
R.Taranko, A.L.Kuzemsky 

(;ORRELATION EFFE(;TS 

COOAIUR11R 
Oti'bBAIIHBRROro 

IIH CTIITJT8 
RAlPH WI 

IICCUAOBaHIII 

AYIHa 

El7-86-34 

AND ELE(;TRONI(; QUASIPARTIUE 

EXUTATIONS 

IN MULTIBAND TRANSITION METALS 

1986 



© 06'be,t:UiHeHHbl:H: HHCTHTYT RJJ.epHblX HCCne.D.OB8HifH lly6ua, 19_86 



I. INTRODUCTION 

In this paper we present a unified self-consistent conside­
ration of the correlation effects in multiband transition me­
tals. The main aim of this paper is to get more insight into 
the nature of electronic states in transition metals from 
a stand point of the quanttim many-body theory. For this purPose 
we develope a new self-consistent formalism for the descrip­
tion of electronic elementary excitations in the framework of 
the multiband model by taking explicitly into account damping 
effects and finite lifetimes. 

In reCent years much attention has been given to the theory 
of correlation effects in transition metals, their compounds 
and disordered alloys 'ti. The characteristic features of the 
d-electrons in transition metals may be deduced from a number 
of experimental facts. One of the most important conclusions 
obtained from analyzing the experimental data is that the d -

electrons exhibit both itinerant and localized properties. 
Correlation phenomena are· of great importance in determining 
the properties of these substances, especially, for describing 
metallic ferromagnetism of 3d-transition metals, metal-insu­
lator transitions, intermediate valence phenomena, etc. 

There are mainly two methods for dealing with the electronic 
correlation problem ''2J Correlations are usually introduced in 
band-structure computations through a local correction of the 
effective one-electron potential. The one-electron approxima­
tion of the conventional band theory has provided a basis for 
understanding a wide range of solid state phenomena. The ade­
quacy of the single-particle picture is based on the density 
functional formalism and its extension, the spin-density func­
tional formalism '0'. The first principle band structure calcu­
lations have been remarkably successful in obtaining various 
ground-state properties not only of nontransition but also 
transition metals, rare earths and actinides ' 4 ,s.1_ However, it 
is often not so sucLessful in describing correctly the proper­
ties J.t finite temperatures. 

Tn the second and complementary method, one therefore starts 
\.Jith a model Hamiltonian for electrons and tries to calculate 
both tlH~ ground-stat~ and excited-state properties/l.G-s/. This 
approach has been quite successful in calcula~ing various 
ground-state properties of transition metali l,6·-20l_ Unfortuna­
tl·ly, detail0d inVf!Stigations of the trtte nature of excited 
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electronic states in transition metals including the damping 
effects and finite lifetimes have been started only very re- . 
cently when it has been recognized that many-body effects in 
transition metals are vei(; important in understanding photo­
emission experiments120 - (As is pointed in paper 120; nickel, 
from several points of view, is the case for which many-elect­
ron correlation effects cannot be ignored. While photoemission 
reveals well-defined single-particle dispersion curves in 
nickel, they have a large energy width indicative of short 
quasiparticle lifetimes. Angle-resolved photoemission experi­
ments providing direct observation of energy band dispersions 
in copper and nickel revealed a few problems for nickel: the 
presence of a satellite, narrowing of the d-band-·width and 
other discrepancies With standard one-electron-band calcula­
tions. While explaining these features the importance of the 
correlation effects within the unfilled d-band has been gene­
rally recognized 120 - 26:For transition metals like nickel with 
their highly localized d-orbitals and hence strong variation 
in the d-electron density, the effect of Coulomb correlation 
on energy bands has recently been investigated irr papers/ 27 ·28 / 
within the degenerate Hubbard model by perturbation theory. 
A theory for the resonant 3d-band photoemission spectra in 
nickel has been developed in paper 1291 on the ba.sis of a hybri­
dized s- and d -band model, 

In this paper we present a new unified self-consistent ap­
proach to consider the correlation effects in transition me­
tals like nickel The one-electron approximation is invalid 
in this case; thus the use of sophisticated many-body techniques 
is required. For this purpose we utilize the novel irreducible 
Green-function (IGF) method developed in papers 130 •31/. The IGF 
method allows one completely to describe the quasiparticle in­
elastic scattering processes in a many-body system and to find 
quasiparticle spectra with damping in a very general way. From 
a technical point of view the IGF method is a special kind of 
the projection-operator approach in the theory of two-time 
Green functions r 32•331 . 

If one introduces irreducible parts of the Green functions 
(or irreducible parts of the operators from which the GF is 
constructed), the equation of motion for the GF can be exactly 
transformed into the Dyson equation. The representation of the 
self-energy operator in terms of high-order GF is exact too. 
To perform the self-consistent calculation of the self-energy 
operator, we have to express it approximately in terms of low­
order GF~s. Recently, the IGF method has been applied to anum­
ber of solid-state problems 134· 4 Jl. An important problem was 
to investigate the effect of the orbital degeneracy in transi­
tion metals by this method. A generalized Hubbard model of 
a d -band with its degeneracy fully included is more realistic 
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for transition metals_ than the one-band ~ubbard model considered 
previously by the IGF method in paper/ 31 .Recently, .a complemen­
tary approach for the computation of electronic excitations in 
solids within the projection-operator formalisiiJ.,of -the Mori­
Zwanzig type has been developed in paper 1421• Unfortunately, 
explicit results have been obtained for a system with one orbi­
tal per site which has been described only by the one~band Hub­
bard Hamiltonian. 

The present paper is organized as follows: in the next sec­
tion we introduce the model Hamiltonian for the system with 
several orbitals per site. In Sect.3 we describe the formalism 
associated with the irreducible Green function method and de­
rive the exact Dyson eqUation for a single-electron GF. The 
consideration of the generalized mean-field GF and their poles 
is presented in Sect.4. The self-consistent approximative ca-l­
culation of the" electron self-energy operator is developed in 
Sect.S. ·The numerical calculation is presented in Sect.6. 

2, THE HAMILTONIAN OF THE MODEL 

A better understanding of the electronic correlation in 
solids really dates /Bl from Hubbard "'s introduction ·of a new 
Hamiltonian/ 6 ,?/ that could be used to analyze major aspects 
of both the insulating and metallic states of solids in which 
electronic correlations are important. To simplify the problem, 
many of treatments of the correlation effects are effectively 
restricted to a nondegenerate band. Most of them take only 
account of an intra-atomic integral, assuming its dominant 
rol-e in magnetic properties. The model Hamiltonian which is 
usually referred to as the Hubbard Hamiltonian includes the in­
traatomic Coulomb repulsion and the one-electron.hopping energy. 
The Hubbard model has been investigated by many authors with 
various assumptions (see, e.g./1,6-191). It is usually a rather 
difficult task to solve this model with a reasonable accuracy 
and correctly describe a simultaneous electron correlation in 
different d-states. 

In this paper we want to develop a more realistic apprOach. 
An impo-rtant point is to firid a model which includes the five­
fold degeneracy of d-states explicitly and to study the role 
of additional (to the Hubbard intra-atomic} terms for tran!li­
tion metaks- like nickel. Let us start with the second quantized 
form of the total Hamiltonian for an electron in a solid. This 
method of describing many-particle systems is based on the 
choice of any complete set of orthogonal no~lized wave ·func­
tions. In our 7.proach we take the set 1¢,\(r-R;)I of the Wan­
nier functions 43/. Here A is the band index. For a degenerate 
d-band the second quantized form of the total Hamiltonian in 
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the Wannier-function representation is given by 

l: lv a t,lfT a jvu + 1/2 :£ :£ ~ , .< i a ,j 8! ~: my, n 0> x 
p.vu lJ ..,.- ijmn af3y&a (I ) 

+ + x a. a .a_...,a ,a t-_ 
UZO' · }p-' · mp nar 

where 

<ia .i/31 vi my,n8> ~ 
(2) 

: I¢~ <i·-R; l ¢~<;.- ii; l ;<I;_;- ll <~>r<;' -Rml ¢ a<;-ii.J<I'lrd3r •. 

The purpose of the present consideration is to apply the IGF 
method to this total many-electron Hamiltonian (1). Relevant 
calculations have been carried out~ The obtained formulae, 
however, are complicated. To give a physical picture of the 
calculations, in this paper we restrict ourselves to the fol­
lowing model Hamiltonian 

(3) 

The one-electron energy operator of the d -band electrons is 
given by the expression: 

(4) 

The term H 2 describes one-centre Coulomb interactions of d -
electrons: 

H :!_:!: U n. n. +112:!::!: U',n. n.a_..(l-8" )-
2 2 iau aa tao lCl-a ia{3 aa·' GJJ uw ~~ a,._. 

(5) 

In addition to the intrasite Coulomb interaction Uaa which 
is the only interaction present in the Hubbard model, the Ha­
miltonian,.(S) contains three more kinds of interactions. The 
last term.Ha describes the direct i~tersite exchange interac­
tion 

aa + 
H 3 :-l/2:!: :!:J a 

. lj uw 
lJa atT 

(&) 
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Here, we take only interactions Ha diagonal in orbital index. 
Thus, our Hamiltonian (3) includes only a one-centre and ~Wd­
centre integrals of various kinds. In eqs. (4)-(6) these va~ 
rious integrals are defined as follows: 

·"v , 
tij ""<iJ.LI h\ jv>; Daa =.<ia,ial;\ia, ia> 

U ' <. ·tll";·a · · a{3= larltJ 1 V 1 lf-1rla>. 

\;13= <ia, ia i vi i/l,i/3>; 

la/l•<ia,i/l\;\ia,i/3>, a.f/3 

aa ~ 

Jij =.<ia,ja\v\ia,ja>; i,f-j. 

(7) 

In the above equations v is assumed to represent an effective 
interaction screened by s- and d -electrons. It is reasonable 
to assume that: 

(8) 

Thus, the Hamiltonian (3) is specified by six parameters: the 
band width W and five integrals U , U' , I , I , J. We note 

.,,· 

that s -electrons are not explicitly taken intO account· in our 
model Hamiltonian (3), so the hybridization effects are neglected. 
They are, however, implicitly taken into account by screeni'ng 
effects and effective d -bane! occupation. 

3, THE DYSON EQUATION FOR THE.ONE~ELECTRON 
TWO-TIME GREEN FUNCTION 

For the calculation of the electronic quasiparticle spect­
rum of the described model with Hamiltonian (3) let us consider 
the equation of motion for the one-electron double-time tempe­
rature Green function1441 ; 

a,",!.(ij, t-t')=-i®(t--t') <[a iaa{t), a ~/la·(t')]+> 
(9) 

First performing the time t differentigtion of (9) we get the 
equation for the Fourier transform a a lij; cv) 

ao 

= . v/3 av + 
~ T (1e)Gaa'(l j;w)=o .. o,..;; •+ :E IV 1 (i1)«a, n, 1 a.,» + 
LV tJ ap-aa· f.v taa wa ]tJa'· w 

av + 
+ V 2 (ir) « alaa nfv-u I a i/la' >> + 

w 
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(I 0) 

where 

"" V 5 (i fl=-J ;P (1-o ;I) oa, . 

The aim of the present investigation is to thoroughly study 
the correlation effects in transition metals. Therefore, the 
adequate approximation is the weak correlation limit: U1W 
U"/W,I;W ,I".W,J;W!. 

To treat the many-body problem in a self-consistent way, 
Y.le follow here the IGF method '3 1 ~ In the weak correlation limit 
we introduce by definition the irreducible parts of the CF in 
the r.h.s. of eq.(IO) 

• 
t + 

<<a,.,,7 a,_ • ar ~ i a ·r> 
fl'fT VO ' J l'J 1 

. ' 
.._, •.-:a '''a • , a .ilh 1 v'<o 

in which all possible mean-field contributions are remaved. 
The choice of the IGF;s is determined by the conditionS 

ir + 
<[(aipa nr,,.,· ), a iln, 1.· 0. 

From eqs.(I2) and (13) we find: 

+ -<a. a 1 .~ s1. ~ {38 • " o. 
If.£~ t'a .1 ' ' r:J ':7 1 

(12) 

( 13) 

( 14) 

So, the IGF's are defined so that they cannot be reduced to the 
low-order ones by any kind of decoupling. This reduction proce-
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dure is of fundamental importance in the present method because 
it allows us to extract all relevant (for the problem under con­
sideration) mean-field renotmalizations and to put them into the 
"zero-order" (generalized mean-field) Green function. lo de­
monstrate the possibilities of our method, we explicitly write 
the so-called "anomalous correlation functions corresponding to 
spin-flip processes" 145(However, it must be stressed that be­
cause of the spin rotational invariance of Hamiltonian (3) we 
have <aia:Y· ar~-a > =0. The spin-flip anomalous terms must be in­
cluded only for a rather special case of the system magnetized 
in the x direction instead of the conventional z axis. In the 
remaining part of this paper we do not take spin-flip terms 
into consideration. Thus, in the case of weak electron correla­
tion it will be enough to define a very simple mean-field ex­
traction, i.e.,<n~a>· In the general case the mean-field re­
normalizations may have a very nontrivial structure, and a spe­
cial projection procedure should be developed for higher-order 
GF"s as it has been done for the Hubbard model in the strong 
correlation limit, for t·he theory of superconductivity in tran­
sition metals and their disordered alloys/ 35- 381 and for the 
magnetic polaron problem at finite temperatures l 411 . 

Using the definition (12) in eq.(10) the equation of motion 
(10) can be exactty transformed to the following form: 

..._. a'v . l' /3 . ~ at• . i r , + 
~ E 7 (ti)G .. (PJ;,,)~o,.oa{3+~1V 1 (tPl<<ar •. ,nrm·•·a_Y' + pl' v J p" . .11 ~~ (,) 

(15) 

aP ir + ir + !a~ '')1. +V5 (if)(·.<ait1C7nf,-'r7:ajf3a'lu+<::-":air_.-a aiv-a a tva J/3a- (I) 

The renormalized energy Ea; (if) is given by the expression 
al' av av + 

E
7 

(if)=T (ii)-V 1 (if)<afa<Y•fva >-

-l(l/'.
1
1'(if)o <np >-Vv2~(if)8a.v<no .. >)-P.- av 110 tp.-:J 

(16) 
av + av + 

-V 3 (if) <•&.-a •rv-a >-V 4 (if)< •ev-a •&.-a >-

Now we proceed to derive the Dyson equation. To calculate the 
" IGF's «A(t)B(t' )» in eq. (15), we have to write the equa-
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tions of motion after differentiation with ~espect to the second 
time variable t'. Then conditions (13) remove the inhomogeneous 

terms in these equations. If one introduces irreducible parts 
for the right-hand-side operators by analogy with expression 
(12), the equation of motion (15) can be exactly rewritten in 

the following form 

,rrf3(··. ) aaf3(··. ) ~ ~ oaf ( .. )Pfv ( . )GvB( ·• l 
'":7· lJ,w = Oa·lJ,(!) + .::.. .;:., Oa tm,w a mn, w Oa nJ,w , 

mn p.v 

where the generalized mean-field Green function G 0 reads 

( 17) 

av . v{3 . £; E" (l1)G 00 (1J;o,)~8a{38ij (18) 

The scattering operator P is given by the expression 

av rf3 ir + ir 
+V 2 (im)V 1 (nj)<<arnacrnmTI-(J\anfJannp.~>>cu + 

(19) 

av fJ.f3 ir + i r 
+ V 2 (im) V 2 (nj) «a maa n Df'-al a n(3JI Df<-a >>u., I. 

Here we present for brevity the scattering operator only for 
a part of Hamiltonian (3), i.e., H =H 1 +H 2 without two last 
terms in H2. The full scattering operator can be written di­
rectly. 

If we go further and 

Gaf3. · ) Ga{3(. · ) ~ L 
a llJ;w = Oa IJ;w +"" 

mn f.I.V 

write down the Dyson equation 

Uf . fV v{3 . 
G00(1m ;w )M 0 (mn;w )Go· (nJ; w) 

we get the following equation for M 

(20) 

~v . . JLV .~a a{3 Bv 
P0 (mn;w)~ M

0 
(mn;w) + l l Ma (mi;w)G 0 (ij;o,)P 0 (jn;w) (21) 

ij af3 

from which it follows that we can say, in complete analogy to 
the diagrammatic technique, that the self-energy operator 
Mf;(mn;w) is defined as a proper (connected) part of the scat­
tering operator P: 

~v . ~v . c M 
0 

(mn, w) ~ (P a (mn, w )) • (22) 

It should be emphasized that for the retarded (and advanced) 
GF~s the proper part has only a symbolic character. However, 
one may use the causal, instead of retaFded, GF at any step 
in the calculations because the equation of motion has the 
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same form for all three (retarded, advanced, and causal) GF~s. 

In a certain sense there is a possibility of controlling, in 

the diagrammatic language, the relevant decoupling procedure 

in future approximative self-energy calculations. Thus, in 
contrast to the standard equation-of~otion approach the deter­

mination of the full GF G has been reduced to the determina­

tion of the mean-field GF 0 0 and the self-energy operator M. 

The reason for this method of calculations is that the decoup­

ling is only introduced into the self-energy operator, as will 

be clear from the next sections. 

4. ELECTRONIC STATES IN MEAN-FIELD APPROXIMATION. 

The question now is how to describe our system in terms of 

the quasiparticle picture. For a translationally invariant sys­

tem, to describe the low-lying excitations of the system in 
terms. of quasiparticles, one has to choose eigenstates such 
that they all -correspond to a definite mOmentum. For the dege­

nerate band model we need the transformation relat"ions between 

sec-ond quantized operators aiau· and akau connecting the 
r_pn state with a-n orbital ~ymm.etry a centered at atomic 
R; and the Bloch state I k> of the same symmetry. The 

transformation reads143•46 •47/ 
Jf2 ..... + ... 

"t>.cr = N ~ exp [-ikRj] U Atl(k)a jfla 
+ -1 

U =U • 

elect-
site 
exact 

(~3) 

However, for the sake of simplicity, we shall follow the appro­
ximative approach of papers/13.~/ where the following trans­

formation 
-% .... 

akaa-=N ~ exp(-ikRi]a iaa 
I 

(24) 

has been used instead of the exact one, as given by eq. (23). 
The second quantized operators in eq.(24) generate five artifi­

cial uncoupled bands for which a = 1, 2, •.• 5. 1fuen coupled by 

Ut.tJ(k) they reproduce the realistic bands labelled by A • as 

given by eq.(23). This is, of course, a simplification of the 

problem. We discuss this approximation more thoroughly in Appen­

dix A. The adoption of the approximative expression (24) is 
equivalent to the following definitions of the Fourier trans­

form 

a{3 . . -1 _,. ... -+ a{3 -+ 

G" (IJ;w)=N ; exp[ik(R;-Rjl]G (k,w) (25) 
k 

af3 -1 _,. _,. -+ a(3 .. 
M (ij;w )=N ~ exp[ik(R;-Rj)]M (k,w) (26) 
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tl.(l -1 ............... 
tij ~ N ~ 'a (k)exp[ik(R;-R;)l. 

k 

Using the definitions (25)-(27) in eq.(20) we find 

czf3 .., af3 -+ CZ/J- -+ 11-v -+ v{3 -+ 
G~ (k,w)~G0 (k,w) +~Goa (k,w)Ma· (k,w)Ga· (k,w). 

a pv 

From the symbolic solution of the Dyson equation (28) 

..... ..... -1 ..... -1 
G(k,w)~[(G 0(k,w)) -M(k,w)l 

(27) 

(28) 

(29) 

it is now seen how to change the problem of calculating the 
single-particle GF G to the one of calculating the generalized 
mean-field GF G0 and the self-energy M. 

Let us first consider the mean-field GF Go. In the moMentum 
representation we obtain from eq.(18) 

av ..... v{3 ..... 
~ Ea (k)G 0 (k,w) ~oaf3· (30) 

a{-3-'" 
The renorrnalized energies E7 (k) have the form 

av .... ..... -1 + 
E 7 (k)~(w-•a(k))om,-(U'-1)(1-oav )N ~ <apaaapva 

p 

·- :C ((U'-1)(1- o ) ,1 N-
1 

:i <n >-
11 all at' P P/lfJ 

>-

-1 -1 + 
-(Uo +U'(1-/i ))li N ,. <n >)+1'(1 1i )N ,. <a ., '+ 

all all a!' p ~ Pll.--<7 - aJ/ p ' pa--:r < JlF-<J 

(31) 

-+ -1. + -1 _,. _. + 
+lia,,(J(O)N ~p<ak+pr'"'aP,NT"-N ,~J(k-p)';<a a "'>), , -., p rT1 prla 1 Pl'l1 1 

where 
.of -1 _. ..... 

J(k)-N :i J1iexp[-ik(R 1 -R;)J. 
ij 

For the multiorbital Hubbard model (U'~ I =I'= .J = 0) 

(32) 

YH~ find 

(33) 

The spectrum of electronic low-lying excitations without 
damping follows irrnnediately from _the p_gles of the single-par­
ticle JIIean-field cr·een function Go (Go denotes a matrix in 
the space of band indices): 

detiEa.I~O; det IE__, I ~ 0. (34) 
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It is obvious that most important is the case diagonal in the 

band indices: 

aa -+ aa -+ 
E a (k)Gou (k,w) =1 (35) 

because if a Green function is diagonal with respect to some 

set of single-particle functions, these functions are "natural 11 

orbitals of the problem. Hence, we may write for the diagonal 
case 

aa .., aa .., -1 
G0, (k,w)=[E, (k)] 

aa -+ aa -+ -1 
Go+ (k, "') = [ E + (k) 1 , (36) 

where 

E~"(k)=w -< (k)-(U'-1)~ (1-8 )N~ 
a V a~ 

- ; (U 8a~ + U' (1-8a~ )}N~_, 
(37) 

It follows from eq. (37) that in a complete analogy with the 
one-band case one can define the band splitting Aa in the 

following form 
a a ... a..., a a 

A 'E, (k)-E, (k)=U(N, -N, )+ 

... -
1 + a '-'.a+ a .'). 

+ .J(O)N ~ ( -:ak+pat ' k 
p pa,. +Pa+ PG+ 

(39) 

The last expression generalizes the standard Hartree-Fock band­

splitting expression. 

5. ELECTRONIC QUASI-PARTICLES AND THEIR DAMPING 

Now let us take into consideration the damping effects and 

finite lifetimes. Hence, our next task consists in obtaining 

self-consistent approximative expression of the electron self­

energy operator. In the general case, to find the damping of 

the electronic states, one needs the following expression for 
a single-particle Green -function (c.f. /40,41/) 

ar' .... av .... -1 av .... -1 
Gu (k,w)=I[G 0a(k,w)l - ~ 7 (k,w)l. (40) 
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Here "ff:;_(k.,w) is a functional of M~v (k.w j 
ar.1 ... av ... 

:E, (k,w)=F[M, (k,w)]. (4 I) 

If we confine ourselves to the most important diagonal case, 
we find that the renormalized electron energies are s-elf-con­
sistent solutions of the equation 

,..;, a -+ aa -+ _p.a ... -a ... 
<

0
.(k)-E, (k)- Re >, 0 [k,,,(k)]:O. (42) 

Hence, if k labels a quasiparticle electronic state, the spect­
ral functions 

a ... aa ... 
g, (k, w) • lmG 

0 
(k,w) (43) 

will have a strong maxima at energies of the quasiparticle 
state. 

Thus, now we have to find the matrix elements of self-ener­
gy M to complete o~r solution of the problem. To find explicit 
expressions for Mf~(k,w),we have to evaluate higher-order Green 
functions in eq.(19). In the quasimomenturn representation we 
obtain from eqs.(l9) and (26) 

+ + + 
ap+qt'a aqva·\ ak+sBa ar~-a ar+s~-a 

i r, c 
»+ 

"' 
ir, c 

a r+ sit a >>ru + 

(44) 

V
av vp./3 ir + + + ir,c 

+ 2 2 <<ak+paa ap+qtJ-aaqv_Jak+sf3aaqL""Uar+sp. .... a >~) I. 

It is convenient to write down.<<A] A+>>in terms of the correla­
tion functions in the form 

1 oo d(l)~ Bw' 
a >>: --- r ----~<• +l)x r+ sp. 0' 2 rr W----!U 

w - (45) 

It is reasonable to use the following pair approximation (for 
a low density of quasiparticles) for the correlation function 
in the r.h.s. of eq.(45) in terms of single-particle correla­
tion functions 

ir,c + 
< + (t) + (t) It) + a ··- <a (t)a · >x ak+s.Bo-· arfl-0' ar+sfL-o" ak+paa ap+qv-a Qli"""'"J" ... _, k+pfla k+p-aa 
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<a~-u (t)aqv-a><ap+q~u (t)a;~qv-> ~Ilk+ s,k+p •Orq·ll,..s,p+q (46) 

Taking into account the spectral theorem we obtain from (44)-
(46) .. ' 

a(3 -+ -2 av _Jlf:3 aJLV{:f ...___ av · tJ.f3 ap.v/3 ........... 
M" (k,w)=N ~ ~{V 1 v· 1 Qw (kpq;w)+V 2 V2 Q 2 " (kpq;w)l, (47) 

IJ.V pq 

where 

(48) 

Equations (29) and (47) form a closed self-consistent system 

of equations for the single-particle electron GF for the gene­

ralized multiband Hubbard model described by Hamiltonian (3), 

In principle, we may use, in the r.h.s. of eq.(47), any relevant 

initial GF and find a solution by. repeated integration. 

For the first iteration step we choose the following simple 

one-pole expression (cf. eq.(33)) 

1 a/3 -+ a/3 -+ av -+ -+ a 
--;lmGa (k,w);; ll(w-Eu_(k))lla/3• Eu (k)=[w-<a(k)-UN-u]lla••. (50) 

Then we obtain 

(U '-!)2+(U ') 2 
+ ---------- ~ 

N 2 ~qv 

(51) 

where 

(52) 

(53) 
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For a simple one-band Hubbard model we directly obtain from (51) 
the result by Kuzemsky 1311 : 

(54) 

In the region of the resonance between the one-particle and 
collective excitations another approximation is possible, in­
stead of (46): 

• (t)aia"' ai,,a >+ 
J 3 4 

+ + + + 
+ < a j p: a 2 (t) a ir• a/ ...-a I f3 a (t) a J(IrT 2 (t) a i a a 3 a h• r.r 4 > . 

For the multi band Hubbard model (U'= I= I'=J =0) we find 

X I !!:.~~2~f!:'g2 __ + (Im .......... a · 1 a· a_..,~ . 
·- la!T J~-r (IJt 

Im..-:..-:n. I n.o ....,., + 
ta-'T • jiJ-<T (r) 2 

nF(w 1-w 3) 

(1-n .<wt ))nF(w 2) , + 
+ --------------Im ...:<a .1:J , a. -..."> • Im <<a. a. 

n ( . ) J )~ 1a-a (,J 1 taa Ia....,.T 
F ulz -w3 

6. NUMERICAL RESULTS 

(55) 

(56) 

(57) 

Let us apply the results of previ~us sections to the reaso­
nable model calculations of the self-energy and spectral densi­
ty. In the pair approximation (46) the general expression for 
the self-energy has the form (cf. eqs.(48), (49)) 
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(58) 

where 

gku(w)-- ~ ImG "(k,w+ ;, ). (59) 

For our artificial uncoupled bands (24) it is reasonable to 
accept the effective one-band model with a possible total num­
ber of 10 electrons per atom to proceed the numerical calcula­
tions. For this model we have calculated the self-energy M(k,w) 
according to formula (58), where for the spectral density of 
states and dispersion law we take 

gk(w)- o(w-' (k)) 

...,. akx aky akx ak 2 ·, aky .akz (60) 
f (k)-: E0 -4t(cos-- co-s-<l'+COS-- cos-+ cos""""'?l- cos--). 

2 4 2 2 4 2 

In general, formula (58) provides a self-consistent wa~ for 
obtaining the self-energy M(k, <''} and Green function G(k ,w ).How­
ever, because of a rather tedious integration method in 9-dl­
mensional space (6-dimensional ,space for the k -integration 
and 3-dimensional Space for energy integration) we calculate 
the self-energy in first iteration step only for the model den­
sity of states of the FCC lattice. 

The calculations were done with the appropriate set of me­
tal parameters for FCC lattice. The band-width W = 4.6 eV for 
a band filling 86% and 94%. These values of parameters approxi­
matively represent the ones for d -bands in transition metals, 
namely, in Co and Ni, respectively. All calculations were done 
for temperature k T = 0.03 eV. 

The integrals which appear in eq. (58) were calculated by 

the Monte-Carlo method, and quite a bit noise showing by calcu­
lated curves is main~ due to our limit of the computer time. 
For each energy and k -vector approximately 250000 JOints in· 
6-dimensional space of the quasi~omentum vectors (p,q) were 
randomly generated. Of course, we first calculated the imagi­
nary part of our self-energy and then obtained· the real part 
by the Kramers-Kronig relation. 

In Fig~.J-4 we show real and imaginary parts of the self­
energy M(k.w) calculated at different points of the Brillouin 
zone. 

In Figs.1-3 the self-energy curves have been calculated for 
energy bands of width 4.6 eV and the band filling equal to 
86% for f' , X and L symmetry points in the Brillouin zone, 
respectively. 

In Fig.4 the same curves have been calculated for the band­
filling equal to 96% for r synunetry point. 
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Fig.2. Real and imaginary 
parts of self-energy calcu­
lated for point X of the 
fcc Brillouine zone. Other 
parameters are the same as 
in Fig.1. 

Fig. 4. Real and imaginary 
parts of self-energy calcu­
lated for point I' of the 
fee Brillouin zone for E p= 

= 1.07 eV and band-filling 
equal 94%. Othe1? parameters 
are the same as in Fig. 1. 
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Fig.1. Real and imaginary 
parts of self-energy calculated 
for po_int l' of the Brillouin 
zone (k=(O,O,O)) and for model 
s-type tight-binding energy 
dispersion curve in fcc crystal 
lattice. The width of band 
W= 4.6 eV (from -3.45 eV to 
1.15 eV), Ep = 0.95 eV, band­
filling equals 86%, kT = 0. 03 eV. 
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Fig.3. Real and imaginary 
~parts ~f self-energy calculated 
'I for pMnt L of the fcc Bril­

louin zone. Other parameters 
are the same as in Fig.l. 
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Then, we may see that the diff~rences between self-energy 

curves calculated for different k -vectors are relatively 

substantial. For our model start-density of states (FCC lattice) 

the most different from other self-energy curves is the case of 

f point. In comparison with these ones for X and L points 

we can ob.serve the absence of a long tail .in the imaginary part 

and a considerable decrease of a real part for the states near 

the bottom of the band. These features of the imaginary part 

of self-energy rna~ lead to broadening of the initial Bloch 

states with the k -vector lying far away from r point in compa­

rison with the on-es for k -vector from the vicinity of r point. 

In Fig.4 we present similar calculations for f point but for 

a different band-filling, namely, for band filling equal 94%. 

The main difference is only in the absolute value, and the shape 

and general trends are similar 'to the ones for smaller band 

fillings. 

In Figs.S-7 we show the spectral densities for the same k 
values along the r , X symmetry line. For computational conve­

nience the spectral density curves are evaluated at complex 

energies, E=w+O.OOli. The presence of the finite imaginary 

part in energy effectively causes these curves to be averaged 

over an energy interval of order -0.00'1 eV. Because of a very 

small part of the energy these curves are broadened very slight­

ly, and their peak heights are somewhat reduced from the true 

results which would be obtained in the· limit of vanishing ima­

ginary part. 

In Figs.S-6 we present the spectral density of states for 

band width W= 4.6 eV (the band extends from-3.45 eVto 1.15 eV) 

for the band-filling equal to 85% and for two values of para­

meter U/W = 0.33 and 0.66, respectively. Small irregularities 

on the curve in Fig.6 come again from a too small number of 

random points used in the Monte-Carlo integration in the imagi­

nary part of self-energy. As was expected, with increasing va­

lue of the Coulomb integral U the spectral density curve be­

comes broader and exhibits a much more rich structure. Roughly 

speaking, at r point we have a long tail from the upper side 

of a band with a great peak on the lower side of the band. Then, 

when we will move, for example, along the r X symmetry line to­

wards X point we obtain a longer tail on a lower energy side, 

and at the s~e time we have a reconstruction of the main peak 

from the one side o.f the Fermi energy level to another side. 

The similar behaviour of spectral density can be seen for other 

parameters, i.e., for the band filling equal to 84% and for 

U/W = 0.33, as represented in Fig.7. 
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7. SUMMARY AND CONCLUSIONS 

Fig.5. SpectPal density of 
states of model s -type tight­
binding enePgy dispersion curve 
with self-energy calculated 
fPom foPmUla (58). Parameters: 
UIW= 0.33, W = 4.6 eV, EF = 
= 0.95 eV, band-filling equals 
86%. The vertical dashed line 
represents a one-electron eigen­
value. 

Fig. 6. 1'he same as in Fig. 5 
but foP U IW= 0. 65. 
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We have provided a relatively simple method that enables 

one to calculate electronic quasiparticle spectra including 

electron-electron inelastic scattering processes in a self­

consistent way. The most important conclusion to be drawn from 

this paper is that the conventional nne-electron approximation 

of the band theory is not always a sufficiently good approxi­

mation for transition metals, especially for metals like nickel. 

The adequate description of electronic quasiparticle spectra 

in multiband transition metals requires a much stronger role of 

the many-body correlation effects than believed some years ago. 

Our results give further information about correlation effects 

in transition metals as compared to that one obtained in pa­

pers/26-29,42/however, our approach is a more gener~l one. 
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In conclusion, we hope to have provided some insight into 
the nature of electronic states within the realistic many-band 
model of transition metals. The approach developed here can be 
useful for studying photoelectron and X -ray excited Auger spect­
ra of transition metals. To extend it for transition metal 
compounds, we must consider the strong correlation case and 
generalize the formalism used for such a case as it has been 
done for the one-band Hubbard model earlier 1 ~ 1( Also, the an­
preach developed here can be extended to the descriptioHof the 
correlation effects in the antiferromagnetic transition metals 
and in disordered transition metal alloys. We hope that these 
important problems will be considered in future works. 

APPENDIX A 

I.Jannier Functions and Tight-Binding Functions 
f,Jr Degenerate Bands 

To compare our results with those obtained in Kleinman and 
Mednick calculations 120:we shall now briefly comment on the in­
ter-relation between Wannier function and tight-binding-func­
tion representation of the electronic states for the multiband 
metal, e.g., for degenerate d-bands in transition metals. 

In our paper we need the complete orthonormal Wannier func­
tion basis l¢A(?-Ri) I for introducing only the second quanti­
zed operators ai1-f.a and a71-f.::r" Our main calculations, i.e., defi­
nition of the irreducible mean-field GF (18),etc.,are in ave­
ry general form. However, to find the spectrum of electronic 
quasiparticle excitations we must introduce into our considera­
tion the wave vector k. Hence, we must accept a certain relati~n 
between 1-lannier and Bloch functions, or equivalently, between 
second-quantized operators representing Hannier localized 
states and Bloch extended states. Construction of Wannier func­
tions for degenerate band' is an essentially complex problem. 
At the present time there seems to be generally accepted the 
practical method developed by Vchn143/.It is well known that 

h 1 t . f . b d d . f h f (43,46,471 sue a re a 1.0n or compos1te an s y;e nee 1s o t e orm 
~ ~ 

• _. -V2 -+ _. i k Rj .... 
11',\(k,r)oN ~<\•(r-R;)e U,\'>,(k) (A,!) 

i ,\. ' 

or equivalently 
4 • 

+ -Vz i k Ri 
a "N l e 
kAa i,\' 

(A.Z) 
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(A. 3) 

~ 

where U(k) is a unitary matrix. When 
function (A.l) into the Schroedinger 
matrix U (k) some eigenvalue problem 

we substitute the Bloch 
equation, we obtain for 

(A.4) 

In the case of generalized transformations (A.2), (A.3) we 
must change our definition of the Fourier transition, Eqs.(25), 
(26) as follows: 

(A. 5) 

and similar ~quations for the self-energy. av ~ 

Because of a very complicated form for E~-(k), Eq.(3I), written 

in terms of general transformations here we give only E gv(i{) 

for Hamiltonian H=H 1 + H2 without last two terms in H 2. Then 

we have: 

av-+ -+ U'-1 
E ~ (k)=(w _, v (k)) oav- -N-- ~ 

+-+-+ ... + ... +-+-+ -++-+ 

(Uax1 (k)Ux ,(k){\, (p)Ux ,fn)+Uax (k)Uxv (k)U,\_> (p)Ux x (p))x 
:6 1/\.3 411.;2'" 1 1 2'3 4 2 

-~ ~ 
N P 

U' - -- ~ 
N P 
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~ 

Of course, when we apply the substitution U )\ 
1
)\

2
(k) = 1l)\

1
)\ 2,or 

in other words, take transformations (24) instead of (23), we 

obtain forE~ (k) the formula given by Eq. (31) of the main text. 

Expression for self-energy for the same Hamiltonian and for pair 

decoupling of correlation functions is given as follows: 

af3 ..., 1 3 -2 + -+ -+ -+ -+ + -+ ... 

Ma (k,w)=(- -) N S S S Ual\(k)U)\ (3(k)UAI\ (k+p)UI\ v(~)x 
" ~v M 1 ... 1\ 7 pq 1 2 1 

a + ........ + .... • ....... _ oo dwl ~<1--.c.~2dwg 
Uvl\ 4 ,q)UI\ 1\ (k+p)U, ~ (q)U~ ,_ (~ )(((----------N(o> ,w 2

,w )x 
5 1 "6 '"t -0<> w+w 1 -w 2 -w 3 1 3 

1\v ~v v~ )\)\ 1 

x! A~)\ 1[Im Gp +Jw) lm G qa(w~Im G k+pa(<u a) + 

(A. 7) 

where 

Av • 2 
A~)\ 1 

= (1-8 1\v )(1-8 ~)\ 1 )(U -I) (A.8) 

B~~ 1 =[Uo!\v +U'(1-o,~_:)J[Uo~)\ 1 +U'(1-o~l\ 1)l. 
For the approximation U A A - 8A A and for a simple Hubbard 

1 2 1 2 . 

model we obtain the limiting case found by Kuzemsky' 311 . 

Let us now consider the tight-bindin~ approximation follow­

. ing' 47< The tight-binding degenerat; ~ands are constructed 

from localized atomic orbitals '; •Jr-Ri) in the following well­

known way1471 : 

...... ....,. -% -+... ,\ a -+ -+ -+ 

1JI)\(r,k)=N S exp[ikR; ]V 1 (k) 'a(r-R; ), 
ia 

(A. 9) 

where we denote atomic orbitals by d , {3 indice·s and energy 

bands by A , At indices. This equation gives the required 

(exact) expansion of the Bloch function in the general case 

of several bands. The main point of that ex~a~sion is the rep­

lacement of the expansion coefficients exp[ik · R i ] (appropriate 

for the one-band case) by more complicated ones. The coeffi­

cients vM(k.) give the required mixture of atomic orbitals to 
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yield the Bloch states. Formula (A.9) may be inverted by wri­
ting for the atomic orbital state 

-+ -+ -Vz -+-+ a A ... -+ -+ 
,(r-R;)~N ~ exp[-ikR.]U (k)'P!\(k,r), 
a Ak 1 

(A. I 0) 

where matrices U , V yield the relations: 

aA .... A.\1 .... .... -+ ... 
~U (k)V (k)expfik(R;-R 1·)~aaa a;1· -N, 

!\k 1 
A1a -+ aA2 ... 4 ... -+ . 

~v (p)U (q)exp[ iR; (p-q)J~ a>. !\ a~~ . N. 
at 12 pq 

(A. II) 

Here we have, because of non-orthonormalized atomic orbitals, 
overlap integrals 

af3 -1 ..... -+ .... A -+ {311.-+ 
R;1· ~N ~ exp[ik(R; -R,·)lU•a (k)U (k). (A.I2) 

!\k . 

Now we can introduce the formalism of second quantization with 
operators a+k\ , ak)\ for the creation and 1nnihilation of elect-• ro.a '7-+. 
rons w1th wave vector k sp1n a for band labelled by index A 
or with operators a~a~' biaa for the cr~ation and annihilation 
of electrons described by function •a(r-Ri) and spin a . Note 
that because of non-orthonormalized atomic orbitals ,a(f- R ) 
now we have b+iarTf a{a

7
• In such a case we can still work with 

the Hamiltonian written in terms of a~aao b ia::r but some opera­
tors, for example, a{atT bia'l have to be handled with a certain 
care (they are not Hermitian)1461 .For that reason, one often 
make the approximation 

a/3 
R .. ;;; fi (35 .. 

lJ a lJ (A. 13) 

which is equivalent to working with matrices U=V+. Now, the 
abo.ve described formalism given by Gutzwiller is equivalent 
to that one given for the tight-binding description by Mar-­
schall1471. and in his notation we have: 

'~'x (it,r')~N-·~ exp[ ik· Ry ]a~(k),a(r-Ry) 
fa 

.... .... 1,1;- .... .... a ..... ..... ..... 
t (r-Ry) :N- .~exp[ -ik-Rf ]la)\(k) I* '1')\(k,r), 

a k)\ 

(A.I4) 

where for the transformation coefficients a~(k) we have the 
eigenvalue equation 

a{3 (3 .... ......... .... a -+ ........ ff3 til a ;1. (k) exp [ ikR J]: '!\ (k) a)\ (k) exp[ ikR; ]. (A. 15) 

Such an approach for the description of electronic states has 
been used in paper126;' We may clearly rewrite Eq. (A.6) in terms 

22 



of coefficients a~ (k) and in the limit of the Hubbard model 
(only U integral is retained) the obtained result is quite the 
same as that one given in paper/26/. 

APPENDIX B 

The Perturbation Theory for Self-Energy 

In paper 1271it was mentioned that an expansion of self­
energy to higher orders in the· Coulomb integral U would im­
prove the description of the correlation effects. Therefore~ 
we want to describe briefly how the special kind of expansion 
for the self-energy can be. made in a very simple but usual 
workable way. F.ollowing pape/ 311 we may write 

a ~ 

1 a ~ 1 !'a ( k .w) 
- -- Im G (k, w) ~ - --------------··------·---· 

77 a " -a""'2 a-+ 2 [,,_ Ea(k)] + (10 (k, w )) 

a - a ~· 1 r,: (lt,w) 
~ (1-Aa{k))o(w-E a (k)) +- ---=-~-· 

" (w- E~(k)) 2 

(B.l) 

where 

a ..... a -+ ra (k,w)~-Im Ma (k,w+ i<) (B.2) 

(B.3) 

a • 
The unknown coefficient (1-A 0 (k)) in (B.I) must be determined 
from a normalization condition 

1 ""' a _, -- r lmG (k,v,)d.,,~l. 
11 _,., a , 

(B.4) 

·Then we obtain 

A'a(k)~ u:~ __ _t'~~(k!q2 ___ + ~U'-Iti(Uj::,_f ~~: ~~~~)(~;~:) ,(B.S) 

N pq!laaa(l~pq)-E~ (k) N pqv!la (tpq)-Ea(k) 

where 

(B. 6) 

For the occupation numbers we obtain: 
aaa 

Na (kpq) 
---------------- X 

rn~a"(kpqJ-Eg(kll 2 
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(B.7) 
wa -x[ n(!.l (kpq)-n(Ea (k))]. 
~· ~ 

The first term in eq.(B.7) describes the mean-field renormali­
zation effect, and next t"t>ro terms represent the effects of in­
elastic ·sca.ttering. The partial density of stat-es in this appro­
ximation is given by 

a -2 a -a• 
D,.(cu)=N :i: (1-A (k))8(cu-E {K))+ 

k ,. u 

(B .8) 
(TT'_f\2 ""'''2 2 

+'-"~!U..N- :i: (1-8av )N:;""(kpq)8(cu-!.l:;""(kpq)). 
[cu -E~(k)] 2 vpq 

If we use eq.(B.8) for the calculation of the self-energy by 
substitution eq.(B.8) into the r.h.s. of eqs.(48) and (49), 
we straightforwardly obtain a perturbation-type expansion for 
the self-energy up to order U6 , (U ')6 and !6 • 
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Programming and Mathematical l1ethods 
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np~M~MaeTCR MOAMMCKa ~a npenPMMTW H Coo6~eHM~ 06~e,QMHeHHOi0 HHCTHTYTCI 

A~~pH~X MCCME'AO&aHH~. 

YcraHoeneHa cne.ay~A CTOHMOCTb no.QnHCKH Ha 12 ·MeCA~ee Ha H3ABHMA OHRM, 
BKOC4CIA nepeCWMKy, MO OTaenbHWM Te~aTH~eCKHM KaTeiOPHAM: 

HH.QEKC TEHATHKA UeHa rlO,Qnl'lCKIII 

Ha roA 

1. 3KcMepHMeHTCIJlbHaA ¢IM3HKCI BWCOKHX aHepnn1 10 p. 80 KOM, 

2. TeopeT,..4eCKC:U:I itllo13HKa 8biCOI01X 3HePrl'li1 17 p. 80 KOO. 

3. 3KcnepHMeHTCIJlbHCIA He!7tTpoHHaA diH3HKa 4 p. 80 KOM. 

4. T eopeTM'-IeCKaR GIH3HKCI HH3KHX 3HePilo1i1 8 p. 80 KOM. 

5. MetTe,..an.t~a 4 p. Bo KOO. 

6. .ll.aepHCII'I CME'KTpOCKOMMA H pCI,QHOXHMMA 4 p. 80 KOO. 

7. 4lo-13MK;) TAIIIe~X H0M08 2 p. BS KOM. 

8. Kp .. oreMMKa 2 p. Bs KOM. 

9. Yct<OpocTenM 7 p. 8o KOM. 

10. Aaro....aTHaauMR o6paf>OTKH 3KCnepMMeHTanbHWX 

,11-l"'Ht.IX 7 p. 80 KOM. 

11. BW4HC!lMTellbMCUI MCITE'MCITI•H<CI H TE'XMMKCI 6 p. 80 1<00. 

12. x .. -,. p. 70 I<OM. 

1 3. TexHIH<a ~01314\feCI<Of"O 3Kcnep~o~"'eHTa B p. Bo KOn. 

14. Kccne.o.oaa""'" T&ep.o.wx Tefl H J01.0.1<0CTeH 

RJleDHW ... M MeTO.QaMI1 1 p. 70 I<OM. 

15. 3~<cnep~o~MeHTafi~Ha~ CDI1311~<a JltAePMWlll pea1<~11H 

np01 -3K01:.t 301eprHI'Illl P. 50 !'COM. 

16. llo301"'E!'TPHA .,. Ql"13H~<a 3a!IIHTbl P. 90 !'COM. 

1 7. leOPHA K0H.QeMCHD08aHH0f"0 COCTOAHHA 6 P. 8o I<On. 

18. Mcnotla.3o&aH ... e pe3yn~>TaToa "" MeTOAOB 
~yKAaMeHTafii>HWK ~3M~CI<MJII Mccne.o.oeaHHH 2 p. 35 KOn. 

s cMe•HIIollll o6nacTAlll ~o~ay~<M "' TeliiHHI<Iol 

19. fioMQCDM311Ka 1 P. 20 ~<on. 

no ece" sonpacaM 0$0PMfleHHA no~ni1CKH cne.o.yeT o6oawaTbcA e H3.0.aTena.c~<~o~H 

oT.o.en OKR1o1 no ;mpecy: 101000 M.oc~<Ba, rnaeno'-ITa..,nT, n/'!l 79. 



TapaHKo P., Ky3eMcKHH A.n. 
Koppens:u;HOHHble g¢>qleKTbl H cneKTP 3JieMeHTapHbiX 
B036y~eHHH B MHOr030HHb~ nepexo~Hb~ MeTannax 

El?-86-34 

Pa3BHT HOBbiH ¢opMaJIH3M WJR caMocornacoaaHHoro pac'l!eTa 
CTieKTpa 3JieKTpOHHblX KBa3H1.laCTH'lHblX B036'Y)K,IJ;eHHH H HX 3aTyxa­
HHR B paMKaX peaJlHCTH'lleCKOH MHOr030HHO~ MO,IJ;eJlH nepeXO,IJ;HOrO 
MeTanna. PaccMoTpeHa o6o6meaHan Mo~eJib Xa66ap~a, Y'liHThlBaromaH 
Bb!pOJK,lleHHe 3JieKTpOHOB H ,IJ;OTIOJIHHTeJibHbie THIIbl B3aHMO,IJ;e:H:CTBHH 
I op;Ho- H p;ayxu;eHTPOBbte/. Tipoae.n;eHbl 'liHCJleHHbie pac'leTbi ~e:H:CTBH­
TeJibHoH H MHHMO~ 'l!aCTH MaCCOBOI'O OIIepaTopa, a TaKJKe cneKTpaJib­
HOft IIJIOTHOCTH COCTORHHfi ,IJ;JIR napaMeTpOB, OTBe'l!aiDWHX HHKeJIID 
H K06aJibTy. 

Pa6oTa BbmonHeHa a naoopaTOPHH TeopeTH'lleCKoH 4JH3HKH 0115111. 

Coo6IUeHHe <:>theJJ.HHeHHoro HHCTHTyra R,llepHbiX -uccnenoaaHuH. lly6Ha 1986 

Taranko R., Kuzemsky A.L. 
Correlation Effects and Electronic Quasiparticle 
Excitations in Multiband Transition Metals 

El?-86-34 

A new self-consistent formalism for the description of 
electronic quasiparticle excitations in the framework of the 
multiband model of the transition metal has been developed 
by taking explicitly into account damping effects and finite 
lifetimes. A generalized Hubbard model of a d-band with its 
degeneracy fully included as well as additional parts of 
interactions have been considered. Numerical calculations of 
the real and imaginary parts of the self-energy and spectral 
density of states have been done for nickel and cobalt metal 
parameters. 

The investigation has been performed at the Laboratory 
of Theoretical Physics, JINR. 

Communication of the Joint Institute for Nudear Research. Dubna 1986 



34 KOTI, 

Pe.QaKTOP 3. B .HeamKeBHl..J. MateeT P • .U.<!>oMHHO~L 
Ha6op B.C.PyMRH~eBoH, H.H.KopoTKOBoH. 

noAnHcaHo a ne~an, 07.02. 86. 
~OPMaT 60x90/16. O~ceTHa~ ne~aTb, Y~.-H3,Q.MHCTOB 2,24. 

THpalll 330. 3aKa3 37307, 

H3,QaTeMbCKHH OT,Qen Q6~e,QHHeHHOrO HHCTHTyTa ~,QepHWX HCC~e,QoBaHHH. 
Dy6Ha MocKOBCKOH o6~acTH. 


