f†

0↓f0↑ .
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It is possible to rewrite (242) in a more convenient way now:

M0σ(ω) = U2

∫
dω′(cot

ω − ω′

2T
+ tan

ω′

2T
)
(
− 1
π

Imχ∓±(ω − ω′)g0σ(ω′)
)
.(243)

Equations (228) and (243) constitute a self-consistent system of equations for the single-
particle GF of SIAM. Note that spin-up and spin-down electrons are correlated when
they occupy the impurity level. So, this really improves the H-F theory in which just
these correlations were missed. The role of electron-electron correlation becomes much
more crucial for the case of strong correlation.

9.3. SIAM. Strong correlation. – The simplest relevant algebra of the operators used
for the description of the strong correlation has a similar form as for that of the Hubbard
model (155). Let us represent the matrix GF (225) in the following form:

Ĝ(ω) =
∑
αβ

(
〈〈ckσ|c†kσ〉〉 〈〈ckσ|d†0βσ〉〉
〈〈d0ασ|c†kσ〉〉 〈〈d0ασ|d†0βσ〉〉

)
.(244)

Then we proceed by analogy with the calculations for the Hubbard model. The equation
of motion for the auxiliary matrix GF

F̂σ(ω) =


 〈〈ckσ|c†kσ〉〉 〈〈ckσ|d†0+σ〉〉 〈〈ckσ|d†0−σ〉〉

〈〈d0+σ|c†kσ〉〉 〈〈d0+σ|d†0+σ〉〉 〈〈d0+σ|d†0−σ〉〉
〈〈d0−σ|c†kσ〉〉 〈〈d0−σ|d†0+σ〉〉 〈〈d0−σ|d†0−σ〉〉


(245)

is of the following form:

ÊF̂σ(ω) − Î = D̂ ,(246)

where the following matrix notation was used:

Ê =


 (ω − εk) −Vk −Vk

0 (ω − E0σ − U+) 0
0 0 (ω − E0σ − U−)


 ,(247)

Î =


 1 0 0

0 n+0−σ 0
0 0 n−

0−σ


 .

Uα =
{
U, α = +
0, α = − .

Here D̂ is a higher-order GF, with the following structure:

D̂(ω) =


 0 0 0
D21 D22 D23

D31 D32 D33


 .(248)
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In accordance with the general method of sect. 3, we by define the matrix IGF:

D̂(ir)(ω) = D̂ −
∑
α

(
A+α

A−α

)
(Gα+σ Gα−σ ) .(249)

Here the notation was used:

A++ =
〈(f†

0−σcp−σ + c†p−σf0−σ)(n0σ − n0−σ)〉
〈n0−σ〉 ,(250)

A−− =
−〈(f†

0−σcp−σ + c†p−σf0−σ)(1 + n0σ − n0−σ)〉
〈1 − n0−σ〉 ,(251)

A−+ = A++, A+− = −A−− .

The generalized mean-field GF is defined by

ÊF̂ 0
σ (ω) − Î = 0; G0 =

∑
αβ

F 0
αβ .(252)

From the last definition we find that

〈〈f0σ|f†
0σ〉〉0ω =

〈n0−σ〉
ω − E0σ − U+ −∑

p VpA
++

(
1 +

∑
p VpA

−+

ω − E0σ − U−

)
+(253)

+
1 − 〈n0−σ〉

ω − E0σ − U− −∑
p VpA

−−

(
1 +

∑
p VpA

+−

ω − E0σ − U+

)
,

〈〈ckσ|c†kσ〉〉0ω =
(
ω − εk − |Vk|2F at(ω)

)−1
,(254)

where

F at =
〈n0−σ〉

ω − E0σ − U+
+

1 − 〈n0−σ〉
ω − E0σ − U−

.(255)

For Vp = 0, we obtain, from solution (253), the atomic solution F at. The conduction
electron GF (254) also gives a correct expression for Vk = 0.

9.4. IGF method and interpolation solution. – To show explicitly the flexibility of
the IGF method, we consider a more extended new algebra of operators from which the
relevant matrix GF should be constructed to make the connection with the interpolation
solution of the Anderson model. For this aim, let us consider the following equation of
motion in the matrix form:

∑
p

F (p, k)Gpσ(ω) = I +
∑
p

VpDp(ω) ,(256)
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where G is the initial 4 × 4 matrix GF and D is the higher-order GF:

Gσ =



G11 G12 G13 G14

G21 G22 G23 G24

G31 G32 G33 G34

G41 G42 G43 G44


 .(257)

Here the following notation was used:

G11 = 〈〈ckσ|c†kσ〉〉; G12 = 〈〈ckσ|f†
0σ〉〉;(258)

G13 = 〈〈ckσ|f†
0σn0−σ〉〉; G14 = 〈〈ckσ|c†kσn0−σ〉〉;

G21 = 〈〈f0σ|c†kσ〉〉; G22 = 〈〈f0σ|f†
0σ〉〉;

G23 = 〈〈f0σ|f†
0σn0−σ〉〉; G24 = 〈〈f0σ|c†kσn0−σ〉〉;

G31 = 〈〈f0σn0−σ|c†kσ〉〉; G32 = 〈〈f0σn0−σ|f†
0σ〉〉;

G33 = 〈〈f0σn0−σ|f†
0σn0−σ〉〉; G34 = 〈〈f0σn0−σ|c†kσn0−σ〉〉;

G41 = 〈〈ckσn0−σ|c†kσ〉〉; G42 = 〈〈ckσn0−σ|f†
0σ〉〉;

G43 = 〈〈ckσn0−σ|f†
0σn0−σ〉〉; G44 = 〈〈ckσn0−σ|c†kσn0−σ〉〉 .

We avoid to write down explicitly the relevant 16 GFs, of which the matrix GF D consist,
for the brevity. For our aims, it is enough to proceed forth in the following way.

Equation (256) results from the first-time differentiation of the GF G and is a starting
point for the IGF approach. Let us introduce the irreducible part for the higher-order
GF D in the following way:

D
(ir)
β = Dβ −

∑
α

LβαGαβ ; (α, β) = (1, 2, 3, 4)(259)

and define the GMF GF according to

∑
p

F̃ (p, k)GMF
pσ (ω) = I .(260)

Then, we are able to write down explicitly the Dyson equation (37) and the exact ex-
pression for the self-energy M in the matrix form:

Mkσ(ω) = I−1
∑
p,q

VpVq




0 0 0 0
0 0 0 0
0 0 M33 M34

0 0 M43 M44


 I−1 .(261)

Here the matrix I is given by

I =




1 0 0 〈n0−σ〉
0 1 〈n0−σ〉 0
0 〈n0−σ〉 〈n0−σ〉 0

〈n0−σ〉 0 0 〈n0−σ〉



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and the matrix elements of M are of the form

M33 = (〈〈A(ir)
1 (p)|B(ir)

1 (q)〉〉)(p),M34 = (〈〈A(ir)
1 (p)|B(ir)

2 (k, q)〉〉)(p) ,(262)

M43 = (〈〈A(ir)
2 (k, p)|B(ir)

1 (q)〉〉)(p),M44 = (〈〈A(ir)
2 (k, p)|B(ir)

2 (k, q)〉〉)(p) ,

where

A1(p) = (c†p−σf0σf0−σ − cp−σf
†
0−σf0σ);(263)

A2(k, p) = (ckσf
†
0−σcp−σ − ckσc

†
p−σf0−σ);

B1(p) = (f†
0σc

†
p−σf0−σ − f†

0σf
†
0−σcp−σ);

B2(k, p) = (c†kσc
†
p−σf0−σ − c†kσf

†
0−σcp−σ) .

Since the self-energy M describes the processes of inelastic scattering of electrons (c-c ,
f -f , and c-f types), its approximate representation would be defined by the nature of
physical assumptions about this scattering.

To get an idea about the functional structure of our GMF solution (260), let us write
down the matrix element GMF

33 :

GMF
33 = 〈〈f0σn0−σ|f†

0σn0−σ〉〉 =
〈n0−σ〉

ω − εMF
f − U − SMF(ω) − Y (ω)

+(264)

+
〈n0−σ〉Z(ω)

(ω − εMF
f − U − SMF(ω) − Y (ω))(ω − E0σ − S(ω))

,

Y (ω) =
UZ(ω)

ω − E0σ − S(ω)
,(265)

Z(ω) = S(ω)
∑
p

VPL
41

ω − εMF
p

+
∑
p

|Vp|2L42

ω − εMF
p

+ S(ω)L31 +
∑
p

VpL
32 .(266)

Here the coefficients L41, L42, L31, and L32 are certain complicated averages (see defi-
nition (259)) from which the functional of the GMF is build. To clarify the functional
structure of the obtained solution, let us consider our first equation of motion (256),
before introducing the irreducible GFs (259). Let us put simply, in this equation, the
higher-order GF D = 0! To distinguish this simplest equation from the GMF one (260),
we write it in the following form:∑

p

F (p, k)G0(p, ω) = I .(267)

The corresponding matrix elements which we are interested in here read

G0
22 = 〈〈f0σ|f†

0σ〉〉 =
1 − 〈n0−σ〉

ω − E0σ − S(ω)
+

〈n0−σ〉
ω − E0σ − S(ω) − U

,(268)

G0
33 = 〈〈f0σn0−σ|f†

0σn0−σ〉〉 =
〈n0−σ〉

ω − E0σ − S(ω) − U
,(269)

G0
32 = 〈〈f0σn0−σ|f†

0σ〉〉 = G0
33 .(270)
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The conclusion is rather evident. The simplest interpolation solution follows from our
matrix GF (257) in the lowest order in V , even before introduction of GMF corrections,
not speaking about the self-energy corrections. The two GFs G0

32 and G0
33 are equal only

in the lowest order in V . It is quite clear that our full solution (38) that includes the
self-energy corrections is much more richer.

It is worthwhile to stress that our 4×4 matrix GMF GF (257) gives only approximate
description of suitable mean fields. If we consider more extended algebra, we get the more
correct structure of the relevant GMF.

9.5. Dynamic properties of SIAM . – To demonstrate clearly the advantages of the
IGF method for SIAM, it is worthwhile to emphasize a few important points about the
approach based on the equations-of-motion for the GFs. To give a more instructive
discussion, let us consider the single-particle GF of localized electrons Gσ = 〈〈f0σ|f†

0σ〉〉.
The simplest approximate “interpolation” solution of SIAM is of the form

Gσ(ω) =
1

ω − E0σ − S(ω)
+

U〈n0−σ〉
(ω − E0σ − S(ω) − U)(ω − E0σ − S(ω))

=(271)

=
1 − 〈n0−σ〉

ω − E0σ − S(ω)
+

〈n0−σ〉
ω − E0σ − S(ω) − U

.

The values of nσ are determined through the self-consistency equation

nσ = 〈n0σ〉 = − 1
π

∫
dEn(E) ImGσ(E,nσ) .(272)

The “atomic-like” interpolation solution (271) reproduces correctly the two limits:

Gσ(ω) =
1 − 〈n0−σ〉
ω − E0σ

+
〈n0−σ〉

ω − E0σ − U
, for V = 0 ,(273)

Gσ(ω) =
1

ω −E0σ − S(ω)
, for U = 0 .

The important point about formulas (273) is that any approximate solution of SIAM
should be consistent with it. Let us remind how to get solution (273). It follows from
the system of equations for small-V limit:

(ω −E0σ − S(ω))〈〈f0σ|f†
0σ〉〉ω = 1 + U〈〈f0σn0−σ|f†

0σ〉〉ω,(274)

(ω −E0σ − U)〈〈f0σn0−σ|f†
0σ〉〉ω ≈ 〈n0−σ〉 +

∑
k

Vk〈〈ckσn0σ|f†
0σ〉〉ω,

(ω − εk)〈〈ckσn0−σ|f†
0σ〉〉ω = Vk〈〈f0σn0−σ|f†

0σ〉〉ω .

Equations (274) are approximate; they include two more terms, treated in the limit of
small V in paper [107].

We now proceed further. In paper [107] the GF G was calculated in the limit of
infinitely strong Coulomb correlation U and for small hybridization V . The functional
structure of the Lacroix solution generalizes the solution (273). The starting point is the
system of equations:

(ω − E0σ − S(ω))〈〈f0σ|f†
0σ〉〉 = 1 + U〈〈f0σn0−σ|f†

0σ〉〉 ,(275)
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(ω − E0σ − U)〈〈f0σn0−σ|f†
0σ〉〉 = 〈n0−σ〉 +

∑
k

Vk

(
〈〈ckσn0−σ|f†

0σ〉〉 −(276)

−〈〈ck−σf†
0−σf0σ|f†

0σ〉〉 + 〈〈c†k−σf0σf0−σ|f†
0σ〉〉

)
.

Using a relatively simple decoupling procedure for a higher-order equation of motion, a
qualitatively correct low-temperature spectral intensity was calculated. The final expres-
sion for G for finite U is of the form

〈〈f0σ|f†
0σ〉〉 =

1
ω − E0σ − S(ω) + US1(ω)

+(277)

+
U〈n0−σ〉 + UF1(ω)

K(ω)(ω − E0σ − S(ω) + US1(ω))
,

where F1, S1, and K are certain complicated expressions. We write down explicitly the
infinite U approximate GF [107]:

〈〈f0σ|f†
0σ〉〉 =

1 − 〈n0−σ〉 − Fσ(ω)
ω − E0σ − S(ω) − Z1

σ(ω)
.(278)

The following notation was used

Fσ = V
∑
k

〈f†
0−σck−σ〉
ω − εk

,(279)

Z1
σ = V 2

∑
q,k

〈c†q−σck−σ〉
ω − εk

− S(ω)V
∑
k

〈f†
0−σck−σ〉
ω − εk

.(280)

The functional structure of the single-particle GF (277) is quite transparent. The expres-
sion in the numerator of (277) plays the role of “dynamic mean field”, proportional to
〈f†

0−σck−σ〉. In the denominator, instead of bare shift S(ω) (232) we have an “effective
shift” S1 = S(ω) + Z1

σ(ω). The choice of the specific procedure of decoupling for the
higher-order equation of motion specifies the selected “generalized mean fields” (GMFs)
and “effective shifts”.

9.6. Interpolation solutions of correlated models. – It is to the point to discuss briefly
the general concepts of construction of an interpolation dynamic solution of the strongly
correlated electron models. The very problem of the consistent interpolation solutions
of the many-body electron models was formulated explicitly by Hubbard in the context
of the Hubbard model. Hubbard clearly pointed out one particular feature of consistent
theory, insisting that it should give exact results in the two opposite limits of very wide
and very narrow bands. The functional structure of a required interpolation solution
can be clarified if one considers the atomic (very narrow band) solution of the Hubbard
model (49):

Gat(ω) =
1 − n−σ
ω − t0

+
n−σ

ω − t0 − U
=

1
ω − t0 − Σat(ω)

,(281)
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where

Σat(ω) =
n−σU

1 − (1−n−σ)U
ω−t0

; t0 = tii .(282)

Let us consider the expansion in terms of U :

Σat(ω) ≈ n−σU + n−σ(1 − n−σ)U2 1
ω − t0

+O(U) .(283)

The “Hubbard I” solution (54)can be written as

Gk =
1

ω − ε(k) − Σat(ω)
=

1
(Gat)−1 + t0 − ε(k)

.(284)

The partial “Hubbard III” solution, called the “alloy analogy” approximation is of the
form

Σ(ω) =
n−σU

1 − (U − Σ(ω))G(ω)
.(285)

Equation (285) follows from (282) when one takes into account the following relationship:

1
ω − t0

∝ 1
1 − n−σ

G(ω) − Σ(ω)G(ω) .(286)

The Coherent Potential Approximation (CPA) provides the basis for physical interpre-
tation of eq. (285) which corresponds to elimination of the dynamics of −σ electrons. By
analogy with (283), it is possible to expand

n−σU
1 − (U − Σ(ω))G(ω)

≈ n−σU + n−σU(U − Σ)G0(ω − Σ) +O(U) .(287)

The solution (278) does not reproduce correctly the U-perturbation expansion for the
self-energy:

Mσ(ω) ∼ U〈n0−σ〉+(288)

+ U2

∫
dE1

∫
dE2

∫
dE3

n(E1)n(E2)(1−n(E3))+(1−n(E1)(1−n(E2))n(E3)
ω−E1−E2+E3

·
· ImGσ(E1) ImG−σ(E2) ImG−σ(E3) .

It can be shown that it is possible, in principle, to find a certain way to incorporate
this U2 perturbation theory expansion into the functional structure of an interpolation
dynamic solution of SIAM in a self-consistent way within the higher-order GFs [108].
The IGF approach with the use of minimal algebra of relevant operators allows one
to find an interpolation solution for weak and strong Coulomb interaction U and to
calculate explicitly the quasi-particle spectra and their damping for both the limits. The
U-perturbation expansion (148) is included into the IGF scheme in a self-consistent way.
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The correct second-order contribution to the local approximation for the Hubbard model
is of the form

G̃σ ∝ Gσ〈〈n0−σ|n0−σ〉〉
n−σ(1 − n−σ)

.(289)

The same arguments are also valid for SIAM.

9.7. Complex expansion for a propagator . – We now proceed with analytic many-body
consideration. One can attempt to consider a suitable solution for the SIAM starting
from the following exact relation derived in paper [28]:

〈〈f0σ|f†
0σ〉〉 = g0 + g0Pg0 ,(290)

g0 = (ω − E0σ − S(ω))−1 ,(291)

P = U〈n0−σ〉 + U2〈〈f0σn0−σ|f†
0σn0−σ〉〉 .(292)

The advantage of eq. (290) is that it is a pure identity and does not include any ap-
proximation. If we insert our GMF solution (278) into (290), we get an essentially new
dynamic solution of SIAM constructed on the basis of the complex (combined) expan-
sion of the propagator in both U and V parameters and reproducing exact solutions of
SIAM for V = 0 and U = 0. It generalizes (even on the mean-field level) the solutions
of papers [107,105].

Having emphasized the importance of the role of eq. (290), let us see now what is the
best possible fit for higher-order GF in (292). We consider the equation of motion for it:

(ω − E0σ − U)〈〈f0σn0−σ|f†
0σn0−σ〉〉 = 〈n0−σ〉 +

∑
k

Vk(〈〈ckσn0−σ|f†
0σn0−σ〉〉 +(293)

+〈〈c†k−σf0σf0−σ|f†
0σn0−σ〉〉 − 〈〈ck−σf†

0−σf0σ|f†
0σn0−σ〉〉) .

We can think of it as defining new kinds of elastic- and inelastic-scattering processes
that contribute to the formation of generalized mean fields and self-energy (damping)
corrections. The construction of suitable mean fields can be quite nontrivial, and to
describe these contributions self-consistently, let us consider the equations of motion for
higher-order GFs in the r.h.s. of (293)

(ω −εk)〈〈ckσn0−σ|f†
0σn0−σ〉〉 = V 〈〈f0σn0−σ|f†

0σn0−σ〉〉 +(294)

+
∑
p

V (〈〈ckσf†
0−σcp−σ|f†

0σn0−σ〉〉 − 〈〈ckσc†p−σf0−σ|f†
0σn0−σ〉〉) ,

(ω −εk − E0σ +E0−σ)〈〈ck−σf†
0−σf0σ|f†

0σn0−σ〉〉 =(295)

= −〈f†
0−σck−σn0σ〉 − V 〈〈f0σn0−σ|f†

0σn0−σ〉〉 +

+
∑
p

V (〈〈ck−σf†
0−σcpσ|f†

0σn0−σ〉〉 − 〈〈ck−σc†p−σf0σ|f†
0σn0−σ〉〉) ,
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(ω +εk − E0σ −E0−σ − U)〈〈c†k−σf0σf0−σ|f†
0σn0−σ〉〉 =(296)

= −〈c†k−σf0σf†
0σf0−σ〉 + +V 〈〈f0σn0−σ|f†

0σn0−σ〉〉 +

+
∑
p

V (〈〈c†k−σcpσf0−σ|f†
0σn0−σ〉〉 + 〈〈c†k−σf0σcp−σ|f†

0σn0−σ〉〉) .

Now let us see how to proceed further to get a suitable functional structure of the
relevant solution. The intrinsic nature of the system of the equations of motion (294)-
(296) suggests to consider the following approximation:

(ω − εk)〈〈ckσn0−σ|f†
0σn0−σ〉〉 ≈ V 〈〈f0σn0−σ|f†

0σn0−σ〉〉 ,(297)

(ω − εk − E0σ + E0−σ)〈〈ck−σf†
0−σf0σ|f†

0σn0−σ〉〉 ≈ −〈f†
0−σck−σn0σ〉 −(298)

−V (〈〈f0σn0−σ|f†
0σn0−σ〉〉 − 〈〈ck−σc†k−σf0σ|f†

0σn0−σ〉〉) ,

(ω + εk − E0σ − E0−σ − U)〈〈c†k−σf0σf0−σ|f†
0σn0−σ〉〉 ≈ −〈c†k−σf0σf†

0σf0−σ〉 +(299)

+ V (〈〈f0σn0−σ|f†
0σn0−σ〉〉 + 〈〈c†k−σf0σck−σ|f†

0σn0−σ〉〉) .

It is transparent that the construction of approximations (297)-(299) is related with the
small-V expansion and is not unique, but very natural. As a result, we find the explicit
expression for GF in (292)

〈〈f0σn0−σ|f†
0σn0−σ〉〉 ≈

〈n0−σ〉 − F 1
σ (ω)

ω − E0σ − U − S1(ω)
.(300)

Here the following notation was used:

S1(ω) = S(ω) +
∑
k

|V |2
(

1
ω − εk − E0σ + E0−σ

+
1

ω + εk − E0σ − E0−σ − U

)
,(301)

F 1
σ =

∑
k

(V F2 + V 2F3) ,(302)

F2 =
〈c†k−σf0σf†

0σf0−σ〉
ω + εk − E0σ − E0−σ − U

+
〈f†

0−σck−σn0σ〉
ω − εk − E0σ + E0−σ

,(303)

F3 =
〈〈ck−σc†k−σf0σ|f†

0σn0−σ〉〉
ω − εk − E0σ + E0−σ

+
〈〈c†k−σf0σck−σ|f†

0σn0−σ〉〉
ω + εk − E0σ − E0−σ − U

.(304)

Now one can substitute the GF in (292) by the expression (300). This gives a new
approximate dynamic solution of SIAM where the complex expansion both in U and V
was incorporated. The important observation is that this new solution satisfies both the
limits (273). For example, if we wish to get a lowest order approximation up to U2 and
V 2, it is very easy to notice that for V = 0

〈〈f0σc†k−σck−σ|f†
0σn0−σ〉〉 ≈

〈c†k−σck−σ〉〈n0−σ〉
ω − E0σ − U

,(305)
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〈〈ck−σc†k−σf0σ|f†
0σn0−σ〉〉 ≈

〈ck−σc†k−σ〉〈n0−σ〉
ω − E0σ − U

.

This results in the possibility to find explicitly all necessary quantities and, thus, to solve
the problem in a self-consistent way.

In summary, we presented here a consistent many-body approach to analytic dynamic
solution of SIAM at finite temperatures and for a broad interval of the values of the
model parameters. We used the exact result (290) to connect the single-particle GF with
higher-order GF to obtain a complex combined expansion in terms of U and V for the
propagator. To summarize, we reformulated the problem of searches for an appropriate
many-body dynamic solution for SIAM in a way that provides us with an effective and
workable scheme for constructing of advanced analytic approximate solutions for the
single-particle GFs on the level of the higher-order GFs in a rather systematic self-
consistent way. This procedure has the advantage that it systematically uses the principle
of interpolation solution within the equation-of-motion approach for GFs. The leading
principle, which we used here was to look more carefully for the intrinsic functional
structure of the required relevant solution and then to formulate approximations for the
higher-order GFs in accordance with this structure.

The main results of our IGF study are the exact Dyson equations for the full matrix
GFs and a new derivation of the GMF GFs. The approximate explicit calculations of
inelastic self-energy corrections are quite straightforward but tedious and too extended
for their description. Here we want to emphasize an essentially new point of view on the
derivation of the Generalized Mean Fields for SIAM when we are interested in the inter-
polation finite temperature solution for the single-particle propagator. Our final solutions
have the correct functional structure and differ essentially from previous solutions.

Of course, there are important criteria to be met (mainly numerically), such as the
question left open, whether the present approximation satisfies the Friedel sum rule
(this question left open in [105] and [107]). A quantitative numerical comparison of
self-consistent results (e.g., the width and shape of the Kondo resonance in the near-
integer regime of the SIAM) would be crucial too. In the present consideration, we
concentrated on the problem of correct functional structure of the single-particle GF
itself. In addition to SIAM, it will be instructive to consider sketchy the PAM and
TIAM too for completness.

9.8. Quasi-particle dynamics of PAM . – The main drawback of the HF type solution
of PAM (61) is that it ignores the correlations of the “up” and “down” electrons. In this
subsection, we take into account the latter correlations in a self-consistent way using the
IGF method. We consider the relevant matrix GF of the form (cf. (225))

Ĝ(ω) =
( 〈〈ckσ|c†kσ〉〉 〈〈ckσ|f†

kσ〉〉
〈〈fkσ|c†kσ〉〉 〈〈fkσ|f†

kσ〉〉
)
.(306)

The equation of motion for GF (306) reads

(
(ω − εk) −Vk
−Vk (ω − Ek)

)( 〈〈ckσ|c†kσ〉〉 〈〈ckσ|f†
kσ〉〉

〈〈fkσ|c†kσ〉〉 〈〈fkσ|f†
kσ〉〉

)
=(307) (

1 0
0 1

)
+ UN−1

∑
pq

(
0 0

〈〈A|c†kσ〉〉 〈〈A|f†
kσ〉〉

)
,
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where A = fk+pσf
†
p+q−σfq−σ. According to eq. (30), the definition of the irreducible

parts in the equation of motion (307) are defined as follows:

(ir)〈〈fk+pσf†
p+q−σfq−σ|c†kσ〉〉 = 〈〈fk+pσf†

p+q−σfq−σ|c†kσ〉〉 − δp,0〈nq−σ〉〈〈fkσ|c†kσ〉〉 ,
(ir)〈〈fk+pσf†

p+q−σfq−σ|f†
kσ〉〉 = 〈〈fk+pσf†

p+q−σfq−σ|f†
kσ〉〉 − δp,0〈nq−σ〉〈〈fkσ|f†

kσ〉〉 .

After substituting these definitions into eq. (307), we obtain(
(ω − εk) −Vk
−Vk (ω − Eσ(k))

)( 〈〈ckσ|c†kσ〉〉 〈〈ckσ|f†
kσ〉〉

〈〈fkσ|c†kσ〉〉 〈〈fkσ|f†
kσ〉〉

)
=(308)

=
(

1 0
0 1

)
+ UN−1

∑
pq

(
0 0

(ir)〈〈A|c†kσ〉〉 (ir)〈〈A|f†
kσ〉〉

)
.

The following notation was used:

Eσ(k) = Ek − Un−σ; n−σ = 〈f†
k−σfk−σ〉 .

The definition of the generalized mean field GF (which, for the weak Coulomb corre-
lation U , coincides with the Hartree-Fock mean field) is evident. All inelastic renor-
malization terms are now related to the last term in the equation of motion (308). All
elastic scattering (or mean field) renormalization terms are included into the following
mean-field GF:(

(ω − εk) −Vk
−Vk (ω − Eσ(k))

)( 〈〈ckσ|c†kσ〉〉0 〈〈ckσ|f†
kσ〉〉0

〈〈fkσ|c†kσ〉〉0 〈〈fkσ|f†
kσ〉〉0

)
=

(
1 0
0 1

)
.(309)

It is easy to find that (cf. (230) and (231))

〈〈fkσ|f†
kσ〉〉0 =

(
ω − Eσ(k) − |Vk|2

ω − εk

)−1

,(310)

〈〈ckσ|c†kσ〉〉0 =
(
ω − εk − |Vk|2

ω − Eσ(k)

)−1

.(311)

At this point, it is worthwhile to emphasize a significant difference between both the
models, PAM and SIAM. The corresponding SIAM equation for generalized mean field
GF (229) reads

∑
p

(
(ω − εp)δpk −Vpδpk

−Vp 1
N (ω − E0σ − Un−σ)

)( 〈〈ckσ|c†kσ〉〉0 〈〈ckσ|f†
0σ〉〉0

〈〈f0σ|c†kσ〉〉0 〈〈f0σ|f†
0σ〉〉0

)
=(312)

=
(

1 0
0 1

)
.

This matrix notation for SIAM shows a fundamental distinction between SIAM and
PAM. For SIAM, we have a different number of states for a strongly localized level and
the conduction electron subsystem: the conduction band contains 2N states, whereas
the localized (s-type) level contains only two. The comparison of (312) and (309) shows
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clearly that this difficulty does not exist for PAM: the number of states both in the
localized and itinerant subsystems are the same, i.e. 2N .

This important difference between SIAM and PAM appears also when we calculate
inelastic scattering or self-energy corrections. By analogy with the Hubbard model, the
equation of motion (308) for PAM can be transformed exactly to the scattering equation
of the form (36). Then, we are able to write down explicitly the Dyson equation (37)
and the exact expression for the self-energy M in the matrix form:

M̂kσ(ω) =
(

0 0
0 M22

)
.(313)

Here the matrix element M22 is of the form

M22 = Mkσ(ω) =
U2

N2

∑
pqrs

((ir)〈〈fk+pσf†
p+q−σfq−σ|f†

r−σfr+s−σf
†
k+sσ〉〉(ir)

)(p)
.(314)

To calculate the self-energy operator (314) in a self-consistent way, we proceed by analogy
with the Hubbard model in subsect. 8.1. Then we find both expressions for the self-energy
operator in form (150) and (153).

9.9. Quasi-particle dynamics of TIAM . – Let us see now how to rewrite the results of
the preceeding sections for the case of TIAM Hamiltonian (62). We again consider the
relevant matrix GF of the form (cf.(225))

Ĝ(ω) =


G11 G12 G13

G21 G22 G23

G31 G32 G33


 =


 〈〈ckσ|c†kσ〉〉 〈〈ckσ|f†

1σ〉〉 〈〈ckσ|f†
2σ〉〉

〈〈f1σ|c†kσ〉〉 〈〈f1σ|f†
1σ〉〉 〈〈f1σ|f†

2σ〉〉
〈〈f2σ|c†kσ〉〉 〈〈f2σ|f†

1σ〉〉 〈〈f2σ|f†
2σ〉〉


 .(315)

The equation of motion for GF (315) reads

∑
p


 (ω − εp)δpk −V1pδpk −V1pδpk

−V1p 1
N (ω − E0σ) −V12

−V2p −V21 1
N (ω − E0σ)




G11 G12 G13

G21 G22 G23

G31 G32 G33


 =(316)

=


 1 0 0

0 1 0
0 0 1


 + U


 0 0 0

〈〈A1|c†kσ〉〉 〈〈A1|f†
1σ〉〉 〈〈A1|f†

2σ〉〉
〈〈A2|c†kσ〉〉 〈〈A2|f†

1σ〉〉 〈〈A2|f†
2σ〉〉


 .

The notation is as follows:

A1 = f1σf
†
1−σf1−σ; A2 = f2σf

†
2−σf2−σ .

In a compact notation, eq. (316) has the form (cf. (256))

∑
p

F (p, k)Gpk(ω) = Î + UDp(ω) .(317)

We thus have the equatin of motion (317) which is a complete analogue of the corre-
sponding equations for the SIAM and PAM. After introducing the irreducible parts by
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analogy with eq. (226)

(ir)〈〈f1σf†
1−σf1−σ|B〉〉ω = 〈〈f1σf†

1−σf1−σ|B〉〉ω − 〈n1−σ〉〈〈f1σ|B〉〉ω ,
(ir)〈〈f2σf†

2−σf2−σ|B〉〉ω = 〈〈f2σf†
2−σf2−σ|B〉〉ω − 〈n2−σ〉〈〈f2σ|B〉〉ω ,

and performing the second-time differentiation of the higher-order GF, and introducing
the relevant irreducible parts, the equation of motion (317) is rewritten in the form of
Dyson equation (37). The definition of the generalized mean field GF is as follows:

∑
p


 (ω − εp)δpk −V1pδpk −V1pδpk

−V1p 1
N (ω − E0σ − Un−σ) −V12

−V2p −V21 1
N (ω − E0σ − Un−σ)


 ·(318)

·

G0

11 G0
12 G0

13

G21 G0
22 G0

23

G0
31 G0

32 G0
33


 =


 1 0 0

0 1 0
0 0 1


 .

The matrix GF (318) describes the mean-field solution of the TIAM Hamiltonian. The
explicit solutions for diagonal elements of G0 are (cf. (230))

〈〈ckσ|c†kσ〉〉0ω =
(
ω − εk − |V1k|2

ω − (E0σ − Un−σ)
− ∆11(k, ω)

)−1

,(319)

〈〈f1σ|f†
1σ〉〉0ω =

(
ω − (E0σ − Un−σ) − S(ω)) − ∆22(k, ω)

)−1

,(320)

〈〈f2σ|f†
2σ〉〉0ω =

(
ω − (E0σ − Un−σ) − S(ω)) − ∆33(k, ω)

)−1

.(321)

Here we introduced the notation

∆11(k, ω) =
(
V2k +

V1kV12
ω − (E0σ − Un−σ)

)(
V2k +

V1kV21
ω − (E0σ − Un−σ)

)
·(322)

·
[
ω − (E0σ − Un−σ) − V21V12

ω − (E0σ − Un−σ)

]−1

,

∆22(k, ω) = (λ21(ω) + V12)(λ21(ω) + V21)

[
ω − (E0σ − Un−σ) −

∑
p |V2p|2
ω − εp

]−1

,

∆33(k, ω) = (λ12(ω) + V21)(λ12(ω) + V12)

[
ω − (E0σ − Un−σ) −

∑
p |V1p|2
ω − εp

]−1

,

λ12 = λ21 =
∑
p

V1pV2p
ω − εp

.

The formal solution of the Dyson equation for TIAM contains the self-energy matrix

M̂ =


 0 0 0

0 M22 M23

0 M32 M33


 ,(323)
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where

M22 = U2((ir)〈〈f1σn1−σ|f†
1σn1−σ〉〉(ir))p ,(324)

M32 = U2((ir)〈〈f2σn2−σ|f†
1σn1−σ〉〉(ir))p ,

M23 = U2((ir)〈〈f1σn1−σ|f†
2σn2−σ〉〉(ir))p ,

M33 = U2((ir)〈〈f2σn2−σ|f†
2σn2−σ〉〉(ir))p .

To calculate the matrix elements (324), the same procedure can be used as it was done
previously for the SIAM (240). As a result, we find the following explicit expressions for
the self-energy matrix elements (cf. (242):

M↑
22(ω) = U2

∫ +∞

−∞
dω1dω2

1 +N(ω1) − n(ω2)
ω − ω1 − ω2

·(325)

·
(
− 1
π

Im 〈〈S−
1 |S+

1 〉〉ω1

)
·

·
(
− 1
π

Im 〈〈f1↓|f†
1↓〉〉ω2

)
,

M↓
22(ω) = U2

∫ +∞

−∞
dω1dω2

1 +N(ω1) − n(ω2)
ω − ω1 − ω2

·(326)

·
(
− 1
π

Im 〈〈S+
1 |S−

1 〉〉ω1

)
·

·
(
− 1
π

Im 〈〈f1↑|f†
1↑〉〉ω2

)
,

M↑
23(ω) = U2

∫ +∞

−∞
dω1dω2

1 +N(ω1) − n(ω2)
ω − ω1 − ω2

·(327)

·
(
− 1
π

Im 〈〈S−
1 |S+

2 〉〉ω1

)
·

·
(
− 1
π

Im 〈〈f1↓|f†
2↓〉〉ω2

)
,

M↓
23(ω) = U2

∫ +∞

−∞
dω1dω2

1 +N(ω1) − n(ω2)
ω − ω1 − ω2

·(328)

·
(
− 1
π

Im 〈〈S+
2 |S−

1 〉〉ω1

)
·

·
(
− 1
π

Im 〈〈f1↑|f†
2↑〉〉ω2

)
,

where the following notation was used:

S+
i = f†

i↑fi↓; S−
i = f†

i↓fi↑; i = 1, 2 .

For M33 we obtain the same expressions as for M22 with the substitution of index 1
by 2. For M↑↓

32 we must do the same. It is possible to say that the diagonal elements
M22 and M33 describe single-site inelastic-scattering processes; off-diagonal elements
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M23 and M32 describe intersite inelastic-scattering processes. They are responsible for
the specific features of the dynamic behaviour of TIAM (as well as the off-diagonal
matrix elements of the GF G0) and, more generally, the cluster impurity Anderson model
(CIAM). The nonlocal contributions to the total spin susceptibility of two well-formed
impurity magnetic moments at a distance R can be estimated as

χpair ∼ 〈〈S−
1 |S+

2 〉〉 ∼ 2χ− 12πEF

(
χ

gµB

)2 cos(2kFR)
(kFR)3

.(329)

In the region of interplay of the RKKY and Kondo behaviour, the key point is then to
connect the partial Kondo screening effects with the low temperature behaviour of the
total spin susceptibility. As is known, it is quite difficult to describe such a threshold be-
haviour analytically. However, progress is expected due to a better understanding of the
quasi-particle many-body dynamics both from analytical and numerical investigations.

10. – Conclusions

In the present paper, we have formulated the theory of the correlation effects for
many-particle interacting systems using the ideas of quantum field theory for interacting
electron and spin systems on a lattice. The workable and self-consistent IGF approach
to the decoupling problem for the equation-of-motion method for double-time tempera-
ture Green functions has been presented. The main achievement of this formulation was
the derivation of the Dyson equation for double-time retarded Green functions instead
of causal ones. That formulation permits to unify convenient analytical properties of
retarded and advanced GF and the formal solution of the Dyson equation (38), that, in
spite of the required approximations for the self-energy, provides the correct functional
structure of single-particle GF. The main advantage of the mathematical formalism is
brought out by showing how elastic-scattering corrections (generalized mean fields) and
inelastic-scattering effects (damping and finite lifetimes) could be self-consistently incor-
porated in a general and compact manner. In this paper, we have thoroughly considered
the idealized Anderson and Hubbard models which are the simplest (in the sense of for-
mulation, but not solution) and most popular models of correlated lattice fermions. We
have presented here the novel method of calculation of quasi-particle spectra for these and
basic spin lattice models, as the most representative examples. Using the IGF method,
we were able to obtain a closed self-consistent set of equations determining the electron
GF and self-energy. For the Hubbard and Anderson models, these equations give a gen-
eral microscopic description of correlation effects both for the weak and strong Coulomb
correlation, and, thus, determine the interpolation solutions of the models. Moreover,
this approach gives the workable scheme for the definition of relevant generalized mean
fields written in terms of appropriate correlators.

We hope that these considerations have been done with sufficient details to bring
out their scope and power, since we believe that this technique will have application to
a variety of many-body systems with complicated spectra and strong interaction. The
application of the IGF method to the investigation of nonlocal correlations and quasi-
particle interactions in Anderson models [29] has a particular interest for studying of the
intersite correlation effects in the concentrated Kondo system . A comparative study of
real many-body dynamics of single-impurity, two-impurity, and periodic Anderson model,
especially for strong but finite Coulomb correlation, when perturbation expansion in U
does not work, is important to characterize the true quasi-particle excitations and the
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role of magnetic correlations. It was shown that the physics of two-impurity Anderson
model can be understood in terms of competition between itinerant motion of carriers
and magnetic correlations of the RKKY nature. This issue is still very controversial and
the additional efforts must be applied in this field.

The application of the IGF method to the theory of magnetic semiconductors was
done in [26, 27]. As a remarkable result of our approach, let us mention the generaliza-
tion of the Shastry-Mattis theory for the magnetic polaron to the finite temperatures [27].
The quasi-particle many-body dynamics of ferromagnetic [26] and aniferromagnetic semi-
conductors [109, 110] was studied too. These studies clarified greatly the true nature of
carriers in magnetic semiconductors. The application of the IGF method to generalized
spin-fermion models that was made in papers [33, 111] allows one to consider carefully
the true nature of carriers in oxides and rare-earth metals. These applications illustrate
some of subtle details of the IGF approach and exhibit their physical significance in a
representative form.

As is seen, this treatment has advantages in comparison with the standard methods
of decoupling of higher-order GFs within the equation-of-motion approach, namely, the
following:

i) At the mean-field level, the GF, one obtains, is richer than that following from the
standard procedures. The generalized mean fields represent all elastic-scattering
renormalizations in a compact form.

ii) The approximations (the decoupling) are introduced at a later stage with respect
to other methods, i.e. only into the rigorously obtained self-energy.

iii) Many standard results of the many-particle system theory are reproduced mathe-
matically incomparable more simply.

iv) The physical picture of elastic- and inelastic-scattering processes in the interacting
many-particle systems is clearly seen at every stage of calculations, which is not
the case with the standard methods of decoupling.

v) The main advantage of the whole method is the possibility of a self-consistent
description of quasi-particle spectra and their damping in a unified and coherent
fashion.

vi) This new picture of interacting many-particle systems on a lattice is far richer and
gives more possibilities for the analysis of phenomena which can actually take place.
In this sense the approach we suggest produces more advanced physical picture of
the quasi-particle many-body dynamics.

Despite the novelty of the IGF techniques introduced above and some (not really big)
complexity of the details in its demonstrations, the major conclusions of the present
paper can be made intelligible to any reader. The most important conclusion to be
drawn from the present consideration is that the GMF for the case of strong Coulomb
interaction has quite a nontrivial structure and cannot be reduced to the mean-density
functional. This last statement resembles very much the situation with strongly non-
equilibrium systems, where only the single-particle distribution function is insufficient to
describe the essence of the strongly non-equilibrium state. Therefore a more complicated
correlation functions are to be taken into account, in accordance with general ideas of
Bogoliubov and Mori-Zwanzig. The IGF method is intimately related to the projection
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method in the sense, that it expresses the idea of “reduced description” of a system
in the most general form. This line of consideration is very promising for developing
the complete and self-contained theory of strongly interacting many-body systems on a
lattice. Our main results reveal the fundamental importance of the adequate definition of
Generalized Mean Fields at finite temperatures, that results in a deeper insight into the
nature of quasi-particle states of the correlated lattice fermions and spins. We believe
that our approach offers a new way for systematic constructions of the approximate
dynamic solutions of the Hubbard, SIAM, TIAM, PAM, spin-fermion, and other models
of the strongly correlated electron systems on a lattice. The work in this direction is in
progress.

∗ ∗ ∗
I would like to dedicate this article to the memory of the late Profs. S. V. Tyablikov,

N. N. Bogoliubov, and D. N. Zubarev. Their illuminating and deep remarks, advice,
and suggestions were indispensable stimulus for my studies. I express my gratitude to
them.

Appendix A.

The Gram-Schmidt orthogonalization procedure

In this appendix we briefly recall the Gram-Schmidt Orthogonalization Procedure.
The Gram-Schmidt orthogonalization procedure is an inductive technique to generate a
mutually orthogonal set from any linearly independent set of vectors.

Suppose we have an arbitrary n-dimensional Euclidean space, which means that scalar
multiplication has been introduced in some fashion into an n-dimensional linear space.
The vectors f and g are orthogonal if their scalar product is zero

(f, g) = 0 .(A.1)

We now describe the orthogonalization process, which is a means of passing from any lin-
early independent system of k vectors f1, f2, ...fk to an orthogonal system, also consisting
of k nonzero vectors. We denote these vectors by g1, g2, ...gk.

Let us put g1 = f1, which is to say that the first vector of our system will enter into
the orthogonal system we are building. After that, put

g2 = f2 + αg1 .(A.2)

Since g1 = f1 and the vectors f1 and f2 are linearly independent, it follows that the vector
g2 is different from zero for any scalar α. We choose this scalar from the constraint

0 = (g1, g2) = α(g1, g1) + (g1, f2) ,(A.3)

whence

α = − (g1, f2)
(g1, g1)

.(A.4)
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In other words, we get g2 by subtracting from f2 the projection of f2 onto g1. Proceeding
inductively, we find

gn = fn −
n−1∑
j=1

(gj , fn)
(gj , gj)

gj .(A.5)

We are left with mutually orthogonal vectors which have the same span as the original
set.

Let us consider an important example of a basis f1, f2, f3, f4 in a 4-dimensional space
and then construct the orthonormal basis of the same space. Next, in the equality
g3 = f3+β1g1+β2g2, chose β1 and β2 such that the conditions g3⊥g1, g3⊥g2 are fulfilled.

From the equalities

(g1, g3) = (g1, f3) + β1(g1, g1) + β2(g1, g2) ,(A.6)
(g2, g3) = (g2, f3) + β1(g1, g2) + β2(g2, g2) ,(A.7)

we obtain

β1 = − (g1, f3)
(g1, g1)

; β2 = − (g2, f3)
(g2, g2)

.(A.8)

Finally, from the equality g4 = f4 + γ1g1 + γ2g2 + γ3g3 we find

γ1 = − (g1, f4)
(g1, g1)

; γ2 = − (g2, f4)
(g2, g2)

; γ3 = − (g3, f4)
(g3, g3)

.(A.9)

Thus, we see that with the choice of α, β1, β2, γ1, γ2, γ3 made, the vectors g1, g2, g3, g4 are
pairwise orthogonal.

Appendix B.

Moments and Green functions

It is known that the method of moments [112] of spectral density is considered some-
times as an alternative approach for describing the many-body quasi-particle dynamics
of interacting many-particle systems. The moments technique appears naturally when
studying the particle dynamics in many-particle systems in the context of time-dependent
correlation functions (magnetic resonance, liquids, etc.). Qualitatively, a correlation func-
tion describes how long a given property of a system persists until it is averaged out by
the microscopic motion of particles in the macroscopic system. The time dependence of
a particle correlation function sometimes is approximated (at small times) via a power
series expansion about the initial time 0.

〈A(0)A(t)〉 =
∞∑
n=0

tn

n!
dn

dtn
〈A(0)A(t)〉|t=0 =(B.1)

∞∑
n=0

(it)n

n!
〈A(0)[H, [H...[H,A(0)]...]]]〉 .
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The spectral theorem (26), (27) connects A(ω) and the correlation functions. From the
above expression we obtain the moments Mn of the spectral density function

Mn =
1
2π

∫ ∞

−∞
dωωnA(ω) = (−1)n〈[[H, [H...[H,A]...]], B]η〉 .(B.2)

So, by definition, the moments are time-independent correlation functions of a combi-
nation of the operators. In principle, it is possible to calculate them in a regular way;
however, in practice, it is possible to do this only for a first few moments. If the mo-
ments Mn of a given spectral density form a positive sequence, then GF of appropriate
operators is a limit of the sequence

G(E) = lim
n→∞Gn(E, γ) .(B.3)

Here the parameter −∞ < γ < +∞ and is real. The approximation procedure for GF
consists in replacing the G(E) by Gn(E, γ), that depends also on the appropriate choice
of the parameter γ. The Gn(E, γ) have the properties

Gn(E,∞) = Gn−1(E, 0)(B.4)

and are represented by the fraction

Gn(E, γ) = M0
Qn+1(E) − γQn(E)
Pn+1(E) − γPn(E)

.(B.5)

The polynomials Pn are given by the determinant

Pn≥1(E) =
√
M0√

Dn−1Dn

∣∣∣∣∣∣∣∣∣∣

M0 M1 . . . Mn

M1 M2 . . . Mn+1

...
...

. . .
...

Mn−1 Mn . . . M2n−1

1 E . . . En

∣∣∣∣∣∣∣∣∣∣
, P0 = 1 ,(B.6)

where

Dn≥1 =

∣∣∣∣∣∣∣∣
M0 M1 . . . Mn

M1 M2 . . . Mn+1

...
...

. . .
...

Mn Mn+1 . . . M2n

∣∣∣∣∣∣∣∣ , D0 = D−1 = M0 .(B.7)

The polynomial Qn(E) (which is of (n − 1)-th order in E) is related to the polynomial
Pn(E) (which is of n-th order in E) via the following relation:

Qn(E) =
1

2πM0

∫ ∞

−∞

Pn(E) − Pn(ω)
E − ω

A(ω)dω .(B.8)
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It is possible to find a few lowest-order terms

P0(E) = 1; P1(E) =
E − M1

M0

M2 −M−1
0

,(B.9)

Q0(E) = 0; Q1 =
1

M2 −M−1
0

.(B.10)

The expression (B.5) can be represented in the following form:

Gn(E, γ) = M0

n+1∑
i=1

mi(γ)
E − Ei(γ)

.(B.11)

Here the numbers Ei(γ) are roots of the equation

Pn+1(E) − γPn(E) = 0 .(B.12)

These relations lead to the possibility of practical applications of the moment expansion
method. If we know the first (2n + 2) moments, then eq. (B.12) determines (n + 1)
different roots Ei(γ). Thus, the spectral density function can be represented by

A(ω) = 2πM0

n+1∑
i=1

miδ(ω − Ei) .(B.13)

For example, if we know the moments M0,M1,M2 then we find, from eq. (B.11), the
roots of (B.12)

E1(γ) = M1M
−1
0 + γ(M2 −M−1

0 ) .(B.14)

In this approximation, the GF and corresponding spectral density are represented as

G0(γ) =
M0

E − E1(γ)
; A(ω) = 2πM0δ(ω − E1) .(B.15)

It is clear that the Tyablikov decoupling approximation (43) corresponds to this approxi-
mation within the moment method. An improved decoupling scheme, that conserves the
first several frequency moments of the spectral weight function for the Heisenberg and
Hubbard models was developed in paper [113] (cf. [57, 58]).

It was shown in ref. [26] that the IGF method permits one to calculate the spectral
density for the spin-fermion model in the approximation that preserves the first four mo-
ments. This is valid also for the approximation used for the strongly correlated Hubbard
model in subsect. 7.2.

It must be clear from the above consideration that the structure of the obtained
solution for single-particle GF depends strongly on the stage at which irreducible parts
were introduced [25]. To clarify this, let us consider eq. (29) again. Instead of (30), we
introduce now the IGFs in the following way:

ωG(ω) = M0 + 〈〈[A,H]− | A†〉〉ω ,(B.16)

ω〈〈[A,H]|A†〉〉 = M1 + ((ir)〈〈[[A,H]H] | A†〉〉ω) +

+α1〈〈A|A†〉〉ω + α2〈〈[A,H]|A†〉〉ω .
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The unknown constants α1 and α2 are connected by the orthogonality condition

〈[[[A,H]H](ir), A†]〉 = 0 .(B.17)

For illustration, we consider the simplest possibility and write down the following equa-
tion:

ω((ir)〈〈[[A,H]H]|A†〉〉) = ((ir)〈〈[[A,H]H]|[H,A†]〉〉) .(B.18)

Then by introducing the irreducible parts for the right operators, we obtain

((ir)〈〈[[A,H]H]|A†〉〉)(ω − α†
1) = ((ir)〈〈[[A,H]H]|[H,A†]〉〉(ir)) .(B.19)

It is clear enough that, as a result, we arrive at the following set of equations:

ω〈〈A|A†〉〉ω − 〈〈[A,H]− | A†〉〉ω = M0 ,(B.20)

α1〈〈A|A†〉〉ω + (ω − α2)〈〈[A,H]|A†〉〉ω = M1 − Φ ,

where

Φ = ((ir)〈〈[[A,H]H] | [A,H]†〉〉(ir)ω ) .(B.21)

The solutions of eqs. (B.20) are given by

〈〈A|A†〉〉ω =
M0(ω − α2) − (M1 − Φ)

ω(ω − α2) + α1
,(B.22)

〈〈[A,H]|A†〉〉ω =
ω(M1 − Φ) + α1M0

ω(ω − α2) + α1
, α1M0 + α2M1 = M2 .(B.23)

It is evident that there is similarity between the obtained solutions and the moment ex-
pansion method. The structure of eq. B.22 corresponds to the moment expansion (B.11)
except for the factor Φ that should be calculated by considering high-order equations of
motion or by some relevant approximation.

Appendix C.

Projection methods and IGFs

The IGFs method is intimately related to the projection operator method [50, 51],
that incorporates the idea of “reduced description” of a system in the most suitable form.
The projection operation [114, 51] makes it possible to reduce the infinite hierarchy of
coupled equations to a few relatively simple equations that “effectively” take into account
the essential information about the system that determines the specific nature of the
given problem. Projection techniques become standard in the study of certain dynamic
processes. Projection operator techniques of Mori-Zwanzig and similar ones [48] are
useful for the derivation of relaxation equations and formulas for transport coefficients
in terms of microscopic properties.

This approach was applied to a large variety of phenomena concerning the line-shape
problem. It was shown that there is a close relationship between the Mori procedure and
the “classical moment problem” of mathematical analysis. Let us briefly consider the
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projection formalism for double-time retarded GFs [114,51]. Ichiyanagi [114] constructed
the following set of equations for GF (28):(

d
dt

− iωk

)
〈〈Ak(t), A†

k(t
′)〉〉 = −iδ(t− t′)〈[Ak, A†

k]〉 + F (k, t− t′) ,(C.1) (
d
dt

+ iωk

)
F (k, t− t′) = +iδ(t− t′)〈[K(k), A†

k]〉 + Π(k, t− t′) ,(C.2)

where F (k, t− t′) = 〈〈K(k, t), A†
k(t

′)〉〉 and Π(k, t− t′) = 〈〈K(k, t),K†(k, t′)〉〉 Here, the
definitions were introduced:

iωk =
〈[ ddtAk, A†

k]〉
〈[Ak, A†

k]〉
, K(k, t) = (1 − P )Ak(t) ,(C.3)

PG = 〈[G,A†
k]〉〈[Ak, A†

k]〉−1Ak .(C.4)

The projection operator P defined in (C.4) is different from the one introduced by Mori.
The main result of paper [114] is that, using the projection operator, a Dyson equation
that determines an irreducible quantity, proper self-energy part, was obtained in the
following form:(

ω − ωk − 2π

〈[Ak, A†
k]〉

M(k, ω)

)
〈〈Ak|A†

k〉〉ω = −〈[Ak, A†
k]〉

2π
.(C.5)

HereM(k, ω) is the self-energy, that, in the diagrammatic language, consists of irreducible
diagrams.

Our point of view is closely related to that of ref. [114] and to the development of
the paper by Tserkovnikov in a systematic way [51]. However, our strategy is slightly
different in the time evolution aspect. We consider our IGF technique as more convenient
from the practical computational point of view.

Appendix D.

Effective perturbation expansion for the mass operator

Let us consider a useful example how to iterate the initial “trial” solution and to get an
expansion for the mass operator [43,23]. To be concrete, let us consider the calculation of
the mass operator for the Hubbard model in subect. 8.1. The first iteration for eq. (148)
with the trial function (149) have lead us to the expression (150), which we rewrite here
in the following form:

Mkσ(ω) =
U2

N2

∑
pq

Nkpq
ω − Ωkpq

,(D.1)

where

Nkpq = np+q−σ(1 − nk+pσ − nq−σ) + nk+pσnq−σ ,

Ωkpq = −ε(p+ qσ) + ε(k + pσ) + ε(qσ) .
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Now we are able to calculate the spectral weight function gkσ(ω) (77)

gkσ(ω) =
1
π

Γkσ(ω)
[ω − Ekσ]2 + Γ2

kσ(ω)
.(D.2)

We approximate this expression by the following way:

gkσ(ω) ≈ (1 − αkσ)δ(ω − Ekσ) +
1
π

Γkσ(ω)
[ω − Ekσ]2

.(D.3)

Here

Γkσ(ω) = π
U2

N2

∑
pq

Nkpqδ(ω − Ωkpq) ,

Ekσ = ε(kσ) + ∆kσ ,

∆kσ = ReMkσ(ω + iε) .

The unknown factor (1 − αkσ) is determined by the normalization condition∫ ∞

−∞
dωgkσ(ω) = 1 ,

whence

αkσ =
U2

N2

∑
pq

Nkpq
Ωkpq − Ekσ

.

Then, using (22), we find for the mean occupation numbers

nσ =
1
N

∑
k

n(Ekσ) +
U2

N3

∑
kpq

Nkpq
(Ωkpq − Ekσ)2

[n(Ωkpq) − n(Ekσ)] .(D.4)

Now we can use the spectral weight function (D.2) to iterate eq. (148) and to get a
perturbation expansion for the self-energy Mkσ in the pair approximation. Instead of
the initial trial solution in the form of delta-function (149), we take the expression (D.3).
It is easy to check that we get an expansion up to 6th order in U .
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