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1. INTRODUCTION

In this paper we present a unified self-consistent conside-
ration of the correlation effects im multiband transition me-
tals. The main aim of this paper is to get more insight into
the nature of electronic states in transition metals from
a stand point of the quantum many-body theory. For this purpose
we develope a mew self-consistent formalism for the descrip-
tion of electronic elementary excitations in the framework of
the multiband model by taking explicitly into account damping
effects and finite lifetimes.

In recent years much attentien has been given to the theory
of correlation effects in transition metals, their compounds
and disordered alloys !. The characteristic features of the
d-electroms in transition metals may be deduced from a number
of experimental facts. One of the most important conclusions
obtained from analyzing the experimental data is that the d -
electrons exhibit both itinerant and localized properties,
Correlation phenomena are of great importance in determining
the properties of these substances, especially, for describing
metallic ferromagnetism of 3d-transition metals, metal-insu-
lator tramsitions, intermediate valence phenomena, etc.

There are mainly two methods for dealing with the electronic
correlation problem 2’ Correlations are usually introduced in
band-structure computatlons through a local correction of the
effective one—electron potential. The one-electron approxima-
tion of the conventional band theory has provided a basis for
understanding a wide range of solid state phenomena. The ade-
quacy of the single-particle picture is based on the density
functional formalism and its extemsion, the spin-~density func-
tional formalism 3’ The first principle band structure calcu-
lations have been remarkably successful in obtaining various
ground-state properties not only of nontrans1t10n but also
transition metals, rare earths and actinides ‘45 However, it
is often not so successful in describing correctly the proper-—
ties at finite temperatures.

T the second and complementary method, one therefore starts
with a model Hamiltonian for electrons and tries to calculate
both the ground state and excited-state properties ‘1.8-8/ This
approach has been quite successful in calculating various
ground-state properties of transition metals 18-207 Unfortuna-
tely, detailed investigations of the true nature of excited



electronic states in transition metals including the damping
effects and finite lifetimes have been started only very re-,
cently when it has been recognized that many-body effects in
transition metals are very important in understanding photo-
emission experimentsfﬂL- 7’ As is pointed in paper/a{ nickel,
from several points of view, is the case for which many-elect-
ron correlation effects cannot be ignored. While photoemission
reveals well-defined single-particle dispersion curves in
nickel, they have a large energy width indicative of short
quasiparticle lifetimes. Angle-resolved photoemission experi-
ments providing direct observation of energy band dispersions
in copper and nickel revealed a few problems for nickel: the
presence of a satellite, narrowing of the d-band-width and
other discrepancies with standard one-electron-band calcula-
tions. While explaining these features the importance of the
correlation effects within the unfilled d-band has been gene-
rally recognized /#-28/por transition metals like nickel with
their highly localized d-orbitals and hence strong variation
in the d-electron density, the effect of Coulomb correlation
on energy bands has recently been investigated in papersfg?ﬂﬁ/
within the degenerate Hubbard model by perturbation theory.

A theory for the resonant 3d-band photoemission spectra in
nickel has been developed in paper’gg/on the basis of a hybri-
dized 8~ and d -band model,

In this paper we present a new unified self-consistent ap-
proach to consider the correlation effects in transition me-
tals like nickel The one-electron approximation is invalid
in this case; thus the use of sophisticated many-body techniques
is required. For this purpose we utilize the novel irreducible
Green—-function (IGF) method developed in papers/3m31h The IGF
method allows one completely to describe the quasiparticle in-
elastic scattering processes in a many-body system and te find
quasiparticle spectra with damping in a very general way. From
a technical point of view the IGF method is a special kind of
the projectionﬂqperator approach in the theory of two-time
green functions /3238

If one introduces irreducible parts of the Green functiong
{or irreducible parts of the operators from which the GF is
constructed), the equation of motion for the GF can be exactly
transformed into the Dyson equation. The representation of the
self-energy operator in terms of high-order GF is exact too.
To perform the self-consistent calculation of the self-energy
operator, we have to express it approximately in terms of low-
order GF”s, Recently, the IGF method has been applied to a num-
ber of solid-state problems/3+41/.An important problem was
te investigate the effect of the orbital degeneracy in transi-
tion metals by this method. A generalized Hubbard model of
a d-band with its degeneracy fully included is more realistic
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for transition metals than the one-band Hubbard model considered
previously by the IGF method in paper'SI.Recently,.a complemen-—
tary approach for the computation of electronic excitatioms in
solids within the projection-operator formalism of the Mori-
Zwanzig type has been developed in paper 4%/ Unfortunately,
explicit results have been obtained for a system with one orbi-
tal per site which has been described only by the one-band Hub-
bard Hamiltonian.

The present paper is organized as follows: in the next sec-
tion we introduce the model Hamiltonian for the system with
several orbitals per site. In Sect.3 we describe the formalism
associated with the irreducible Green function method and de-
rive the exact Dyson equation for a single-electron GF. The
consideration of the generalized mean-field GF and their poles
is presented in Sect.4., The self-consistent approximative cal-
culation of the electron self-energy operator is developed in
Sect,5. The numerical calculation is presented in Sect.6.

2, THE HAMILTONTIAN OF THE MODEL

A better understanding of the electronic correlation in
golids really dates '8 from Hubbard “s introduction of a new
Hamiltonian/ 8.7/ that could be used to analyze major aspccts
of both the insulating and metallic states of solids in which
electronic correlations are important. To simplify the problem,
many of treatments of the correlation effects are effectively
restricted to a nondegenerate band. Most of them take only
account of an intra-atomic integral, assuming its dominant
role 'in magnetie properties. The model Hamiltoniam which is
usually referred to as the Hubbard Hamiltonian includes the in—
traatomic Coulomb repulsion and the one-electron hopping energy.
The Hubbard model has been investigated by many authors with
various assumptions (see, e.g.; M=19), It is usually a rather
difficult task to solve this model with a reasonable accuracy
and correctly describe a simultanecus electron correlation in
different d-states.

In this paper we want to develop a more realistic approach,
An important point is to find a model which includes the five-
fold degeneracy of d- states explicitly and to study the role
of additional (to the Hubbard intra-atomic) terms for transi-
tion metaks like nickel, Let us. start with the second quantized
form of the total Hamiltonian for an electron in a solid..This
method of describing many-particle systems is based on the
choice of any complete set of oerthogonal normglized wave func-
tions. In our approach we take the set tpp(t~R) of the Wan-
nier functions”*¥ Here A is the band index. For a degenerate
d-~band the second quantized form of the total Hamiltonian in
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the Wannier-function representation is given by

He £ 3 tlal,a,,+1/2 3 3 3 <ia,jB! Vi my,n8> x

ij o ipo ijun afydro” 1)
+ 4
x aiaaa jBO‘"amw‘a wdy °
where
<ia ,§B|v|my,n5> =
(2)

= [ @5 (PR ) @R~ R DV T, (7R b5 (=R )1

The purpose of the present consideration is to apply the IGF
method to this total many-electron Hamiltonian {1). Relevant
calculations have been carried out. The obtained formulae,
however, are complicated. To give a physical picture of the
caleulations, in this paper we restrict ourselves to the fol-
lowing model Hamiltonian

H=H,+Hg+ Hy. 3

The one-electron energy operator of the d-band electrons is
given by the expression:

=2 3 t
ij o 1p.:7 2 o ‘ : (4)
The term H, describes one-centre Coulomb interactions of d-
electrons:

H

1
2= E—EUU n, n, +1/2 3 X U[B - chr'(l" B Yo -

i iag “ia-o iaB oo

’ +
_ lé_i‘lzﬁjagl iaz ® 8 (1_3a3)+1/2m%0_1a3(1-5a3 Wino By im0 10~

1 ‘ + +
-7 %Balaﬁa' iar 8 ig-0 2 iB-rd ifo - : _ : | (5)

In addition to the intrasite Coulomb interaction Uy, which

is the only interaction present in the Hubbard model, the Ha-

miltonian .(5) contains three more kinds of interactioms. The

last term Hy describes the direct intersite exchange interac-

tion :

Hg=-1/2 3 3. Jj m-aim’a;a-’apo . (6)
ija oo
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Here, we take only interactions Hg diagonal in orbital index.
Thus, our Hamiltonian (3) includes only a one—centre and two-
centre integrals of various kinds. In eqs. (4)}~(6) these va=
rious integrals are defined as follows:

V . -~ . >
tuiJ <ip! hl jv> U sz =<ia,ia}v]ia, la‘_> -

Ua'6=.<ia,im$u3,ia>; IaB'-(ié'.iﬁ!;Ha.iﬁ,\. a¥B (7)
Ia’B=<ia,ia'1;liB,iﬁ>; ']’til':itz ='<ia.ja|V1ia,ja>: i#i .

In the above equations v is assumed to represent an effective
interaction screened by s— and d ~electrons. It is reasonable
to assume that:

Uaa =U; U‘;B =07 IaB al, Ia'B =1 Jl] =Jij . K (8)

Thug, the Hamiltonian (3) is spec1f1ed by six parameters: the
band width W and five integrals U ,U” 1/ 17 J. ye note

that s -electrons are not exp11c1t1y taken into account:in our
model Hamiltomian (3), so the hybridization effects are neglected.
They are, however, implicitly taken into account by screem.ug
effects and effective d -band occupation.

3. THE DYSON EQUATION FOR THE. ONE-~ELECTRGN
TWO-TIME GREEN FUNCTION

For the calculation of the electronic quasiparticle spect-
rum of the described model with Hamiltonian (3) let us consider
the equation of motion for the one-electron double-time tempe-
rature Green function’ *¥:; :

ﬁ(u,t t)=—=i8(t—t") <[ 2 ,,(, 2 J&,(t')]
{9)

+ .
=<€a ., 1, 3‘},80’,-“ P>

. First performing the time t differentléatmn of {9) we get the
equation for the Fourier transform Gﬂl A w)

av v
EEVT GG, (iiw)= SIJSGBM,+E{V1 (1!)<<agaanbo|ajﬁ>> +

av
i +
+Vy, (1")‘«32:10 “Euwclaj,ﬁa“ :’>m +



2 V(A0 + VY UL <<ag,, aa&}_aayw lalgy>, +

€10)
a . ¥ VRPPCRY]
+ V{;V (if X(<<a i ?:)0‘1 3j:BJ ~ﬁ +5B 50 8 g Ay l a'J'.B?" >’;))} *
where !
ay
mj(i[)=m3h B "T-ai'; ; V1 (0O)=(U"-1)(1-6,,)8 ¢
Vo )10, + U (lady, N6y ¢ V5 GD=-1(1-8,,)8, (1)

4 [/ 478
VO ()= =17 (18,08, 1, Vg (f )=-3 g (1=5,0)8,, -

The aim of the present investigation is to thoroughly study
the correlation effects in transition metals. Therefore, the
adequate approximation is the weak correlation limit: U/W
u/w,Lw 10w W

To treat the many—body problem in a self-consistent way,
we follow here the IGF method ‘3 In the weak correlation limit
we introduce by definition the irreducible parts of the CF in
the r.h.s. of eq.(10)

-
+ ir
B =Ty

+ + +
. Sla, RS S ; P >
« ‘11;17 2Py e’ iR 1 @ i Lpr By 1B +

(12)

. + + i + .
< Y (_- . sk Y + & . A ~ -"/_a » a . "y
B e T AT 1 o Ay fro By e

in which all possible mean-field contributions are removed,
The choice of the IGF s is determined by the conditions

<{(a 38’1114‘" - 0. (]3)

lpanflrfr )'
From eqs.(12) and (i3) we find:

Ar N
; > -
<[(alu7 neoc ) d'jﬁrr] ]+ ;
+ +
L _ g . ". A ’ . “u -
"<[(a’iug'“7v.¢' mhp, YRy =Ry, A, ) 838 4 l4;-

(14)
,..<[aiugrnfm. ’a§[3511 ]+‘- -, > ai.j 3,{18 5071 -

_<a_ afmj, SF] r’,83 Yy { 0.
So, the IGF s are defined so that they canmnot be reduced to the

low—order ones by any kind of decoupling. Thisg reduction proce-
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dure is of fundamental importance in the present method because
it allows us to extract all relevant (for the problem under con-
sideration) mean-field renormalizations and to put them into the
"zero-order" (generalized mean-field) Green function. To de-
monsgtrate the possibilities of our method, we explicitly write
the so-called "anomalous correlation functions corresponding to
spin-flip processes” 4%/ However, it must be stressed that be-
cause of the spin rotational invariance of Hamiltonian (3) we
have <Bigy djg.qg > =0 The spin-flip anomalous terms must be in-
cluded only for a rather special case of the system magnetized
in the X direction instead of the conventional Z axis. In the
remaining part of this paper we do not take spin-flip terms
into consideration. Thus, in the case of weak electron correla-
tiom it will be enough to define a very simple mean-field ex-
traction, i.e., <nj,>. In the general case the mean-field re-
normalizations may have a very nontrivial structure, and a spe-
cial projection procedure should be developed for higher-order
GF”s as it has been done for the Hubbard model in the strong
correlation limit, for the theory of superconductivity in tran-
sition metals and their disordered alloys’®~%/ and for the
magnetic polaron problem at finite temperatures!43{

Using the definition (12) in eq.(10) the equation of motion
(10) can be exactly transformed to the following form:
. a2y 4 #4138 it
% Eq(iﬂ(%ﬁffﬁw)=ausaﬁ+%tvl ﬁ?)é:a%qnﬂmla}%ﬁ

b3 [¢3]

v e Cut
' 2(1)aad%gn5_njdﬂ%.a+
(15)
ar ar ir + o+ )
- Vg )+ Vy (0 )azag, L afig 2, NP
le ) it bt i;, + 1a+ )
+ Vo (if )(-.cdh,gn,m-ajﬁa. ot Ty iy By B Ok
The renormalized energy Eﬁ:ﬁﬂ)is given by the expression
ar av . av +
E_,r (ir)="T (1?)—\4’1 (if)<ag,, af., > -
S (VH(F)S_ <ng >~ VoF(E)8,, <ng_ >)-
_u,( y (iF)8,, Bge> = Ve v <0g, o (16
I

av . + v, . +
~Vy (i0)<ag_ap, >V (il)<ap, _ag_, >-

R + + av .
—V5 (if )C<aiwafuo >=<dy,_ g3, 4>) - % Vg (i8¢ Wy

Now w?rproceed to derive the Dyson equation. To calculate the
IGF s <<A{)B(t* > in eq. (15), we have to write the equa-



tions of motion after differentiation with respect to the second
time variable t’, Then conditions (13) remove the inhomogeneous
terms in these equatioms, If one introduces irreducible parts
for the right-hand-side operators by analogy with expression
(12), the equation of motion (15) can be exactly rewritten in
the following form

gB ﬁ R VB ..
. (1 w)= G (1Jw)+2 2 G o (m; m)P (mn.m)GOa(ﬂJ,m). (17)

where the generallzed mean-field Green function Gy reads
av
Eo.(i?)Ggf(ﬂj;m)=‘o‘a831j . : (18)

The scattering operator P is given by the expression

i ir
P28 (i w)= = 3 VT (im)V'[:B (nj)<<a__n > 4
; mn pv

wao™ wvo!l 2uBo B opo 77,
o B i R
+ V., (imVy (nf) <<ama-nmua-lanﬁon e
{(19)

ll‘

nB
+V2 (1m)V1 (n])<<a o mv—olan&? o7~

av . B ir +
vV, (im)V, (n_])<<a.mm],n“‘u“ala.n‘&-,-ﬂnnlw_(7 >y, t.

Here we present for brevity the scattering operator only for
a part of Hamiltonian (3), i.e., H=H;+Hj, without two last
terms in Hy. The full scattering operator can be written di-
rectly.

If we go further and write down the Dyson eguation

vB
G(,,%J.w) GOG'B(u,m)+Z 2 GOO_(lm m)M (mn w)G, (o) (20)
we get the follow1ng equation for M

By (o) = MY (mmie) + 2 X M, ()0 2P a5 PV ey (21)
ij a

from which it follows that we can say, in complete analogy to

the diagrammatic technique, that the self-energy operator

M’;V(mn;m) is defined as a proper (comnected) part of the scat-

tering operator P:

M"Y (mn; ) = (PR (om; ) (22)

Tt should be emphasized that for the retarded (and advanced)
GF”s the proper part has only a symbolic character. However,
one may use the causal, instead of retarded, GF at any step
in the calculations because the equation of motion has the
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same form for all three (retarded, advanced, and causal) GF’s.
In a certain sense there is a possibility of controlling, in
the diagrammatic language, the relevant decoupling procedure

in future approximative self-energy calculations, Thus, in
contrast to the standard equation-of-motion approach the deter-
mination of the full GF G has been reduced to the determina-
tion of the mean-field 6F Gy and the self-energy operator M.
The reason for this method of calculations is that the decoup-
ling is only introduced into the self-energy operator, as will
be clear from the next sections.

4. ELECTRONIC STATES IN MEAN~FIELD APPROXIMATION

The question now is how to describe our system in terms of
the quasiparticle picture. For a translationally invariant sys-
tem, to describe the low-lying excitations of the system in
terms of quasiparticles, one has to choose eigemstates such
that they all correspond to a definite momentum, For the dege-
nerate band model we need the transformation relations between
second quantized operators 3j,, and 3}, connecting the elect~
ron state with an orbital gymmetry a centered at atomic site
R;{ .and the Bloch state |k> of the same symmetry. The exact
transformation reads’%%6:47/

e K e + + ~1
A2y =N jE'Bexp[—1kRj]U;\'6(k)a.jﬁa,; U =U . (23)
However, for the sake of simplicity, we shall follow the appro-
ximative approach of papers’lags/ where the following trans-—
formation

aw —NééZe [‘Eﬁ]
=N ¥ exp[-ikR;1a 40 (24)

has been used instead of the exact one, as given by eq. (23).
The second quantized operators in eq.(24) generate five artifi-
cial uncoupled bands for which @ = 1,2,...5. When coupled by
Uxg(k) they reproduce the realistic bands labelled by As as
given by eq.(23). This is, of course, a simplification of the
problem. We discuss this approximation more thoroughly in Appen-—
dix A. The adoption of the approximative expression (24} is
equivalent to the following definitions of the Fourier trans-
form

B

G“f(ij;m)=N'1§ explik(R; ~R)I G (K,w) (25)
k .

B

M“B(ij;m)m“E exp [ik(R, — R, )IM™ (K, 0) (26)



tua - N-l

- i 2> 27
p % @ esp [ {K(R; -] (27)
Using the definitions (25)-(27) in eq.{20) we find

P @0y

o

(Kw) +;zveg‘; oM )G Rw). (28)

From the symbolic solution of the Dyson equation (28)

G(K,0) = [ (Gy(R, 0 )™  =M(K,0) " (29)

it is pnow seen how to change the problem of calculating the
single-particle GF G to the one of calculating the generalized
mean-field GF Gy and the self-energy M.

Let us first consider the mean-field GF Gp. In the mementum
representation we obtain from eq.(18)

.o s v o
) E(;r (k)G[) (koﬁ))’-aaB- (30)
v
; . a3
The renormalized energies E, (k) have the form

o - b
Er)' (k)=(w—Fa(k))3a,, S Spagpre 77

~1
—(U =I)1 =8gy IN % <a_ at
P

-1

- :‘,';' (U =1)(1~ 3(1“) Sat' N ‘;;_ <llmm>_

-1

» . - » T e . ‘+
_(Ub‘a#+U (1-5ay Na, N \; <np#_q >4l (1-—5av N ,I‘;"\dm_,q Appey P+
. (31)
-—1 - +
+1{1-5,, )N %)<ai—w_rr dpgmg ™+
R A . . -1 2o L, L
+ Sm,(J(O)N z CBinrs Mo -~ N %J(}, ]}){;‘_1<dp"~7 1‘1‘“"”1 >),
where
> -1 s - -
J(k)=N X J; exp[—ik(R; -R;)I (32)
1
For the multiorbital Hubbard model (U'=I=I"=T =0 we find
£ 2 ~1g
o K =lw=eq(W=-UN " <n._ ~18,, . (33

P

The spectrum of electronic low-lying excitations without
damping follows immediately from _the poles of the single-par-
ticle mean-field Green function Gy ( Gg denotes a matrix in
the space of band indices):

det|E, | =0; det|E_, | = 0. (34)
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It is obvious that most important is the case diagonal in the
band indices:

d aax -
EY (0Gg, (ka)=1 (35)

because if a Green function is diagonal with respect to some
set of single-particle functions, these functions are "natural
orbitals of the problem. Hemece, we may write for the diagonal
case

6% o)-[EX N7 aREe) = (BT GV (36)

where

aa P 3 , Jed
Ep (=0 —eg(k)— (U ~1)’z; (1-84 W, -

‘ , ’ 37
- % (Usa,u +U (1'3au NN _, -
. -1 3 _+ . “‘-—-1‘/‘4.
'-'-:}IN %J(k_p)': apanl‘lpa(rl>+3(0)N %’ ‘dk+parraparr)
| . (38)

i -1

N, =N E LY
Y

Tt follows from eq. (37) that in a complete analogy with the
one-band case one can define the band splitting A* in the
following form

a a -« 4 a . g 2’
A BT B-ES (=0T NG T (-8, (N =N
. (39)

s =1
+ J(OIN ak+pa4.apaf ).

-

: +

hY - .

~ (= 4

m ( ‘lk+paf pas

The last expression generalizes the standard Hartree-Fock band-
splitting expression.

5. ELECTRONIC QUASI-PARTICLES AND THEIR DAMPING

Now let us take into consideration the damping effects and
finite lifetimes. Hence, our next task consists in obtaining
self-consistent approximative expression of the electrom self-
energy operator. In the general case, to find the damping of
the electronic states, one needs the following expression for
a single-particle Green function (c.f. /40.41%) '

¢ ko) =1 Gy B = 2% E o (40)
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Here Zav.(l:t‘.m) is a functional of Mg?(fi.w)'

52 (fw)=F (M (K001, (41)

If we confine ourselves to the most important diagonal case,
we find that the renormalized electron energies are self-con-
sistent solutions of the equation

22k -ES @ - Re Tp.[k, 700 =0. (42)

-
Hence, if k labels a quasiparticle electronic state, the spect-
ral functions

g (k @) = ImG (k,w) (43)

will have a strong maxima at energies of the quasiparticle
state,

Thus, now we have to find the matrix elements of self-ener-
gy M to complete our solution of the problem. To find explicit
expressions for My(k,»), we have to evaluvate higher-order Green
functions in eq.(19). In the quasimomentum representation we
obtain from eqs.(19) and (26)

B B ir ir,e
M. (k,w)=N_ E;} p%mtv V <«<ak+waapquucr 2 ol k+sB§a .
Vavvllﬁ ir + + + ir,¢
S3krpar Bprgre quo Ak4sBr Brpeo Brrspmo Tt
(44)
av pf ix ir, e
+V2 vl <2y tpac p+1q:/--o' w— o'|ak+s,80 lyo aﬁ-s,ucr>>w *
av_ if i + ot ir,c

+Ve Vg <<"‘k+paa 4 ptqumg ® —oiaki-SBU tpao® 4+ spso &

. . . + .
It is convenient to write down <<A|A >»n terms of the correla-
tion functions in the form

-] rd
do ”

+
<Caktpgg 2 p+quor qvo | ak+sﬁoar#a A respo 7> = E f ——'—-'(e +1)(:5)

iw "t + P S + R
x [ dte <8yy @y (t)a.m_‘g (0 - aﬁ,sp__o_(t)ak_,_mawqwaqw_ >

It is reasonable to use the following pair approximation (for
a low density of quasiparticles) for the correlation functiom
in the r.h.s. of eq.(45) in terms of single-particle correla-
tion functions .

+ ir'.,c + a >X
<ak+ng(t)am NCE S (O] S ap+qy_oaqu_g,~n._<ak+pga_() Ktpas
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+ 4 N T
<@gy Mgy 5 >Ry qug (08} 4 quo® X8kt sikep ~ Orq - Srvs,pra (46)

Taking into account the spectral theorem we obtain from (44)-
(46) : '

a3 » - av uf a#v,B»-.—. av _ uf auvf s o
M, (kw)=N 25 pzqivl V‘“1 Qi (ka:w)+V2 V*Q Q,, (kpdiw), (47)

wﬁere

T 3 % d te od
QPR 0) = (- LY [ff i

Lo @ F@ —@ymw

{ nlew 1 X 1-n(ew 2)—!1(&)3 )]-I- (e 2)11(&)3) b
3 : .

- > - Y - -
A MG B 48,0 )Im G, @ro ) ImCE FrB 0 5)+ S (48)

He N UB 75 -*
+ ImGY G40, 0 YImG, (o) indy @00,

{nfw N1-Nwg )~Mw )+ nlw,)nle i

(49)

QB (R3¢ )=~ Ly e1degle g
25 ( Pq m) ( ”)ﬂw+w1—m2—m

73 Z afl + o
xIMG (343,00 G ] (€0, ImGylk+p,05):

Equations (29) and (47) form a closed self-consistent system
of equations for the single-particle electron GF for the gene-
ralized multiband Hubbard model described by Hamiltomian (3).
In principle, we may use, in the r.h.s. of eq.{47), any relevant
initial GF and find a solution by repeated integration.

For the first iteration step we choose the following simple
one-pole expression (c¢f. eq.(33))

._..%ImGaf (K,0)= S(w_E"f(i{))aaB. £Y ®=lo-c, ®-UN2 15, . (50)

Then we obtain

aB, y? N (kg d)
M o (k,w)’—'b\aﬁ{ = by e i R e AP a +
N*pa o+E,(p+)-E_ (@)~ E,(k+p)
o (51)
+ (U D)%+ (U ')2 > Nlc}rt-}a(k PaNl-Sav) i
2 : v oV NN
N PW v B Y (Bad)~Eo(@) - By (K+ D)
where
111V2V3 > V]_ V2 v ]/2 1}3
Ny (kpc”=np+q.—cr- [1"nk+p0' ”nq?—o"] *Ppo M geo (52)
v . L -1
npgz[exp(.BEg(P))«rl] . (_53)
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For a simple one-band Hubbard mode] we directly obtain from (51)
the result by Kuzemsky

VCIRIN s o AL ot CALt

- (54)
N2 pq w+ B_ (p+q) E_,@-E, &+

In the region of the resonance between the one-particle and
collective excitations another approximation is possible, in-
stead of (46):

<a;’BU (t)a (Ha, . (Ha, &

+
- A, > o=
ireg jporg 4 lvry Tivoy

+ +
- (‘aiﬁﬂi{t)aia-”s >Ny (Mg, > + <Bj8s, tray,y, >

+ + +
. a. A i R I . tn . >
X DMiay (t,)dm_,,sd”,n‘* +<d"mo2(t) dmog\ 4§ Bo 1(t)aJurr2() ive, +

(55)
+
+<a§poz(t)d1120 ; ]Brr (t)aj.u'rz ta;, 11»04 Tt
. + + .+ Lt (56)
+<aj,ucr2 (t)ai',%)f.ajﬁngt)ajwz(t)aiagaa“,”.». ]
For the multiband Hubbard medel (U'=I=1"=J =0) we find
2 iK(R; =Ry ™
Wy L s FERY G dodog
7 72N 2 ij o WGy W o
nF{wy Inplog) + -
X_t—'l—]—;-(:)l:::;";—)——- (Im <<am_,,’ Bj B-"r\\;u 1- Tm ”1’1 1 JB-(T "'2+
' (57)

Im << 2" s~ dImeca,, ., ay lafg 8B )+
+ ia — ry‘ Jﬁ""' oy % gy Yla - Jf rif-a gy

{1-n fw) ))ﬂy {w 2)

PIS I — | R §

L+

Dy dmeca. a. d g
- if—r g e llm i "‘_}Bfr iB-r w Bi
n F(“’ g —wg )

6. NUMERICAL RESULTS

Let us apply the results of previous sections to the reaso-
nable model calculations of the self-energy and spectral densi-
ty. In the pair approximation (46) the general expression for
the self-energy has the form (cf. eqs.(48), (49))

ad dwldmgd

2
M (k-w) = D R et --—-—3n(m1)(1 n(mz)—ﬂ(w )+ w )l‘l(r) )b<
N Pq ootV +ml W g~ wWg



where

_gka.,(w)=_'1;1mGo.(k,w+iE). (59)

For our artificial uncoupled bands (24) it is reasonable to
accept the effective one-band model with a possible total num-
ber of 10 electrons per atom to proceed the numerical calcula-
tions. For this model we have calculated the self-energy M(Ew)
according to formula (58), where for the spectral density of
states and dispersion law we take

gk(w) = 8(w —¢ (ﬁ))

aksx ¥ aky 3k, ak, ak, (60)

- ak
e(k)=Eg— 4t(cos-—§- €oS —3° +cos——-§- COS ~—- 7 cosr_g_ cos—§~ ).

Tn general, formula (58) proyides a self —consistent way for
obtaining the self-energy M(K,») and Green function G(k,w).How-
ever, because of a rather tedious integration method in 9-di-
mensional space (6-dimensional space for the K- -integration

and 3-dimensional space for energy integration) we calculate
the self-energy in first iteration step omnly for the model den-
sity of states of the FCC lattice.

The calculations were done with the appropriate set of me-
tal parameters for FCC lattice. The band-width W= 4.6 eV for
a band filling 867 and 94%. These values of parameters approxi-
matively represent the ones for d -bands in tramsition metals,
namely, in Co and Ni, respectively. All calculations were done
for temperature kT = 0,03 eV.

The integrals which appear in eq. (58) were calculated by
the Monte-Carlo method, and quite a bit noise showing by calcu-
lated curves is mainly due to our limit of the computer time,
For each energy and k -vector approximately 250000 points in -
6—dimensional space of the quasi-momentum vectors (P,Q) were
randomly generated. Of course, we first calculated the imagi-
nary part of our self-energy and then obtained the real part
by the Kramers—Kronig relatijon,

In Figs.1-4 we show real and imaginary parts of the self-
energy M(K,w) calculated at different points of the Brillouin
zone,

In Figs.1-3 the self-energy curves have been calculated for
energy bands of width 4,6 eV and the band filling equal to
867 for ', X and L symmetry points in the Brillouin zome,
respectlvely.

In Fig.4 the same curves have been calculated for the band-
filling equal to 967 for I' gymmetry point.
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Then, we may see that the differences between self-energy
curves calculated for different K —vectors are relatively
substantial. For our medel start-density of states (FCC lattice)
the most different from other self-energy curves is the case of
I' point. In comparison with these onés for X and L points
we can observe the absence of a long tail in the imaginary part
and a considerable decrease of a real part for the states near
the bottom of the band. These features of the imagivary part
of self-energy may lead to broadening of the initial Bloch
states with the Kk -vector lying far away from I' point in -compa-
rison with the ones for X-vector from the vicinity of I' point.
In Fig.4 we present similar calculatioms fer I' point but for
a different band-filling, namely, for band filling equal 947.
The main differemce is only in the absolute value, and the shape
and general trends are gsimilar to the omes for smaller band
fillings.

s

. In Figs.5-7 we show the spectral densities for the same k -
values along the I' , X symmetry line. For computational comve-
nience the spectral density curves are evaluated at complex
energies, E=w+0.00li. The presence of the finite imaginary
part in energy effectively causes these curves to be averaged
over an energy interval of order ~0.001 eV. Because of a very
small part of the energy these curves are broadened very slight-
ly, and their peak heights are somewhat reduced from the true
results which would be ocbtained in the limit of vanishing ima-
ginary part.

In Figs.5-6 we present the spectral density of states for
band width W= 4.6 eV (the band extends from-3.45 eVto 1.13 eV)
for the band-filling equal to 857 and for two values of para-
meter U/W = 0,33 and 0.66, respectively. Small irregularities
on the curve in Fig.6 come again from a too small number of
random points used in the Monte-Carlo integration in the imagi-
nary part of self-emergy. As was expected, with increasing va-
lue of the Coulomb integral U the spectral density curve be-
comes broader and exhibits a much more rich structure. Roughly
speaking, at I’ point we have a long tail from the upper side
of a band with a great peak on the lower side of the band. Then,
when we will move, for example, along the I'X symmetry line to-
wards X point we obtain a longer tail on a lower energy side,
and at the same time we have a recomstruction of the main peak
from the one side of the Fermi energy level to another side,
The similar behaviour of spectral density can be seen for other
parameters, i.e., for the band filling equal to 84% and for
U/W = 0.33, as represented in Fig.7.
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Fig.5. Spectral density of

states of model -type tight-

binding energy dispersion curve

with self-energy caleulated

from formula (58). Parameters:

U/W=0.33, W=z 4.6 eV, Eg =

= 0.95 eV, band-filling equals
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7. SUMMARY AND CONCLUSIONS

We have provided a relatively simple method that enables
one to calculate electronic quasiparticle spectra including
electron-electron inelastic scattering processes in a self-
consistent way. The most important conclusion to be drawn from
this paper is that the conventional nne-electron approximation
of the band theory is not always a sufficiently good approxi-
mation for transition metals, especially for metals like nickel.
The adequate description of electromic guasiparticle spectra
in multiband transition metals requires a much stronger role of
the many-body correlation effects than believed some years ago.
Our results give further information about correlation effects
in transition metals as compared to that one obtained in pa-
pers/26-29,42/ however, our approach is a more general one.
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In conclusion, we hope to have provided some insight into
the nature of electronic states within the realistic many-band
model of transition metals. The approach developed here can be
useful for studying photoelectron and X -ray excited Auger spect-
ra of transition metals. To extend it for transition metal
compounds, we must consider the strong correlation case and
generalize the formalism used for such a case as it has been
done for the one-band Hubbard model earlierfglfAlso, the an-—
proach developed here can be extended to the description of the
correlation effects in the antiferromagnetic transition metals
and in disordered transition metal alloys. We hope that these
important problems will be considered in future works,

APPENDIX A

Wannier Functions and Tight-Binding Functions
for Degenerate Bands

To compare our results with those cobtained in Kleinman and
Mednick caleulations’?%/ we shall now briefly comment on the in-
ter-relation between Wamnier function and tight-binding-func-
tion representation of the electronic states for the multiband
metal, e.g., for degenerate d-bands in transition metals.

In our paper, wg need the complete orthonormal Wannier func-
tion basis 1éy(r—=R;)1 for introducing only the second quanti-
zed operators 2y,, and 4y,,.0ur main calculations, i.e., defi-
nition of the irreducible mean-field GF (i8),etc.,are in a ve-
ry general form., However, to find the spectrum of electronic
gquasiparticle excitations we must introduce into our comsidera-
tion the wave vector K. Hence, we must accept a certain relation
between Wannier and Bloch functions, or equivalently, between
second—quantized operators representing Wannier localized
states and Bloch extended states. Construction of Wannier func-
tions for degenerate band is an essentially complex problem.

At the present time there seems to be generally accepted the
practical method developed by rohn/#% .1t is well known that

such a relation for composite bands we need is of the form’ 5:48.47/
.- Y . . KR R
l!»',\(k,[) =N i:,SA/(F"R;i}e UA’A(k) (A.])
1
or equivalently
+ ~% i‘]”‘.R'i + -+
Jk)\r;r:N 12’\»8 Lire U.\'?\(k)
e (4.2)
+ —i4 ik R o
I N kEA,e any . Uy (k)
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(4.3)

e
where U(k) is a unitary matrix. When we substitute the Bloch
function "(A.l) into the Schroedinger equation, we obtain for
matrix U(k) some eigenvalue problem

S e, L(R)U, ., (R)=EU,, (%)
L ATA ) A g (A.4)
AL NI
. = ; ’ I~®.)>,
VLY - € By - (F) I‘ls;\l i

In the case of generalized transformatioms (A.2), (A.3) we

must change our definition of the Fourier transition, Egs.(25),
(26) as follows:

-1 kR, -R,)
G?;.B(ij'»w)zN Azi'e i~ U, )\(k)G (k m)UA B(k) .
»>> A.5
a3 -+ -1 ~ik(R§~R5) 4+ ALY . N ( )
G, (kw)=N E ;%\'e U\ G, (ijie)Uypg k)

and similar equations for the self-energy.
Because of a very complicated form for E (k), Eq. (31) written
in terms of general transformations here we give only E V(k)
for Hamiltonian H=H, +H, without last two terms in H, Then
we have:

av ., - .
E =(w = _0l-1
o Br=Comr, Bog, - SFh- 3 | (5 | A=0),,)

WU, U, G L GO}, P+Ter, B, OV DU, G

+
X -—
<apA30_apA4g_>

(A.6)

+ nd nd e I o -
<
;2 Aﬁzksuahl(kw"iv )Ty a PYUAL P an\"aP‘\za

.

zlc Z;G

+ - > +> _ + i +
b T (1-8 U KU KU U <a_,. 3 >
p Alhz( )‘1’\2) ary(E0 4y () )‘Z\a(p) )\4J\2(P) PAFO PAL-T
Aghy
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: ad
0f course, when we apply the substitution U)\I,\g(k)= Iapgeor

in other worgf,»take transformations (24) instead of (23), we
obtain for E% (k) the formula given by Eq.(31) of the main text.
Expression for self-energy for the same Hamiltonjan and for pair
decoupling of correlation functions is given as follows:
af o 3 -2 + 2 > O
Mo Ko)=(- 2PNTFS 3 3 UL MU, g0Uy DUy, (e
o 7,) W My Ap pd a)\() AP ) }‘)\2( A P+
dwyy dwg dewy

+ -+ - + - ’ > oo
U ‘ e A
UAy @))U,\s)‘ . (R+P)U/\6“ @U, 5, (= )fo@+m1 _wz__waN(ml.wz.cos)x

A 7% i Ay
XA [ImGy | fo VImGy (@)ImG i fo 9 +

(A.7)
av vy e
+ MG o (w,)-ImG o, (w3) MGy pfwg ) I
At pv v 7 A

+ Bpf\llmGp+q—o'(m1)Iqu—a-(m B)ImGk+pg(w3)%’
where

N(cai,cuz,m 3)=n(m 1)[1—n(m2)-n(ru 3)]+ n(mz)n(ma)

A

Ay = (1=8 p N1=8 1A (U - 1)® (A.8)

N

By, <(Udy, +U (=8, )IUBS,, + U (1=30)0-

For the approximation Uhl)\z“ 3A1A2 and for a simple Hubbard

model we obtain the limiting case found by Xuzemsky 31/.

Let us now consider the tight-binding approximation follow-
-ing/ 47/ The tight-binding degenerate Rands are constructed
from localized atomic orbitals '@ —E;)in the following well-
known way/ 17/,

- 1 g A -
NGNS ep iR, 1V (0) g, (=R ), (4.9)

where we denote atomic orbitals by @ , B indices and energy
bands by A , Ay indices. This equation gives the required
(exact) expansion of the Bloch functiom in the general case

of several bands. The main point of that expansion is the rep-
lacement of the expansion coefficients explik-R; ] (appropriate
for the one~band case) by more complicated ones. The coeffi-
cients V(k) give the required mixture of atomic orbitals to
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yield the Bloch states. Formula (A.9) may be inverted by wri-
ting for the atomic orbital state

- -1 =+ ar » > 3
q;a(?-Ri)z'N /23) exp[uikRi]U (k)‘I’A(k.r). (A.10)
k
where matrices U , V yield the relations:

a)\-o }h\l-o T >
hEkU k)V (k)exp[ik(R-,—Rj)=5aa161j -N,
S VG U @) expliR; (5= 8y 5 52+ -N (a1
o {P) (g)expliR; (p-q)l= Ahe% g T

Here we have, because of non-orthonormalized atomic orbitals,
overlap integrals

“‘B_N Zexphk(R “Rpuett @ uPie, (A.12)

Now we can introduce the formalism of second quantization with
operators a+k1\ s & A for the creation and annihilation of elect-
rons with wave vector K spin ¢ for band labelled by index A
or with operators "'um- b;,, for the creation and annihilation
of electrons described by function ?a(?*R ) and spin o . JNote
that because of non-orthonorma11zed atomic orbitals va(r— )
now we have b%, 7 a‘a,, In such a case we can still work with
the Hamiltonian written in terms of dlar}'b igg but some opera-
tors, for example, dfm,bm,, have to be handled with a certain
care {they are not Hermitian) 48/ por that reason, one often
make the approximation

aBd
R, = aﬁ5u {(A.13)

which is equivalent to working with matrices U=V'. Now, the
above described formalism given by Gutzwiller is equivalent
to that one given for the tight-binding description by Mar-
schall’#/, and in his notation we have:

¥y (B, D)=N""% ik- Ry Ja% (k) ¢ (=K
) (E,r)= / explik-Ryla, (k) g (r=Ry )

* (A.14)
9 (F-Rp) =N""%Sexpl[ ~ ik - Ry 1}(K) 1* ¥, (X, 1),

kA

> . x @ >
where for the transformation coefficients a,(k) we have the
eigenvalue equation :

'B ﬁ(k)exphkR lzck(k)a)\(k)exp[l ,1. (A.15)

Such an approach for the description of electronic states has
been used in paper’?®/ We may clearly rewrite Eq.(A.6) in terms
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of coefficients ai(E) and in the limit of the Hubbard model
(only U integral is retained) the obtained result is quite the
same as that one given in paper’/2/,

APPENDIX B

The Perturbation Theory for Self-Energy
In paper/27/it was mentioned that an expansion of self-
energy to higher orders in the Coulomb integral U would im-
prove the description of the correlation effects. Therefore,
we want to describe briefly how the special kind of expansion
for the gelf-enerpgy can be made in a very simple but usual
workable way. Following paper“;1 we may write

~ o mG? (ko)=L Iy (K.0) .
[ﬂ’“ a(k)]+(lj(k,to)) (B-l)
157 (k) :
s (1-A% (k) 8(w~E O (k» o
(w- B, (k)
where
I (Kow)=—Im M2 (Koo + ie) . (8.2)
B | (B.3)

E2(®) = Eg (M+ReM? (&, E 5 ().

a -« .
The unknown coefficient {1-A (k)) in (B.l!) must be determined
from a normalization condition

- %;jilm(}i(g.m)dn,=1. f . (B.4)
"Then we obtéin
(,(k)—l—fk o (kpa) i)’ No © (Eﬁq*)u:aua) 55)
N#pa Mﬂ(kpq)«-Egciy NT o Rdvekpd)-Eg()
where
a®PYERA) = —¢, B40) segkebree, (D). (8.6)

For the occupation numbers we obtain:

aaa

nfl = E n(Ea (k))+U2N—2 2 NO‘ (kpq)

v k v k aan et 2
Pe 0% (kpa)-EZ (k)]
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x [n (@22 (.kpq:)-h(ﬁ: COE T

VV(I B
"“"“m"”“(kpq) EZ 1)1°

(B.7)
<[ n(Q7 (kpq)~ n(EZ ().

The first term in eq.(B.7) describes the mean~field renormali-
zation effect, and next two terms represent the effects of in-
elastic scattering. The partial density of states in this appro-
ximation is given by

D, () =N"2E (1- A% (K)) 8w - B (R +
k o v

+ N—ii g et 3 N (kpa) 5( 0 -0 (kDY) +
(8.8)

+L._.D_+CIL2_N 5 (1-8,, INZY® (kpa) 5w~y *(kpa)).
[m-E @3 vee

If we use eq.(B.8) for the calculation of the self-energy by
substitution eq.(B.8) into the r.h.s. of eqs.(48) and (49),
we straightforwardly obtain a perturbation-type expansion for
the self-energy up to order U® ,(U")® ‘and 1% .
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Tapauko P,, Kysemcxmit A,JL. E17-86-34
KoppensuuoHHele 3QbekTsn B CHEeXTp 3NeMeHTAaDHBIX
BO36YXOEHWIA B MHOTO30HHHX TIEDEXOOHX MeTaliax

PasBUT HOBLI dopManuaM LI CaMOCOolIAaCOBAHHOI'C pacueTa
CTEKTPa 37eKTPOHHLIX KBA3SHYACTHYHBIX BO3OyXIOeHHH H HX 3aTyxa—
HHA B paMKax pealMCTHYeCKONH MHOUO30HHOU MOoJenH IepeXodHOTOo
MeTanIa. PaccMoTpeHa o6ofmeHHas Modenk XaG6appa, YYHTHBawLas
BBIpOXOSHHE 37IeKTPOHOB M OONOJHHTENbHbIE THOb B3aUMOJeHCTBHHA
/opHo— M mBYXueHTpoBwme/. [lpoBemeHs 4YMCI/IEHHBIE DacuYeTs HelCTBH-
TEIbHONR M MHHMOW YacTH MACCOBQI'C onepaTopa, a TaKke cIHeKTpanb-
HOT MIOTHOCTH COCTOAHUE AN nmapaMeTpoB, OTBEYAWMHX HHKEn
H KobanbTy.

PafoTa BumofHeéHa B [la60paTopuM TeopeTHueckon dmsmxm OHUAH.

Coobuienne ObbequHEHHOTO MHCTHIYTA AJEPHMX Hcchnemcpamui. [lyGHa 1986

Taranko R., Kuzemsky A.L. E17-86-34
Correlation Effects and Electronic Quasiparticle
Excitations in Multiband Transition Metals

A new self-consistent formalism for the description of
electronic quasiparticle excitations in the framework of the
multiband model of the transition metal has been developed
by taking explicitly into account damping effects and finite
lifetimes. A generalized Hubbard model of a d-band with its
degeneracy fully included as well as additiomal parts of
interactions have been considered., Numerical calculations of
the real and imaginary parts of the self-energy and spectral
density of states have been done for nickel and cobalt metal
parameters,

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1986
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