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The electronic spectrum of a magnetic semiconductor has been analysed in the s-f ex-
change model approximation using the irreducible Green function method. An analytic
expression of the electronic self-energy operator has been obtained and it may be used
to find a self-consistent procedure in separate specific cases. The electronic spectrum of
a wide-band magnetic semiconductor has been studied in detail.

I. The magnetic semiconductor is an example of a physical system whose
properties are defined by the interaction between two electronic subsystems.
The current carriers (the “s-electrons”) interact with the magnetic moments of
the partially filled f- (d-) atomic shells. The magnetic alignement affects the
movement of the currents carriers by re-normalizing their energy spectrum and
these carriers on their turn affect the magnetic alignement.

The typical magnetic semiconductors (the europium chalcogenides for
example) may be considered within the s-f-exchange model approximation
[1—3] with the Hamiltonian

(1) H=Hs+ Hy+Hy
where H; is the kinetic energy operator for the band electrons
(2) H, = XH(k) a}, azs.

ko

H, describes the behaviour of the localized magnetic moments within the Hei-
senberg approximation.
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(3) Hy=——4 2 J(—9)15fs=,+ 575, +285752
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and H,, defines the spin-spin interaction between the two subsystems
! .
“4) HW:W%Y{SianiaHM +87,af; rigL +87 (@ 10rrar —ag Wriag))
W

(all notations in formulae (2)—(4) have their generally accepted meaning).
The total Hamiltonian /1 represents the simplest starting point for the
theoretical consideration of the magnetic semiconductors. Despite that, the pro-
blem is a many-body one and it cannot be solved exactly. Additional simpli-
fying assumptions are needed for that purpose. Thus, at low temperatures the
magnetic subsystem may be considered in the spin-wave approximation and
the effect of electron-magnon interaction on the electron bands may be ac-
counted for in various ratios between the Hamiltonian parameters [4—6]. At
higher temperatures, when the spin-wave approximation is no longer valid, the
magnetic sublattice may be considered as a static system and its effect on the
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conduction electrons is defined by an effective field which is proportional to
the magnetization and the static spin-correlation functions [7, 8]. In fact, such
a simplification is possible since the magnetic excitation energies are low with
respect to the electronic energies [2]. A detailed review of the results obtain-
ed thus far and the methods used is contained in the references [1—3].

The s-f exchange interaction affects substantially the electronic spectrum of
the magnetic semiconductor at temperatures lower than the temperature of mag-
netic phase transition. The re-normalized conduction electron energies are tem-
perature dependent and the electronic states have a finite life time [8]. These
effects are most suitably accounted for by the Green function method [9]. The
purpose of the present work is to find the electronic quasi-particle spectrum
re-normalized by the s-f exchange in a wide temperature range and to ac-
count explicitly for the contribution of damping of the electronic states when cal-
culating the various characteristics of the magnetic semiconductor. By the va-
riant of the irreducible Green function method ([10, 11] a closed expression
has been obtained for the electron selfenergy operator at arbitrary / paramet-
er values. This representation provides a possibility to find a seli-consistent
procedure when obtaining various approximate expressions in the separate spe-
cific cases.

2. The single-particle properties of the band electron system are defined
by the anticommutating Green function

Girolt) = (arolt) | @),

where k is the electron wave vector and o is the z-th component of its spin
Its Fourier transform Gp.(L) satisfies the equation

(5) EGrolE)=1-+t(k)Gro(E) — \}% 2 {85kt —a | AN+ Zo((S% JAntq. 0 | GENY
q
where Z,=1(—1) if o= {(]) or +(—).

The irreducible (ir) Green functions will be introduced in the right side
of eqn. (5) by the relation

(6) (5% q)if =N g—(Sg)Sq,o.
Thus, eqn. (5) may be written in the form
i I
(7) [I";"‘ EE:E,F]ch (E) =1 — J:,\‘T—'“.a\.« {((Sjgﬂk-m. - ! a;—c»‘i‘zc«siq)irak-f—q. o | a}:ﬁ»:
where !
! .
(8) Epe = HR)—Zo WV {S3)-

Relation (6) shows that the irreducible Green functions do not contain
the mean field re-nomalizations. This provides a possibility to re-formulate the
standard procedure of the two-time temperature Green functions [9], to write
the Dyson equation and to obtain an exact analytical representation of the
self-enegy operator. Then, the approximate solutions for the Green function will
be written as definite approximations for the self-energy operator [10, 11].

The equations for the higher-order Green functions on the right side of
equality (7) can be written in a similar manner:

kt+q, o

O E—e1(Alagn=—5 2 ((AISgaty, N+ ZKANS;) at, )
q
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where
S____g Aptg, —c
A —

(‘S'f__q)” ay +¢, ©

It follows from (7) and (9) that Gue(E) satisfies the equation
(10) Grol E) = GMF(E)+ GM(E)Pro( E)GLT(E).
The zero-order Green function

GIF(E) = (E— e}ty

takes into account the mean molecular field acting by the localized spin on
the condition electrons and the scattering operator Pi(E) is related to the
self-energy operator M,o(E) through the equation

Pio(E) = Mio(E)+Mao( )TG3 (E)Pro(E),

ko

which, together with the Dyson equation for Gye(£)
(11) Gro( E) = GYN(E) 4+ GEF(EYMo( E)Grol E)

produces following expression of Ms(E):

1’2 - . . P
MioE) = 5 Z (S0t al Stk o AU o0 (ST o

qq9
(12)
+ Zo[((S=0ak1q—o| (S2)r af, 0o NP HU(S ) Chag o |Sa), 0 NP1,

e. Mo corresponds to the “proper part” of the scattering operator Pie.

The equality (12) defines an exact representation of the self-energy operat-
or Mys by the higher-order Green functions taking into account the va-
rious correlation effects between the two electronic subsystems of the magnet-
ic semiconductor. For this reason a similar treatment has to be done also for
the localized spin system which may provide suitable self-consistent solutions.
For the Fourier transform of the “transverse” Green spin function F; (E)
=S |S—,» an equation such as (11) is obtained:

(13) FAE)=FJYE)+ FJNE) IAE)FAE),
where
: 2(S%) 1
i = T e R S
and
= (85 1y IEE IR -
(15) o(g)= 'V,K,:—Uo—’fq) ez N q,(fq’ _fqmq’)TS{z;;‘*‘ ~ (rr—ny)

and T1,(E) is the self-energy operator whose explicit form in terms of the higher
order irreducible Green functions will not be given here. Expressions (14) and
(15) define the properties of the localized spin system within the Hartree-Fock
approximation. The first two terms in the spin excitation energy w(g) originate
by the Heisenberg Hamiltonian [10, 12], and the third term takes into account
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the molecular field spin-polarized conduction electrons (#; and n; are the
average number of spin-up and spin-down electrons, respectively, and g and
Kq—+ are the spin correlators.

3. The self-consistent field definition of the electronic seli-energy operat-
or requires its approximate reppresentation by the lower-order Green functions.
Since M, describes the processes of inelastic scattering of the conduction elec-
trons over the localized spins, its approximate representation would be defined
by the nature of the physical assumptions about this scattering. We shall con-
sider the approximate representation of the irreducible functions such as
(S krq, 0] Sg,akﬂ»,.,})“'"’. By the spectral theorem [9], we obtain

+ oo

(S Arig. 0 | SHay, . NN = ,é'ﬁ—fb- E’( pE +1

—oo

(16) .
X j dt et Shat, . S* (Oakiq s ().

k+q',o

Here ﬁ:(k,g?")_l where kg is the DBoltzmann constant and 7 is the abso-
lute temperature. The correlation function in (16) may be decoupled in the
following manner:

(17) (SBaf, oS, (O)arsq, o ()=XSSE () (@}, ;o Wriq.0(D))-

The approximate representation (17) neglects the correlation between the
conduction electrons and the magnetic subsystem excitations and it is legi-
timate at lower densities of the quasiparticles. Further, from the definition of
irreducibility for the operators, it follows that only averages of products from
such operators referring to different times contribute since the “single time”
averages have already been accounted for by the zero order Green functions.
Expressing the correlation functions on the right side of equality (17) using
the spectral theorem, we can find within the chosen approximation the contri-
bution of the function ((S® Ahtao !Sqaggr N0 to the self-energy operator My :

Mﬁg(E)" z((s“‘ a’;_Lq Ul S ak-i—q a))“”
" v f - f aE, I —HE) b E)gi .0 (D

where mi¥(E) and gio(E) are the one-paricle spectral densities defined through
the equalities

me¥(E) = — I?Im{(sfj_q] SP,  grlE)= ——711- Im ({@rs| aj,)),

and W(E) and n(E) are the corresponding Bose and Fermi type functions, res-
pectively :

V(E)=(eFE —1)™, n(E)=(ePE +1)7".
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The resulting representation of the higher-order Greer functions takes in-
to account the dynamic nature of the interaction between the electrons and
the localized spins. Another approach is possible when simplifying the functions
(16). Let us assume that the process of electron scattering does not produce
changes in the energy state of the magnetic subsystem of the semiconductor,
i. e. the scattering is elastic. Then the spin correlation function on the right
side of equality (17) may be approximated by its value at £=0

KiH0)=(S{SL()~<(S)S ) = K}

and
P F s iR IE
(19) MHE)= 13 Kb f il
q —oo

Finally, for the self-energy operator My, of the one-particle electronic Green
function we may write

oo
.

- 2 dE
(20) Myo(E)= xF 4? K‘;’f E_E* 8kta.0

—0

+oo + oo
: 14+v(E))—n(E.
+del[ dE, 2\{_721_“‘%2—2)— HI'(;U‘ °(E1) Gitq, —o(Er)

whose structure, taking into account the relations (18) and (19) speaks about
the physical nature of the assumptions made.

When determining the electronic spectrum, the characteristics of the mag-
netic subsystem K7* and m_;° °(E) may be chosen in a suitable way. Then,
equations (11) and (20) form a closed system for the one electron Green func-
tion Guo(E). By setting the spectral density gwo(E) in the right side of equa-
lity (20), Gio(E) may be found and the result obtained may be used in the
following, more accurate, representation of guo(E).

4. In comparison with other works, let us consider the case of a wide-
band ferromagnetic semiconductor for which a well-defined small parameter
is present [S/W<1 (W is the conduction band width, defined by #(k), / is the
exchange integral and S is the spin localized at the crystal lattice sites). Then,
as a reasonable initial approximation for one particle spectral density go(£),
the following pole representation may be used:

@0 GioE) =8 (E—gyg
where g is defined by the expression (8). Setting m_°(E) in the Hartrec
Fock approximation (14)
: e 2(S¢)
(22) m;o°(E)y=Z_o WES[E-—Z_G(»(Q)]

the static spin transverse correlators are defined by the equation

(23) KEU' g = Q(JSNG) [8:\' 1 —V((D(q)]
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and substituting the expressions (21)—(23) into eqn (20) we obtain the self-
energy operator in the following form:

5 .
S K" —!—2< 0_> n [EMJ’_ o Zs9(9)]
2 1 Kq& q \«"IN htg, —o a
(24) Mo E) =5 2 mr T . MF
o q E—e k+q,0 E+Zua)(q}—sk+q‘ —c

In expression (24) the first term describes the contribution of the band
electron scattering processes without change in the electron spin and the se-
cond term accounts for the spin flip processes. It is further seen that within
the approximation used, the self-energy operator M;s dependes on the number
of electrons only when the dynamic nature of the s-f exchange is accounted
for and just at temperatures lower than the critical one, when (S2)==0. Repre-
sentation (24) thus generalizes the results obtained in refs. [4, 7, 13].

The real part of the seli-energy operator defines the electronic spectrum,
Eje re-normalized by the s-f exchange. This spectrum is given as a solution
of the equation

Ef(n' e afc].: + Re MI!G(E)!

and its imaginary part I'yo(£) defines the damping of the electronic states
and affects the density of states. Following [14], let us write the one-particle
spectral density gi(£) in the following way

L L
&ielB)=— M GulB) =7 F g
(25)
1 rkﬂE
~(1—a)E~ Evo)+ =y

the unknown constant a,s being defined by the condition
]‘ gio(EYAE=1.

—oo

Then, within this approximation for the average occupation numbers for states
with spin o we get

Re= % {H(Ekc) = Af;' z’ﬁg{n(s’;‘im)wn{aﬁ)}
kg kg0 ho
(26)
P2 \‘K;ﬂ’.o—i-zg Q—f[%in {gﬁfq,_“wzu(ﬂ(q)] e
B e st o b 2o D= Ebl)

As follows from eqn (26), the occupation numbers are determined in a
self-consistent way. The first term on the right side describes the eifects of
re-normalizing the particle energies and the subsequent terms account for the
particle scattering by the fluctuations of the magnetic moment in second order
of / and explicitly account for the damping of the electronic states. The form of
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the one particle spectral density obtained in (25) at low temperatures is ana-
logous to the Nolting representation based on considerations of intuitive nature
[15]. This form may be used to find analytically the spectral density moments,
whose explicit form may be found also in an independent way [8, 16].

Expression (24) may be used to reproduce exactly the first three moments
of the single-particle spectral density. As known [8, 16], this result may be
carried out by the following two-pole approximation

S+Z (5%)+1 S—Z (S2)
giol E) =—5—7— S(E+1S—HR)+ —5577 8(E — I(S+1)—1(k)),

which corresponds to two undamping quasi-particle bands. In our opinion, the
description of the electronic spectrum taking into account the damping of the
quasi-particle states corresponds more accurately to the physical nature of the
phenomena taking place in the wide-band ferromagnetic semiconductor.
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JIeKTPOHHBIH CIEKTP MATHATHOTrO MOJIYTIPOBOJHHKA
B puOIMKeHuH OOMEHHOH S$-f MOJEIH

A. JI. Kysesckuii, [. H. Mapsakos, [. I1. Baaxos

(PezwMme)

B pacTosiiedl padoTe aHaaM3UpyeTCi 3JEeKTPOHHBIH CIEKTP MArHHTHOrO TI0O-
AYIIPOBOJHAKA B MPHOIMKEHHH O6MEHHOI S—f MOJelH MyTeM HCnoab30BaARM
METONA HEMPHUBOAUMBIX (QYHKIUH ['puna. [losyyeHo aHAAUTHUECKOE MPEACTAB.IC:
Hue SJeKTPOHHOIO MacCOBOTO Oneparopd, HTO jaeT BO3MOXKHOCTb MOCTPOEHHS
caMOCOrJIACOBaHHOH MpoLeaypel B OTACAbHBIX KOHKDeTHBIX cayuyasx. [1o1pooHO
HCCeLYeTCs 3IeKTPOHHBIH CIEKTD HIMPOKO30HHOT0 MarHHTHOTO [10Jy1POBOAHHKA.
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