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1. The study of the excitations in many-body systems has
been one of the most fascinating subjects for many years.
The quantum field theoretical techniques have been widely app-
lied to statistical treatment of a large number of interacting

particles. Some powerful approaches such as Green function
(GF) method, Feynman diagrams and the canonical transformati-
on method gradually penetrated the domain of conden-

sed matter physics. Among important influences of the quantum
field theory on the conceptual development of condensed matter
physics were the concepts of quasiparticles and symmetry bre-
akdown.

The considerable progress in studying the spectrum of ele-
mentary excitations and thermodynamic properties of many-body
systems has been for the most part due to the development of
the temperature—-dependent Green function method which has been
elaborated by many authors.The method of two-time thermal (re-
tarded or advanced) GF's in its initial form goes back almost
thirty years to a paper by N.N.Bogolubov aud S.V.Tyablikov’!/
demonstrating that the retarded and advanced GF's can hopeful-
ly serve as a basis for studying the physical properties of
many-body systems as well as the causal ones. The causal GF's
which play a vital role in quantum field theory cannot be ana-
lytically continued into the complex energy plane and there-
fore the retarded or advanced GF's are more convenient in this
senge. The method of two-time thermal GF's has been widely
used in a large number of investipations’2.3/ | especially in
rhe quantum theory of mnunvlinmlA’. The exact equation of mo-
tion for the GF involves higher-order GF's and must be linea-
rized by a certain approximation so that it can be solved for
the GF. The random-phase approximation’® is the simplest and
most popular decoupling scheme for this purpose. Unfortunately
the damping effects and finite lifetimes are not taken into
account for an approximation of the sort.

Over the years, however, new developments have been made
hath in a deeper understanding of the interrelation between
the quantum field theory and condensed matter phyﬂivﬂ/O/ as
well as the GF method itself, In the last decades a luthgful
reformulation of the two-time GF method hag been given R
This approach 18 based on the Iintroduction of "irreducible"
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parts of GF's, which makes it possible, without recourse to

a truncation of the hierarchy of equations for the GF's, to
write down the exact Dyson equation and to obtain an exact
analytical representation for the self-energy operator. Thus,
this irreducible Green function (IGF) method incorporated cer-
tain advantages of the causal GF formalism, namely the Dyson
equation conserving the useful analytical properties. There-
fore, in contrast to the standard equation-of-motion approach
the decoupling is only introduced in the self-energy operator
and in a certain sense there is a possibility of controlling,
in diagrammatic language, the relevant decoupling procedure

in further approximative self-energy calculations, The crucial
point of the whole problem is the same form of the equation of
motion for all three (retarded, advanced and causal) GF's.

2. As an introduction to the concepts of IGF's let us des-—
cribe the main ideas of this approach in a symbolic form.

To calculate the retarded GF

Qf(t-t")= < A(t), A (") > =

(1
= -16(t —t") <[A(t), A* () ]g>, n=%1,
let us consider the equation of motion for (1)
0Glw) = <[A,A* ]77> +<<[A.H]_|A+>>w. (2)

By definition we introduce the irreducible part (ir) of the GF
T IAHI A 5> = <«<[AH]1_-ad|A" >, (3)
The unknown constant a is defined by the condition

LA H)T A 1, 0. )
From the condition (4) one can find

1 +
*[[A.Hl_-_:\ l,,‘_-_‘ oM
<[A,A+ ]1’ M(]

a =

(5)

The IGF's are defined so that they caonot be reduced to the
low-order ones by any kind of decoupling. The irreducible cor-
relation functions are well known in statistical mechanics.
They are obviously deflned as
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KA(x) = <A(x)> = G%(x),

KAB(x,,x5) = <A (x;) B(xp) > =08z ,x,) +GA(x) GB(xp) .

In the diagrammatic approach the irreducible vertices are de-—
fined as the graphs that do not contain inner parts connected
by the G%line. With the aid of (3) the mean-field contribu-
tions are removed. This procedure extracts all relevant (for
the problem under consideration) mean-field contributions and
puts them into the generalized mean-field GF which has the
form

<A ]p

G = —
(w-a) ) (6)

To calculate the IGF "<<[A,HI_(t)|A"(t")>> in expression (3),
we have to write the equation of motion after differentiation
with respect to the second time variable t’ “7/.The conditions
(4) remove the inhomogeneous terms from this equation.If one
introduces an irreducible part for the right-hand side opera-
tor as discussed above for the "left" operator, the equation
of motion (2) can be exactly rewritten in the following form

a - a°+ G°PaG-. €))

The scattering operator P is given by the expression

; <1 qr +oAr -1
P ’(Mn) <<[AHI_I[AH]. > (M0 ) B (8)
From the Dyson equation
G- G°+ Q°MG (9)
we get the following equation for M
P M + MG°P (10)

from which it follows that we can say, in complete analogy to
the diagrammatic approach, that the self-energy operator M

is defined as a proper (in the diagrammatic language "connec-
ted") part of the scattering operator




M = (P)P. ()
Thus, by introducing "irreducible" parts of GF (or the "irre-
ducible" parts of the operators, out of which the GF is const-
ructed) the equation of motion for the GF can be exactly trans-
formed into a Dyson equation with an exact representation of
the self-energy operator which is represented by a higher or-
der GF. It should be emphasized that for the retarded and ad-
vanced GF's the proper part (11) has only a symbolic character.
However, one can use the causal instead of retarded GF at any
step of calculations due to the same form of the equations for
all three types of GF's. In a certain sense there is such a
possibility to control, in the diagrammatic language, the re-
levant decoupling procedure in further approximative self-ener-
gy calculations.

3. The general philosophy of the IGF method is to try to
separate and identify scattering effects which are "elastic"
and "inelastic" in nature. Before going into the ficld of
the concrete examples it will be worth while to emphasize that
from a technical point of view the IGF method is a special
kind of the projection-operator approach in the theory of two-
time Creen functions/'Y'%/ | Tt turns out that there is a pos-
sibility of generalizing the scheme described above introdu-
cing the "irreducible'" GF's for higher-order equations of mo-
tion. We describe briefly this point of view in order Lo ex-
plain that the structure of the obtained solution for one-
particle GF depends strongly on the stage at which "irredu-
cible" parts have been introduced. Let us consider equation
(2) again. Instead of (3), now we introduce the IGF's in the
following way

w <A|A* 5> o M, 4 <«<[AH]_|AY

)\"(1) ’
0 <[AHIIAY > o My o Tecll AHI_HLZ [AY > (12)

.u,--lf\|.‘\,l

l va <o (A ]| A'

d "” w '

The unknown constants a, and a, are connected by the conditi-
ons

<tram _uwl' o, A, o, (1)
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45 we have tried to illustrate in this article only the main
ideas, consider the simplest possibility and write down the

following equation

wP<<[[A,H]_H]_|A* >, =<<[[AH]_H_|(H,A* 1_>,. (14)

Then by introducing the irreducible part for the "right" ope-
rator we obtain

i
“<l[AHI_H]_|& 5>, (w=at) = <[ [AHI_H]_|[H, A" ]_siT . (15)

From (12)-(15) we arrive at the following set of equations

w<<A|AY>> - <[AHI_|A% > =M,

(16)
a CA[AT>S +(w-a,) <[AH]_|A*> =M, -0,
where ¢ denote
O =T [[AHI_HI[[A, HIT>" (17)
The solutions of equations (16) are given by
M (w=-ag)=-(M{-q)
<A[AT> 0 - Wkl _
! wl®=-ag) +ay (18)
woM~D) | a, M
: 1 1
._,-:[A,HJ_[A*:»}) 0 , (19)
: wlw=-ay) + ay
alMo oale - M.

2+ (20)

There is a great similarity between the present approach and
the moment method 713,14/, The gtructure of equation (18) exact-
ly corresponds to the two-first-moment expansions’' | but
differs from it by the factor®, pButr the basic idea of the
present method resembles that of the Mori-Zwanziy projection
method rather than the moment method as shown in paper 1V {n
a self-consistent manner.

4. The TGF method has been applied recently to a number of

problems of condensed matter theoyy " 100647 0 is worth

emphasizing that in a general case the mean=field renormal -
zations can be of a very nontrivial structure. To obtain this
nontrivial structure of the mean=fiold renormalization cor-



rectly, one must construct the full GF built on the complete
algebra of relevant operators and develop a special projec-—
tion procedure for higher-order GF's in accordance with the
finding algebra. The IGF method allows one to completely de-
scribe the quasiparticle spectra with damping in a very gene-
ral way. To calculate the self-energy operator in a self-con-
sistent way, we have to express it approximately by lower or-
der GF's. Here we will restrict ourselves to mentioning a few
most interesting examples.

Let us consider the famous Hubbard Hamiltonian

T a +—U—Zn

H=- % ta a, +— L0t (21)

jo
which really gives a better understanding of the electronic
correlations in solids. Two variants of the IGF theory make
it possible to obtain two exact representations for the self-
energy operator (11) which are used to obtain approximate so-
lutions in the atomic (U>>t) and band (U << t) limits /107 .
In the atomic limit we obtain for (6)

(o] (1—[\ ) n o
a,(qw)= =9 + = s A
o w-E,-(1-n_g)W o R

w-E_ -ngWo o

where W' are the shifts for the upper and lower bands due to
the correlation of electrons:

+ -

‘ t 3 . + 4+ >
wo o~ P T T a Ll T +
cnt 0t sec<a 8t a8t >-<a 3, 3} a} 2P (23)
PelyoMio 7Y “"o® 0% 0% 0o jod1.0%j-0%jo

So the GF (22) of the generalized mean-field approximation
takes more accurately into account the nondiagonal matrix ele-
ments and due to this fact has a more general two-pole struc-

ture than the famous "Hubbard TIT" and Roth solutions.In par-
ticular, from our solution it is clear that for the atomic

limit the mean fields cannot be represented by the functionals
of the mean electron density F[ <ng>l. The solution (22) poes
over into the "Hubbard 1" solution if we make a very crude ap-

proximation

wt . <n, n . = n®
j.o {-o -0

Therefore, the use of the TGF method makes 1t possible to see
clearly what correlations are omitted in the total correlati-

({]

on functions to obtain any particular approximation. This es-
sentially makes it possible to construct approximate solutions
systematically. The correlations due to the self-energy opera-
tor
Mqa(w) = ¢! ie’z tietmj" <Dy, ;D;j s> It fq® -1 (24)
m
occur in (11) as additive corrections which is very convenient
for estimations of various scattering effects. Note that the
"Hubbard III" solution gives the local self-energy operator.We
remark that the Hubbard model in the strong correlation limit
gives the archetypical example of the fact that in the general
case the mean-field renormalization can have a very nontrivial
structure. Under various regimes the mean-field corrections
can be drastically changed and the relevant mean-field renor-
malizations must be considered. According to the rigorous ma-
thematical theory of superconductivity which has been given
by N.N.Bogolubov/E! the mean-fields or Hartree-Fock-Bogolubov
renormalizations must contain the anomalous contributions.
For example, if we consider the system with the Hamiltonian
(21), equation (3) for the superconducting case takes the form

i

g + = lat > - « s>
<<awni_a|aja>> <<3w"|-o'“ja > ““x-a><<‘1a|“ja > ¢
- + (25)
> S
+<a 8 o ““1.:7'3)47 5,

With the aid of the definition (25) the equations for the
strong-coupling superconductivity in the transition me-
tals’!% and their disordered alloys’!7.1% have been de-
rived.

The next very interesting many-body problem is the forma-
tion of polaron-like states in magnetic semiconducters due to
the effective attraction of the electron and magnon. It is’
possible for the case of the antiferromagnetic coupling of
the electron spin to the lattice (magnetic subsystem). Inves-

tigations of the magnetic polarons permit us to clarify the
nature of the true carriers at low temperatures of the magne-
tic semiconductors. Let us consider the s-f model. The total
Hamiltonian of thig model describes the two subsystems (band
electrons and localized apins) coupled by a local spin-apin

exchange interaction’®0/
« t ”
Hye =--2I |3:a’(sl 0 )y ® (g0t (26)

/ " 2
It has already been noted 26/ that the GF calculations for

this problem must be provided including both spin=conserving

7



and spin-flip processes. Crucial differences between bound-
and scattering—state/ 0/ contributions to the electron spect-
ral weight have been high-lighted. Using the procedure outli-
ned in (2)-(11) for the calculation of the electronic quasi-
particle specirum of the s—f model (26) we ge} the equation
,for magnetic polaron quasiparticle energies/ 1

2ar-1
E,o= e§01-1 N Wko(Eka)'
<S"g S: >
¥, (0)=23{ - +
ko @ [1-TA ()]0 +250g €% g o) (27)

RLRRITACRN PPN CH DR y

[1-IAka(w)](w - )

o]
‘k+q,0

The energy spectrum E,,consists of two bands for any elect-—
ron spin projection. The magnetic polaron states are formed
only for antiferromagnetic s~f coupling (I< 0) when there is
a lowering of the band electron energy due to the effective
attraction of the electron and magnon. Our generalized mean-
field golution is exactly reduced to the Shastry-Mattis re-
sult 7#% for T - 0K.

5. In this paper, we have shown that the IGF method gives
a unified and self-consistent formalism for the full descrip-
tion of the quasiparticle spectra and damping for many-partic-
le systems. The most important conclusion to be drawn from
this paper is that the mean-field renormalization can have,
in general, a very nontrivial structure as in cases of the
Hubbard model in the strong correlation limit and the magne-
tic polaron problem at finite temperatures and an arbitrary
value of 8—f exchange. Tt is important to emphasize that
these self-consistent mean-field approximations can be inter-
preted in term of diagrams. Thus,the IGF method leads to rela-
tively "well established" criteria underlying the approxima-
tions for the solution of the hierarchy of equations of
motion for the one-particle GF of any given Hamiltonian., Tt is
also worth noticing that on the basis of the IGF method it
becomes apparent that the relevant mean-field renormalization
in Bq.(3) may also be analyzed by an appropriate formulation
of the broken—-symmetry theory. One of the best known approa-
ches in this field is the Bogolubov fundamental idea of

. /9 s : ; i
quasi-averages ‘%, Most successful realizations of this con-
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cept are the Bogolubov theories of superfluidity and super-
conductivity. Bogolubov has shown that the use of the anoma-
lous propagators can be justified by using a source term in
the Hamiltonian /2 28/ Thus the present study might 98 2 use-
ful reconfirmation of his results. Our recent results =
also reveal that there is much hope that such type of a forma-
lism would clarify a very difficult problem of the microscopic
description of the antiferromagnetism. We also believe that
the IGF method can be a basis of the study of more general ca-
ses than that considered in papers/15“244

It therefore gives some real insight into the foundations
of the GF method for the condensed matter theory.

It is a great pleasure to thank Professor N.N.Bogolubov for
very useful discussions and helpful critical remarks.
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Kysemcxuit A.Jl. E17-88-677
Meron HenpuBOOUMBIX GYHKIUH ['pHHA
B TEODHUM KOHOEHCHDPOBAHHBIX Cper

PasBuT HOBHIH MeTOn [OJIS pacueTa KBAa3HUYACTUUHBIX CIEKT—
POB M UX 3aTyxXaHUS B CHCTEMaxXx MHOT'HX B3aHMOOEHCTBYWOIHX
yactuny. C noMombl BBeOeHHUsT HENPUBOMOWMBIX yacTe¥ nnas 3a-
nasapBaomux GyHKUIH ['pHHA BBBOOUTCS TOUHOE ypaBHeHHe
Haticona. Ilpy 3TOM TOUYHBI MAacCCOBbIH OTEpPaTOp BhIpaxaeTcs
yepes3 byHkuuio ['puHa Bbicmero mnopsaaka. l[loxkasaHo, uTo s
WUPOKOTO Kpyra 3ajgady TeOpHH KOHIOEHCHDPOBAHHBIX Cpel Me-—
TOO HeNnpuUBOAWMBIX GYHKIHWHM ['pHHA MO03BOJISET BeCchMa INPOCTO
BBIUUCJIATH KBA3HUACTHUHBI CIIEKTP H 3aTyXaHHe.

PaGoTra BunmosHeHa B JlaBopaTopHH TeOPETHUCCKOHM GHSHKH
OUAn.

INpenpuuT O6BeAHHEHHOr0 MHCTUTYTA ANEPHbIX Uccnenosanuii. llybna 1988

Kuzemsky A.L. F17-88-677

Irreducible Green Function Method
in the Condensed Matter Theory

A new method to treat quasiparticle spectra and dam-
ping for a many-body system is developed. It consists
in introducing irreducible Green functions and deriving
the exact Dyson equation and exact self-encrgy opera-

tor. Tt is shown that the IGF method gives a unified
and natural approach to the calculation of the clemen-
tary excitation sgpectrum and damping lor various Hamil-
tonians of condensed matter physics,

The investigation has heen periormed at the Lahora=

tory of Theoretical Physica, 11N,
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KyseMmcxuit A.Jll. E17-88-677
MeTon HemnpuBOOuMbIX GYHKHUH ['puHa
B TEOPHH KOHOEHCHPOBAHHHX Cpef

PasBHUT HOBHI MeTOH /I pacueTa KBA3HYACTHUYHBIX CIEKT—
POB M UX 3aTYXaHHA B CHCTEMax MHOTHX B3aHMOOEHCTBYWIHX
yacTtun. C roMomplo BBeeHHUSA HENPUBOAHMBIX vYacTel mius 3a-—
nasgsBawmyux GyHKHHH ['pHHa BBIBOOQUTCA TOYHOE YypaBHeHHE
[MaticoHa. [Ipy 3TOM TOYHBI MACCOBHI ONEpaToOp BhHpaxaeTcHd
yepe3 dyHkuuw ['puHa Beicmero nopsgka. [loka3zaHo, uTO Ois
TUPOKOTO Kpyra 3aJauy TeOPHH KOHOEHCHPOBAHHBIX Cpel Me-—
TOO HeNnpUBOAWMBIX GVHKIHUH ['pHHA MO3BOMNAeT BeChbMa MNPOCTO
BBIUHCIIATHL KBA3HYACTHUYHBIA CIEKTP M 3aTyxaHHe.

PaGora BemonHeHa B JlaBopaToOpuH TeOpeTHUYECKOH (GU3HKH
OUsN.

[NpenpuuT O6BenHHEHHOI0 HHCTHTYTA ANEPHBbIX HcenenoBanuin. [ly6Ha 1988
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Trreducible CGreen Function Method
in the Condensed Matter Theory

A new method to treat quasiparticle spectra and dam-
ping for a many-body system is developed. Tt consists
in introducing irreducible Green functions and deriving
the exact Dyson equation and exact self-energy opera-
tor. Tt is shown that the ICF wmethod gives a unified
and natural approach to the calculation of the elemen-
tary excitation gpectrum and damping for various Hamil-
tonians of condensed matter physics,

The investigation has heen perlormed at the Labora-
tory of Theoretical Physica, JJ101.
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