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where P is the total momentum of the electrons. Representing

P as a sum of operators A, (relevant observables) which can be

chosen properly to describe the system considered (see below),
the corresponding correlation functions < Ay i A3> can be
calculated by the set of equations

%[iq &, - 1% (A AN (D) e+ i%“ﬂ(fl)lk]“‘k‘“ﬁ =1,

(2)
where
xij - (Ai’ AJ) ‘z_'xik(x:-l)k"] n Eij :3)
¢ -pH (4)
(Ag] Ay) = : dnTr{g A (-in) A} g=ge #
and i
“1j-zAiElaﬁ°\J>° Ay = 1[H, A7 . (5)

The operator ﬁ =1-Fisa projection operator with

PF=2Z IAi)(x'i)ij (Ail and <...>% denotes that in the time
ij ;

evalution of this correlation function L = i [H,...] is to be
replaced by @ L @ . By solving the set of equations (2) the
correlation functions <A; 1 A which we started from are
replaced by the correlation functions (5), and with a proper
choice of the relevant observables these correlation functions
can be calculated in a fairly simple approximation /1/. It is,
however, difficult to go beyond this first approximation and,
in particular, to take into account the projection operators
(cf. /2/). Furthermore this method is restricted to the cal-
culation of transport coefficients wnere the exact linear
response expressions are known; a ganerﬁlizntion to thermel
transport coefficients is not trivial. In this paper a general
formalism for the calculation of transport coefficients is
given which includes the approaches mentioned above and which
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1. Introduction

Now as before there is a great interest in the calculation

of transport coefficients in solids in order to explain the
experimental results as well as to get information on the
microscopic structure of the solids. There exist a lot of
theoretical methods for the calculation of transport coeffi-
cients as a rule having & fairly restricted range of validity
and applicability. The most popular and succesful aspproach
starts from the linearized Boltzmann equation which can be
derived assuming weak scattering processes. On the other

hand transport coefficients can be calculated by means of
exact quantummechanical linear response expressions as the
Kubo formula for the electrical conductivity. These exact
correlation function expressions can be directly evaluated
only in a few special cases without using sophisticated many-
body tachniques or fairly bad approximations. One of the most
suitable methods is the Mori projection operator technique
where the linear response correlation function can be trans-
formed into other correlation functions more convenient for
a practical calculation. As an example we consider the d.c.
electrical conductivity

2 2 o '1: & g
-8 B Bra 2y (at dn T t=1A)P}; o0+ (1
& 3“2 In“fl - ° é r{g £ ) } : .
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can be adapted to the problem investigated.
2, Quasi - equilibrium operator approach

For simplicity of notation we restrict our consideration here
on the influence of a stationary external electrical field.

In the linear response theory the density matrix of the system
becomes

= + Vo
gL - g.u_‘ Sdt' a']'(t t) qu\-gg(t. -t - iu Q"O (6)

-0

where the time dependence in P(t) is given by the total
Hamiltonian of the system without the interaction term with
the electrical field. From another point of view we can say
that there is a reaction of the system on the external field
which can be described by relevant observables such as shift
of the Fermi body or a redistribution of the single particle
occupation numbers etc. Hence, for small external fields tne
system can be described in a fairly good approximation by the
quasi-equilibrium density matrix

ad T = 2eGA,) y
Sa g: (7)

where the A; are the observables relevant for the reaction

of the system and the oéi are parameters proportional to the
external field. Of course, the density matrix {7lwé%“not El
solution of the Liouville equation, but an exactYcan be found
easily starting from (7) as an initial condition;:

q(t‘-t) eiHs(t'-t) -1Hs(t'-t}

g=g_1gdz'e 8q @ (8)

-00
where Hy.m.H = 8 E E'r . In order tc determine the parameters
i we demand that the mean values of the relevant observables
A; are equal in the quasi-equilibrium state gq and in the real
state €., i.e.
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Trig, A = Trigq Al . (9)

This condition is equivalent to the stationarity condition

g, Al=0. (10)

For a sufficiently complete set of operators Ay the conditic
(9) ensures that €q describes the system with a sufficient
accuracy. Linearizing (9) with respect to the parameters o,
and the external field E one obtains the set of equations

Y"‘J [':f Tr{?[AJ v‘\jjg" ‘AJ ;Ai’] = ':E[(BIAJ.)" <? Ai" ] . ()

The set of equations (11) can be shown to be equivalent to

(2), where in the higher orders of interaction the equations
(11) are more convenient to handle because the time dependences
are given here in an explicit form without any projection.

With the parameters e, the current density is given by

T-2 r{gq k- "IZ"' (A1 ® (12)

Supposing that the total momentum P of the electrons can be
built up by the operators A, ist can be shown easily, that the
equations (11) and (12) include the Kubo expression for the
conductivity. In order to solve the system of equations (11) =a
generalized variational principle can be formulated, but rhe
reduction of the number of parameters da by a variational ansatz
corresponds to a new restricted choice of the relevant obsera-
ble A, .

3. Weak scattering limit

The applicability of the equations (11), (12) to for a given
problem strongly depends on the choice of the operators A .
The first condition to be fulfilled is that the mean values of
the occupation numbers of all quasiparticles in volved in the
transport process should be time independent, i.e.
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g? Tr{gs(,Li) nk‘g =0 or Trfgs_(.{,i) nd = Trigq(.:.i) nt.
(13)

Of course, this condition is fulfilled trivially for Aj=>np,
but in this case the equations (11) cannot be solved in
practice. In the most cases, however, there can be found a
reduced set of operators sufficiently complete to describe the
reaction of the system on the external field. It can be shown
that under certain conditions the scattering process can be
described by on one relaxation time only and then the set of
relevant operators reduces to the total momentum of the
electrons describing a homogenous shift of the Fermi body in
the Bloch space. These conditions are fulfilled for a spherical
Fermi body at temperatures small in comparison tdthe
degeneration temperature and for an isotropic scattering
mechanism where the scatterers remain in the thermal
equilibrium. In this simple case (10) and (11) reduce to the
so~called resistivity formula /3/. For non=-spherical Fermi
bodies the set of relevant observables has to be extended in
order to take into account not only its shift in the k-space but
also its deformation, In general the Fermi surface a(?) = Ef
transforms under the influence of the electrical field into
E{k) = Ef where

n
'E“(?)=E{"l<’)+a?}’1-:g—§+n_2—'$i§i(ﬁ}%%+ (14)
i=2

The last term in (14) describes the deformatior of the Fermi
body where the polynomials § i(Ic') have to be chosen in
correspondence with the symmetry of the crystal /4/.
Corresponding to (14) the relevant opewators are given by

Ay —m ;L:_ ¢ LK) —%E a:f a, With il =1, (15)
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In the weak scattering limit the correlation functions in (12)
can be calculated straightforwardly replacing in the operator
A;(t) = exp(iHt) A exp{~iHt) the totel Hamiltonian of the
system by the Hamiltonian of the free quasiparticles. The
results obtained in this approximation coincide with
variational solutions of the linearized Boltzmann equaiion
where, however, the choice of the relevant observables is more
evident than the variational ansatz for the solution of the
Boltzmann equation.

As an example we consider a tight-bind#ng electron system and
take into consideration electron-electron and electron=-phonon
interactions. The Hamiltonian of the system is in a standard
notation

Ha= H‘ + Hp + I-lBe * Hep (16)
where et s
LT AT SLR, tag - ikaR |
Hg " Z E(k) 8y ke = Z‘t(AR) e T T (17)
Kk
L =
Hoe = T g %_ Zak 1ak N k " 8 ya(ki'k2+k3'k4+s) (18)
172 =354 ©
— + - - o
Hep =23 2.7 gkk o & ke (Bg * P_q )¥(ky-k=-q+G) (19)
kk1 G 7v
"Z w(gdv) (bqv qv * %) g (20)

9>

¥or tight-binding electrons the matrix element gk, of the
electron-phonon coupling is given in /5/. Using the set of
relevant operators (15) and restricting it to only one defor=-
mation term (i.e. § “(K) > O for i Z 3) we obtain in the weak
scattering limit for the temperature dependence of the
resistivity
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2
L E (8,72 + b, T°) (8,2 + bgTs) - “1;"2 + bégr"i)

(21)
c(a,T2 + b,T°) + d(a,T> + byT°)- Ved(e,,T24b,,T°)

where the coefficients a, 'bv .¢,d are integrals depending
on the parameters of the model.

4, Selfconsistent calculation of transport coefficients

By (11) and (12) an exact expression for the electrical
resistivity of a quantummechanical system is given where in
some problems the correlation functions in (11) are more
convenient to be calculated than the current-current=correlation
function in the Kubo expression (1) for the conductivity;fg?“g
is not significant whether the Kubo formula or the formalism
given by (11) and (12) are used as a starting point for a
calculation using standard many body technique. On the other
hand, we can use these two approaches peing in a certain sense
inverse to each other to find a calculation scheme for
transport coefficients adapted to the problem considered.

For this end we start from the condition

Trig. g Bl = Trig, B} (22)

where the density matrices are given by (6) and (8). For
operators B, which can be represented by linear combinations
of the relevant observables A; (9) the equation (22) is
fulfilled exactly where for other operators the equations (22)
seems to be plausible if the relevant observables have been
chosen properly. The conditions (22) make it possible to
determine a set of parameters which can be used in approximate
expressions “or the correlation functions. In simple cases

the conditions (22) even allow to calculate the correlation
functions in (11) without resorting to another technique. As
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an example we consider the one-band Hubbard model

H=Hy, + H (23)

in the limit |tl/U« 1. We know that in this limit the band
splits into two sub-bands separated by the correlation energy
U. In order to take into account the band-split we have to
project the one-electron operators onto the sub-bands and for
a spherical uncorrelated band the relevant operators are

- wp s & 4p
P =m — N (24)
ﬁ— 2% ¥
where BR R
Mg = N"Z @ J 2l¢ "i-g 2o Mj-e (25)
ij
with the projection operators
o ni-f
N _¢*= for o= # . (26)
: 34 1-n o
i-€
=

FP*“1s the operator of the total momentum of the electrons in
the sub-band o , and P \ 4L #p) describes kinematical
transitions between the sub-bands. It can be shown that
correlation functions < E‘P ;‘Ffr>and d'ﬁéi; pPP>vanish for

oL #f in the limit ltlfuet, De_coupling higher order correlation
functions in |t| /U (cf. /6/) and taking into account nearest
neighbour hopping terms only the correlation functions

¢ P%™; P> (&= +) can be calculated directly by (22) where
By = P**. The conductivity becomes

-1 = ) - L oL ~ koL, u
G‘-ATI%Z<n:7 yz(nﬂ,n_r\)((nf—(n‘_ n_ > (27)
where2

@)
o

Y (28)

i : nzjlk 1Ef; %?T '2§ (Q

=4
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and

<A>=Trig A} .g=§a_pH . (29)

z is the number of nearest neighbours and t the nearest
neighbour hopping element. With the well-known expressions
for the mean values 411: n:iywa find the conductivity in
dependence on the electron number:

0O%n<i caaT"'é-?-E%“Jv
1-/2

n=1 § = %E : exp(-u/2kI) (30)
1 ="72)(n-1
LZn>1 o'-AT'if_z( /_)(n )

M

Finally it should be mentioned that the method given above
can be generalized straight-forwardly to the calculation of
thermal and thermoelectric transport coetficients. For this
end thermal and concentration gradients have to'be introduced
into the quasi-equilibrium density matrix.
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