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This paper reviews some selected approaches to the description of transport properties,
mainly electroconductivity, in crystalline and disordered metallic systems. A detailed
qualitative theoretical formulation of the electron transport processes in metallic sys-
tems within a model approach is given. Generalized kinetic equations which were derived
by the method of the nonequilibrium statistical operator are used. Tight-binding pic-
ture and modified tight-binding approximation (MTBA) were used for describing the
electron subsystem and the electron-lattice interaction correspondingly. The low- and
high-temperature behavior of the resistivity was discussed in detail. The main objects
of discussion are nonmagnetic (or paramagnetic) transition metals and their disordered
alloys. The choice of topics and the emphasis on concepts and model approach makes it
a good method for a better understanding of the electrical conductivity of the transition
metals and their disordered binary substitutional alloys, but the formalism developed
can be applied (with suitable modification), in principle, to other systems. The approach
we used and the results obtained complements the existent theories of the electrical con-
ductivity in metallic systems. The present study extends the standard theoretical format
and calculation procedures in the theories of electron transport in solids.
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1. Introduction

Transport properties of matter constitute the transport of charge, mass, spin, en-

ergy and momentum.1–8 It has not been our aim to discuss all the aspects of the

charge and thermal transport in metals. We are concerned in the present work

mainly with some selected approaches to the problem of electric charge transport

(mainly electroconductivity) in crystalline and disordered metallic systems. Only

the fundamentals of the subject are treated. In the present work, we aim to obtain

a better understanding of the electrical conductivity of the transition metals and

their disordered binary substitutional alloys both by themselves and in relationship
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with each other within the statistical mechanical approach. Thus our consideration

will concentrate on the derivation of generalized kinetic equations suited for the

relevant models of metallic systems.

The problem of electronic transport in solids is an interesting and actual part

of the physics of condensed matter.9–26 It includes the transport of charge and heat

in crystalline and disordered metallic conductors of various nature. Transport of

charge is connected with an electric current. Transport of heat has many aspects,

most important of which is the heat conduction. Other important aspects are the

thermoelectric effects. The effect, termed Seebeck effect, consists of the occurrence

of a potential difference in a circuit composed of two distinct metals at different

temperatures. Since the earlier seminal attempts to construct the quantum theory

of the electrical, thermal27–30 and thermoelectric and thermomagnetic transport

phenomena,31 there is a great interest in the calculation of transport coefficients in

solids in order to explain the experimental results as well as to get information on

the microscopic structure of materials.32–35

A number of physical effects enter the theory of quantum transport processes

in solids at various density of carriers and temperature regions. A variety of theo-

retical models have been proposed to describe these effects.1–6,9–14,16–22,24,25,36–41

Theories of the electrical and heat conductivities of crystalline and disordered

metals and semiconductors have been developed by many authors during last

decades.1–6,20,36–41 There exists a number of theoretical methods for the calcu-

lation of transport coefficients,18,20,36–38,42–46 as a rule having a fairly restricted

range of validity and applicability. In the present work, the description of the elec-

tronic and some aspects of heat transport in metallic systems are briefly reviewed,

and the theoretical approaches to the calculation of the resistance at low and high

temperature are surveyed. As a basic tool we use the method of the nonequilibrium

statistical operator42,43 (NSO). It provides a useful and compact description of the

transport processes. Calculation of transport coefficients within NSO approach42

was presented and discussed in the author’s work.45 The present paper can be con-

sidered as the second part of the review article.45 The close related works on the

study of electronic transport in metals are briefly summarized in the present work.

It should be emphasized that the choice of generalized kinetic equations among all

other methods of the theory of transport in metals is related to its efficiency and

compact form. They are an alternative (or complementary) tool for studying of

transport processes, which complement other existing methods.

Due to the lack of space, many interesting and actual topics must be omit-

ted. An important and extensive problem of thermoelectricity was mentioned very

briefly; thus it has not been possible to do justice to all the available theoretical and

experimental results of great interest. The thermoelectric and transport properties

of the layered high-Tc cuprates were reviewed by us already in the extended review

article.47

Another interesting aspect of transport in solids which we did not touch upon is

the spin transport.7,8 The spin degree of freedom of charged carriers in metals and
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semiconductors has attracted huge attention in the last decades and continues to

play a key role in the development of many applications, establishing a field that is

now known as spintronics. Spin transport and manipulation in not only ferromag-

nets but also nonmagnetic materials are currently being studied actively in a variety

of artificial structures and newly designed materials. This enables the fabrication

of spintronic properties on intention. A study on spintronic device structures was

reported as early as in late 1960s. Studies of spin-polarized internal field emission

using the magnetic semiconductor EuS sandwiched between two metal electrodes

opened a new epoch in electronics. Since then, many discoveries have been made

using spintronic structures.7,8 Among them is giant magnetoresistance in magnetic

multilayers. Giant magnetoresistance has enabled the realization of sensitive sen-

sors for hard-disk drives, which has facilitated successful use of spintronic devices in

everyday life. There is huge literature on this subject and any reasonable discussion

of the spin transport deserves a separate extended review. We should mention here

that some aspects of the spin transport in solids were discussed in the papers of

Refs. 45 and 48.

In the present study, a qualitative theory for conductivity in metallic systems is

developed and applied to systems like transition metals and their disordered alloys.

The nature of transition metals is discussed in details and the tight-binding approx-

imation and method of model Hamiltonians are described. For the interaction of

the electron with the lattice vibrations we use the modified tight-binding approx-

imation (MTBA). Thus this approach cannot be considered as the first-principle

method and has the same shortcomings and limitations as describing a transition

metal within the Hubbard model. In the following sections, we shall present a for-

mulation of the theory of the electrical transport in the approach of NSO. Because

several other sections in this review require a certain background in the use of

statistical–mechanical methods, physics of metals, etc., it was felt that some space

should be devoted to this background. Sections 2 to 8 serves as an extended in-

troduction to the core sections 9–12 of the present paper. Thus those sections are

intended as a brief summary and short survey of the most important notions and

concepts of charge transport (mainly electroconductivity) for the sake of a self-

contained formulation. We wish to describe those concepts which have proven to

be of value, and those notions which will be of use in clarifying subtle points.

First, in order to fix the domain of study, we must briefly consider the various

formulations of the subject and introduce the basic notions of the physics of metals

and alloys.

2. Metals and Nonmetals: Band Structure

The problem of the fundamental nature of the metallic state is long standing.1–3,13

It is well-known that materials are conveniently divided into two broad classes:

insulators (nonconducting) and metals (conducting).13,49–51 More specific classifi-

cation divided materials into three classes: metals, insulators and semiconductors.
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Table 1. Five categories of crystals.

Type of crystal Substances

Ionic Alkali halides, alkaline oxides, etc.
Homopolar bounded (covalent) Diamond, silicon, etc.
Metallic Various metals and alloys
Molecular Ar, He, O2, H2, CH4, etc.
Hydrogen bonded Ice, KH2PO4, fluorides, etc.

The most characteristic property of a metal is its ability to conduct electricity. If

we classify crystals in terms of the type of bonding between atoms, they may be

divided into the following five categories (see Table 1).

Ultimately we are interested in studying all of the properties of metals.1 At

the outset it is natural to approach this problem through studies of the electrical

conductivity and closely related problem of the energy band structure.32–35

The energy bands in solids13,33,35 represent the fundamental electronic structure

of a crystal just as the atomic term values represent the fundamental electronic

structure of the free atom. The behavior of an electron in one-dimensional periodic

lattice is described by Schrödinger equation

d2ψ

dx2
+

2m

~2
(E − V )ψ = 0 , (2.1)

where V is periodic with the period of the lattice a. The variation of energy E(k)

as a function of quasi-momentum within the Brillouin zones, and the variation

of the density of states D(E)dE with energy, are of considerable importance for

the understanding of real metals. The assumption that the potential V is small

compared with the total kinetic energy of the electrons (approximation of nearly

free electrons) is not necessarily true for all metals. The theory may also be applied

to cases where the atoms are well separated, so that the interaction between them is

small. This treatment is usually known as the approximation of “tight binding.”13

In this approximation, the behavior of an electron in the region of any one atom

being only slightly influenced by the field of the other atoms.33,52 Considering a

simple cubic structure, it is found that the energy of an electron may be written as

E(k) = Ea − tα − 2tβ(cos(kxa) + cos(kya) + cos(kza)) , (2.2)

where tα is an integral depending on the difference between the potentials in

which the electron moves in the lattice and in the free atom, and tβ has a similar

significance33,52 (details will be given below). Thus, in the tight-binding limit, when

electrons remain to be tightly bound to their original atoms, the valence electron

moves mainly about individual ion core, with rare hopping from ion to ion. This is

the case for the d-electrons of transition metals. In the typical transition metal, the

radius of the outermost d-shell is less than half the separation between the atoms.

As a result, in the transition metals, the d-bands are relatively narrow. In the nearly

free whose electron limit, the bands are derived from the s- and p-shells whose radii
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are significantly larger than half the separation between the atoms. Thus, accord-

ing to this simplified picture, simple metals have nearly-free-electron energy bands.

Fortunately, in the case of simple metals, the combined results of the energy band

calculation and experiment have indicated that the effects of the interaction be-

tween the electrons and ions which make up the metallic lattice is extremely weak.

It is not the case for transition metals and their disordered alloys.53,54

An obvious characterization of a metal is that it is a good electrical and ther-

mal conductor.1,2,13,55,56 Without considering details, it is possible to see how the

simple Bloch picture outlined above accounts for the existence of metallic proper-

ties, insulators and semiconductors. When an electric current is carried, electrons

are accelerated, that is, promoted to higher energy levels. For this to occur, there

must be vacant energy levels above that occupied by the most energetic electron

in the absence of an electric field, into which the electron may be excited. At some

conditions there exist many vacant levels within the first zone into which electrons

may be excited. Conduction is therefore possible. This case corresponds with the

noble metals. It may happen that the lowest energy in the second zone is lower

than the highest energy in the first zone. It is then possible for electrons to begin

occupying energy contained within the second zone, as well as to continue to fill

up the vacant levels in the first zone and a certain number of levels in the second

zone will be occupied. In this case, the metallic conduction is possible as well. The

polyvalent metals are materials of this class.

If, however, all the available energy levels within the first Brillouin zone are full

and the lowest possible electronic energy at the bottom of the second zone is higher

than the highest energy in the first zone by an amount ∆E, there exist no vacant

levels into which electrons may be excited. Under these conditions, no current can

be carried by the material and an insulating crystal results.

For another class of crystals, the zone structure is analogous to that of insulators

but with a very small value of ∆E. In such cases, at low temperatures the material

behaves as an insulator with a higher specific resistance. When the temperature

increases, a small number of electrons will be thermally excited across the small

gap and enter the second zone, where they may produce metallic conduction. These

substances are termed semiconductors,13,55,56 and their resistance decreases with

rise in temperature in marked contrast to the behavior of real metals (for a detailed

review of semiconductors see Refs. 57, 58).

The differentiation between metal and insulator can be made by measurement

of the low frequency electrical conductivity near T = 0 K. For the substance which

we can refer as an ideal insulator the electrical conductivity should be zero, and for

metal it remains finite or even becomes infinite. Typical values for the conductivity

of metals and insulators differ by a factor of the order 1010–1015. So a huge difference

in the electrical conductivity is related directly to a basic difference in the structural

and quantum chemical organization of the electron and ion subsystems of solids. In

an insulator, the position of all the electrons are highly connected with each other

and with the crystal lattice and a weak direct current field cannot move them. In
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a metal this connection is not so effective and the electrons can be easily displaced

by the applied electric field. Semiconductors occupy an intermediate position due

to the presence of the gap in the electronic spectra.

An attempt to provide a comprehensive empirical classification of solids types

was carried out by Zeitz55 and Kittel.56 Zeitz reanalyzed the generally accepted

classification of materials into three broad classes: insulators, metals and semicon-

ductors, and divided materials into five categories: metals, ionic crystals, valence

or covalent crystals, molecular crystals and semiconductors. Kittel added one more

category: hydrogen-bonded crystals. Zeitz also divided metals further into two ma-

jor classes, namely, monoatomic metals and alloys.

Alloys constitute an important class of the metallic systems.25,49,55,56,59–61 This

class of substances is very numerous.49,59–61 A metal alloy is a mixed material that

has metal properties and is made by melting at least one pure metal along with

another pure chemical or metal. Examples of metal alloys Cu–Zn, Au–Cu and an

alloy of carbon and iron, or copper, antimony and lead. Brass is an alloy of copper

and zinc, and bronze is an alloy of copper and tin. Alloys of titanium, vanadium,

chromium and other metals are used in many applications. The titanium alloys

(interstitial solid solutions) form a big variety of equilibrium phases. Alloy metals

are usually formed to combine properties of metals and the exact proportion of

metals in an alloy will change the characteristic properties of the alloy. We confine

ourselves to those alloys which may be regarded essentially as very close to pure

metal with the properties intermediate to those of the constituents.

There are different types of monoatomic metals within the Bloch model for

the electronic structure of a crystal: simple metals, alkali metals, noble metals,

transition metals, rare-earth metals, divalent metals, trivalent metals, tetravalent

metals, pentavalent semimetals, lantanides, actinides and their alloys. The classes

of metals according to crude Bloch model provide us with a simple qualitative

picture of the variety of metals. This simplified classification takes into account

the state of valence atomic electrons when we decrease the interatomic separation

towards its bulk metallic value. Transition metals have narrow d-bands in addition

to the nearly-free-electron energy bands of the simple metals.53,54 In addition, the

correlation of electrons plays an essential role.53,54,62 The Fermi energy lies within

the d-band so that the d-band is only partially occupied. Moreover the Fermi surface

have much more complicated form and topology. The concrete calculations of the

band structure of many transition metals (Nb, V, W, Ta, Mo, etc.) can be found

in Refs. 13, 32–35, 53, 63–66 and in Landolt–Bornstein reference books.60,67

The noble metal atoms have one s-electron outside of a just completed d-shell.

The d-bands of the noble metals lie below the Fermi energy but not too deeply.

Thus they influence many of the physical properties of these metals. It is, in prin-

ciple, possible to test the predictions of the single-electron band structure picture

by comparison with experiment. In semiconductors it has been performed with the

measurements of the optical absorption, which gives the values of various energy

differences within the semiconductor bands. In metals the most direct approach is
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related to the experiments which studied the shape and size of the Fermi surfaces.

In spite of their value, these data represent only a rather limited scope in compari-

son to the many properties of metals which are not so directly related to the energy

band structure. Moreover, in such a picture, there are many weak points: there is

no sharp boundary between insulator and semiconductor, the theoretical values of

∆E have discrepancies with experiment, the metal–insulator transition68 cannot be

described correctly, and the notion “simple” metal have no single meaning.69 The

crude Bloch model even met more serious difficulties when it was applied to insu-

lators. The improved theory of insulating state was developed by Kohn70 within

a many-body approach. He proposed a new and more comprehensive characteriza-

tion of the insulating state of matter. This line of reasoning was continued further

in Refs. 68, 71 and 72 on a more precise and firm theoretical and experimental

basis.

Anderson50 gave a critical analysis of the Zeitz and Kittel classification schemes.

He concluded that “in every real sense the distinction between semiconductors and

metals or valence crystals as to type of binding, and between semiconductor and any

other type of insulator as to conductivity, is entirely artificial; semiconductors do

not represent in any real sense a distinct class of crystal”50 (see, however, Refs. 13,

23, 38, 55 and 56). Anderson has pointed also the extent to which the standard

classification falls. His conclusions were confirmed by further development of solid

state physics. During the last decades, many new substances and materials were

synthesized and tested. Their conduction properties and temperature behavior of

the resistivity are differed substantially and constitute a difficult task for consistent

classification73 (see Fig. 1). Bokij74 carried out an interesting analysis of notions

“metals” and “nonmetals” for chemical elements. According to him, there are typ-

ical metals (Cu, Au, Fe) and typical nonmetals (O, S, halogens), but the boundary

between them and properties determined by them are still an open question. The

notion “metal” is defined by a number of specific properties of the corresponding

elemental substances, e.g., by high electrical conductivity and thermal capacity, the

ability to reflect light waves (luster), plasticity and ductility. Bokij emphasizes,74

that when defining the notion of a metal, one has also to take into account the

crystal structure. As a rule, the structure of metals under normal conditions is

characterized by rather high symmetries and high coordination numbers of atoms

equal to or higher than eight, whereas the structures of crystalline nonmetals under

normal conditions are characterized by lower symmetries and coordination numbers

of atoms (2–4).

It is worth noting that topics such as studies of the strongly correlated elec-

tronic systems,62 high-Tc superconductivity,75 colossal magnetoresistance5 and

multiferroicity5 have led to a new development of solid state physics during the last

decades. Many transition-metal oxides show very large (“colossal”) magnitudes of

the dielectric constant and thus have immense potential for applications in modern

microelectronics and for the development of new capacitance-based energy-storage

devices. These and other interesting phenomena to a large extent have first been re-
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Fig. 1. Resistivity of various conducting materials (from Ref. 73).

vealed and intensely investigated in transition metal oxides. The complexity of the

ground states of these materials arises from strong electronic correlations, enhanced

by the interplay of spin, orbital, charge and lattice degrees of freedom.62 These phe-

nomena are a challenge for basic research and also bear huge potentials for future

applications as the related ground states are often accompanied by so-called “colos-

sal” effects, which are possible building blocks for tomorrow’s correlated electronics.

The measurement of the response of transition metal oxides to ac electric fields is

one of the most powerful techniques to provide detailed insight into the underlying

physics that may comprise very different phenomena, e.g., charge order, molecular

or polaronic relaxations, magnetocapacitance, hopping charge transport, ferroelec-

tricity or density-wave formation. In the recent work,76 the authors thoroughly

discussed the mechanisms that can lead to colossal values of the dielectric constant,

especially emphasizing effects generated by external and internal interfaces, includ-

ing electronic phase separation. The authors of the work76 studied the materials

showing so-called colossal dielectric constants, i.e., values of the real part of the

permittivity ε′ exceeding 1,000. For long, materials with high dielectric constants

are the focus of interest, not only for purely academic reasons but also because new

high-ε′ materials are urgently sought after for the further development of modern

electronics. In addition, authors of the work76 provided a detailed overview and
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discussion of the dielectric properties of CaCu3Ti4O12 and related systems, which

is now the most investigated material with colossal dielectric constant. Also, a vari-

ety of further transition metal oxides with large dielectric constants were treated in

detail, among them the system La2−xSrxNiO4, where electronic phase separation

may play a role in the generation of a colossal dielectric constant. In general, for

the miniaturization of capacitive electronic elements materials with high-ε′ are a

prerequisite. This is true not only for the common silicon-based integrated circuit

technique but also for stand-alone capacitors.

Nevertheless, with regard to metals, the workable practical definition of Kittel

can be adopted: metals are characterized by high electrical conductivity, so that a

portion of electrons in metal must be free to move about. The electrons available

to participate in the conductivity are called conduction electrons. Our picture of

a metal, therefore, must be that it contains electrons which are free to move, and

which may, when under the influence of an electric field, carry a current through

the material.

In summary, the 68 naturally occurring metallic and semimetallic elements49

can be classified as it is shown in Table 2.

3. Many-Particle Interacting Systems and Current Operator

Let us now consider a general system of N interacting electrons in a volume Ω

described by the Hamiltonian

H =

(
N∑

i=1

p2
i

2m
+

N∑

i=1

U(ri)

)
+

1

2

∑

i6=j

v(ri − rj) = H0 +H1 . (3.1)

Here U(r) is a one-body potential, e.g., an externally applied potential similar to

that due to the field of the ions in a solid, and v(ri − rj) is a two-body potential

similar to the Coulomb potential between electrons. It is essential that U(r) and

v(ri − rj) do not depend on the velocities of the particles.

It is convenient to introduce a “quantization” in a continuous space77–79 via the

operators Ψ†(r) and Ψ(r) which create and destroy a particle at r. In terms of Ψ†

Table 2. Metallic and semimetallic elements.

Item Number Elements

Alkali metals 5 Li, Na, K, Rb, Cs
Noble metals 3 Cu, Ag, Au
Polyvalent simple metals 11 Be, Mg, Zn, Cd, Hg, Al, Ga, In, Tl, Sn, Pb
Alkali-earth metals 4 Ca, Sr, Ba, Ra
Semimetals 4 As, Sb, Bi, graphite
Transition metals 23 Fe, Ni, Co, etc.
Rare earths 14
Actinides 4
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and Ψ we have

H =

∫
d3rΨ†(r)

(−∇2

2m
+ U(r)

)
Ψ(r)

+
1

2

∫∫
d3rd3r′Ψ†(r)Ψ†(r′)v(r− r′)Ψ(r′)Ψ(r) . (3.2)

Studies of flow problems lead to the continuity equation20,42:

∂n(r, t)

∂t
+∇j = 0 . (3.3)

This equation based on the concept of conservation of certain extensive variable.

In nonequilibrium thermodynamics,42 the fundamental flow equations are obtained

using successively mass, momentum and energy as the relevant extensive variables.

The analogous equations are known from electromagnetism. The central role is

played by a global conservation law of charge, q̇(t) = 0, for it refers to the total

charge in a system. Charge is also conserved locally.80 This is described by Eq. (3.3),

where n(r, t) and j are the charge and current densities, respectively.

In quantum mechanics, there is the connection of the wavefunction ψ(r, t) to

the particle mass-probability current distribution J:

J(r, t) =
~

2mi
(ψ∗∇ψ − ψ∇ψ∗) , (3.4)

where ψ(r, t) satisfy the time-dependent Schrödinger equation79,81

i~
∂

∂t
ψ(r, t) = Hψ(r, t) . (3.5)

Consider the motion of a particle under the action of a time-independent force

determined by a real potential V (r). Equation (3.5) becomes
(
p2

2m
+ V

)
ψ =

~

2m
∇2ψ + V ψ = i~

∂

∂t
ψ . (3.6)

It can be shown that for the probability density n(r, t) = ψ∗ψ we have

∂n

∂t
+∇J = 0 . (3.7)

This is the equation of continuity and it is quite general for real potentials. The

equation of continuity mathematically states the local conservation of particle mass

probability in space.

A thorough consideration of a current carried by a quasi-particle for a uniform

gas of fermions, containing N particles in a volume Ω, which was assumed to be

very large, was performed within a semi-phenomenological theory of Fermi liquid.82

This theory describes the macroscopic properties of a system at zero temperature

and requires knowledge of the ground-state and the low-lying excited states. The

current carried by the quasi-particle k is the sum of two terms: the current which

is equal to the velocity vk of the quasi-particle and the backflow of the medium.82
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The precise definition of the current J in an arbitrary state |ϕ〉 within the Fermi

liquid theory is given by

J =

〈
ϕ|
∑

i

pi
m
|ϕ
〉
, (3.8)

where pi is the momentum of the ith particle and m its bare mass. To measure J

it is necessary to use a reference frame moving with respect to the system with the

uniform velocity ~q/m. The Hamiltonian in the rest frame can be written

H =
∑

i

p2i
2m

+ V . (3.9)

It was assumed that V depends only on the positions and the relative velocities of

the particles; it is not modified by a translation. In the moving system, only the

kinetic energy changes; the apparent Hamiltonian becomes

Hq =
∑

i

(pi − ~q)2

2m
+ V = H − ~q

∑

i

pi
m

+N
(~q)2

2m
. (3.10)

Taking the average value of Hq in the state |ϕ〉, and let Eq be the energy of the

system as seen from the moving reference frame, one find in the lim q → 0

∂Eq

∂qα
= −~

〈
ϕ|
∑

i

piα
m

|ϕ
〉

= −~Jα , (3.11)

where α refers to one of the three coordinates. This expression gives the definition

of current in the framework of the Fermi liquid theory. For the particular case of

a translationally invariant system, the total current is a constant of the motion,

which commutes with the interaction V and which, as a consequence, does not

change when V is switched on adiabatically. For the particular state containing one

quasi-particle k, the total current Jk is the same as for the ideal system

Jk =
(~k)

m
. (3.12)

This result is a direct consequence of Galilean invariance.

Let us consider now the many-particle Hamiltonian (3.2)

H = H1 +H2 . (3.13)

It will also be convenient to consider density of the particles in the following form20

n(r) =
∑

i

δ(r− ri) .

The Fourier transform of the particle density operator becomes

n(q) =

∫
d3r exp(−iqr)

∑

i

δ(r − ri) =
∑

i

exp(−iqri) . (3.14)
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The particle mass-probability current distribution J in this “lattice” representation

will take the form

J(r) = n(r)v =
1

2

∑

i

{pi

m
δ(r− ri) + δ(r− ri)

pi

m

}

=
1

2

∑

i

{pi

m
exp(−iqri) + exp(−iqri)

pi

m

}
, (3.15)

[ri,pk] = i~δik .

Here v is the velocity operator. The direct calculation shows that

[n(q), H ] =
1

2

∑

i

{qpi

m
exp(−iqri) + exp(−iqri)

qpi

m

}
= qJ(q) . (3.16)

Thus the equation of motion for the particle density operator becomes

dn(q)

dt
=
i

~
[H,n(q)] = − i

~
qJ(q) , (3.17)

or in another form

dn(r)

dt
= divJ(r) , (3.18)

which is the continuity equation considered above. Note that

[n(q), H1]− = [n(q), H2]− = 0 .

These relations holds in general for any periodic potential and interaction potential

of the electrons which depend only on the coordinates of the electrons.

It is easy to check the validity of the following relation

[[n(q), H ], n†(q)] = [qJ(r), n†(q)] =
Nq2

m
. (3.19)

This formulae is the known f -sum rule82 which is a consequence from the continuity

equation (for a more general point of view, see Ref. 83).

Now consider the second-quantized Hamiltonian (3.2). The particle density op-

erator has the form77,84,85

n(r) = eΨ†(r)Ψ(r) , n(q) =

∫
d3r exp(−iqr)n(r) . (3.20)

Then we define

j(r) =
e~

2mi
(Ψ†∇Ψ−Ψ∇Ψ†) . (3.21)

Here j is the probability current density, i.e., the probability flow per unit time per

unit area perpendicular to j. The continuity equation will persist for this case too.

Let us consider the equation motion

dn(r)

dt
= − i

~
[n(r), H1]−

i

~
[n(r), H2]

=
e~

2mi
(Ψ†(r)∇2Ψ(r)−∇2Ψ†(r)Ψ(r)) . (3.22)
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Note that [n(r), H2] ≡ 0.

We find

dn(r)

dt
= −∇j(r) . (3.23)

Thus the continuity equation have the same form in both the “particle” and “field”

versions.

4. Tight-Binding and MTBA

Electrons and phonons are the basic elementary excitations of a metallic solid. Their

mutual interactions2,52,86–89 manifest themselves in such observations as the tem-

perature dependent resistivity and low-temperature superconductivity. In the quasi-

particle picture, at the basis of this interaction is the individual electron-phonon

scattering event, in which an electron is deflected in the dynamically distorted lat-

tice. We consider here the scheme which is called MTBA. But first, we remind

shortly the essence of the tight-binding approximation. The main purpose in using

the tight-binding method is to simplify the theory sufficiently to make workable.

The tight-binding approximation considers solid as a giant molecule.

4.1. Tight-binding approximation

The main problem of the electron theory of solids is to calculate the energy level

spectrum of electrons moving in an ion lattice.52,90 The tight-binding method52,91–94

for energy band calculations has generally been regarded as suitable primarily

for obtaining a simple first approximation to a complex band structure. It was

shown that the method should also be quite powerful in quantitative calculations

from first principles for a wide variety of materials. An approximate treatment

requires to obtain energy levels and electron wavefunctions for some suitable cho-

sen one-particle potential (or pseudopotential), which is usually local. The standard

molecular orbital theories of band structure are founded on an independent particle

model.

As atoms are brought together to form a crystal lattice the sharp atomic levels

broaden into bands. Provided there is no overlap between the bands, one expects

to describe the crystal state by a Bloch function of the type,

ψk(r) =
∑

n

eikRnφ(r −Rn) , (4.1)

where φ(r) is a free atom single-electron wavefunction, for example 1s and Rn is the

position of the atom in a rigid lattice. If the bands overlap or approach each other,

one should use instead of φ(r) a combination of the wavefunctions corresponding to

the levels in question, e.g., (aφ(1s)+bφ(2p)), etc. In other words, this approach, first

introduced to crystal calculation by Bloch, expresses the eigenstates of an electron

in a perfect crystal in a linear combination of atomic orbitals and termed LCAO

method.52,91–94
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Atomic orbitals are not the most suitable basis set due to the nonorthogonality

problem. It was shown by many authors52,95–97 that the very efficient basis set for

the expansion (4.1) is the atomic-like Wannier functions {w(r−Rn)}.52,95–97 These

are the Fourier transforms of the extended Bloch functions and are defined as

w(r−Rn) = N−1/2
∑

k

e−ikRnψk(r) . (4.2)

Wannier functions w(r−Rn) form a complete set of mutually orthogonal functions

localized around each lattice site Rn within any band or group of bands. They

permit one to formulate an effective Hamiltonian for electrons in periodic potentials

and span the space of a singly energy band. However, the real computation of

Wannier functions in terms of sums over Bloch states is a complicated task.33,97

To define the Wannier functions more precisely, let us consider the eigenfunc-

tions ψk(r) belonging to a particular simple band in a lattice with the one type of

atom at a center of inversion. Let it satisfy the following equations with one-electron

Hamiltonian H

Hψk(r) = E(k)ψk(r) , ψk(r+Rn) = e−ikRnψk(r) , (4.3)

and the orthonormality relation 〈ψk|ψk′〉 = δkk′ where the integration is performed

over the N unit cells in the crystal. The property of periodicity together with the

property of the orthonormality lead to the orthonormality condition of the Wannier

functions ∫
d3rw∗(r−Rn)w(r −Rm) = δnm . (4.4)

The set of the Wannier functions is complete, i.e.,
∑

i

w∗(r′ −Ri)w(r −Ri) = δ(r′ − r) . (4.5)

Thus, it is possible to find the inversion of Eq. (4.2) which has the form

ψk(r) = N−1/2
∑

k

eikRnw(r−Rn) . (4.6)

These conditions are not sufficient to define the functions uniquely since the Bloch

states ψk(r) are determined only within a multiplicative phase factor ϕ(k) according

to

w(r) = N−1/2
∑

k

eiϕ(k)uk(r) , (4.7)

where ϕ(k) is any real function of k, and uk(r) are Bloch functions.98 The phases

ϕ(k) are usually chosen so as to localize w(r) about the origin. The usual choice

of phase makes ψk(0) real and positive. This lead to the maximum possible value

in w(0) and w(r) decaying exponentially away from r = 0. In addition, function

ψk(r) with this choice will satisfy the symmetry properties

ψ−k(r) = (ψk(r))
∗ = ψk(−r) .
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It follows from the above consideration that the Wannier functions are real and

symmetric,

w(r) = (w(r))∗ = w(−r) .

Analytical, three-dimensional Wannier functions have been constructed from Bloch

states formed from a lattice gaussians. Thus, in the condensed matter theory, the

Wannier functions play an important role in the theoretical description of transi-

tion metals, their compounds and disordered alloys, impurities and imperfections,

surfaces, etc.

4.2. Interacting electrons on a lattice and the Hubbard model

There are huge difficulties in description of the complicated problems of electronic

and magnetic properties of a metal with the d-band electrons which are really nei-

ther “local” nor “itinerant” in a complete sense. A better understanding of the

electronic correlation effects in metallic systems can be achieved by formulating a

suitable flexible model that could be used to analyze major aspects of both the in-

sulating and metallic states of solids in which electronic correlations are important.

The Hamiltonian of the interacting electrons with pair interaction in the second-

quantized form is given by Eq. (3.2). Consider this Hamiltonian in the Bloch

representation. We have

Ψσ(r) =
∑

k

ϕkσ(r)akσ , Ψ†
σ(r) =

∑

k

ϕ∗
kσ(r)a

†
kσ . (4.8)

Here ϕσ(k) is the Bloch function satisfying the equation

H1(r)ϕkσ(r) = Eσ(k)ϕkσ(r) , Eσ(k) = Eσ(−k) ,

ϕk(r) = exp(ikr)uk(r) , uk(r + l) = uk(r) ,

ϕkσ(r) = ϕ−kσ(−r) , ϕ∗
kσ(r) = ϕ−kσ(r) .

(4.9)

The functions {ϕkσ(r)} form a complete orthonormal set of functions
∫
d3rϕ∗

k′(r)ϕk(r) = δkk′ ,

∑

k

ϕ∗
k(r

′)ϕk(r) = δ(r − r′) .
(4.10)

We find

H =
∑

mn

〈m|H1|n〉a†man +
1

2

∑

klmn

〈kl|H2|mn〉a†ka
†
laman

=
∑

kσ

〈ϕ∗
k,σ|H1|ϕk,σ〉a†kσakσ

+
1

2

∑

k4k3k2k1

∑

αβµν

〈ϕ∗
k4,νϕ

∗
k3,µ|H2|ϕk2,βϕk1,α〉a†k4ν

a†k3µ
ak2βak1α . (4.11)
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Since the method of second quantization is based on the choice of suitable complete

set of orthogonal normalized wavefunctions, we take now the set {wλ(r −Rn)} of

the Wannier functions. Here λ is the band index. The field operators in the Wannier

function representation are given by

Ψσ(r) =
∑

n

wλ(r−Rn)anλσ , Ψ†
σ(r) =

∑

n

w∗
λ(r−Rn)a

†
nλσ . (4.12)

Thus, we have

a†nλσ = N−1/2
∑

k

e−ikRna†kλσ , anλσ = N−1/2
∑

k

eikRnakλσ . (4.13)

Many treatments of the correlation effects are effectively restricted to a nondegen-

erate band. The Wannier functions basis set is the background of the widely used

Hubbard model. The Hubbard model99,100 is, in a certain sense, an intermediate

model (the narrow-band model) and takes into account the specific features of tran-

sition metals and their compounds by assuming that the d-electrons form a band,

but are subject to a strong Coulomb repulsion at one lattice site. The single-band

Hubbard Hamiltonian is of the form62,99

H =
∑

ijσ

tija
†
iσajσ +

U

2

∑

iσ

niσni−σ . (4.14)

Here a†iσ and aiσ are the second-quantized operators of the creation and annihilation

of the electrons in the lattice state w(r−Ri) with spin σ. The Hamiltonian includes

the intra-atomic Coulomb repulsion U and the one-electron hopping energy tij . The

corresponding parameters of the Hubbard Hamiltonian are given by

tij =

∫
d3rw∗(r−Ri)H1(r)w(r −Rj) , (4.15)

U =

∫∫
d3rd3r′w∗(r−Ri)w

∗(r′ −Ri)
e2

|r− r′|w(r
′ −Ri)w(r −Ri) . (4.16)

The electron correlation forces electrons to localize in the atomic-like orbitals which

are modeled here by a complete and orthogonal set of the Wannier wavefunctions

{w(r−Rj)}. On the other hand, the kinetic energy is increased when electrons are

delocalized. The band energy of Bloch electrons E(k) is defined as follows:

tij = N−1
∑

k

E(k) exp[ik(Ri −Rj ] , (4.17)

where N is the number of lattice sites. The Pauli exclusion principle which does

not allow two electrons of common spin to be at the same site, n2
iσ = niσ, plays a

crucial role. Note that the standard derivation of the Hubbard model presumes the

rigid ion lattice with the rigidly fixed ion positions. We note that s-electrons are

not explicitly taken into account in our model Hamiltonian. They can be, however,

implicitly taken into account by screening effects and effective d-band occupation.
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4.3. Current operator for the tight-binding electrons

Let us consider again a many-particle interacting systems on a lattice with the

Hamiltonian (4.11). At this point, it is important to realize the fundamental dif-

ference between many-particle system which is uniform in space and many-particle

system on a lattice. For the many-particle system on a lattice, the proper defini-

tion of current operator is a subtle problem. It was shown above that a physically

satisfactory definition of the current operator in the quantum many-body theory

is given based upon the continuity equation. However, this point should be re-

considered carefully for the lattice fermions which are described by the Wannier

functions.

Let us remind once again that the Bloch and Wannier wavefunctions are related

to each other by the unitary transformation of the form

ϕk(r) = N−1/2
∑

Rn

w(r−Rn) exp[ikRn] ,

w(r −Rn) = N−1/2
∑

k

ϕk(r) exp[−ikRn] .

(4.18)

The number occupation representation for a single-band case lead to

Ψσ(r) =
∑

n

w(r −Rn)anσ , Ψ†
σ(r) =

∑

n

w∗(r−Rn)a
†
nσ . (4.19)

In this representation, the particle density operator and current density take the

form

n(r) =
∑

ij

∑

σ

w∗(r−Ri)w(r −Rj)a
†
iσajσ ,

j(r) =
e~

2mi

∑

ij

∑

σ

[w∗(r−Ri)∇w(r −Rj)

−∇w∗(r−Ri)w(r −Rj)]a
†
iσajσ .

(4.20)

The equation of the motion for the particle density operator will consist of two

contributions

dn(r)

dt
= − i

~
[n(r), H1]−

i

~
[n(r), H2] . (4.21)

The first contribution is

[n(r), H1] =
∑

mni

∑

σ

Fnm(r)(tmia
†
nσaiσ − tina

†
iσamσ) . (4.22)

Here, the notation was introduced

Fnm(r) = w∗(r−Rn)w(r −Rm) . (4.23)

In the Bloch representation for the particle density operator, one finds

[n(k), H1] =
∑

mni

∑

σ

Fnm(k)(tmia
†
nσaiσ − tina

†
iσamσ) , (4.24)
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where

Fnm(k) =

∫
d3r exp[−ikr]Fnm(r)

=

∫
d3r exp[−ikr]w∗(r−Rn)w(r −Rm) . (4.25)

For the second contribution [n(r), H2], we find

[n(r), H2] =
1

2

∑

mn

∑

fst

∑

σσ′

Fnm(r)

× (〈mf |H2|st〉a†mσa
†
fσ′atσ′asσ − 〈fm|H2|st〉a†mσ′a

†
fσatσ′asσ

+ 〈fs|H2|tn〉a†fσa
†
sσ′atσanσ′ − 〈fs|H2|nt〉a†fσa

†
sσ′atσ′anσ) . (4.26)

For the single-band Hubbard Hamiltonian, the last equation will take the form

[n(r), H2] = U
∑

mn

∑

σ

Fnm(r)a†nσamσ(nm−σ − nn−σ) . (4.27)

The direct calculations give for the case of electrons on a lattice (e is a charge of

an electron)

dn(r)

dt
=

e~

2mi

∑

ij

∑

σ

[w∗(r−Ri)∇2w(r−Rj)

−∇2w∗(r−Ri)w(r −Rj)]a
†
iσajσ

− ieU
∑

ij

∑

σ

Fij(r)a
†
iσajσ(nj−σ − ni−σ) . (4.28)

Taking into account that

divj(r) =
e~

2mi

∑

ij

∑

σ

[w∗(r−Ri)∇2w(r −Rj)

−∇2w∗(r−Ri)w(r −Rj)]a
†
iσajσ , (4.29)

we find

dn(r)

dt
= −divj(r) − ieU

∑

ij

∑

σ

Fij(r)a
†
iσajσ(nj−σ − ni−σ) . (4.30)

This unusual result was analyzed critically by many authors. The proper definition

of the current operator for the Hubbard model has been the subject of intensive dis-

cussions.101–111 To clarify the situation, let us consider the “total position operator”

for our system of the electrons on a lattice

R =

N∑

j=1

Rj . (4.31)
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In the “quantized” picture it has the form

R =
∑

j

∫
d3rΨ†(r)RjΨ(r)

=
∑

j

∑

mn

∑

µ

∫
d3rRjw

∗(r−Rm)w(r −Rn)a
†
mµanµ

=
∑

j

∑

m

∑

µ

Rja
†
mµamµ , (4.32)

where we took into account the relation
∫
d3rw∗(r−Rm)w(r −Rn) = δmn . (4.33)

We find that

[R, a†iσ]− =
∑

m

Rma
†
iσ ,

[R, aiσ]− = −
∑

m

Rmaiσ ,

[R, a†iσaiσ ]− = 0 .

(4.34)

Let us consider the local particle density operator niσ = a†iσaiσ.

dniσ

dt
= − i

~
[niσ, H ]− =

∑

j

tij(a
†
iσajσ − a†jσaiσ) . (4.35)

It is clear that the current operator should be defined on the basis of the equation

j = e

(−i
~

)
[R, H ]− . (4.36)

Defining the so-called polarization operator101,103,106,107

P = e
∑

m

∑

σ

Rmnmσ , (4.37)

we find the current operator in the form

j = Ṗ = e

(−i
~

)∑

mn

∑

σ

(Rm −Rn)tmna
†
mσanσ . (4.38)

This expression of the current operator is a suitable formula for studying the trans-

port properties of the systems of correlated electron on a lattice.112–114 The con-

sideration carried out in this section demonstrate explicitly the specific features of

the many-particle interacting systems on a lattice.
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4.4. Electron–lattice interaction in metals

In order to understand quantitatively the electrical, thermal and superconducting

properties of metals and their alloys, one needs a proper description of an electron–

lattice interaction.86 In the physics of molecules,115 the concept of an intermolecu-

lar force requires that an effective separation of the nuclear and electronic motion

can be made. This separation is achieved in the Born–Oppenheimer approxima-

tion.115,116 Closely related to the validity of the Born–Oppenheimer approximation

is the notion of adiabaticity. The adiabatic approximation is applicable if the nuclei

is much slower than the electrons. The Born–Oppenheimer approximation consists

of separating the nuclear motion and computing only the electronic wavefunctions

and energies for fixed position of the nuclei. In the mathematical formulation of this

approximation, the total wavefunction is assumed in the form of a product both of

whose factors can be computed as solutions of two separate Schrödinger equations.

In most applications, the separation is valid with sufficient accuracy, and the adia-

batic approach is reasonable, especially if the electronic properties of molecules are

concerned.

The conventional physical picture of a metal adopts these ideas86,87 and assumes

that the electrons and ions are essentially decoupled from one another with an

error which involves the small parameter m/M , the ratio between the masses of

the electron and the ion. The qualitative arguments for this statement are the

following estimations. The maximum lattice frequency is of the order 1013 s−1 and

is quite small compared with a typical atomic frequency. This latter frequency is

of order of 1015 s−1. If the electrons are able to respond in times of the order

of atomic times then they will effectively be following the motion of the lattice

instantaneously at all frequencies of vibration. In other words, the electron motion

will be essentially adiabatic. This means that the wavefunctions of the electrons

adjust instantaneously to the motion of the ions. It is intuitively clear that the

electrons would try to follow the motion of the ions in such a way as to keep the

system locally electrically neutral. In other words, it is expected that the electrons

will try to respond to the motion of the ions in such a way as to screen out the

local charge fluctuations.

The construction of an electron–phonon interaction requires the separation of

the Hamiltonian describing mutually interacting electrons and ions into terms rep-

resenting electronic quasiparticles, phonons and a residual interaction.2,33,52,86–88

For the simple metals, the interaction between the electrons and the ions can be de-

scribed within the pseudopotential method or the muffin-tin approximation. These

methods could not handle well the d-bands in the transition metals. They are too

narrow to be approximated as free-electron–like bands but too broad to be described

as core ion states. The electron–phonon interaction in solid is usually described by

the Fröhlich Hamiltonian.86,117 We consider below the main ideas and approxi-

mations concerning to the derivation of the explicit form of the electron–phonon

interaction operator.
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Consider the total Hamiltonian for the electrons with coordinates ri and the

ions with coordinates Rm, with the electron cores which can be regarded as tightly

bound to the nuclei. The Hamiltonian of the N ions is

H = − ~
2

2M

N∑

m=1

∇2
Rm

− ~
2

2m

ZN∑

i=1

∇2
ri
+

1

2

ZN∑

i,j=1

e2

|ri − rj |

+
∑

n>m

Vi(Rm −Rn) +

N∑

m=1

Uie(ri;Rm) . (4.39)

Each ion is assumed to contribute Z conduction electrons with coordinates ri (i =

1, . . . , ZN). The first two terms in Eq. (4.39) are the kinetic energies of the electrons

and the ions. The third term is the direct electron–electron Coulomb interaction

between the conduction electrons. The next two terms are short for the potential

energy for direct ion–ion interaction and the potential energy of the ZN conduction

electrons moving in the field from the nuclei and the ion core electrons, when the

ions take instantaneous position Rm (m = 1, . . . , N). The term Vi(Rm−Rn) is the

interaction potential of the ions with each other, while Uie(ri;Rm) represents the

interaction between an electron at ri and an ion at Rm. Thus, the total Hamiltonian

of the system can be represented as the sum of an electronic and ionic part.

H = He +Hi , (4.40)

where

He = − ~
2

2m

ZN∑

i=1

∇2
ri
+

1

2

ZN∑

i,j=1

e2

|ri − rj |
+

N∑

m=1

Uie(ri;Rm) , (4.41)

and

Hi = − ~
2

2M

N∑

m=1

∇2
Rm

+
∑

n>m

Vi(Rm −Rn) . (4.42)

The Schrödinger equation for the electrons in the presence of fixed ions is

HeΨ(K,R, r) = E(K,R)Ψ(K,R, r) , (4.43)

in which K is the total wave vector of the system; R and r denote the set of all elec-

tronic and ionic coordinates, respectively. It is seen that the energy of the electronic

system and the wavefunction of the electronic state depend on the ionic positions.

The total wavefunction for the entire system of electrons plus ions Φ(Q,R, r) can

be expanded, in principle, with respect to the Ψ as basis functions

Φ(Q,R, r) =
∑

K

L(Q,K,R)Ψ(K,R, r) . (4.44)

We start with the approach which uses a fixed set of basis states. Let us suppose

that the ions of the crystal lattice vibrate around their equilibrium positions R0
m

with a small amplitude, namelyRm = R0
m+um, where um is the deviation from the
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equilibrium position R0
m. Let us consider an idealized system in which the ions are

fixed in these positions. Suppose that the energy bands En(k) and wavefunctions

ψn(k, r) are known. As a result of the oscillations of the ions, the actual crystal

potential differs from that of the rigid lattice. This difference can be possibly treated

as a perturbation. This is the Bloch formulation of the electron–phonon interaction.

To proceed, we must expand the potential energy V (r−R) of an electron at r

in the field of an ion at Rm in the atomic displacement um

V (r−Rm) ≃ V (r−R0
m)− um∇V (r−R0

m) + · · · (4.45)

The perturbation potential, including all atoms in the crystal is

Ṽ = −
∑

m

um∇V (r−R0
m) . (4.46)

This perturbation will produce transitions between one-electron states with the

corresponding matrix element of the form

Mmk,nq =

∫
ψ∗
m(k, r)Ṽ ψn(q, r)d

3r . (4.47)

To describe properly the lattice subsystem, let us remind that the normal coordinate

Qq,λ is defined by the relation52,86

(Rm −R0
m) = um = (~/2NM)1/2

∑

q,ν

Qq,νeν(q) exp(iqR
0
m) , (4.48)

where N is the number of unit cells per unit volume and eν(q) is the polarization

vector of the phonon. The Hamiltonian of the phonon subsystem in terms of normal

coordinates is written as52,86

Hi =

BZ∑

µ,q

(
1

2
P †
q,µPq,µ +

1

2
Ω2

q,µQ
†
q,µQq,µ

)
, (4.49)

where µ denote polarization direction and the q summation is restricted to the

Brillouin zone denoted as BZ. It is convenient to express um in terms of the second-

quantized phonon operators

um = (~/2NM)1/2
∑

q,ν

[(ω1/2
ν (q)]−1eν(q)[exp(iqR

0
m)bq,ν

+ exp(−iqR0
m)b†q,ν ] , (4.50)

in which ν denotes a branch of the phonon spectrum, eν(q) is the eigenvector for a

vibrational state of wave vector q and branch ν, and b†q,ν(bq,ν) is a phonon creation

(annihilation) operator. The matrix element Mmk,nq becomes

Mmk,nq = −(~/2NM)1/2
∑

q,ν

(eν(k−q)Amn(k,q)[ων(k−q)]−1/2(bk−q,ν+b
†
q−k,ν)) .

(4.51)
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Here, the quantity Amn is given by

Amn(k,q) = N
∫
ψ∗
m(k, r)∇V (r)ψn(q, r)d

3r . (4.52)

It is well-known52,86 that there is a distinction between normal processes in which

vector (k − q) is inside the Brillouin zone and Umklapp processes in which vector

(k − q) must be brought back into the zone by addition of a reciprocal lattice

vector G.

The standard simplification in the theory of metals consists of replacement of

the Bloch functions ψn(q, r) by the plane waves

ψn(q, r) = V−1/2 exp(iqr) ,

in which V is the volume of the system. With this simplification we get

Amn(k,q) = i(k− q)V ((k− q)) . (4.53)

Introducing the field operators ψ(r), ψ†(r) and the fermion second-quantized cre-

ation and annihilation operators a†nk, ank for an electron of wave vector k in band n

in the plane wave basis

ψ(r) =
∑

qn

ψn(q, r)ank

and the set of quantities

Γmn,ν(k,q) = −(~/2Mων(k − q))1/2eν(k− q)Amn(k,q) ,

we can write an interaction Hamiltonian for the electron–phonon system in the

form

Hei = N 1/2
∑

nlν

∑

kq

Γmn,ν(k,q)(a
†
nkalqbk−q,ν + a†nkalqb

†
q−k,ν) . (4.54)

This Hamiltonian describes the processes of phonon absorption or emission by an

electron in the lattice, which were first considered by Bloch. Thus, the electron–

phonon interaction is essentially dynamic and affects the physical properties of

metals in a characteristic way.

It is possible to show86 that in the Bloch momentum representation the Hamil-

tonian of a system of conduction electrons in metal interacting with phonons will

have the form

H = He +Hi +Hei , (4.55)

where

He =
∑

p

E(p)a†pap , (4.56)

Hi =
1

2

|q|<qm∑

q,ν

ων(q)(b
†
qbq + b†−qb−q) , (4.57)
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Hei =
∑

ν

∑

p′=p+q+G

Γqν(p− p′)a†p′ap(bqν + b†−qν) . (4.58)

The Fröhlich model ignores the Umklapp processes (G 6= 0) and transverse phonons

and takes the unperturbed electron and phonon energies as

E(p) =
~
2p2

2m
− EF , ω(q) = v0sq , (q < qm) .

Here vs is the sound velocity of the free phonon. The other notation are:

|q| = q , |p| = p , qm = (6π2ni)
1/3 .

Thus we obtain

Hei =
∑

p,q

v(q)a†p+qap(bq + b†−q) , (4.59)

where v(q) is the Fourier component of the interaction potential

v(q) = g(ω(q)/2)1/2 , g = [2EF /3Mniv
2
s ]

1/2 .

Here ni is the ionic density. The point we should like to emphasize in the present

context is that the derivation of this Hamiltonian is based essentially on the plane

wave representation for the electron wavefunction.

4.5. Modified tight-binding approximation

Particular properties of the transition metals, their alloys and compounds follow

to a great extent, from the dominant role of d-electrons. The natural approach to

description of electron–lattice effects in such type of materials is the MTBA. The

electron–phonon matrix element in the Bloch picture is taken between electronic

states of the undeformed lattice. For transition metals it is not easy task to es-

timate the electron–lattice interaction matrix element due to the anisotropy and

other factors.118–121 There is an alternative description, introduced by Fröhlich and

Mitra122–124 and which was termed the MTBA. In this approach, the electrons are

moving adiabatically with the ions. Moreover, the coupling of the electron to the

displacement of the ion nearest to it, is already included in zero-order of approxima-

tion. This is the basis of modified tight-binding calculations of the electron–phonon

interaction which purports to remove certain difficulties of the conventional Bloch

tight-binding approximation for electrons in narrow-band. The standard Hubbard

Hamiltonian should be rederived in this approach in terms of the new basis wave-

functions for the vibrating lattice. This was carried out by Barisic, Labbe and

Friedel.125 They derived a model Hamiltonian which is a generalization of the single-

band Hubbard model100 including the lattice vibrations. The hopping integral tij
of the single-band Hubbard model (4.14) is given by

tij =

∫
d3rw∗(r−Rj)

(
~
2p2

2m
+
∑

l

Vsf (r−Rl)

)
w(r−Ri) . (4.60)
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Here we assumed that Vsf is a short-range, self-consistent potential of the lattice

suitable screened by outer electrons. Considering small vibrations of ions, we re-

place Eq. (4.60) the ion position Ri by (R0
i + ui) , i.e., its equilibrium position

plus displacement. The unperturbed electronic wavefunctions must be written as a

Bloch sum of displaced and suitable (approximately) orthonormalized atomic-like

functions ∫
d3rw∗(r−R0

j − uj)w(r −R0
i − ui) ≈ δij . (4.61)

As it follows from Eq. (4.61), the creation and annihilation operators a+kσ, akσ
may be introduced in the deformed lattice so as to take partly into account the

adiabatic follow up of the electron upon the vibration of the lattice. The Hubbard–

Hamiltonian equation (4.14) can be rewritten in the form126,127

H = t0
∑

iσ

hiσ +
∑

i6=jσ

t(R0
j + uj −R0

i − ui)a
†
iσajσ + U/2

∑

iσ

niσni−σ . (4.62)

For small displacements ui, we may expand t(R) as

t(R0
j + uj −R0

i − ui) ≈ t(R0
j −R0

i ) +
∂t(R)

∂R
|R=R0

j
−R0

i
(uj − ui) + · · · (4.63)

Using the character of the exponential decrease of the Slater and Wannier functions,

the following approximation may be used125–127

∂t(R)

∂R
≃ −q0

R

|R| t(R) . (4.64)

Here q0 is the Slater coefficient128 originated in the exponential decrease of the

wavefunctions of d-electrons; q−1
0 related to the range of the d-function and is of

the order of the interatomic distance. The Slater coefficients for various metals are

tabulated.125 The typical values are given in Table 3.

It is of use to rewrite the total model Hamiltonian of transition metal H =

He +Hi +Hei in the quasi-momentum representation. We have

He =
∑

kσ

E(k)a†kσakσ

+U/2N
∑

k1k2k3k4G

a†k1↑
ak2↑a

†
k3↓
ak4↓δ(k1 − k2 + k3 − k4 +G) . (4.65)

For the tight-binding electrons in crystals we use E(k) = 2
∑

α t(aα) cos(kαaα),

where t(a) is the hopping integral between nearest neighbors, and aα(α = x, y.z)

denotes the lattice vectors in a simple lattice with an inversion center.

Table 3. Slater coefficients.

q0 (A−1) Element Element Element Element Element Element

q0 = 0.93 Ti V Cr Mn Fe Co
q0 = 0.91 Zr Nb Mo Tc Ru Rh
q0 = 0.87 Hf Ta W Re Os Ir
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The electron–phonon interaction is rewritten as

Hei =
∑

kk1

∑

qG

∑

νσ

gνkk1
a†k1σ

akσ(b
†
qν + b−qν)δ(k1 − k+ q+G) , (4.66)

where

gνkk1
=

(
1

(NMων(k))

)1/2

Iνkk1
, (4.67)

Iνkk1
= 2iq0

∑

α

t(aα)
aαeν(k1)

|aα|
(sin(aαk)− sin(aαk1)) . (4.68)

where N is the number of unit cells in the crystal and M is the ion mass. The

eν(q) are the polarization vectors of the phonon modes. Operators b†qν and bqν
are the creation and annihilation phonon operators and ων(k) are the acoustical

phonon frequencies. Thus we can describe126,127,129,130 the transition metal by the

one-band model which takes into consideration the electron–electron and electron–

lattice interaction in the framework of the MTBA. It is possible to rewrite (4.66)

in the following form126,127

Hei =
∑

νσ

∑

kq

V ν(k,k + q)Qqνa
+
k+qσakσ , (4.69)

where

V ν(k,k+ q) =
2iq0

(NM)1/2

∑

α

t(aα)e
α
ν (q)(sin aαk− sin aα(k− q)) . (4.70)

The one-electron hopping t(aα) is the overlap integral between a given site Rm and

one of the two nearby sites lying on the lattice axis aα. For the ion subsystem we

have

Hi =
1

2

∑

qν

(P+
qνPqν + ω2

ν(q))Q
+
qνQqν =

∑

qν

ων(q)(b
†
qνbqν + 1/2) , (4.71)

where Pqν and Qqν are the normal coordinates. Thus, as in the Hubbard model,100

the d- and s(p)-bands are replaced by one effective band in our model. However, the

s-electrons give rise to screening effects and are taken into effects by choosing proper

value of U and the acoustical phonon frequencies. It was shown by Ashkenasi, Da-

corogna and Peter131,132 that the MTBA approach for calculating electron–phonon

coupling constant based on wavefunctions moving with the vibrating atoms lead to

same physical results as the Bloch approach within the harmonic approximation.

For transition metals and narrow-band compounds, the MTBA approach seems to

be yielding more accurate results, especially in predicting anisotropic properties.

5. Charge and Heat Transport

We now tackle the transport problem in a qualitative fashion. This crude picture

has many obvious shortcomings. Nevertheless, the qualitative description of con-

ductivity is instructive. Guided by this instruction the results of the more advanced



September 12, 2011 10:45 WSPC/140-IJMPB S0217979211059012

Electronic Transport in Metallic Systems 3097

and careful calculations of the transport coefficients will be reviewed in the next

sections.

5.1. Electrical resistivity and Ohm law

Ohm law is one of the equations used in the analysis of electrical circuits. When a

steady current flow through a metallic wire, Ohm law tell us that an electric field

exists in the circuit, that like the current this field is directed along the uniform wire

and that its magnitude is J/σ, where J is the current density and σ the conductivity

of the conducting material. Ohm law states that in an electrical circuit, the current

passing through most materials is directly proportional to the potential difference

applied across them. A voltage source, V , drives an electric current, I, through

resistor, R, the three quantities obeying Ohm law: V = IR.

In other terms, this is written often as: I = V/R, where I is the current, V is

the potential difference, and R is a proportionality constant called the resistance.

The potential difference is also known as the voltage drop and is sometimes denoted

by E or U instead of V . The SI unit of current is the ampere; that of potential

difference is the volt; and that of resistance is the ohm, equal to one volt per ampere.

The law is named after the physicist Georg Ohm, who formulated it in 1826 . The

continuum form of Ohm’s law is often of use:

J = σ ·E , (5.1)

where J is the current density (current per unit area), σ is the conductivity (which

can be a tensor in anisotropic materials) and E is the electric field . The common

form V = I · R used in circuit design is the macroscopic, averaged-out version.

The continuum form of the equation is only valid in the reference frame of the

conducting material.

A conductor may be defined as a material within which there are free charges,

that is, charges that are free to move when a force is exerted on them by an electric

field. Many conducting materials, mainly metals, show a linear dependence of I on

V. The essence of Ohm law is this linear relationship. The important problem is the

applicability of Ohm law. The relation R·I =W is the generalized form of Ohm law

for the current flowing through the system from terminal A to B. Here I is a steady

dc current, which is zero if the work W done per unit charge is zero, while I 6= 0 or

W 6= 0. If the current in not too large, the current I must be simply proportional

to W. Hence one can write R · I =W , where the proportionality constant is called

the resistance of the two-terminal system. The basic equations are:

∇× E = 4πn , (5.2)

Gauss law, and

∂n

∂t
+∇× J = 0 , (5.3)

charge conservation law. Here n is the number density of charge carriers in the

system. Equations (5.2) and (5.3) are fundamental whereas the Ohm law is not.
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However, in the absence of nonlocal effects, Eq. (5.1) is still valid. In an electric

conductor with finite cross-section, it must be possible a surface conditions on the

current density J. Ohm law does not permit this and cannot, therefore, be quite

correct. It has to be supplemented by terms describing a viscous flow. Ohm law is a

statement of the behavior of many, but not all conducting bodies, and in this sense

should be looked upon as describing a special property of certain materials and not

a general property of all matter.

5.2. Drude-Lorentz model

The phenomenological picture described above requires microscopic justification.

We are concerned in this paper with the transport of electric charge and heat by

the electrons in a solid. When our sample is in uniform thermal equilibrium, the

distribution of electrons over the eigenstates available to them in each region of the

sample is described by the Fermi–Dirac distribution function and the electric and

heat current densities both vanish everywhere. Nonvanishing macroscopic current

densities arise whenever the equilibrium is made nonuniform by varying either the

electrochemical potential or the temperature from point to point in the sample.

The electron distribution in each region of the crystal is then perturbed because

electrons move from filled states to adjacent empty states.

The electrical conductivity of a material is determined by the mobile carriers

and is proportional to the number density of charge carriers in the system, denoted

by n, and their mobility, µ, according to

σ ≃ neµ . (5.4)

Only in metallic systems the number density of charge carriers is large enough

to make the electrical conductivity sufficiently large. The precise conditions under

which one substance has a large conductivity and another substance has low con-

ductivity are determined by the microscopic physical properties of the system such

as energy band structure, carrier effective mass, carrier mobility, lattice properties

and the presence of impurities and imperfections.

Theoretical considerations of the electric conductivity were started by Drude

within the classical picture about 100 years ago.13,133 He put forward a free-electron

model that assumes a relaxation of the independent charge carriers due to driving

forces (frictional force and the electric field). The current density was written as

J =
ne2

m
Eτ . (5.5)

Here τ is the average time between collisions, E is the electric field and m and e

are the mass and the charge of the electron, respectively. The electric conductivity

in the Drude model13 is given by

σ =
ne2τ

m
. (5.6)



September 12, 2011 10:45 WSPC/140-IJMPB S0217979211059012

Electronic Transport in Metallic Systems 3099

The time τ is called the mean lifetime or electron relaxation time. Then the Ohm

law can be expressed as the linear relation between current density J and electric

field E

J = σE . (5.7)

The electrical resistivity R of the material is equal to

R =
E

J
. (5.8)

The free-electron model of Drude is the limiting case of the total delocalization of

the outer atomic electrons in a metal. The former valence electrons became conduc-

tion electrons. They move independently through the entire body of the metal; the

ion cores are totaly ignored. The theory of Drude was refined by Lorentz. Drude–

Lorentz theory assumed that the free conduction electrons formed an electron gas

and were impeded in their motion through crystal by collisions with the ions of the

lattice. In this approach, the number of free electrons n and the collision time τ ,

related to the mean free path rl = 2τv and the mean velocity v, are still adjustable

parameters.

Contrary to this, in the Bloch model for the electronic structure of a crystal,

though each valence electron is treated as an independent particle, it is recognized

that the presence of the ion cores and the other valence electrons modifies the

motion of that valence electron.

In spite of its simplicity, Drude model contains some delicate points. Each elec-

tron changes its direction of propagation with an average period of 2τ . This change

of propagation direction is mainly due to a collision of an electron with an impurity

or defect and the interaction of electron with a lattice vibration. In an essence,

τ is the average time of the electron motion to the first collision. Moreover, it is

assumed that the electron forgets its history on each collision, etc. To clarify these

points let us consider the notion of the electron drift velocity. The electrons which

contribute to the conductivity have large velocities, that is large compared to the

drift velocity which is due to the electric field, because they are at the top of the

Fermi surface and very energetic. The drift velocity of the carriers vd is intimately

connected with the collision time τ

vd = ατ ,

where α is a constant acceleration between collision of the charge carriers. In gen-

eral, the mean drift velocity of a particle over N free path is

vd ∼ 1

2
α[τ + (∆t)2/τ ] .

This expression shows that the drift velocity depends not only on the average value

τ but also on the standard deviation (∆t) of the distribution of times between

collisions. An analysis shows that the times between collisions have an exponential

probability distribution. For such a distribution, ∆t = τ and one obtains vd = ατ
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and J = ne2/mEτ . Assuming that the time between collisions always has the same

value τ , we find that (∆t) = 0 and vd = (1/2)ατ and J = ne2/2mEτ .

Equations (5.7) and (5.8) are the most fundamental formulas in the physics of

electron conduction. Note that resistivity is not zero even at absolute zero, but is

equal to the so-called “residual resistivity”. For most typical cases it is reasonable to

assume that scattering by impurities or defects and scattering by lattice vibrations

are independent events. As a result, the relation (5.6) will take place. There is a huge

variety (and irregularity) of the resistivity values for the elements, not mentioning

the huge variety of substances and materials.134–137

In a metal with spherical Fermi surface in the presence of an electric field E,

the Fermi surface would affect a ∆k displacement, ∆k = k − k0. The simplest

approximation is to suppose a rigid displacement of the Fermi sphere with a single

relaxation time τ ,

~
dk

dt
+ ~

(k− k0)

τ
= eE . (5.9)

Thus we will have at equilibrium

∆k =
eτ

~
E . (5.10)

The corresponding current density will take the form

J =
2

(2π)3

∫

Ωk

evdΩk =
2

(2π)3

∫

Sk

ev∆kδSk0
. (5.11)

We get from Eq. (5.7)

σ =
2

(2π)3
e2τ

~

∫

Sk

vdSk0
. (5.12)

Let us consider briefly the frequency dependence of σ. Consider a gas of nonin-

teracting electrons of number density n and collision time τ . At low frequencies,

collisions occur so frequently that the charge carriers are moving as if within a vis-

cous medium, whereas at high frequencies the charge carriers behave as if they were

free. These two frequency regimes are well-known in the transverse electromagnetic

response of metals.1,2,9,11,13,18,21 The electromagnetic energy given to the electrons

is lost in collisions with the lattice, which is the “viscous medium”. The relevant

frequencies in this case satisfy the condition ωτ ≪ 1. Thus, in a phenomenological

description,138 one should introduce a conductivity σ and viscosity η by

σ =
e2τ̄cn

m
, η =

1

2
mv2nτ̄c . (5.13)

On the other hand, for ωτ ≫ 1 viscous effects are negligible, and the electrons

behave as the nearly free particles. For optical frequencies they can move quickly

enough to screen out the applied field. Thus, two different physical mechanisms are

suitable in the different regimes defined by ωτ ≪ 1 and ωτ ≫ 1.



September 12, 2011 10:45 WSPC/140-IJMPB S0217979211059012

Electronic Transport in Metallic Systems 3101

In a metal impurity atoms and phonons determine the scattering processes of

the conduction electrons. The electrical force on the electrons is eE. The “viscous”

drag force is given by −mv/τ. Then one can write the equation

mv̇ = eE − mv

τ
. (5.14)

For E ∼ exp(−iωt), the oscillating component of the current is given by

J(ω) = nev(ω) = σ(ω)E(ω) , (5.15)

where

σ(ω) =
σ0

1− iωτ
, σ0 =

e2nτ

m
. (5.16)

For low frequencies we may approximate Eq. (5.14) as v ∼ (eτ/m)E. For high

frequencies we may neglect the collision term, so v ∼ (e/m)E. Thus the behavior

of the conductivity as a function of frequency can be described on the basis of the

formula Eq. (5.16).

Let us remark on a residual resistivity, i.e., the resistivity at absolute zero.

Since real crystals always contain impurities and defects the resistivity is not equal

zero even at absolute zero. If one assume that the scattering of a wave caused by

impurities (or defects) and by lattice vibrations are independent events, then the

total probability for scattering will be the sum of the two individual probabilities.

The scattering probability is proportional to 1/τ , where τ is the mean lifetime or

relaxation time of the electron motion. Denoting by 1/τ1, the scattering probability

due to impurities and defects and by 1/τ2 the scattering probability due to lattice

vibrations, we obtain for total probability the equality

1/τ = 1/τ1 + 1/τ2 ; 1/σ = 1/σ1 + 1/σ2 . (5.17)

This relation is called Matthiessen rule. In practice, this relation is not fulfilled

well (see Refs. 139 and 140). The main reason for the violation of the Matthiessen

rule are the interference effects between phonon and impurity contributions to the

resistivity. References 139 and 140 give a comprehensive review of the subject of

deviation from Matthiessen rule and detailed critical evaluation of both theory and

experimental data.

5.3. The low- and high-temperature dependence of conductivity

One of the most informative and fundamental properties of a metal is the behavior of

its electrical resistivity as a function of temperature. The temperature dependence

of the resistivity is a good indicator of important scattering mechanisms for the

conduction electrons. It can also suggest in a general way what the solid state elec-

tronic structure is like. There are two limiting cases, namely, the low-temperature

dependence of the resistivity for the case when T ≤ θD, where θD is effective Debye

temperature, and the high-temperature dependence of the resistivity, when T ≥ θD.
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The electrical resistivity of metals is due to two mechanisms, namely, (i) scatter-

ing of electrons on impurities (static imperfections in the lattice), and (ii) scattering

of electrons by phonons. Simplified treatment assumes that one scattering process is

not influenced by the other (Matthiessen rule). The first process is usually temper-

ature independent. For a typical metal, the electrical resistivity R(T ), as a function

of the absolute temperature T , can be written as

R(T ) = R0 +Ri(T ) , (5.18)

where R0 is the residual electrical resistivity independent of T , and Ri(T ) is the

temperature-dependent intrinsic resistivity. The quantity R0 is due to the scattering

of electrons from chemical and structural imperfections. The term Ri(T ) is assumed

to result from the interaction of electrons with other degrees of freedom of a crys-

tal. In general, for the temperature dependence of the resistivity, three scattering

mechanisms are essential: (i) electron–phonon scattering, (ii) electron-magnon scat-

tering and (iii) electron–electron scattering. The first one gives T 5 or T 3 dependence

at low temperatures.2 The second one, the magnon scattering, is essential for the

transition metals because some of them show ferromagnetic and antiferromagnetic

properties.11 This mechanism can give different temperature dependence values due

to the complicated (anisotropic) dispersion of the magnons in various structures.

The third mechanism, the electron–electron scattering is responsible for the R ∼ T 2

dependence of resistivity.

Usually, the temperature-dependent electrical resistivity is tried to fit to an

expression of the form

R(T ) = R0 +Ri(T ) = R0 +AT 5 +BT 2 + (CT 3) + · · · (5.19)

This dependence corresponds to Matthiessen rule, where the different terms are

produced by different scattering mechanisms. The early approach for studying of

the temperature variation of the conductivity1,2,27 was carried out by Sommerfeld,

Bloch and Houston. Houston explained the temperature variation of conductivity

applying the wave mechanics and assuming that the wavelengths of the electrons

were in most cases long compared with the interatomic distance. He then solved the

Boltzmann equation, using for the collision term an expression taken from the work

of Debye and Waller on the thermal scattering of X-rays. He obtained an expression

for the conductivity as a function of a mean free path, which can be determined

in terms of the scattering of the electrons by the thermal vibrations of the lattice.

Houston found a resistance proportional to the temperature at high temperatures

and to the square of temperature at low temperatures. The model used by Houston

for the electrons in a metal was that of Sommerfeld — an ideal gas in a structureless

potential well. Bloch improved this approach by taking the periodic structure of the

lattice into account. For the resistance law at low temperatures both Houston and

Bloch results were incorrect. Houston realized that the various treatments of the

mean free path would give different variations of resistance with temperature. In his

later work,141 he also realized that the Debye theory of scattering was inadequate
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at low temperatures. He applied the Brillouin theory of scattering and arrived at T 5

law for the resistivity at low temperatures and T at high temperatures. Later on, it

was shown by many authors2 that the distribution function obtained in the steady-

state under the action of an electric field and the phonon collisions does indeed lead

to R ∼ T 5. The calculations of the electron–phonon scattering contribution to the

resistivity by Bloch142 and Gruneisen143 lead to the following expression

R(T ) ∼ T 5

θ6

∫ θ/T

0

dz
z5

(ez − 1)(1− e−z)
, (5.20)

which is known as the Bloch–Gruneisen law.

Huge effort has been devoted to the theory of transport processes in simple met-

als,11,144,145 such as the alkali metals. The Fermi surface of these metals is nearly

spherical, so band structure effects can be either neglected or treated in some sim-

ple approximation. The effect of the electron–electron interaction in these systems

is not very substantial. Most of the scattering is due to impurities and phonons.

It is expected that the characteristic T 2 dependence of electron–electron interac-

tion effects can only be seen at very low temperatures T , where phonon scattering

contributes a negligible T 5 term. In the nonsimple metallic conductors, and in tran-

sition metals, the Fermi surfaces are usually far from being isotropic. Moreover, it

can be viewed as the two-component systems146 where one carrier is an electron and

the other is an inequivalent electron (as in s–d scattering) or a hole. It was shown

that anisotropy such as that arising from a nonspherical Fermi surface or from

anisotropic scattering can yield a T 2 term in the resistivity at low temperatures,

due to the deviations from Matthiessen rule. This term disappears at sufficiently

high T . The electron–electron Umklapp scattering contributes a T 2 term even at

high T . It was conjectured (see Ref. 147) that the effective electron–electron inter-

action due to the exchange of phonons should contribute to the electrical resistivity

in exactly the same way as the direct Coulomb interaction, namely, giving rise to

a T 2 term in the resistivity at low temperatures. The estimations of this contri-

bution show148 that it can alter substantially the coefficient of the T 2 term in the

resistivity of simple and polyvalent metals. The role of electron–electron scattering

in transition metals was discussed in Refs. 149–151. A calculation of the electrical

and thermal resistivity of Nb and Pd due to electron–phonon scattering was dis-

cussed in Ref. 152. A detailed investigation153 of the temperature dependence of

the resistivity of Nb and Pd showed that a simple power law fit cannot reconcile

the experimentally observed behavior of the transition metals. Matthiessen rule

breaks down and simple Bloch–Gruneisen theory is inadequate to account for the

experimental data. In particular, in Ref. 153 it has been shown that the resistivity

of Pd can be expressed by a T 2 function where, on the other hand, the temperature

dependence of the resistivity of Nb should be represented by a function of T more

complicated than the T 3. It seems to be plausible that the low-temperature behav-

ior of the resistivity of transition metals may be described by a rational function of

(AT 5 +BT 2). This conjecture will be justified in Sec. 11.
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For real metallic systems, the precise measurements show a quite complicated

picture in which the term Ri(T ) will not necessarily be proportional to T 5 for every

metal (for detailed review see Refs. 11, 144 and 145). The purity of the samples

and size-effect contributions and other experimental limitations can lead to the

deviations from the T 5 law. There are many other reasons for such a deviation.

First, the electronic structures of various pure metals differ very considerably. For

example, the Fermi surface of sodium is nearly close to the spherical one, but

those of transition and rare-earth metals are much more complicated, having groups

of electrons of very different velocities. The phonon spectra are also different for

different metals. It is possible to formulate that the T 5 law can be justified for a

metal of a spherical Fermi surface and for a Debye phonon spectrum. Moreover, the

additional assumptions are an assumption that the electron and phonon systems

are separately in equilibrium so that only one phonon is annihilated or created in

an electron–phonon collision, that the Umklapp processes can be neglected, and an

assumption of a constant volume at any temperature. Whenever these conditions

are not satisfied in principle, deviations from T 5 law can be expected. This takes

place, for example, in transition metals as a result of the s–d transitions1,53 due

to the scattering of s-electrons by phonons. This process can be approximately

described as being proportional to T γ with γ somewhere between 5 and 3. The s–d

model of electronic transport in transition metals was developed by Mott.1,53,154

In this model, the motion of the electrons is assumed to take place in the nearly

free-electron like s-band conduction states. These electrons are then assumed to be

scattered into the localized d states. Owing to the large differences in the effective

masses of the s- and d-bands, large resistivity result.

In Ref. 155, the temperature of the normal-state electrical resistivity of very

pure niobium was reported. The measurements were carried out in the temperature

range from the superconducting transition (Tc = 9.25 K) to 300 K in zero magnetic

field. The resistance-versus-temperature data were analyzed in terms of the possible

scattering mechanisms likely to occur in niobium. To fit the data, a single-band

model was assumed. The best fit can be expressed as

R(T ) = (4.98± 0.7)10−5 + (0.077± 3.0)10−7T 2

+(3.10± 0.23)10−7[T 3J3(θD/T )/7.212]

+ (1.84± 0.26)10−10[T 5J5(θD/T )/124.4] , (5.21)

where J3 and J5 are integrals occurring in the Wilson and Bloch theories2 and the

best value for θD, the effective Debye temperature, is (270 ± 10) K. Over most of

the temperature range below 300 K, the T 3 Wilson term dominates. Thus it was

concluded that interband scattering is quite important in niobium. Because of the

large magnitude of interband scattering, it was difficult to determine the precise

amount of T 2 dependence in the resistivity. Measurements of the electrical resistiv-

ity of the high purity specimens of niobium were carried out in Refs. 156–159. It was

shown that Mott theory is obeyed at high-temperature in niobium. In particular,
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the resistivity curve reflects the variation of the density of states at the Fermi sur-

face when the temperature is raised, thus demonstrating the predominance of s–d

transitions. In addition, it was found impossible to fit a Bloch–Gruneisen or Wilson

relation to the experimental curve. Several arguments were presented to indicate

that even a rough approximation of the Debye temperature has no physical signifi-

cance and that it is necessary to take the Umklapp processes into account. Measure-

ments of low-temperature electrical and thermal resistivity of tungsten160,161 and

vanadium162 showed the effects of the electron–electron scattering between differ-

ent branches of the Fermi surface in tungsten and vanadium, thus concluding that

electron–electron scattering does contribute measurable to electrical resistivity of

these substances at low temperature.

In transition metal compounds, e.g., MnP , the electron–electron scattering is

attributed163 to be dominant at low temperatures, and furthermore the 3d electrons

are thought to carry electric current. It is remarkable that the coefficient of the T 2

resistivity is very large, about 100 times those of Ni and Pd in which s-electrons

coexist with d-electrons and electric current is mostly carried by the s-electrons.

This fact suggests strongly that in MnP s-electrons do not exist at the Fermi level

and current is carried by the 3d electrons. This is consistent with the picture164

that in transition metal compounds the s-electrons are shifted up by the effect of

antibonding with the valence electrons due to a larger mixing matrix, compared

with the 3d electrons, caused by their larger orbital extension.

It should be noted that the temperature coefficients of resistance can be pos-

itive and negative in different materials. A semiconductor material exhibits the

temperature dependence of the resistivity quite different than in metal. A qualita-

tive explanation of this different behavior follows from considering the number of

free charge carriers per unit volume, n, and their mobility, µ. In metals, n is es-

sentially constant, but µ decreases with increasing temperature, owing to increased

lattice vibrations which lead to a reduction in the mean free path of the charge

carriers. This decrease in mobility also occurs in semiconductors, but the effect is

usually masked by a rapid increase in n as more charge carriers are set free and

made available for conduction. Thus, intrinsic semiconductors exhibit a negative

temperature coefficient of resistivity. The situation is different in the case of ex-

trinsic semiconductors in which ionization of impurities in the crystal lattice is

responsible for the increase in n. In these, there may exist a range of temperatures

over which essentially all the impurities are ionized, that is, a range over which n

remains approximately constant. The change in resistivity is than almost entirely

due to the change in µ, leading to a positive temperature coefficient.

It is believed that the electrical resistivity of a solid at high temperatures is

primarily due to the scattering of electrons by phonons and by impurities.2 It is

usually assumed, in accordance with Matthiessen rule, that the effect of these two

contributions to the resistance are simply additive. At high temperature (not lower

than Debye temperature) lattice vibrations can be well represented by the Einstein

model. In this case, 1/τ2 ∼ T , so that 1/σ2 ∼ T . If the properties and concentration
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of the lattice defects are independent of temperature, then 1/σ1 is also independent

of temperature and we obtain

1/σ ≃ a+ bT , (5.22)

where a and b are constants. However, this additivity is true only if the effect of both

impurity and phonon scattering can be represented by means of single relaxation

times whose ratio is independent of velocity.165 It was shown165 that the addition

of impurities will always decrease the conductivity. Investigations of the deviations

from Matthiessen rule at high temperatures in relation to the electron–phonon

interaction were carried out in Refs. 156–159. It was shown,159 in particular, that

changes in the electron–phonon interaction parameter λ, due to dilute impurities

were caused predominantly by interference between electron–phonon and electron

impurity scattering.

The electron band structures of transition metals are extremely complicated

and make calculations of the electrical resistivity due to structural disorder and

phonon scattering very difficult. In addition the nature of the electron–phonon

matrix elements is not well understood.166 The analysis of the matrix elements for

scattering between states was performed in Ref. 166. It was concluded that even

in those metals where a fairly spherical Fermi surface exists, it is more appropriate

to think of the electrons as tightly bound in character rather than behaving like

free electrons. In addition, the “single site” approximations are not likely to be

appropriate for the calculation of the transport properties of structurally disordered

transition metals.

5.4. Conductivity of alloys

The theory of metallic conduction can be applied for explaining the conductiv-

ity of alloys.167–172 According to the Bloch–Gruneisen theory, the contribution of

the electron–phonon interaction to the dc electrical resistivity of a metal at high

temperatures is essentially governed by two factors: the absolute square of the

electron–phonon coupling constant and the thermally excited mean square lattice

displacement. Since the thermally excited mean lattice displacement is proportional

to the number of phonons, the high-temperature resistivity R is linearly propor-

tional to the absolute temperature T , and the slope dR/dT reflects the magnitude

of the electron–phonon coupling constant. However, in many high resistivity metal-

lic alloys, the resistivity variation dR/dT is found to be far smaller than that of the

constituent materials. In some cases, dR/dT is not even always positive. There are

two types of alloys, one of which the atoms of the different metals are distributed

at random over the lattice points, another in which the atoms of the components

are regularly arranged. Anomalous behavior in electrical resistivity was observed in

many amorphous and disordered substances.168,173 At low temperatures, the resis-

tivity increases in T 2 instead of the usual T 5 dependence. Since T 2 dependence is

usually observed in alloys which include a large fraction of transition metals, it has
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been considered to be due to spins. In some metals, T 2 dependence might be caused

by spins. However, it can be caused by disorder itself. The calculation of transport

coefficients in disordered transition metal alloys becomes a complicated task if the

random fluctuations of the potential are too large. It can be shown that strong

potential fluctuations force the electrons into localized states. Another anomalous

behavior occurs in highly resistive metallic systems168,173 which is characterized

by small temperature coefficient of the electrical resistivity, or by even negative

temperature coefficient.

According to Matthiessen rule,139,140 the electrical resistance of a dilute alloy

is separable into a temperature-dependent part, which is characteristic of the pure

metal, and a residual part due to impurities. The variation with temperature of the

impurity resistance was calculated by Taylor.174 The total resistance is composed of

two parts, one due to elastic scattering processes, the other to inelastic ones. At the

zero temperature, the resistance is entirely due to elastic scattering and is smaller

by an amount γ0 than the resistance that would be found if the impurity atom were

infinitely massive. The factor γ0 is typically of the order of 10−2. As the temperature

is raised, the amount of inelastic scattering increases, while the amount of elastic

scattering decreases. However, as this happens the ordinary lattice resistance, which

varies as T 5, starts to become appreciable. For a highly impure specimen for which

the lattice resistance at room temperature, Rθ, is equal to the residual resistance,

R0, the total resistance at low temperatures will have the form

R(T ) ≈ 10−2

(
T

θ

)2

+ 500

(
T

θ

)5

+R0 . (5.23)

The first term arises from incoherent scattering and the second from coherent scat-

tering, according to the usual Bloch–Gruneisen theory. It is possible to see from

this expression that T 2 term would be hidden by the lattice resistance except at

temperatures below θ/40. This represents a resistance change of less than 10−5R0,

and is not generally really observable.

In disordered metals, the Debye–Waller factor in electron scattering by phonons

may be an origin for negative temperature coefficient of the resistivity. The residual

resistivity may decreases as T 2 with increasing temperature because of the influence

of the Debye–Waller factor. But resulting resistivity increases as T 2 with increas-

ing temperature at low temperatures even if the Debye–Waller factor is taken into

account. It is worthy to note that the deviation from Matthiessen rule in electrical

resistivity is large in the transition metal alloys175,176 and dilute alloys.177,178 In

certain cases the temperature dependence of the electrical resistivity of transition

metal alloys at high temperatures can be connected with change electronic density

of states.179 The electronic density of states for V–Cr, Nb–Mo and Ta–W alloys

have been calculated in the coherent potential approximation. From these calcu-

lated results, the temperature dependence of the electrical resistivity R at high

temperature have been estimated. It was shown that the concentration variation
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of the temperature dependence in R/T is strongly dependent on the shape of the

density of states near the Fermi level.

Many amorphous metals and disordered alloys exhibit a constant or negative

temperature coefficient of the electrical resistivity168,173 in contrast to the positive

temperature coefficient of the electrical resistivity of normal metals. Any theoretical

models of this phenomenon must include both the scattering (or collision) caused

by the topological or compositional disorder and the modifications to this colli-

sion induced by the temperature or by electron–phonon scattering. If one assumes

that the contributions to the resistivity from scattering mechanisms other than the

electron–phonon interaction are either independent of T , like impurity scattering,

or are saturated at high T , like magnetic scattering, the correlation between the

quenched temperature dependence and high resistivity leads one to ask whether

the electron–phonon coupling constant is affected by the collisions of the electrons.

The effect of collisions on charge redistributions is the principal contributor to

the electron–phonon interaction in metals. It is studied as a mechanism which could

explain the observed lack of temperature dependence of the electrical resistivity of

many concentrated alloys. The collision time-dependent free electron deformation

potential can be derived from a self-consistent linearized Boltzmann equation. The

results indicates that the collision effects are not very important for real systems. It

can be understood assuming that the charge redistribution produces only a negligi-

ble correction to the transverse phonon–electron interaction. In addition, although

the charge shift is the dominant contribution to the longitudinal phonon–electron in-

teraction, this deformation potential is not affected by collisions until the root mean

square electron diffusion distance in a phonon period is less than the Thomas–Fermi

screening length. This longitudinal phonon–electron interaction reduction requires

collision times of the order of 10−19 s in typical metals before it is effective. Thus,

it is highly probable that it is never important in real metals. Hence, this collision

effect does not account for the observed, quenched temperature dependence of the

resistivity of these alloys. However, these circumstances suggest that the validity

of the adiabatic approximation, i.e., the Born–Oppenheimer approximation, should

be relaxed far beyond the previously suggested criteria. All these factors make the

proper microscopic formulation of the theory of the electron–phonon interaction

in strongly disordered alloys a very complicated problem. A consistent microscopic

theory of the electron–phonon interaction in substitutionally disordered crystalline

transition metal alloys was formulated by Wysokinski and Kuzemsky180 within the

MTBA. This approach combines the Barisic, Labbe and Friedel model125 with the

more complex details of the CPA (coherent potential approximation).

The low-temperature resistivity of many disordered paramagnetic materials of-

ten shows a T 3/2 rather than a T 2 dependence due to spin-fluctuation-scattering

resistivity. The coefficient of the T 3/2 term often correlates with the magnitude

of the residual resistivity as the amount of disorder is varied. A model calcula-

tion that exhibits such behavior were carried out in Ref. 181 In the absence of
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disorder, the spin-fluctuations drag suppresses the spin-fluctuation T 2 term in the

resistivity. Disorder produces a finite residual resistivity and also produces a finite

spin-fluctuation-scattering rate.

5.5. Magnetoresistance and the Hall effect

The Hall effect and the magnetoresistance182–188 are the manifestations of the

Lorentz force on a subsystem of charge carries in a conductor constrained to move

in a given direction and subjected to a transverse magnetic field. Let us consider a

confined stream of a carriers, each having a charge e and a steady-state velocity vx
due to the applied electric field Ex. A magnetic field H in the z-direction produces

a force Fy which has the following form

F = e

(
E+

1

c
v ×H

)
. (5.24)

The boundary conditions lead to the equalities

Fy = 0 = Ey −
1

c
vxHz . (5.25)

The transverse field Ey is termed the Hall field Ey ≡ EH and is given by

EH =
1

c
vxHz =

JxHz

nec
; Jx = nevx , (5.26)

where Jx is the current density and n is the charge carrier concentration. The Hall

field can be related to the current density by means of the Hall coefficient RH

EH = RHJxHz ; RH =
1

nec
. (5.27)

The essence of the Hall effect is that Hall constant is inversely proportional to the

charge carrier density n, and that is negative for electron conduction and positive

for hole conduction. A useful notion is the so-called Hall angle which is defined by

the relation

θ = tan−1 Ey

Ex
. (5.28)

Thus, the Hall effect may be regarded as the rotation of the electric field vector

in the sample as a result of the applied magnetic field. The Hall effect is an effec-

tive practical tool for studying the electronic characteristics of solids. The above

consideration helps to understand how thermomagnetic effects2,6,31 can arise in the

framework of simple free-electron model. The Lorentz force acts as a velocity se-

lector. In other words, due to this force, the slow electrons will be deflected less

than the more energetic ones. This effect will lead to a temperature gradient in the

transverse direction. This temperature difference will result in a transverse poten-

tial difference due to the Seebeck coefficient of the material. This phenomenon is

called the Nernst–Ettingshausen effect.2,6



September 12, 2011 10:45 WSPC/140-IJMPB S0217979211059012

3110 A. L. Kuzemsky

It should be noted that the simple expression for the Hall coefficient RH is the

starting point only for the studies of the Hall effect in metals and alloys.182,183 It

implies RH is temperature independent and that EH varies linearly with applied

field strength. Experimentally, the dependence RH = 1/nec does not fit well the

situation in any solid metal. Thus, there is a necessity to explain these discrepancies.

One way is to consider an effective carrier density n∗(n) which depends on n, where

n is now the mean density of electrons calculated from the valency. This inter-

relation is much more complicated for the alloys where n∗(n) is the function of the

concentration of solute too. It was shown that the high-field Hall effect reflects global

properties of the Fermi surface such as its connectivity, the volume of occupied phase

space, etc. The low-field Hall effect depends instead on microscopic details of the

dominant scattering process. A quantum-mechanical theory of transport of charge

for an electron gas in a magnetic field which takes account of the quantization of

the electron orbits has been given by Argyres.185

Magnetoresistance10,187,189–191 is an important galvanomagnetic effect which

is observed in a wide range of substances and under a variety of experimental

conditions.192–194 The transverse magnetoresistance is defined by

̺MR(H) =
R(H)−R

R
≡ ∆R

R
, (5.29)

where R(H) is the electrical resistivity measured in the direction perpendicular to

the magnetic field H, and R is the resistivity corresponding to the zero magnetic

field. The zero-field resistivity R is the inverse of the zero-field conductivity and is

given approximately by

R ∼ m∗〈v〉
nel

, (5.30)

according to the simple kinetic theory applied to a single carrier system. Here e,

m∗, n, 〈v〉 and l are, respectively, charge, effective mass, density, average speed, and

mean free path of the carrier. In this simplified picture, the four characteristics, e,

m∗, n, and 〈v〉, are unlikely to change substantially when a weak magnetic field is

applied. The change in the mean free path l should then approximately determine

the behavior of the magnetoresistance ∆R/R at low fields.

The magnetoresistance practically of all conducting pure single crystals has been

experimentally found to be positive and a strong argument for this were given on the

basis of nonequilibrium statistical mechanics.10 In some substances, e.g., carbon,

CdSe, Eu2CuSi3, etc., magnetoresistance is negative while in CdMnSe is positive

and much stronger than in CdSe.195–197 A qualitative interpretation of the magne-

toresistance suggests that those physical processes which make the mean free path

larger for greater values of H should contribute to the negative magnetoresistance.

Magnetic scattering leads to negative magnetoresistance198 characteristic for ferro-

or paramagnetic case, which comes from the suppression of fluctuation of the lo-

calized spins by the magnetic field. A comprehensive derivation of the quantum

transport equation for electric and magnetic fields was carried out by Mahan.199
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More detailed discussion of the various aspects of theoretical calculation of the

magnetoresistance in concrete substances are given in Refs. 188, 198, 200–202

5.6. Thermal conduction in solids

Electric and thermal conductivities are intimately connected since the thermal en-

ergy also is mainly transported by the conduction electrons. The thermal conductiv-

ity4,203 of a variety of substances, metals and nonmetals, depends on temperature

region and varies with temperature substantially.204 Despite a rough similarity in

the form of the curves for metallic and nonmetallic materials, there is a fundamen-

tal difference in the mechanism whereby heat is transported in these two types of

materials. In metals,4,205 heat is conducted by electrons; in nonmetals,4,206 it is

conducted through coupled vibrations of the atoms. The empirical data204 show

that the better the electrical conduction of a metal, the better its thermal con-

duction. Let us consider a sample with a temperature gradient dT/dx along the

x-direction. Suppose that the electron located at each point x has thermal energy

E(T ) corresponding to the temperature T at the point x. It is possible to estimate

the net thermal energy carried by each electron as

E(T )− E

(
T +

dT

dx
τv cos θ

)
= −dE(T )

dT

dT

dx
τv cos θ . (5.31)

Here we denote by θ the angle between the propagation direction of an electron

and the x-direction and by v the average speed of the electron. Then the average

distance travelled in the x-direction by an electron until it scatters is τv cos θ. The

thermal current density Jq can be estimated as

Jq = −ndE(T )

dT

dT

dx
τv2〈cos2 θ〉 , (5.32)

where n is the number of electrons per unit volume. If the propagation direction

of the electron is random, then 〈cos2 θ〉 = 1/3 and the thermal current density is

given by

Jq = −1

3
n
dE(T )

dT
τv2

dT

dx
. (5.33)

Here ndE(T )/dT is the electronic heat capacity Ce per unit volume. We obtain for

the thermal conductivity κ the following expression

κ =
1

3
Ceτv

2 ; Q = −κdT
dx

. (5.34)

The estimation of κ for a degenerate Fermi distribution can be given by

κ =
1

3

π2k2BT

2ζ0
n
6ζ0
5m

τ =
π2k2BT

5m
n , (5.35)

where 1/2mv2 = 3/5ζ0 and kB is the Boltzmann constant. It is possible to eliminate

nτ with the aid of equality τ = mσ/ne2. Thus we obtain17

κ

σ
∼= π2

5

k2B
e2
T . (5.36)
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This relation is called as the Wiedemann–Franz law. The more precise calculation

gives a more accurate factor value for the quantity π2/5 as π2/3. The most essential

conclusion to be drawn from the Wiedemann–Franz law is that κ/σ is proportional

to T and the proportionality constant is independent of the type of metal. In other

words, a metal having high electrical conductivity has a high thermal conductivity

at a given temperature. The coefficient κ/σT is called the Lorentz number. At

sufficiently high temperatures, where σ is proportional to 1/T , κ is independent of

temperature. Qualitatively, the Wiedemann–Franz law is based upon the fact that

the heat and electrical transport both involve the free-electrons in the metal. The

thermal conductivity increases with the average particle velocity since that increases

the forward transport of energy. However, the electrical conductivity decreases with

particle velocity increases because the collisions divert the electrons from forward

transport of charge. This means that the ratio of thermal to electrical conductivity

depends upon the average velocity squared, which is proportional to the kinetic

temperature.

Thus, there are relationships between the transport coefficients of a metal in a

strong magnetic field and a very low temperatures. Examples of such relations are

the Wiedemann–Franz law for the heat conductivity κ, which we rewrite in a more

general form

κ = LTσ , (5.37)

and the Mott rule207 for the thermopower S

S = eLTσ−1dσ

dµ
. (5.38)

Here T is the temperature, µ denotes the chemical potential. The Lorentz number

L = 1/3(πkB/e)
2, where kB is the Boltzmann constant, is universal for all metals.

Useful analysis of the Wiedemann–Franz law and the Mott rule was carried out by

Nagaev.208

6. Linear Macroscopic Transport Equations

We give here a brief refresher of the standard formulation of the macroscopic trans-

port equations from the most general point of view.209 One of the main problems of

electron transport theory is the finding of the perturbed electron distribution which

determines the magnitudes of the macroscopic current densities. Under the stan-

dard conditions, it is reasonable to assume that the gradients of the electrochemical

potential and the temperature are both very small. The macroscopic current den-

sities are then linearly related to those gradients and the ultimate objective of the

theory of transport processes in solids (see Table 4). Let η and T denote, respec-

tively, the electrochemical potential and temperature of the electrons. We suppose

that both the quantities vary from point to point with small gradients ∇η and ∇T .
Then, at each point in the crystal, electric and heat current densities Je and Jq
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Table 4. Fluxes and generalized forces.

Process Flux Generalized force Tensor character

Electrical conduction Je ∇φ Vector
Heat conduction Jq ∇(1/T ) Vector
Diffusion Diffusion flux Jp −(1/T )[∇n] Vector
Viscous flow Pressure tensor P −(1/T )∇u Second-rank tensor
Chemical reaction Reaction rate Wr Affinity ar/T Scalar

will exist which are linearly related to the electromotive force E = 1/e∇η and ∇T
by the basic transport equations

Je = L11E + L12∇T , (6.1)

Jq = L21E + L22∇T . (6.2)

The coefficients L11, L12, L21 and L22 in these equations are the transport coeffi-

cients which describe irreversible processes in linear approximation. We note that

in a homogeneous isothermal crystal, E is equal to the applied electric field E. The

basic transport equations in the form of Eqs. (6.1) and (6.2) describe responses Je

and Jq under the influence of E and ∇T . The coefficient L11 = σ is the electri-

cal conductivity. The other three coefficients, L12, L21 and L22 have no generally

accepted nomenclature because these quantities are hardly ever measured directly.

From the experimental point of view, it is usually more convenient to fix Je and

∇T and then measure E and Jq. To fit the experimental situation, Eqs. (6.1) and

(6.2) must be rewritten in the form

E = RJe + S∇T , (6.3)

Jq = ΠJe − κ∇T , (6.4)

where

R = σ−1 , (6.5)

S = −σ−1L12 , (6.6)

Π = L21σ
−1 , (6.7)

κ = L21σ
−1L12 = L22 , (6.8)

which are known, respectively, as the resistivity, thermoelectric power, Peltier co-

efficient and thermal conductivity. These are the quantities which are measured

directly in experiments.

All the coefficients in the above equations are tensors of rank 2 and they depend

on the magnetic induction field B applied to the crystal. By considering crystals

with full cubic symmetry, when B = 0, one reduces to a minimum the geometrical

complications associated with the tensor character of the coefficients. In this case,

all the transport coefficients must be invariant under all the operations in the point

group m3m.210 This high degree of symmetry implies that the coefficients must
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reduce to scalar multiples of the unit tensor and must therefore be replaced by

scalars. When B 6= 0 the general form of transport tensors is complicated even

in cubic crystals.31,210 In the case, when an expansion to second-order in B is

sufficient, the conductivity tensor takes the form

σαβ(B) = σαβ(0) +
∑

µ

∂σαβ(0)

∂Bµ
Bµ +

1

2

∑

µν

∂2σαβ(0)

∂BµBν
BµBν + · · · (6.9)

Here the (αβ)-th element of σ referred to the cubic axes (0xyz). For the case when

it is possible to confine ourselves by the proper rotations in m3m only, we obtain

that

σαβ(0) = σ0δαβ , (6.10)

where σ0 is the scalar conductivity when B = 0. We also find that

∂σαβ(0)

∂Bµ
= ςǫαβγ ,

∂2σαβ(0)

∂BµBν
= 2ξδαβδµν + η[δαµδβν + δανδβµ] + 2ζδαβδαµδαν ,

where ς , ξ, η, ζ are all scalar and ǫαβγ is the three-dimensional alternating

symbol.210 Thus, we obtain a relation between j and E (with ∇T = 0)

j = σ0E + ςE ×B+ ξB2
E + ηB(BE) + ζΦE , (6.11)

where Φ is a diagonal tensor with Φαα = B2
α (see Refs. 12 and 14). The most

interesting transport phenomena is the electrical conductivity under homogeneous

isothermal conditions. In general, the calculation of the scalar transport coefficients

σ0, ς , ξ, η, ζ is complicated task. As was mentioned above, these coefficients are

not usually measured directly. In practice, one measures the corresponding terms

in the expression for E in terms of j up to terms of second-order in B. To show this

clearly, let us iterate Eq. (6.11). We then find that

E = R0j−RHj×B+R0(bB
2j+ cB(Bj) + dΦj) , (6.12)

where

R0 = σ−1
0 , RH = σ−2

0 ς , (6.13)

are, respectively, the low-field resistivity and Hall constant10,183,184,187 and

b = −R0(ξ +R0ς
2) ; c = −R0(η −R0ς

2) ; d = −̺ζ (6.14)

are the magnetoresistance coefficients.10 These are the quantities which are directly

measured.
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7. Statistical Mechanics and Transport Coefficients

The central problem of nonequilibrium statistical mechanics is to derive a set of

equations which describes irreversible processes from the reversible equations of

motion.42–46,77,211–219 The consistent calculation of transport coefficients is of par-

ticular interest because one can get information on the microscopic structure of

the condensed matter. There exist many theoretical methods for calculation of

transport coefficients as a rule having a fairly restricted range of validity and ap-

plicability.45,217–224 The most extensively developed theory of transport processes

that is based on the Boltzmann equation.44–46,222,225,226 However, this approach

has strong restrictions and can reasonably be applied to a strongly rarefied gas

of point particles. For systems in the state of statistical equilibrium, there is the

Gibbs distribution by means of which it is possible to calculate an average value

of any dynamical quantity. No such universal distribution has been formulated for

irreversible processes. Thus, to proceed to the solution of problems of statistical

mechanics of nonequilibrium systems, it is necessary to resort to various approxi-

mate methods. During the last decades, a number of schemes have been concerned

with a more general and consistent approach to transport theory.42,43,45,211–215,217

This field is very active and there are many aspects to the problem.45,220,221,223,224

7.1. Variational principles for transport coefficients

The variational principles for transport coefficients are the special techniques for

bounding transport coefficients, originally developed by researchers in Refs. 2 and

216). This approach is equally applicable for both the electronic and thermal trans-

port. It starts from a Boltzmann-like transport equation for the space-and-time-

dependent distribution function fq or the occupation number nq(r, t) of a single

quasiparticle state specified by indices q (e.g., wave vector for electrons or wave

vector and polarization, for phonons). Then it is necessary to find or fit a func-

tional F [fq, nq(r, t)] which has a stationary point at the distribution fq, nq(r, t)

satisfying the transport equation, and whose stationary value is the suitable trans-

port coefficient. By evaluating F for a distribution only approximately satisfying

the transport equation, one then obtains an upper or lower bound on the trans-

port coefficients. Let us mention briefly the phonon-limited electrical resistivity in

metals.2,86 With the neglect of phonon drag, the electrical resistivity can be written

R ≤ 1

2kBT

∫∫
(Φk − Φk′)2W (k,k′)dkdk′

∣∣∣∣
∫
evkΦk

(
∂f0

k

∂ǫ(k)

)
dk

∣∣∣∣
2 . (7.1)

HereW (k,k′) is the transition probability from an electron state k to a state k′, vk

is the electron velocity and f0 is the equilibrium Fermi–Dirac statistical factor. The

variational principle2 states that the smallest possible value of the right-hand side

obtained for any function Φk is also the actual resistivity. In general, we do not know
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the form of the function Φk that will give the right-hand side its minimal value. For

an isotropic system, the correct choice is Φk = uk, where u is a unit vector along the

direction of the applied field. Because of its simple form, this function is in general

used also in calculations for real systems. The resistivity will be overestimated but

it can still be a reasonable approximation. This line of reasoning leads to the Ziman

formula for the electrical resistivity

R ≤ 3π

e2kBTS2k̄2F

∑

ν

∫∫
d2k

v

d2k′

v′

× (k− k′)2ων(q)A
2
ν(k,k

′)

(exp(~ων(q)/kBT − 1)(1 − exp(−~ων(q)/kBT )
. (7.2)

Here k̄F is the average magnitude of the Fermi wave vector and S is the free area

of the Fermi surface. It was shown in Ref. 227 that the formula for the electrical

resistivity should not contains any electron–phonon enhancements in the electron

density of states. The electron velocities in Eq. (7.2) are therefore the same as those

in Eq. (7.1).

7.2. Transport theory and electrical conductivity

Let us summarize the results of the preceding sections. It was shown above that in

zero magnetic field, the quantities of main interest are the conductivity σ (or the

electrical resistivity, R = 1/σ) and the thermopower S. When a magnetic field B

is applied, the quantity of interest is a magnetoresistance

̺MR =
R(B)−R(B = 0)

R(B = 0)
(7.3)

and the Hall coefficient RH . The third of the (generally) independent transport

coefficients is the thermal conductivity κ. The important relation which relates κ

to R at low and high temperatures is the Wiedemann–Franz law.2,228 In simple

metals and similar metallic systems, which have well-defined Fermi surface, it is

possible to interpret all the transport coefficients mentioned above, the conductivity

(or resistivity), thermopower, magnetoresistance and Hall coefficient in terms of

the rate of scattering of conduction electrons from initial to final states on the

Fermi surface. Useful tool to describe this in an approximate way is the Boltzmann

transport equation, which, moreover is usually simplified further by introducing a

concept of a relaxation time. In the approach of this kind, we are interested in

low-rank velocity moments of the distribution function such as the current

j = e

∫
vf(v)d3v . (7.4)

In the limit of weak fields, one expects to find Ohm law j = σE. The validity of

such a formulation of the Ohm law was analyzed by Bakshi and Gross.229 This

approach was generalized and developed by many authors. The most popular kind

of consideration starts from the linearized Boltzmann equation which can be derived
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assuming weak scattering processes. For example, for the scattering of electrons by

“defect” (substituted atom or vacancy) with the scattering potential V d(r) the

perturbation theory gives

R ∼ 3π2m2Ω0N

4~3e2k2F

∫ 2kF

0

|〈k + q|V d(r)|k〉|2q3dq , (7.5)

where N and Ω0 are the number and volume of unit cells, kF the magnitude of the

Fermi wave vector, the integrand 〈k+ q|V d(r)|k〉 represents the matrix elements of

the total scattering potential V d(r), and the integration is over the magnitude of

the scattering wave vector q defined by q = k− k′.

Lax have analyzed in detail the general theory of carriers mobility in solids.230

Luttinger and Kohn,231,232 Greenwood,233 Chester and Thellung234 and Fujiita222

developed approaches to the calculation of the electrical conductivity on the basis

of the generalized quantum kinetic equations. The basic theory of transport for the

case of scattering by static impurities has been given in the works of Kohn and

Luttinger231,232 and Greenwood233 (see also Ref. 235). In these works, the usual

Boltzmann transport equation and its generalizations were used to write down the

equations for the occupation probability in the case of a weak, uniform and static

electric field. It was shown that in the case of static impurities, the exclusion prin-

ciple for the electrons has no effect at all on the scattering term of the transport

equation. In the case of scattering by phonons, where the electrons scatter inelasti-

cally, the exclusion principle plays a very important role and the transport problem

is more involved. On the other hand, transport coefficients can be calculated by

means of theory of the linear response such as the Kubo formulae for the elec-

trical conductivity. New consideration of the transport processes in solids which

involve weak assumptions and easily generalizable methods are of interest because

they increase our understanding of the validity of the equations and approxima-

tions used.45,46,235 Moreover, it permits one to consider more general situations

and apply the equations derived to a variety of physical systems.

8. The Method of Time Correlation Functions

The method of time correlation functions42,43,45,62,221,223,224,236 is an attempt to

base a linear macroscopic transport equation theory directly on the Liouville

equation. In this approach, one starts with complete N -particle distribution func-

tion which contains all the information about the system. In the method of time

correlation functions, it is assumed that the N -particle distribution function can

be written as a local equilibrium N -particle distribution function plus correction

terms. The local equilibrium function depends upon the local macroscopic vari-

ables, temperature, density and mean velocity and upon the position and momenta

of the N particles in the system. The corrections to this distribution functions are

determined on the basis of the Liouville equation. The main assumption is that

at some initial time the system was in local equilibrium (quasi-equilibrium) but at
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later time is tending towards complete equilibrium. It was shown by many authors

(for comprehensive review, see Refs. 42, 43 and 45) that the suitable solutions to the

Liouville equation can be constructed and an expression for the corrections to local

equilibrium in powers of the gradients of the local variables can be found as well.

The generalized linear macroscopic transport equations can be derived by retaining

the first term in the gradient expansion only. In principle, the expressions obtained

in this way should depend upon the dynamics of all N particles in the system and

apply to any system, regardless of its density.

8.1. Linear response theory

The linear response theory was anticipated in many works (see Refs. 42, 43, 45, 237

and 238 for details) on the theory of transport phenomena and nonequilibrium sta-

tistical mechanics. The important contributions have been made by many authors.

By solving the Liouville equation to the first-order in the external electric field,

Kubo239–243 formulated an expression for the electric conductivity in microscopic

terms.

He used linear response theory to give exact expressions for transport coeffi-

cients in terms of correlation functions for the equilibrium system. To evaluate

such correlation functions for any particular system, approximations have to be

made.

In this section, we shall formulate briefly some general expressions for the con-

ductivity tensor within the linear response theory. Consider a many-particle system

with the Hamiltonian of a system denoted by H . This includes everything in the

absence of the field; the interaction of the system with the applied electric field is

denoted by Hext. The total Hamiltonian is

H = H +Hext . (8.1)

The conductivity tensor for an oscillating electric field will be expressed in the

form239

σµν =

∫ β

0

∫ ∞

0

Trρ0jν(0)jµ(t+ i~λ)e−iωtdtdλ , (8.2)

where ρ0 is the density matrix representing the equilibrium distribution of the

system in absence of the electric field

ρ0 =
e−βH

[Tre−βH ]
, (8.3)

β being equal to 1/kBT . Here jµ, jν are the current operators of the whole system

in the µ, ν directions respectively, and jµ represents the evolution of the current as

determined by the Hamiltonian H

jµ(t) = eiHt/~jµe
−iHt/~ . (8.4)

Kubo derived his expression Eq. (8.2) by a simple perturbation calculation. He

assumed that at t = −∞ the system was in the equilibrium represented by ρ0. A
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sinusoidal electric field was switched on at t = −∞, which, however, was assumed

to be sufficiently weak. Then he considered the equation of motion of the form

i~
∂

∂t
ρ = [H +Hext(t), ρ] . (8.5)

The change of ρ to the first-order of Hext is given by

ρ− ρ0 =
1

i~

∫ t

−∞

e(−Ht′/i~)[Hext(t
′), ρ0]e

(Ht′/i~) +O(Hext) . (8.6)

Therefore, the averaged current will be written as

〈jµ(t)〉 =
1

i~

∫ t

−∞

Tr[Hext(t
′), ρ0]jµ(−t′)dt′ , (8.7)

where Hext(t
′) will be replaced by −edE(t′), ed being the total dipole moment of

the system. Using the relation

[A, e−βH ] =
~

i
e−βH

∫ β

0

eλH [A, ρ]e−λHdλ , (8.8)

the expression for the current can be transformed into Eq. (8.7). The conductivity

can be also written in terms of the correlation function 〈jν(0)jµ(t)〉0. The average

sign 〈· · ·〉0 means the average over the density matrix ρ0.

The correlation of the spontaneous currents may be described by the correlation

function239

Ξµν(t) = 〈jν(0)jµ(t)〉0 = 〈jν(τ)jµ(t+ τ)〉0 . (8.9)

The conductivity can be also written in terms of these correlation functions. For

the symmetric (“s”) part of the conductivity tensor, Kubo239 derived a relation of

the form

Reσs
µν(ω) =

1

εβ(ω)

∫ ∞

0

Ξµν(t) cosωtdt , (8.10)

where εβ(ω) is the average energy of an oscillator with the frequency ω at the tem-

perature T = 1/kBβ. This equation represents the so-called fluctuation–dissipation

theorem, a particular case of which is the Nyquist theorem for the thermal noise in

a resistive circuit. The fluctuation–dissipation theorems were established244,245 for

systems in thermal equilibrium. It relates the conventionally defined noise power

spectrum of the dynamical variables of a system to the corresponding admittances

which describe the linear response of the system to external perturbations.

The linear response theory is very general and effective tool for the calculation of

transport coefficients of the systems which are rather close to a thermal equilibrium.

Therefore, the two approaches, the linear response theory and the traditional kinetic

equation theory share a domain in which they give identical results. A general

formulation of the linear response theory was given by Kubo240–243 for the case

of mechanical disturbances of the system with an external source in terms of an

additional Hamiltonian.
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A mechanical disturbance is represented by a force F (t) acting on the system

which may be given function of time. The interaction energy of the system may

then be written as

Hext(t) = −AF (t) , (8.11)

where A is the quantity conjugate to the force F. The deviation of the system

from equilibrium is observed through measurements of certain physical quantities.

If ∆B̄(t) is the observed deviation of a physical quantity B at the time t, we may

assume, if only the force F is weak enough, a linear relationship between ∆B̄(t)

and the force F (t), namely

∆B̄(t) =

∫ t

−∞

φBA(t, t
′)F (t′)dt′ , (8.12)

where the assumption that the system was in equilibrium at t = −∞, when the

force had been switched on, was introduced. This assumption was formulated math-

ematically by the asymptotic condition,

F (t) ∼ eεt as t→ −∞(ε > 0) . (8.13)

Equation (8.12) assumes the causality and linearity. Within this limitation, it is

quite general. Kubo called the function φBA of response function of B to F , because

it represents the effect of a delta-type disturbance of F at the time t′ shown in

the quantity B at a later time t. Moreover, as it was claimed by Kubo, the linear

relationship (8.12) itself not in fact restricted by the assumption of small deviations

from equilibrium. In principle, it should be true even if the system is far from

equilibrium as far as only differentials of the forces and responses are considered.

For instance, a system may be driven by some time-dependent force and superposed

on it a small disturbance may be exerted; the response function then will depend

both on t and t′ separately. If, however, we confine ourselves only to small deviations

from equilibrium, the system is basically stationary and so the response functions

depend only on the difference of the time of pulse and measurement, t and t′, namely

φBA(t, t
′) = φBA(t− t′) . (8.14)

In particular, when the force is periodic in time

F (t) = ReFeiωt , (8.15)

the response of B will have the form

∆B̄(t) = ReχBA(ω)Fe
iωt , (8.16)

where χBA(ω) is the admittance

χBA(ω) =

∫ t

−∞

φBA(t)e
−iωtdt . (8.17)
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More precisely,246 the response ∆B̄(t) to an external periodic force F (t) = F cos(ωt)

conjugate to a physical quantity A is given by Eq. (8.16), where the admittance

χBA(ω) is defined as

χBA(ω) = lim
ε→+0

∫ ∞

0

φBA(t)e
−(iω+ε)tdt . (8.18)

The response function φBA(ω) is expressed as

φBA(t) = iTr[A, ρ]B(t) = −iTrρ[A,B(t)]

=

∫ β

0

TrρȦ(−iλ)B(t)dt = −
∫ β

0

TrρA(−iλ)Ḃdλ , (8.19)

where ρ is the canonical density matrix

ρ = exp(−β(H − Ω)) , exp(−βΩ) = Tr exp(−βH) . (8.20)

In certain problems, it is convenient to use the relaxation function defined by

ΦBA(t) = lim
ε→+0

∫ ∞

t

φBA(t
′)e−εt′dt′

= i

∫ ∞

t

〈[B(t′), A]〉dt′

= −
∫ ∞

t

dt′
∫ β

0

dλ〈A(iλ)Ḃ(t′)〉

=

∫ β

0

dλ(〈A(−iλ)B(t)〉 − lim
t→∞

〈A(−iλ)B(t)〉)

=

∫ β

0

dλ〈A(−iλ)B(t)〉 − β lim
t→∞

〈AB(t)〉

=

∫ β

0

dλ〈A(−iλ)B(t)〉 − β〈A0B0〉 . (8.21)

It is of use to represent the last term in terms of the matrix elements

∫ β

0

dλ〈A(−iλ)B(t)〉 − β〈A0B0〉

=

(
1/
∑

i

exp(−βEi)

)
∑

n,m

〈n|A|m〉〈m|B|n〉e−it(En−Em)

× e−βEn − e−βEm

Em − En
. (8.22)

Here |m〉 denotes an eigenstate of the Hamiltonian with an eigenvalue Em and A0

and B0 are the diagonal parts of A and B with respect to H . The response function



September 12, 2011 10:45 WSPC/140-IJMPB S0217979211059012

3122 A. L. Kuzemsky

χBA(ω) can be rewritten in terms of the relaxation function. We have

χBA(ω) = − lim
ε→+0

∫ ∞

0

φ̇BA(t)e
−(iω+ε)tdt

= φBA(0)− iω lim
ε→+0

∫ ∞

0

φBA(t)e
−(iω+ε)tdt

= − lim
ε→+0

∫ ∞

0

dt

∫ β

0

dλe−(iω+ε)t d

dt
〈AB(t+ iλ)〉

= i lim
ε→+0

∫ ∞

0

dte−(iω+ε)t(〈AB(t+ iβ)〉 − 〈AB(t)〉)

= i lim
ε→+0

∫ ∞

0

dte−(iω+ε)t〈[B(t), A]〉

=
∑

n,m

AmnBnm

ω + ωmn + iε
(e−βEn − e−βEm) , (8.23)

where

Amn =
〈m|A|n〉

(∑
n
e−βEn

)1/2
.

In particular, the static response χBA(0) is given by

χBA(0) = φBA(0)

=

∫ β

0

dλ(〈AB(iλ)〉 − lim
t→∞

〈AB(t+ iλ)〉)

= i lim
ε→+0

∫ ∞

0

e−εtdt(〈AB(t + iβ)〉 − 〈AB(t)〉)

= i lim
ε→+0

∫ ∞

0

e−εtdt〈[B(t), A]〉 . (8.24)

This expression can be compared with the isothermal response defined by

χT
BA =

∫ β

0

(〈AB(iλ)〉 − 〈A〉〈B〉)dλ . (8.25)

The difference of the two response functions is given by

χT
BA − χBA(0) = lim

t→∞

∫ β

0

dλ〈AB(t + iλ)〉 − β〈A〉〈B〉

= β
(
lim
t→∞

〈AB(t)〉 − 〈A〉〈B〉
)
. (8.26)
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The last expression suggests that it is possible to think that the two response

functions are equivalent for the systems which satisfy the condition

lim
t→∞

〈AB(t)〉 = 〈A〉〈B〉 . (8.27)

It is possible to speak about these systems in terms of ergodic (or quasi-ergodic)

behavior, however, with a certain reservation (for a recent analysis of the ergodic

behavior of many-body systems see Refs. 247–256).

It may be of use to remind a few useful properties of the relaxation function. If

A and B are both Hermitian, then

ΦBA(t) = real,

∫ ∞

0

ΦAA(t) ≥ 0 . (8.28)

The matrix-element representation of the relaxation function have the form

ΦBA(t) =
∑

m,n

(R1
mn cos(ωmn)−R2

mn sin(ωmn))

+ i
∑

m,n

(R1
mn sin(ωmn)−R2

mn cos(ωmn)) , (8.29)

where

R1
mn =

1

2
(AnmBmn +AmnBnm)R3

mn ,

R2
mn =

1

2i
(AnmBmn −AmnBnm)R3

mn ,

Amn =
〈m|A|n〉

(∑
n
e−βEn

)1/2
,

R3
mn =

e−βEn − e−βEm

ωmn
, ωmn = Em − En .

This matrix-element representation is very useful and informative. It can be shown

that the relaxation function has the property

ImΦBA(t) = 0 , (8.30)

which follows from the odd symmetry of the matrix-element representation. The

time integral of the relaxation function is given by
∫ ∞

0

ΦBA(t)dt =
πβ

2

∑

m,n

(AnmBmn +BnmAmn)e
−βEnδ(ωmn) . (8.31)

In particular, for A = B, we obtain
∫ ∞

0

ΦAA(t)dt = πβ
∑

m,n

|Anm|2e−βEnδ(ωmn) ≥ 0 . (8.32)
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It can also be shown246 that if A and B are both bounded, then we obtain
∫ ∞

0

ΦḂȦ(t)dt = i

∫ ∞

0

dt

∫ ∞

t

〈[Ḃ(t′), Ȧ]〉dt′

= −i
∫ ∞

0

dt〈[B(t), Ȧ]〉 = i〈[A,B]〉 . (8.33)

For A = B, we have
∫ ∞

0

ΦȦȦ(t)dt = 0 ,

∫ ∞

0

dt

∫ β

0

dλ〈Ȧ(−iλ), Ȧ(t)〉 = 0 (8.34)

and

lim
t→∞

〈ȦḂ(t)〉 = 0 , (8.35)

if A and B are both bounded.

Application of this analysis may not be limited to admittance functions.257 For

example, if one write a frequency-dependent mobility function µ(ω) as

µ(ω) = [iω + γ(ω)]−1 , (8.36)

the frequency-dependent friction γ(ω) is also related to a function φ(t), which is

in fact the correlation function of a random force.257 An advanced analysis and

generalization of the Kubo linear response theory was carried out in series of papers

by Van Vliet et al.46 Fluctuations and response in nonequilibrium steady-state

were considered within the nonlinear Langevin equation approach by Ohta and

Ohkuma.258 It was shown that the steady probability current plays an important

role for the response and time-correlation relation and violation of the time reversal

symmetry.

8.2. Green functions in the theory of irreversible processes

Green functions are not only applied to the case of statistical equilib-

rium.42,77,99,221,259–261 They are a convenient means of studying processes where

the deviation from the state of statistical equilibrium is small. The use of the

Green functions permits one to evaluate the transport coefficients of these pro-

cesses. Moreover, the transport coefficients are written in terms of Green functions

evaluated for the unperturbed equilibrium state without explicitly having recourse

to setting up a transport equation. The linear response theory can be reformulated

in terms of double-time temperature-dependent (retarded and advanced) Green

functions.259–261 We shall give a brief account of this reformulation42,260 and its

simplest applications to the theory of irreversible processes.

The retarded two-time thermal Green functions arise naturally within the linear

response formalism, as it was shown by Zubarev.42,260 To show this, we consider the

reaction of a quantum-mechanical system with a time-independent Hamiltonian H

when an external perturbation

Hext(t) = −AF (t) , (8.37)
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is switched on. The total Hamiltonian is equal to

H = H +Hext , (8.38)

where we assume that there is no external perturbation at lim t→ −∞
Hext(t)|lim t→−∞ = 0 . (8.39)

The last condition means that

lim
t→−∞

ρ(t) = ρ0 =
e−βH

[Tr e−βH ]
, (8.40)

where ρ(t) is a statistical operator which satisfies the equation of motion

i~
∂

∂t
ρ(t) = [H +Hext(t), ρ] . (8.41)

This equation of motion together with the initial condition (8.40) suggests to look

for a solution of Eq. (8.41) of the form

ρ(t) = ρ+∆ρ(t) . (8.42)

Let us rewrite Eq. (8.42), taking into account that [H, ρ] = 0, in the following form

i~
∂

∂t
(ρ+∆ρ(t)) = i~

∂

∂t
∆ρ(t)

= [H +Hext(t), ρ+∆ρ(t)]

= [H,∆ρ(t)] + [Hext(t), ρ] + [Hext(t),∆ρ(t)] . (8.43)

Neglecting terms Hext(t)∆ρ, since we have assumed that the system is only little

removed from a state of statistical equilibrium, we get then

i~
∂

∂t
∆ρ(t) = [H,∆ρ(t)] + [Hext(t), ρ] , (8.44)

where

∆ρ(t)|lim t→−∞ = 0 . (8.45)

Processes for which we can restrict ourselves in Eq. (8.44) to terms linear in the

perturbation are called linear dissipative processes. For a discussion of higher-order

terms, it is convenient to introduce a transformation

∆ρ(t) = e−iHt/~̺(t)eiHt/~ . (8.46)

Then we have

i~
∂

∂t
∆ρ(t) = [H,∆ρ(t)] + e−iHt/~

(
i~
∂

∂t
̺(t)

)
eiHt/~ . (8.47)

This equation can be transformed to the following form

i~
∂

∂t
̺(t) = [eiHt/~Hext(t)e

−iHt/~, ρ]

+ [eiHt/~Hext(t)e
−iHt/~, ̺(t)] , (8.48)
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where

̺(t)|lim t→−∞ = 0 . (8.49)

In the equivalent integral form, the the above equation reads

̺(t) =
1

i~

∫ t

−∞

dλ[eiHλ/~Hext(λ)e
−iHλ/~ , ρ]

+
1

i~

∫ t

−∞

dλ[eiHλ/~Hext(λ)e
−iHλ/~, ̺(λ)] . (8.50)

This integral form is convenient for the iteration procedure which can be written

as

̺(t) =
1

i~

∫ t

−∞

dλ[eiHλ/~Hext(λ)e
−iHλ/~, ρ]

+

(
1

i~

)2 ∫ t

−∞

dλ

∫ λ

−∞

dλ′

× [eiHλ/~Hext(λ)e
−iHλ/~, [eiHλ′/~Hext(λ

′)e−iHλ′/~, ρ]] + · · · (8.51)

In the theory of the linear reaction of the system on the external perturbation,

usually the only first term is retained

∆ρ(t) =
1

i~

∫ t

−∞

dτe−iH(t−τ)/~[Hext(τ), ρ]e
iH(t−τ)/~ . (8.52)

The average value of observable A is

〈A〉t = Tr(Aρ(t)) = Tr(Aρ0) + Tr(A∆ρ(t)) = 〈A〉+∆〈A〉t . (8.53)

From this, we find

∆〈A〉t =
1

i~

∫ t

−∞

dτ

×Tr(eiH(t−τ)/~Ae−iH(t−τ)/~Hext(τ)ρ−Hext(τ)e
iH(t−τ)/~Ae−iH(t−τ)/~ρ)

+ · · ·

=
1

i~

∫ t

−∞

dτ〈[A(t − τ), Hext(τ)]−〉+ · · · (8.54)

Introducing under the integral the sign function

θ(t− τ) =

{
1 if τ < t ,

0 if τ > t ,
(8.55)

and extending the limit of integration to −∞ < τ < +∞, we finally find

∆〈A〉t =
∫ ∞

−∞

dτ
1

i~
θ(τ)〈[A(τ), Hext(t− τ)]−〉+ · · · (8.56)
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Let us consider an adiabatic switching on a periodic perturbation of the form

Hext(t) = B exp
1

i~
(E + iε)t .

The presence in the exponential function of the infinitesimal factor ε > 0, ε → 0

make for the adiabatic switching of the perturbation. Then we obtain

∆〈A〉t = exp
1

i~
(E + iε)t

∫ ∞

−∞

dτ exp
−1

i~
(E + iε)τ

1

i~
θ(τ)〈[A(τ), B]−〉 . (8.57)

It is clear that the last expression can be rewritten as

∆〈A〉t = exp
1

i~
(E + iε)t

∫ ∞

−∞

dτ exp
−1

i~
(E + iε)τGret(A,B; τ)

= exp
1

i~
(E + iε)tGret(A,B;E)

= exp
1

i~
(E + iε)t〈〈A|B〉〉E+iε . (8.58)

Here E = ~ω and 〈〈A|B〉〉E+iε is the Fourier component of the retarded Green

function 〈〈A(t);B(τ)〉〉.
The change in the average value of an operator when a periodic perturbation is

switched on adiabatically can thus be expressed in terms of the Fourier components

of the retarded Green functions which connect the perturbation operator and the

observed quantity.

In the case of an instantaneous switching on of the interaction

Hext(t) =






0 if t < t0 ,
∑
Ω

exp(Ωt/i~)VΩ if t > t0 ,
(8.59)

where VΩ is an operator which does not explicitly depend on the time, we get

∆〈A〉t =
∑

Ω

∫ ∞

t0

dτ〈〈A(t);VΩ(τ)〉〉 exp
1

i~
(Ω + iε)τ , (8.60)

i.e., the reaction of the system can also be expressed in terms of the retarded Green

functions.

Now we can define the generalized susceptibility of a system on a perturbation

Hext(t) as

χ(A,B;E) = χ(A, zB;E)

= lim
z→0

1

z
∆〈A〉t exp

−1

i~
(E + iε)t

= 〈〈A|B〉〉E+iε . (8.61)

In the time representation, the above expression reads

χ(A,B;E) =
1

i~

∫ ∞

−∞

dt exp
−1

i~
(E + iε)tθ(t)〈[A(t), B]−〉 . (8.62)
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This expression is an alternative form of the fluctuation–dissipation theorem, which

show explicitly the connection of the relaxation processes in the system with the

dispersion of the physical quantities.

The particular case where the external perturbation is periodic in time and

contains only one harmonic frequency ω is of interest. Putting in that case Ω = ±~ω

in Eq. (8.60), since

Hext(t) = −h0 cosωteεtB , (8.63)

where h0, the amplitude of the periodic force, is a c-number and where B is the

operator part of the perturbation, we get

∆〈A〉t = −h0 exp
(

1

i~
ωt+ εt

)
〈〈A|B〉〉E=~ω

− h0 exp

(−1

i~
ωt+ εt

)
〈〈A|B〉〉E=−~ω . (8.64)

Taking into account that 〈A〉t is a real quantity, we can write it as follows

∆〈A〉t = Re(χ(E)h0e
1
i~

Et+εt) . (8.65)

Here χ(E) is the complex admittance, equal to

χ(E) = −2π〈〈A|B〉〉E=~ω . (8.66)

These equations elucidate the physical meaning of the Fourier components of the

Green function 〈〈A|B〉〉E=~ω as being the complex admittance that describes the

influence of the periodic perturbation on the average value of the quantity A.

8.3. The electrical conductivity tensor

When a uniform electric field of strength E is switched on then the perturbation

acting upon the system of charged particles assumes the form Hext = −E · d(t),
where d(t) is the total dipole moment of the system. In this case, the average

operator A(t) is the current density operator j and the function χ is the complex

electrical conductivity tensor denoted by σαβ(ω). If the volume of the system is

taken to be equal to unity, then we have

d

dt
dα(t) = jα(t) . (8.67)

The Kubo formula (8.65) relates the linear response of a system to its equilibrium

correlation functions. Here we consider the connection between the electrical con-

ductivity tensor and Green functions.42,260 Let us start with a simplified treatment

when there be switched on adiabatically an electrical field E(t), uniform in space

and changing periodically in time with a frequency ω

E(t) = E cosωt . (8.68)
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The corresponding perturbation operator is equal to

Hext(t) = −e
∑

j

(Erj) cosωte
εt . (8.69)

Here e is the charge of an electron, and the summation is overall particle coordinates

rj . Under the influence of the perturbation, there arises in the system an electrical

current

jα(t) =

∫ ∞

−∞

dτ〈〈jα(t);Hext(τ)〉〉 , (8.70)

where

Hext(τ) = H1
τ (τ) cosωτe

ετ ,

H1
τ (τ) = −e

∑

jα

Eαrαj (τ) , jα(t) = e
∑

j

ṙαj (t) .
(8.71)

Here jα is the current density operator, if the volume of the system is taken to be

unity. Equation (8.70) can be transformed to the following form

jα(t) = −Re

{∫ ∞

−∞

dτ〈〈jα(t);H1
τ (τ)〉〉

e
i
~
ωt+ετ

iω + ε

+ 〈[jα(0), H1
τ (0)]−〉e

i
~
ωt+εt 1

ω − iε

}
. (8.72)

Noting that

Ḣ1
τ (τ) = −(Ej(τ)) , [rαi , r

β
j ] =

1

i~m
δαβδij , (8.73)

we get from this equation

jα(t) = Re{σαβ(ω)Eβ exp(iωt+ εt)} , (8.74)

where

σαβ(ω) = − ie
2n

mω
δαβ +

∫ ∞

−∞

dτ〈〈jα(0); jβ(τ)〉〉
exp(iωt+ εt)

iω + ε
(8.75)

is the conductivity tensor, and n the number of electrons per unit volume. The

first term in Eq. (8.75) corresponds to the electrical conductivity of a system of

free charges and is not connected with the interparticle interaction. As ω → ∞, the

second term decreases more strongly than the first one

lim
ω→∞

Imωσαβ(ω) = −e
2n

mω
δαβ ,

and the system behaves as a collection of free charges.

Let us discuss the derivation of the conductivity tensor in general form. Consider

a system of charged particles in electrical field E, which is directed along the axis

β (β = x, y, z). The corresponding electrostatic potential ϕ(β)

E
(β) = −∇ϕ(β)
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has the following form

ϕ(β)(r, t) =
∑

Ω

1

V

∑

q

ϕ(β)(q,Ω) exp((Ωt+ iεt)/i~− iqr) . (8.76)

In the momentum representation, the above expression reads

E(β)
α (q,Ω) =

i

~
qαϕ

(β)(q,Ω) = δαβEβ(q,Ω) . (8.77)

Consider the case when the perturbation Hext has the form

Hext
qΩ =

1

V
eϕ(β)(q,Ω)η†q exp((Ωt+ iεt)/i~) (8.78)

Here

ηq =
∑

p

a†p+qap , η†q = η−q .

is the particle density operator.

A reaction of the system on the perturbation is given by

I(β)α (q,Ω) = ∆〈ejα(q)〉

=
1

V
〈〈ejα(q)|eϕ(β)(q,Ω)η†q〉〉Ω+iε

= e2ϕ(β)(q,Ω)
1

V

∫ ∞

−∞

dωJ(η†q , jα(q);ω)
eω/θ − 1

Ω − ω + iε
, (8.79)

where I
(β)
α (q,Ω) denotes the component of the density of the current in the α-

direction when external electric field directed along the β-axis.

8.4. Linear response theory: pro et contra

It was shown in the previous sections that the formulation of the linear response

theory can be generalized so as to be applied to a rather wide class of the problems.

It is worth to note that the “exact” linear expression for electrical conductivity for

an arbitrary system was derived originally by Kubo240 in a slightly different form

than Eq. (8.75)

σµν = lim
ε→0

1

ε

(
φµν(0) +

∫ ∞

−∞

dte−εtφ̇µν(t)

)
, (8.80)

where

φµν(t) =
1

i~
Tr

(
n,
∑

i

eixiν

)
∑

i

eiẋiν(t) (8.81)

is the current response in the µ-direction when a pulse of electric field E(t) is applied
in the ν-direction at t = 0; ei is the charge of the ith particle with position vector ri
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and n is a density operator. In the one-electron approximation, Eq. (8.80) reduces

to (cf. Ref. 233)

σij = 2πe2h
∑

nm

〈m|vi|n〉〈n|vj |m〉
(
∂f

∂E

)

n

. (8.82)

Here vi is the velocity operator and f is the Fermi function.

To clarify the general consideration of the above sections, it is of interest to

consider here a simplified derivation of this formula, using only the lowest-order of

time-dependent perturbation theory.262 This approach is rooted in the method of

derivation of Callen and Welton,263 but takes explicitly into account degeneracy

of the states. The linear response theory formulated by Kubo240 was motivated in

part237,238 by the prior work of Callen and Welton,263 who proposed a quantum-

mechanical perturbative calculation with the external forces exerted on a dissipative

system. They pointed out a general relationship between the power dissipation

induced by the perturbation and the average of a squared fluctuation of the current

of the system in thermal equilibrium.

Let us discuss first the role of dissipation. A system may be called to be dissipa-

tive if it absorbs energy when subjected to a time-periodic perturbation, and linear

if the dissipation (rate of absorption of energy) is quadratic in the perturbation.

For a linear system, an impedance may be defined and the proportionality constant

between the power and the square of the perturbation amplitude is simply related

to the impedance. In the case of electrical current in a material, one can write down

that

W̄ =
1

2

R

(Impedance)2
= V 2 ,

where W̄ is the average power and V is the voltage. If we calculate the power

microscopically in some way and find it quadratic in the applied force (voltage),

then comparison with this equation will give the conductivity of the substance.

Consider a situation when an electron of charge e is situated a distance x from

the end of a resistor of length L and then a voltage V = V0 sinωt is applied in the

x-direction.262 The perturbation term in the Hamiltonian will be of the form

Hext
ω = V0e

x

L
sinωt . (8.83)

The Hamiltonian of a system in the absence of the field (but including all other

interactions) is denoted by H0 with corresponding wavefunction ψn such that

H0ψn = Enψn . (8.84)

The total wavefunction may be expanded in terms of the ψn

Ψn =
∑

n

an(t)ψn , (8.85)
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where the coefficients an(t) may be approximately determined by first-order per-

turbation theory.81 The rate of transition is then given by

dpn
dt

=
1

2

πe2V 2
0

~

∑

mn

|〈m|x|n〉|2[δ(Em − (En + ~ω)) + δ(Em − (En − ~ω))]. (8.86)

The first term corresponds to a transition to a state Em = En+~ω in which energy

~ω is absorbed, whereas the second term corresponds to a transition to a state

Em = En − ~ω in which energy is emitted. Hence, the net rate of absorption of

energy is given by

dEn

dt
=

1

2

πe2V 2
0

~
~ω
∑

mn

|〈m|x|n〉|2[δ(Em − En − ~ω) + δ(Em − En + ~ω)] , (8.87)

which is quadratic in V0.

This equation gives the absorption rate for a single, isolated electrons, but in a

real system we are dealing with an ensemble of these, which we shall represent by

the Fermi function. One must therefore find262 the average absorption by averaging

over all initial states |n〉 and taking the Pauli exclusion principle as well as the two

spin directions into account. The result is262:
〈
dEn

dt

〉
= πe2V 2

0 ω
∑

mn

|〈m|x|n〉|2

×{f(En)δ(Em − En − ~ω)(1− f(Em))

− f(En)δ(Em − En + ~ω)(1− f(Em))}

= πe2V 2
0 ω

{
∑

n

|〈n+ ~ω|x|n〉|2[f(En)− f(En)f(En + ~ω)]

−
∑

n′

|〈n′|x|n′ + ~ω〉|2[f(En′ + ~ω)− f(En′ + ~ω)f(En′)]

}
, (8.88)

where we have put n′ = n−~ω. The above formula can be transformed to the form
〈
dEn

dt

〉
= πe2V 2

0 ω
∑

mn

|〈m|x|n〉|2

× [f(En)− f(Em)]δ(Em − En − ~ω) . (8.89)

This expression may be simplified by introducing the matrix-element of the velocity

operator

dx

dt
=
i

~
[H,x] . (8.90)

In principle, on the right-hand side of Eq. (8.90), the total Hamiltonian

H = H +Hext (8.91)
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should be written. In this case, however, the terms of higher than quadratic order

in V0 appear. For a linear system, one can neglect these and use Eq. (8.90). Thus,

we have

|〈m|ẋ|n〉| = i

~
〈m|[H,x]|n〉 = i

~
(Em〈m|x|n〉 − En〈m|x|n〉) (8.92)

and

|〈m|ẋ|n〉|2 =
−1

~2
(Em − En)

2|〈m|x|n〉|2 = ω2|〈m|x|n〉|2 . (8.93)

Therefore
〈
dEn

dt

〉
= −πe

2

ω
V 2
0

∑

mn

|〈m|ẋ|n〉|2[f(En)− f(En + ~ω)]δ(Em − En − ~ω) . (8.94)

If we now assume the current to be in phase with the applied voltage, the average

energy dissipation becomes

Power =
1

2

V 2
0

R(ω)
(8.95)

as the resistance R(ω) is now equal to the impedance Z(ω). Referring everything

to unit volume and noting that the resistance per unit volume is the resistivity, we

get for the conductivity σ

σxx(ω) = −2πe2

ω

∑

mn

|〈m|v|n〉〈n|v|m〉|

× [f(En)− f(En + ~ω)]δ(Em − En − ~ω) . (8.96)

A straightforward generalization of this procedure, using a perturbation

Hext =
∑

i

V0exi/L sin(ωt) , (8.97)

leads to the definition of an impedance matrix and a conductivity tensor

σij =
2πe2

ω

∑

nm

|〈m|vi|n〉〈n|vj |m〉|[f(En)− f(En + ~ω)]δ(Em − En − ~ω) , (8.98)

which is the Kubo–Greenwood equation.233,240 The derivation262 presented here

confirms that fact that the linear response theory is based on the fluctuation–

dissipation theorem, i.e., that the responses to an external perturbation are es-

sentially determined by fluctuations of relevant physical quantities realized in the

absence of the perturbation. Thus, the linear response theory has a special appeal

since it deals directly with the quantum mechanical motion of a process.

The linear response theory (or its equivalent) soon became a very popular tool

of the transport theory.264,265 As was expressed by Langer,266 the Kubo formula

“probably provides the most rigorous possible point of departure for transport the-

ory. Despite its extremely formal appearance, it has in fact proved amenable to di-

rect evaluation for some simple models.” Edwards267 and Chester and Thellung234
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have used the Kubo formula to calculate the impurity resistance of a system of inde-

pendent electrons and have recovered the usual solution of the linearized Boltzmann

equation. Verboven268 has extended this work to higher-orders in the concentration

of impurities and has found corrections to the conductivity not originally derived

via Boltzmann techniques. It was concluded that the Kubo formula might be most

fruitfully applied in the full many-body problem, where it is not clear that any

Boltzmann formulation is valid. However, Izuyama269 casted doubt on the Kubo

formula for electrical conductivity. He claimed that it is not, in fact, an exact for-

mula for electrical conductivity, but is rather a coefficient relating current to an

“external” field, the coefficient of which is equal to the conductivity only in special

case. A correlation-function formula for electrical conductivity was derived by Ma-

gan270 by a formalism which gives prominence to the total electric field, including

fields which may arise from the charged particles that are part of the system being

studied.

Langer266 evaluated the impurity resistance of an interacting electron gas on

the basis of the Kubo formula at low but finite temperatures. The calculations are

exact to all orders in the electron–electron interactions and to lowest-order in the

concentration of impurities. In the previous papers,271,272 the impurity resistance

of this gas was computed at absolute zero-temperature. It was shown266 that the

zero-temperature limit of this calculation yields the previous result. In Ref. 228,

Kubo formula for thermal conductivity was evaluated for the case of an interacting

electron gas and random, fixed, impurities. The heat flux was examined in some

detail and it was shown that in a normal system where the many-body correlations

are sufficiently weak, the Wiedemann–Franz law remains valid. The relationships

between the transport coefficients of a metal in a strong magnetic field and at very

low temperatures were discussed by Smrcka and Streda.273 Formulae describing the

electron coefficients as functions of the conductivity were derived on the basis of

the linear response theory. As was mentioned earlier, examples of such relations are

the Wiedemann–Franz law for the heat conductivity κ and the Mott rule207 for the

thermopower S. It was shown that that the Wiedemann–Franz law and the Mott

rule are obeyed even in the presence of a quantized magnetic field ωτ > 1 if the

scattering of electrons is elastic and if ~ω ≫ kT.

A theoretical analysis, based on Kubo formalism, was made for the ferromag-

netic Hall effect by Leribaux274 in the case of transport limited by electron–phonon

scattering. The antisymmetric, off-diagonal conductivity was, to first-order in mag-

netization, found to be of order zero in the electron–phonon interaction (assumed

to be weak) and, to this order, was equivalent to Karplus and Luttinger results.275

Tanaka, Moorjani, and Morita276 expressed the nonlinear transport coefficients in

terms of many-time Green functions and made an attempt to calculate the higher-

order transport coefficients. They applied their theory to the calculation of the

nonlinear susceptibility of a Heisenberg ferromagnet and nonlinear polarizability

problem. Schotte277reconsidered the linear response theory to show the closeness

of it and kinetic equations.
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At the same time, several authors278–280 raised an important question as to the

general validity of the correlation formulae for transport coefficients. The relation

for the electrical conductivity was, in principle, not questioned as in this case (as

was shown above) one may obtain it by a straightforward application of basic

statistical mechanical principles and perturbation techniques. One simply calculates

the response of the system to an electric field. What has been questioned, however,

was the validity of the correlation relations for the transport coefficients of a fluid

— the diffusion constant, the thermal conductivity, and the viscosity — where

no such straightforward procedure, as was used for the electrical conductivity was

available.281

However, Jackson and Mazur282 presented a derivation of the correlation formula

for the viscosity which is similar in spirit, and as free of additional assumptions,

as that for the electrical conductivity. The correlation formula for the viscosity

was obtained by calculating statistically the first-order response of a fluid, initially

in equilibrium, to an external shearing force. It was shown that on the basis of

this derivation, the correlation formula for the viscosity, the exactness of which

had been questioned, was placed on as firm a theoretical basis as the Kubo rela-

tion for the electrical conductivity. In addition, Resibois283,284 demonstrated the

complete equivalence between the kinetic approach developed by Prigogine285 and

the correlation function formalism for the calculation of linear thermal transport

coefficients. It was shown that in both cases these transport coefficients are de-

termined by the solution of an inhomogeneous integral equation for a one-particle

distribution function which is the generalization to strongly coupled system of the

Chapman–Enskog first approximation of the Boltzmann equation.45,286 Interesting

remarks concerning the comparison of the linear response theory and Boltzmann

equation approach were formulated by Peierls.225,287 Schofield288,289 elaborated a

general derivation of the transport coefficients and thermal equilibrium correlation

functions for a classical system having arbitrary number of microscopic conservation

laws. This derivation gives both the structure of the correlation functions in the hy-

drodynamic (long wavelength) region and a generalized definition of the transport

coefficients for all wavelengths and frequencies.

A number of authors have given the formulation of nonlinear re-

sponses.258,290–295 It was shown that since in a nonlinear system fluctuation sources

and transport coefficients may considerably depend on a nonequilibrium state of the

system, nonlinear nonequilibrium thermodynamics should be a stochastic theory.

From the other side, the linearity of the theory itself was a source of many doubts.

The most serious criticism of the Kubo linear response theory was formulated by

van Kampen.296 He argued strenuously that the standard derivation of the response

functions are incorrect. In his own words, “the basic linearity assumption of linear

response theory . . . is completely unrealistic and incompatible with basic ideas of

statistical mechanics of irreversible processes.” The main question raised by van

Kampen concerned the logic of the linear response theory, not the results. As van
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Kampen296 expressed it, “the task of statistical mechanics is not only to provide an

expression for this (transport) coefficient in term of molecular quantities, but also

to understand how such a linear dependence arises from the microscopic equations

of motion.”

van Kampen’s objections296 to Kubo linear response theory can be reduced to

the following points. In the linear response theory, one solves the Liouville equation

to first-order in the external field E (electric field). This is practically equivalent to

following a perturbed trajectory in phase space in a vicinity of the order of |E| of
unperturbed trajectory. In the classical case, trajectories are exponentially unsta-

ble and the corresponding field E should be very small. Kubo’s derivation supposed

nonexplicitly that macroscopic linearity (Ohm law, etc.) is the consequence of mi-

croscopic linearity, but these two notions are not identical. Macroscopic linearity is

the result of averaging over many trajectories and is not the same as linear devia-

tions from any one trajectory. In other words, van Kampen’s argument was based

on the observation that due to the Lyapunov instability of phase-space trajectories,

even a very small external field will rapidly drive any trajectory far away from the

corresponding trajectory without field. Hence, linear response theory which is based

on the proportionality of the trajectory separation with the external field could only

be expected to hold for extremely short times, of no physical interest. Responses

to van Kampen’s objections were given by many authors.46,214,297–301 The main

arguments of these responses were based on the deep analysis of the statistical

mechanical behavior of the many-body system under the external perturbation. It

was shown that in statistical mechanical calculations, one deals with the probability

distributions for the behavior of the many particles than an individual particle. An

analysis of the structural stability of hyperbolic dynamics-averaging and some other

aspects of the dynamical behavior shows that the linear separation of trajectories

goes on long enough for Green–Kubo integrals to decay. Moreover, Naudts, Pule

and Verbeure302 analyzed the long-time behavior of correlations between extensive

variables for spin-lattice systems and showed that the Kubo formula, expressing

the relaxation function in terms of of the linear response function, is exact in the

thermodynamic limit.

It was mentioned above that in the 1950s and 1960s, the fluctuation relations,

that is, the so-called Green–Kubo relations,45,46,303–305 were derived for the causal

transport coefficients that are defined by causal linear constitutive relations such

as Fourier law of heat flow or Newton law of viscosity. Later it was shown also that

it was possible to derive an exact expression for linear transport coefficients which

is valid for systems of arbitrary temperature, T , and density. The Green–Kubo

relations give exact mathematical expression for transport coefficients in terms of

integrals of time correlation functions.45,46,303–305 More precisely, it was shown that

linear transport coefficients are exactly related to the time dependence of equilib-

rium fluctuations in the conjugate flux. For a more detailed discussion of these

questions, see Refs. 45, 46, 302–305.
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To summarize, close to equilibrium, linear response theory and linear irre-

versible thermodynamics provide a relatively complete treatment. However, in sys-

tems where local thermodynamic equilibrium has broken down, and thermodynamic

properties are not the same local functions of thermodynamic state variables such

that they are at equilibrium, serious problems may appear.45,46

9. The Nonequilibrium Statistical Operator Method and

Kinetic Equations

The method of the nonequilibrium statistical order (NSO)42,43,211,212,306 was re-

viewed already in detail45 by us. In this section, we remind very briefly the main

ideas of the NSO approach42,43,45,211,212,306,307 for the sake of a self-contained for-

mulation. The precise definition of the nonequilibrium state is quite difficult and

complicated and is not uniquely specified. Thus, the method of reducing the num-

ber of relevant variables was proposed. A large and important class of transport

processes can reasonably be modeled in terms of a reduced number of macroscopic

relevant variables.42,215 It was supposed that the equations of motion for the “rel-

evant” variables (the space- and time-dependent thermodynamic “coordinates” of

a many-body nonequilibrium system), can be derived directly from the Liouville

equation. This can be done by defining a generalized canonical density operator

depending only upon present values of the thermodynamic “coordinates”. Accord-

ing to Zubarev,42,43 the NSO method permits one to generalize the Gibbs ensemble

method to the nonequilibrium case and to construct an NSO which enables one

to obtain the transport equations and calculate the kinetic coefficients in terms of

correlation functions, and which, in the case of equilibrium, goes over to the Gibbs

distribution. The basic hypothesis is that after small time-interval τ , the nonequi-

librium distribution is established. Moreover, it is supposed that it is weakly time-

dependent by means of its parameter only. Then the statistical operator ρ for t ≥ τ

can be considered as an “integral of motion” of the quantum Liouville equation

∂ρ

∂t
+

1

i~
[ρ,H ] = 0 . (9.1)

Here ∂ρ/∂t denotes time differentiation with respect to the time variable on which

the relevant parameters Fm depend. It is important to note once again that ρ de-

pends on t by means of Fm(t) only. We may consider that the system is in thermal,

material, and mechanical contact with a combination of thermal baths and reser-

voirs maintaining the given distribution of parameters Fm. For example, it can be

the densities of energy, momentum and particle number for the system which is

macroscopically defined by given fields of temperature, chemical potential and ve-

locity. It is assumed that the chosen set of parameters is sufficient to characterize

macroscopically the state of the system. The set of the relevant parameters is dic-

tated by the external conditions for the system under consideration and, therefore,

the term ∂ρ/∂t appears as the result of the external influence upon the system; this

influence causes that the system is nonstationary.
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In order to describe the nonequilibrium process, it is also necessary to choose

the reduced set of relevant operators Pm, where m is the index (continuous or

discrete). In the quantum case, all operators are considered to be in the Heisenberg

representation

Pm(t) = exp

(
iHt

~

)
Pm exp

(−iHt
~

)
, (9.2)

where H does not depend on the time. The relevant operators may be scalars

or vectors. The equations of motions for Pm will lead to the suitable “evolution

equations”.42,45 In the quantum case,

∂Pm(t)

∂t
− 1

i~
[Pm(t), H ] = 0 . (9.3)

The time argument of the operator Pm(t) denotes the Heisenberg representation

with the Hamiltonian H independent of time. Then we suppose that the state of

the ensemble is described by an NSO which is a functional of Pm(t)

ρ(t) = ρ{· · ·Pm(t) · · ·} . (9.4)

Then ρ(t) satisfies the Liouville equation (9.1). Hence the quasi-equilibrium (local

equilibrium) Gibbs-type distribution will have the form

ρq = Q−1
q exp

(
−
∑

m

Fm(t)Pm

)
, (9.5)

where the parameters Fm(t) have the sense of time-dependent thermodynamic pa-

rameters, e.g., of temperature, chemical potential and velocity (for the hydrody-

namic stage), or the occupation numbers of one-particle states (for the kinetic

stage). The statistical functional Qq is defined by demanding that the operator ρq
be normalized and equal to

Qq = Tr exp

(
−
∑

m

Fm(t)Pm

)
. (9.6)

The kinetic equations are of great interest in the theory of transport processes. In

the NSO approach,42,45,307 the main quantities involved are the following thermo-

dynamically conjugate values:

〈Pm〉 = − δΩ

δFm(t)
; Fm(t) =

δS

δ〈Pm〉 . (9.7)

The generalized transport equations that describe the time evolution of variables

〈Pm〉 and Fm follow from the equation of motion for the Pm, averaged with the

NSO (9.4). It reads

〈Ṗm〉 = −
∑

n

δ2Ω

δFm(t)δFn(t)
Ḟn(t) ; Ḟm(t) =

∑

n

δ2S

δ〈Pm〉δ〈Pn〉
〈Ṗn〉 . (9.8)
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10. Generalized Kinetic Equations and Electroconductivity

10.1. Basic formulas

Let us consider a many-particle system in the quasi-equilibrium state. It is deter-

mined completely by the quasi-integrals of motion, which are the internal param-

eters of the system. In this and following sections, we will use the notation Aj for

the relevant observables to distinguish it from the momentum operator P. Here,

for the sake of simplicity, we shall mainly treat the simplest case of mechanical

perturbations acting on the system. The total Hamiltonian of the system under the

influence of homogeneous external perturbation, depending on time as ∼ exp(iωt)

is written in the following form

H(t) = H +HF (t) , HF (t) = −
∑

j

AjFj exp(iωt) . (10.1)

In the standard approach the statistical operator ρ can be considered as an “integral

of motion” of the quantum Liouville equation

∂ρ(t)

∂t
+

1

i~
[ρ(t),H(t)] = 0 . (10.2)

Using the ideas of the method of the NSO, as it was described above, we can write

ρ(t) = ε

∫ t

−∞

dt1e
−ε(t−t1)U(t, t1)ρ(t1)U

†(t, t1) . (10.3)

The time-evolution operator U(t, t1) satisfy the conditions

∂

∂t
U(t, t1) =

1

i~
H(t)U(t, t1) ,

∂

∂t1
U(t, t1) = − 1

i~
H(t)U(t, t1) , U(t, t) = 1 .

If we consider the special case in which ρ(t1) → ρ0, where ρ0 is an equilibrium

solution of the quantum Liouville equation (10.2), then we can find the NSO from

the following equation:

∂ρKε (t)

∂t
+

1

i~
[ρKε ,H(t)] = −ε(ρKε − ρ0) . (10.4)

In the limε→0+ the NSO will corresponds to the Kubo density matrix

ρKε (t) = ρ0 =
1

i~

∫ t

−∞

dt1e
−ε(t−t1)U(t, t1)[ρ0, HF (t1)]U

†(t, t1) . (10.5)

An average of the observable Bj are defined as

lim
ε→0+

Tr(ρKε (t)Bj) = 〈Bj〉t .
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The linear response approximation for the statistical operator is given by

ρKε (t) = ρ0 −
1

i~

∑

j

AjFj exp(iωt)

∫ 0

−∞

dt1e
(ε+iω)t1

× exp

(
iHt1
~

)
[ρ0, Aj ] exp

(−iHt1
~

)
. (10.6)

Using the obtained expression for the statistical operator, the mean values of the

relevant observablesBi can be calculated. To simplify notation, only observables will

be considered for which the mean value in the thermal equilibrium vanishes. In other

words, in general, the Bi will be replaced by Bi − 〈Bi〉0, where 〈Bi〉0 = Tr(ρ0Bi).

We find

〈Bi〉t ≡ Tr(ρKε (t)Bi) =
∑

j

Lij(ω)Fj exp(iωt) , (10.7)

where the linear response coefficients (linear admittances) are given by

Lij(ω) = 〈Ȧj ;Bi〉ω−iε , (ε→ 0+) . (10.8)

This expression vanish for operators Aj commuting with the Hamiltonian H of the

system, i.e., the Kubo expressions for Lij(ω) vanish for all ω where for ω = 0 the

correct result is given by

〈Bi〉 = β
∑

j

FjTr(ρ0AjBi) =
∑

j

Lij(ω)Fj exp(iωt) . (10.9)

The scheme based on the NSO approach starts with the generalized Liouville

equation

∂ρε(t)

∂t
+

1

i~
[ρε(t),H(t)] = −ε(ρε(t)− ρq(t)) . (10.10)

For the set of the relevant operators Pm, it is follow that

d

dt
Tr(ρε(t)Pm) = 0 . (10.11)

Here notation are

ρq(t) = Q−1 exp

[
−β
(
H − µN −

∑

m

Fm(t)Pm

)]
,

Fm(t) = Fm exp(iωt) , Pm → Pm − 〈Pm〉0 .

(10.12)

To find the approximate evolution equations, the ρε(t) can be linearized with respect

to the external fields Fj and parameters Fm

ρ(t) = ρq(t)− exp(iωt)ρ0

(∫ 0

−∞

dt1e
(ε+iω)t1

∫ β

0

dτ
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×


−

∑

j

FjȦj(t− iτ) +
∑

m

FmṖm(t− iτ) + iω
∑

m

FmPm(t− iτ)




 .

(10.13)

As a result, we find
∑

n

Fn(〈Ṗn;Pm〉ω−iε + iω〈Pn;Pm〉ω−iε) =
∑

j

Fj〈Ȧj ;Pm〉ω−iε . (10.14)

In other notation, we obtain
∑

n

Fn((Ṗn|Pm) + 〈Ṗn; Ṗm〉ω−iε + iω[(Pn|Pm) + 〈Pn; Ṗm〉ω−iε])

=
∑

j

Fj((Ȧj |Pm) + 〈Ȧj ; Ṗm〉ω−iε) , (10.15)

where

〈A;B〉ω−iε =

∫ ∞

−∞

dte(ω−iε)t(A(t)|B) ;

(A|B) =

∫ β

0

dλTr(ρ0A(−iλ)B) , ρ0 =
1

Q
e−βH ;

χij = (Ai|Aj) ,
∑

k

χik(χ
−1)kj = δij .

(10.16)

Thus, our generalized transport equation can be written in the following abbrevi-

ated form
∑

n

FnPnm =
∑

j

FjKjm . (10.17)

10.2. Electrical conductivity

The general formalism of the NSO has been the starting point of many calculations

of transport coefficients in concrete physical systems. In the present section, we

consider some selected aspects of the theory of electron conductivity in transition

metals and disordered alloys.308–310 We put ~ = 1 for simplicity of notation. Let us

consider the dc electrical conductivity

σ =
e2

3m2Ω
〈P;P〉 = e2

3m2Ω

∫ 0

−∞

dteεt
∫ β

0

dλTr(ρP (t− iλ)P) , ε→ 0 (10.18)

where P is the total momentum of the electrons. Representing P as a sum of

operators Ai (relevant observables) which can be chosen properly to describe the

system considered (see below), the corresponding correlation functions 〈Ai;Aj〉 can
be calculated by the set of equations308

∑

k

(
iεδik − i

∑

l

(Ȧl|Al)(χ
−1)lk + i

∑

l

Πil(χ
−1)lk

)
〈Ak;Aj〉 = iχij , (10.19)
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where

χij = (Ai|Aj) ,
∑

k

χik(χ
−1)kj = δij ; (10.20)

(Ai|Aj) =

∫ β

0

dλTr(ρAi(−iλ)Aj) , ρ =
1

Q
e−βH ; (10.21)

Πij = 〈ȦiC̃|CȦj〉C , Ȧl = i[H,Al] . (10.22)

The operator C̃ = 1− P̃ is a projection operator308 with P̃ =
∑

ij |Ai)(χ
−1)ij(Ai|

and 〈· · ·〉C denotes that in the time-evolution of this correlation function, operator

L = i[H, . . .] is to be replaced by CLC. By solving the set of equations (10.19), the

correlation functions 〈Ai;Aj〉 which we started from are replaced by the correlation

functions Πij (10.22), and with a proper choice of the relevant observables these

correlation functions can be calculated in a fairly simple approximation.308 It is,

however, difficult to go beyond this first approximation and, in particular, to take

into account the projection operators. Furthermore, this method is restricted to the

calculation of transport coefficients where the exact linear response expressions are

known; generalization to thermal transport coefficients is not trivial. In Ref. 307,

we described a kind of general formalism for the calculation of transport coefficients

which includes the approaches discussed above and which can be adapted to the

problem investigated.

For simplicity of notation, we restrict our consideration here on the influence

of a stationary external electrical field. In the linear response theory, the density

matrix of the system becomes

ρLR =
eE

m

∫ t

−∞

dt′eε(t
′−t)

∫ β

0

dλρP(t′ − t− iλ) , ε→ 0 , (10.23)

where the time dependence in P (t) is given by the total Hamiltonian of the system

without the interaction term with the electrical field. From another point of view,

we can say that there is a reaction of the system on the external field which can be

described by relevant observables such as shift of the Fermi body or a redistribution

of the single particle occupation numbers, etc. Hence, for small external fields the

system can be described in a fairly good approximation by the quasi-equilibrium

statistical operator of the form

ρq =
1

Qq
e−β(H−

∑
i αiAi) , (10.24)

where the Ai are the observables relevant for the reaction of the system and the αi

are parameters proportional to the external field. Of course, the statistical operator

(10.24) is not a solution of the Liouville equation, but an exact solution can be

found starting from (10.24) as an initial condition:

ρs = ρq − i

∫ o

−∞

dt′eε(t
′−t) exp(iHs(t

′ − t))ρq exp(−iHs(t
′ − t)) , (10.25)
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whereHs = H−eE∑i ri. In order to determine the parameters αi, we demand that

the mean values of the relevant observables Ai are equal in the quasi-equilibrium

state ρq and in the real state ρs, i.e.,

Tr(ρsAi) = Tr(ρqAi) . (10.26)

This condition is equivalent to the stationarity condition

d

dt
Tr(ρsAi) = 0 .

For a sufficiently complete set of operators Ai, the condition (10.26) ensures that ρq
describes the system with a sufficient accuracy. Linearizing Eq. (10.26) with respect

to the parameters αi and the external field E, one obtains the set of equations

∑

j

αj(−iTr(ρ[Aj , Ai]) + 〈Ȧj ; Ȧi〉) =
eE

m
((P|Ai) + 〈P; Ȧi〉) . (10.27)

This set of equations can be shown to be equivalent to Eq. (10.19); whereas in the

higher orders of interaction the Eqs. (10.27) are more convenient to handle because

the time dependence is given here in an explicit form without any projection.

With the parameters αi, the current density is given by

J =
e

mΩ
Tr(ρqP) =

e

mΩ

∑

j

αj(Aj |P) . (10.28)

Supposing that the total momentum P of the electrons can be built up by the

operators Ai, it can be shown that Eqs. (10.27) and (10.28) include the Kubo

expression for the conductivity (see below). In order to solve the system of equations

(10.27), a generalized variational principle can be formulated, but the reduction of

the number of parameters αi by a variational ansatz corresponds to a new restricted

choice of the relevant observable Ai.

11. Resistivity of Transition Metal with Nonspherical Fermi

Surface

The applicability of the transport equations (10.27) and (10.28) derived above to

a given problem depends strongly on the choice of the relevant operators Ai. The

first condition to be fulfilled is that the mean values of the occupation numbers

of all quasiparticles involved in the transport process should be time-independent,

i.e.,

Tr(ρs(αi)nk) = Tr(ρq(αi)nk) ,
d

dt
Tr(ρs(αi)nk) = 0 . (11.1)

Of course, this condition is fulfilled trivially for Ai → nk, but in this case the equa-

tions (10.27) cannot be solved in practice. In the most cases, however, a reduced

set of operators can be found which is sufficiently complete to describe the reaction

of the system on the external field. It can be shown that under certain conditions,

the scattering process can be described by one relaxation time only and then the
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set of relevant operators reduces to the total momentum of the electrons describing

a homogeneous shift of the Fermi body in the Bloch (momentum) space. These

conditions are fulfilled for a spherical Fermi body at temperatures that are small in

comparison to the degeneration temperature and for an isotropic scattering mech-

anism where the scatterers remain in the thermal equilibrium. In this simple case,

Eqs. (10.27) are reduced to the so-called resistivity formula.308 For nonspherical

Fermi bodies, the set of relevant observables has to be extended in order to take

into account not only its shift in the k-space but also its deformation. Our aim is

to develop a theory of electron conductivity for the one-band model of a transi-

tion metal. The model considered is the modified Hubbard model, which include

the electron–electron interaction as well as the electron–lattice interaction within

MTBA. The nonspherical Fermi surface is taken into account.

The studies of the electrical resistivity of many transition metals revealed some

peculiarities. It is believed that these specific features are caused by the fairly

complicated dispersion law of the carriers and the existence of the two subsystems of

the electrons, namely the broad s–p band and relatively narrow d-band. The Fermi

surface of transition metals is far from the spherical form. In addition, the lattice

dynamics and dispersion relations of the phonons are much more complicated than

in simple metals. As a result, it is difficult to attribute the observed temperature

dependence of the resistivity of transition metals to definite scattering mechanisms.

Here we investigate the influence of the electron dispersion on the electrical resis-

tivity within a simplified but workable model. We consider an effective single-band

model of transition metal with tight-binding dispersion relation of the electrons.

We take into account the electron–electron and electron–lattice interactions within

the extended Hubbard model. The electron–lattice interaction is described within

the MTBA. For the calculation of the electrical conductivity, the generalized ki-

netic equations are used which were derived by the NSO method. In these kinetic

equations, the shift of the nonspherical Fermi surface and its deformation by the

external electrical field are taken into account explicitly. By using the weak scat-

tering limit, the explicit expressions for the electrical resistivity are obtained and

its temperature dependence is estimated.

We consider a transition metal model with one nonspherical Fermi body shifted

in the k-space and deformed by the external electrical field. Hence, the Fermi surface

equation E(k) = EF is transformed into Ẽ(k) = EF , where

Ẽ(k) = E(k) +mv1
∂E

∂k
+m

n∑

i=1σ

viΦ
i(k)

∂E

∂k
+ · · · (11.2)

The term proportional to v1 describes a homogeneous shift of the Fermi surface

in the k-space and the last terms allow for deformations of the Fermi body. The

polynomials Φi(k) have to be chosen corresponding to the symmetry of the crys-

tal96,311–313 and in consequence of the equality Ẽ(k+G) = Ẽ(k) (which is fulfilled
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in our tight-binding model), they should satisfy the relation

Φi(k+G) = Φi(k) ,

where G is a reciprocal lattice vector. Thus the relevant operators are given by

Ai → m
∑

kσ

Φi(k)
∂E

∂k
nkσ , Φ1 = 1 . (11.3)

For our tight-binding model we are restricting by the assumption that Φi → 0 for

i ≥ 3.

11.1. Generalized kinetic equations

The quantum-mechanical many-body system is described by the statistical operator

ρs obeying the modified Liouville equation of motion Eq. (10.10)

∂ρs
∂t

+
1

i~
[ρs, Hs] = −ε(ρs − ρq) , (11.4)

whereHs = H+HE is the total Hamiltonian of the system, including the interaction

with an external electrical field HE = −eE∑i ri, and ρq is the quasi-equilibrium

statistical operator. According to the NSO formalism, the relevant operators Pm

should be selected. These operators include all the relevant observables which de-

scribe the reaction of the system on the external electrical field. These relevant

operators satisfy the condition

Tr(ρs(t, 0)Pm) = 〈Pm〉 = 〈Pm〉q ; Trρs = 1 . (11.5)

This condition is equivalent to the stationarity condition

d

dt
〈Pm〉 = 0 → 〈[Hs, Pm]〉+ 〈[HE , Pm]〉 = 0 . (11.6)

In the framework of the linear response theory, the operators ρs and ρq in Eqs. (11.5)

and (11.6) should be expanded to the first-order in the external electrical field E

and in the parameters Fm. Thus Eq. (11.6) becomes308

∑

n

Fn(−iTr(ρ[Pn, Pm]) + 〈Ṗn; Ṗm〉) = eE

m
(Tr(ρP(−iλ)Pm) + 〈P; Ṗm〉) , (11.7)

where

Ṗm = i[Hs, Pm] , (11.8)

〈A;B〉 =
∫ 0

−∞

dteεt
∫ β

0

dλTr(ρA(t− iλ)B) , (11.9)

A(t) = exp(iHt)A exp(−iHt) ; ρ = Q−1 exp(−βH) ,

and P is the total momentum of the electrons.

Equations (11.7) is a generalized kinetic equation in which the relaxation times

and particle numbers are expressed via the correlation functions. It will be shown
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below that these equations can be reduced to the Kubo formula for the electrical

conductivity provided a relation Pe =
∑
αiPi can be found.

The generalized kinetic equation (11.7) can be solved and the parameters Fm

can be determined by using a variational principle. The current density is given by

j =
e

mΩ
Tr(ρsPe) =

e

mΩ
Tr(ρqPe) , (11.10)

where the conditions in (11.5) have been used and Ω is the volume of the system.

Linearizing Eq. (11.10) in the parameter Fm, we find

j =
e

mΩ

∑

m

Fm

∫ β

0

dλTr(ρPm(t− iλ)Pe) ≡
1

R
E , (11.11)

where the proportionality of the Fm to the external electrical field has been taken

into account. For the tight-binding model Hamiltonian (4.65) and (4.66), the proper

set of operators Pm is given by

Pe = P1 = m
∑

kσ

∂E

∂k
a†kσakσ , (11.12)

Pi = m
∑

kσ

Φi(k)
∂E

∂k
a†kσakσ , (i = 2 . . . n) . (11.13)

The parameters Fm are replaced by the generalized drift velocities. Then the quasi-

equilibrium statistical operator ρq take the form

ρq =
1

Qq
exp

(
−β
[
H +mv1

∑

kσ

∂E

∂k
a†kσakσ +

∑

i=2...n

mviΦ
i(k)

∂E

∂k
a†kσakσ

])
.

(11.14)

It should be mentioned here that in general in ρq, the redistribution of the scatterers

by collisions with electrons should be taken into consideration. For the electron–

phonon problem, e.g., the phonon drag can be described by an additional term

vphPph in Eq. (11.2), where vph is the mean drift velocity and Pph is the total

momentum of the phonons. Here it will be supposed for simplicity, that due to

phonon-phonon Umklapp processes, etc., the phonon subsystem remains near ther-

mal equilibrium. In the same way, the above consideration can be generalized to

many-band case. In the last case, the additional terms in (11.2), describing shift

and deformation of other Fermi bodies should be taken into account.

For the tight-binding model Hamiltonian (4.65) and (4.66), the time derivatives

of the generalized momenta (generalized forces) in Eq. (11.7) are given by

Ṗn → Ṗj = Ṗ ee
j + Ṗ ei

j , (11.15)

Ṗ ee
j = i[Hee, Pj ]

=
iUm

N

∑

k1k2

∑

k3k4G

(
Φj(k4)

∂E

∂k4
+Φj(k2)

∂E

∂k2
− Φj(k3)

∂E

∂k3
− Φj(k1)

∂E

∂k1

)

× a†k1↑
ak2↑a

†
k3↓
ak4↓δ(k1 − k2 + k3 − k4 +G) , (11.16)
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Ṗ ei
j = m

∑

k1k2

∑

qG

∑

σν

gνk1k2

(
Φj(k2)

∂E

∂k2
− Φj(k1)

∂E

∂k1

)

× a†k2σ
ak1σ(b

†
qν + b−qν)δ(k2 − k1 + q+G) . (11.17)

We confine ourselves by the weak scattering limit. For this case the total Hamilto-

nianH in evolution A(t) = exp(iHt)A exp(−iHt), we replace by the Hamiltonian of

the free quasiparticles H0
e +H

0
i . With this approximation, the correlation functions

in Eq. (11.7) can be calculated straightforwardly. We find that

〈Ṗj ; Ṗl〉 ≈ 〈Ṗ ee
j ; Ṗ ee

l 〉+ 〈Ṗ ei
j ; Ṗ ei

l 〉 . (11.18)

Restricting ourselves for simplicity to a cubic system, the correlation functions of

the generalized forces are given by

〈Ṗ ee
j ; Ṗ ee

l 〉 = U2m2βπ

N2

∑

k1k2

∑

k3k4G

Aj(k1, k2, k3, k4)Al(k1, k2, k3, k4)

× fk1
(1− fk2

)fk3
(1− fk4

)δ(E(k1)− E(k2) + E(k3)− E(k4))

× δ(k1 − k2 + k3 − k4 +G) , (11.19)

〈Ṗ ei
j ; Ṗ ei

l 〉 = 2πm2β
∑

k1k2

∑

qνG

(gνk1k2
)2Bj(k1, k2)Bl(k1, k2)

× fk2
(1− fk1

)N(qν)δ(E(k2)− E(k1) + ω(qν))

× δ(k2 − k1 − q+G) , (11.20)

where

Aj(k1, k2, k3, k4) =

(
Φj(k4)

∂E

∂k4
+Φj(k2)

∂E

∂k2
− Φj(k3)

∂E

∂k3
− Φj(k1)

∂E

∂k1

)
,

(11.21)

Bj(k1, k2) =

(
Φj(k2)

∂E

∂k2
− Φj(k1)

∂E

∂k1

)
(11.22)

and

f(E(k)) = fk = [expβ(E(k) − EF ) + 1]−1 ,

N(ω(qν)) = N(qν) = [expβω(qν) − 1]−1 .

The correlation functions 〈P1; Ṗl〉 vanish in the weak scattering limit. The gener-

alized electron numbers in Eq. (11.13) become

Nl =
1

m
Tr(ρP1(iλ);Pl) = mβ

∑

k

Φl(k)
∂E

∂k
fk(1− fk) . (11.23)
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11.2. Temperature dependence of R

Let us consider the low-temperature dependence of the electrical resistivity obtained

above. For this region, we have

lim
T→0

βfk(1− fk) → δ(E(k)− EF ) .

Thus the generalized electron numbers Nl in Eq. (11.23) do not depend on tempera-

ture, and the temperature dependence of R in Eq. (11.11) is given by the correlation

functions (11.19) and (11.20). For the term arising from the electron–electron scat-

tering, we find

〈Ṗ ee
j ; Ṗ ee

l 〉 = β

∫

0

∫∫ Emax

dE(k1)dE(k2)dE(k3)F
1
jl(E(k1), E(k2), E(k3))

× fk1
(1− fk2

)fk3
[1− f(E(k1)− E(k2) + E(k3))] , (11.24)

where

F 1
jl(E(k1), E(k2), E(k3))

=
U2m2π

N2

Ω3

(2π)9

∑

G

∫
d2S1

∫
d2S2

∫
d2S3

× Aj(k1, k2, k3, k1 − k2 + k3 +G)Al(k1, k2, k3, k1 − k2 + k3 +G)∣∣∣ ∂E∂k1

∣∣∣
∣∣∣ ∂E∂k2

∣∣∣
∣∣∣ ∂E∂k3

∣∣∣

× δ(E(k1)− E(k2) + E(k3)− E(k1 − k2 + k3 +G)) . (11.25)

With the substitution

x = β(E(k1)− EF ) , y = β(E(k2)− EF ) , z = β(E(k3)− EF ) ,

the expression (11.24) reads

〈Ṗ ee
j ; Ṗ ee

l 〉 = β−2

∫

−βEF

∫∫ βEmax−EF 1

1 + exp(x)

1

1 + exp(−y)
1

1 + exp(z)

× dxdydz

1 + exp(−x+ y − z)
F 1

(
x

β
+ EF ,

y

β
+ EF ,

z

β
+ EF

)

= β−2Aee
jl . (11.26)

It is reasonably to conclude from this expression, that in the limits

limβEF → ∞ , limβ(Emax − EF ) → ∞ ,

the electron–electron correlation function for low temperatures becomes propor-

tional to T 2 for any polynomial Φj(k).

For the electron–phonon contributions to the resistivity, the temperature depen-

dence is given by the Bose distribution function of phonons N(qν). Because of the
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quasimomentum conservation law q = k2−k1−G, the contribution of the electron–

phonon Umklapp processes freezes out at low temperatures as [expβω(qmin)−1]−1,

where qmin is the minimal distance between the closed Fermi surfaces in the ex-

tended zone scheme. For electron–phonon normal processes as well as for electron–

phonon Umklapp processes in metals with an open Fermi surface, the quasimomen-

tum conservation law can be fulfilled for phonons with q → 0 being excited at low

temperatures solely. To proceed further, we use the relation ω(qν) = vν0 (q/q) and

the periodicity of the quasiparticle dispersion relation with the reciprocal lattice

vector G. Taking into account the relation Φi(k+G) = Φi(k), we find to the first

nonvanishing order in q

gνk,k+q+G ≈ q

(
q

q

∂

∂k′

)
gνk,k′ |k′=k , (11.27)

Bj(k, k + q +G) ≈ q(
q

q

∂

∂k′
)Bj(k, k

′)|k′=k , (11.28)

δ(E(k + q +G)− E(k) + ω(qν)) ≈ 1

q
δ

(
q

q

∂E

∂k
+ vν0

)
. (11.29)

Hence, we have

〈Ṗ ei
j ; Ṗ ei

l 〉 ∼= m2β
Ω2

(2π)9

∑

ν

∫ qmax

0

q5dq

×
∫

sin(θq)dθq

∫
dϕq [exp(βv

ν
0 q)− 1]−1F 2

jl(θq, ϕq) , (11.30)

where

F 2
jl =

∫
dk

((
q

q

∂

∂k′

)
gνk,k′ |k′=k

)2((
q

q

∂

∂k

)
Bl(k, k

′)|k′=k

)

×
((

q

q

∂

∂k

)
Bj(k, k

′)|k′=k

)
fk(1 − fk)δ

(
q

q

∂E

∂k
+ vν0

)
. (11.31)

In the k-integral in Eq. (11.30), the integration limits have to be chosen differently

for normal and Umklapp processes. With the substitution x = βvν0 q, we find

〈Ṗ ei
j ; Ṗ ei

l 〉 = β−5 mΩ2

(2π)9

∑

ν

1

(vν0 )
6

∫ βvν
0 qmax

0

dx
x5

ex − 1

×
∫

sin(θq)dθq

∫
dϕqF

2
jl(θq, ϕq)

= Aei
jlT

5 . (11.32)

Thus we can conclude that the electron–phonon correlation function is proportional

to T 5 for any polynomial Φi
k. It is worthy to note that for an open Fermi surface,

this proportionality follows for normal and Umklapp processes either. For a closed
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Fermi surface, the Umklapp processes freeze out at sufficiently low temperatures,

and the electron–phonon normal processes contribute to the electrical resistivity

only. With the aid of the Eqs. (11.26) and (11.32), the generalized kinetic equations

(11.7) becomes

n∑

i=1

vi(A
ee
ij T

2 +Aei
ijT

5) = eENj . (11.33)

For simplicity, we restrict our consideration to two parameters v1 and v2 describing

the homogeneous shift and one type of deformation of the Fermi body. Taking

into consideration more parameters is straightforward but does not modify the

qualitative results very much. Finally, the expression for the electrical resistivity

becomes308,309

R =
Ω

3e2
(Aee

11T
2 +Aei

11T
5)(Aee

22T
2 +Aei

22T
5)− (Aee

12T
2 +Aei

12T
5)2

N2
1 (A

ee
22T

2 +Aei
22T

5) +N2
2 (A

ee
11T

2 +Aei
11T

5)− 2N1N2(Aee
12T

2 +Aei
12T

5)
.

(11.34)

In general, a simple dependence R ∼ T 2 or R ∼ T 5 can be expected only if one of

the scattering mechanisms dominate. For example, when Aee
ij ≈ 0, we find

R =
Ω

3e2
(Aei

11A
ei
22 −Aei

12)T
5

N2
1A

ei
22 +N2

2A
ei
11 − 2N1N2Aei

12

. (11.35)

If, on the other hand, the deformation of the Fermi body is negligible (v2 = 0),

then from Eq. (11.34) it follows that

R =
Ω

3e2N2
1

(Aee
11T

2 +Aei
11T

5) . (11.36)

It is interesting to note that a somewhat similar in structure to expression (11.34)

have been used to describe the resistivity of the so-called strong scattering metals.

In order to improve our formula for the resistivity derived above the few bands and

the interband scattering (e.g., s–d scattering) as well as the phonon drag effects

should be taken into account.

11.3. Equivalence of NSO approach and Kubo formalism

Equivalence of the generalized kinetic equations to the Kubo formula for the elec-

trical resistivity can be outlined as following. Let us consider the generalized kinetic

equations

∑

n

Fn(−iTr(ρ[Pn, Pm]) + 〈Ṗn; Ṗm〉) = eE

m
(Tr(ρPe(−iλ)Pm) + 〈Pe; Ṗm〉) .

(11.37)

To establish the correspondence of these equations with the Kubo expression for

the electrical resistivity, it is necessary to express the operators of the total elec-

tron momentum Pe and the current density j in terms of the operators Pm. In
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other words, we suppose that there exists a suitable set of coefficients ai with the

properties

Pe =
∑

i

aiPi j =
e

mΩ
Pe . (11.38)

We get, by integrating Eq. (11.37) by parts, the following relation

∑

n

Fn

(∫ β

0

dλTr(ρPn(−iλ)Pm)− ε〈Pn;Pm〉
)

=
eE

m
〈Pe;Pm〉 . (11.39)

Supposing the correlation function 〈Pn;Pm〉 to be finite and using Eq. (11.38), we

find in the limit ε→ 0

∑

i

∑

n

aiFn

∫ β

0

dλTr(ρPn(−iλ)Pi) =
eE

m
〈Pe;Pe〉 . (11.40)

From the equality (11.40), it follows that

∑

n

Fn

∫ β

0

dλTr(ρPn(−iλ)Pe) =
eE

m
〈Pe;Pe〉 . (11.41)

Let us emphasize again that the condition

lim
ε→0

ε〈Pn;Pm〉 = 0 (11.42)

is an additional one for a suitable choice of the operators Pm. It is, in the essence,

a certain boundary condition for the kinetic equations (11.37). Since the Kubo

expression for the electrical conductivity

σ ∼ 〈Pe;Pe〉 ∼ 〈Pn;Pm〉 (11.43)

should be a finite quantity, the condition (11.42) seems quite reasonable. To make

a following step, we must take into account Eqs. (11.10) and (11.11). It is easy to

see that the right-hand side of Eq. (11.41) is proportional to the current density.

Finally, we reproduce the Kubo expression (10.18) (for cubic systems)

σ =
j

E
=

e2

3m2Ω
〈Pe;Pe〉 , (11.44)

where the proportionality of the Fm to the external electrical field has been taken

into account.

It will be instructive to consider a concrete problem to clarify some points dis-

cussed above. There are some cases when the calculation of electrical resistivity is

more convenient to be performed within the approach of the generalized transport

equations (10.27) and (10.28) than within the Kubo formalism for the conductiv-

ity. We can use these two approaches as two complementary calculating scheme,

depending on its convenience to treat the problem considered.308 To clarify this,

let us start from the condition

Tr(ρLRBi) = Tr(ρsBi) , (11.45)
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where the density matrices ρLR and ρs were given by Eqs. (10.23) and (10.25). For

operators Bi which can be represented by linear combinations of the relevant ob-

servablesAi Eq. (11.45) is fulfilled exactly, where as for other operators, Eqs. (11.45)

seems to be plausible if the relevant observables have been chosen properly. The

conditions (11.45) make it possible to determine a set of parameters which can

be used in approximate expressions for the correlation functions. In simple cases,

the conditions (11.45) even allow to calculate the correlation functions in (10.27)

without resorting to another technique. As an example, we consider the one-band

Hubbard model (4.14)

H = He +Hee (11.46)

in the strongly-correlated limit62,99 |t|/U ≪ 1. It well-known that in this limit, the

band splits into two sub-bands separated by the correlation energy U . In order to

take into account the band split, we have to project the one-electron operators onto

the sub-bands. The relevant operators will have the form

Pαβ = m
∑

kσ

∂E

∂k
nαβ
kσ , (11.47)

where

nαβ
kσ = N1

∑

ij

eik(Ri−Rj)a†iσn
α
i−σajσn

β
j−σ (11.48)

with the projection operators

nα
i−σ =

{
ni−σ if α = + ,

(1− ni−σ) if α = + .
(11.49)

Here Pαα is the operator of the total momentum of the electrons in the sub-band α

and Pαβ , (α 6= β) describes kinematical transitions between the sub-bands. It can

be shown that correlation functions 〈Pαβ ;Pγδ〉 and 〈Pαα;Pββ〉 vanish for α 6= β in

the limit |t|/U ≪ 1. To make an estimation, it is necessary to decouple the higher

correlation functions in |t|/U and take into account nearest neighbor hopping terms

only. Then the correlation functions 〈Pαα;Pαα〉 (α = ±) can be calculated directly

by means of Eq. (11.45), where Bi → Pαα. The conductivity becomes

σ =WT−1
∑

σ

∑

α

〈nα
σ〉−1/2〈nα

σn
α
−σ〉(〈nα

σ〉 − 〈nα
σn

α
−σ〉) , (11.50)

where

W =
e2

3m2Ωk

1√
2z

1

|t|
∑

k

(
∂E

∂k

)2

(11.51)

and

〈W 〉 = Tr(ρW ) , ρ =
1

Q
exp(−βH) .
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Here z is the number of nearest neighbors and t the nearest neighbor hopping

matrix-element. With the well-known expressions for the mean values 〈nα
σn

α
−σ〉, we

find the conductivity in dependence on the electron number in the form308

σ =WT−1 1

2

n(1− n)√
1− n/2

, (0 ≤ n < 1) , (11.52)

σ =WT−1 1√
2
exp(−U/2kT ) , (n = 1) , (11.53)

σ =WT−1
√
2
(1− n/2)(1− n)√

n
, (2 ≥ n > 1) . (11.54)

Thus, it was shown in this and in the preceding sections that the formalism of the

generalized kinetic equations has certain convenient features and its own specific in

comparison with Kubo formalism. The derived expressions are compact and easy

to handle.

11.4. High-temperature resistivity and MTBA

At high temperatures, the temperature dependence of the electrical resistivity R

of some transition metals and highly resistive metallic systems such as A15 com-

pounds may deviate substantially from the linear dependence, which follows from

the Bloch–Gruneisen law. These strong deviations from the expected behavior with

a tendency to flatten to a constant resistivity value was termed by resistivity sat-

uration314 and have been studied both experimentally and theoretically by many

authors.315–327 The phenomenon of resistivity saturation describes a less-than-linear

rise in dc electrical resistivity R when temperature T increases. It was found that

this effect is common in transition metal compounds (with pronounced d-band

structure) when R exceeds ∼ 80 µΩcm, and that R seems bounded above by a

value Rmax ∼ 150 µΩcm which varies somewhat with material. In Ref. 326, in

particular, it was formulated that the electrical resistivity, R, of a metal is usually

interpreted in terms of the mean free path (the average distance, l, an electron

travels before it is scattered). As the temperature is raised, the resistivity increases

and the apparent mean free path is correspondingly reduced. In this semi-classical

picture, the mean free path cannot be much shorter than the distance, a, between

two atoms. This has been confirmed for many systems and was considered to be a

universal behavior. Recently, some apparent exceptions were found, including alkali-

doped fullerenes and high-temperature superconductors.328 However, there remains

the possibility that these systems are in exotic states, with only a small fraction

of the conduction electrons contributing to the conductivity; the mean free path

would then have to be correspondingly larger to explain the observed resistivity.

The authors of Ref. 325 performed a model calculation of electron conduction in

alkali-doped fullerenes, in which the electrons are scattered by intramolecular vibra-

tions. The resistivity at large temperatures implies l ∼ a, demonstrating that there

is no fundamental principle requiring l > a. At high temperatures, the semiclassical
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picture breaks down, and the electrons cannot be described as quasiparticles. Re-

cent review of theoretical and experimental investigations in this field was given in

Refs. 328–330 (for discussion of the electronic thermal conductivity at high tem-

peratures, see Ref. 331).

The nature of saturation phenomenon of electrical resistivity is not fully un-

derstood. Resistivity of a metallic system as a function of temperature reflects an

overall electron–phonon interaction effects as well as certain contribution effects

of disorder.332–334 There have been some attempts to explain the saturation phe-

nomenon in the framework of of the Boltzmann transport theory using special

assumptions concerning the band structure, etc. The influence of electron–phonon

scattering on electrical resistivity at high temperatures was investigated in Refs. 323

and 324 in the framework of Fröhlich–Hamiltonian for the electron–phonon inter-

action. In Ref. 323, the authors calculated a temperature-dependent self-energy to

the lowest nonvanishing order of the electron–phonon interaction.

However, as it was shown above, for transition metals and their disordered alloys,

the MTBA is more adequate. Moreover, the anisotropic effects are described better

within MTBA. Here we consider a single-band model of transition metal with the

Hamiltonian

H = He +Hi +Hei . (11.55)

The electron subsystem is described by the Hubbard model (4.14) in the Hartree–

Fock approximation

He =
∑

kσ

E(kσ)a†kσakσ , E(kσ) = E(k) +
U

N

∑

p

〈nk−σ〉 . (11.56)

For the tight-binding electrons in crystals, we use E(k) = 2
∑

α t
0(Rκ) cos(kRκ),

where t0(Rκ) is the hopping integral between nearest neighbors, and Rκ (κ =

x, y, z) denotes the lattice vectors in a simple lattice in an inversion centre. For the

electron–phonon interaction, we use the Hamiltonian (4.66)

Hei =
∑

σ

∑

kq

V (k,k + q)Qqa
+
k+qσakσ , Qq =

1√
2ω(q)

(bq + b†−q) , (11.57)

where

V (k,k + q) =
iq0

(NM)1/2

∑

κν

t0(Rκ)
Rκeν(q)

|Rκ|
[sinRκk− sinRκ(k+ q)] . (11.58)

The one-electron hopping t0(Rκ) is the overlap integral between a given site Rm

and one of the two nearby sites lying on the lattice axis Rκ. Operators b†q and bq
are creation and annihilation phonon operators and ω(q) is the acoustical phonon

frequency. N is the number of unit cells in the crystal and M is the ion mass. The

eν(q) are the polarization vectors of the phonon modes.

For the ion subsystem, we have

Hi =
∑

q

ω(q)

(
b†qbq +

1

2

)
. (11.59)
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For the resistivity calculation, we use the following formula323

R =
Ω

3e2N 2

〈F;F〉
1 + (1/3mN )〈P;F〉 . (11.60)

Here N is the effective number of electrons in the band considered

N =
1

3m

∫ β

0

dλTr(ρP(−i~λ)P) (11.61)

and P is the total momentum operator

P =
m

~

∑

k

(
∂E(kσ)

∂k

)
nkσ , nkσ = a†kσakσ . (11.62)

The total force F acting on the electrons is giving by

F =
i

~
[H,P] = − im

~

∑

kqσ

V (k,k+ q)(vk+q,σ − vk,σ)Qqa
†
k+qσakσ , (11.63)

with the velocity defined as vk,σ = ∂E(kσ)/~∂k. It is convenient to introduce a

notation

V (k,k+ q)√
2ω(q)

=
iΛFq√

Ω
.

Correlation functions in Eq. (11.60) can be expressed in terms of the double-time

thermodynamic Green functions

〈F;F〉 = 2πi

~
〈〈F|P〉〉−i~ε , (11.64)

〈P;F〉 = 2πmi

~
〈〈P|F〉〉−i~ε, (11.65)

〈〈F|A〉〉−i~ε =
1

2π

∫ ∞

−∞

dteεtθ(−t)Tr(ρ[A,F (t)]) , (11.66)

where A represents either the momentum operator P or the position operator R

with P = im[H,R]/~.

We find the following relation

〈F;F〉 = 2πm

~2

∑

kqσ

V (k,k+ q)√
2ω(q)

(vk+q,σ − vk,σ)〈〈a+k+qσakσ(bq + b†−q)|P〉〉−i~ε .

(11.67)

Thus we obtain

〈〈F;A〉〉−i~ε = −i
∑

kqσ

V (k,k+ q)√
2ω(q)

(vk+q,σ − vk,σ)(〈〈a+k+qσakσbq|A〉〉−i~ε

−〈〈a+k+qσakσb
†
−q)|A〉〉−i~ε) . (11.68)
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Calculation of the higher-order Green functions gives

(E(k + qσ)− E(kσ) − Ωq − i~ε)〈〈a†k+qσakσBq|A〉〉−i~ε

= Tkq(A) +
∑

q′

(
V (k− q′,k)√

2ω(q′)
〈〈a†k+qσak−q′σ(bq′ − b†−q′)Bq|A〉〉−i~ε

− V (k+ q,k+ q+ q′)√
2ω(q′)

〈〈a†k+q+q′σakσ(bq′ − b†−q′)Bq|A〉〉−i~ε

)

−
∑

k′

V (k′,k′ − q)√
2ω(q)

〈〈a†k+qσakσa
†
k′−qσak′σ|A〉〉−i~ε (11.69)

with notation

Ωq = ~ω(q) → Bq = bq ; Eq = −~ω(q) → Bq = b†−q ,

Tkq(P) =
im

2π
(vk+q,σ − vk,σ)〈a†k+qσakσBq〉 ,

Tkq(R) = − 1

2π

∑

q′

∂

∂q′
〈a†k+q+q′σak+q′σBq〉δq′,0 ,

N =
m

3~

∑

kq′σ

δq′,0vk,σ
∂

∂q′
〈a†k+q′σak+q′σ〉 .

We find also

〈〈a†k+qσak−q′σbqbq′ |A〉〉−i~ε

= −〈b†q′bq′〉0
V (k,k − q′)√

2ω(q′)

×
〈〈a†k+qσakσbq|A〉〉−i~ε

(E(k + qσ)− E(k − q′σ) − Eq′ − ~ω(q′)− i~ε)
, (11.70)

〈〈a†k+q+q′σakσbqbq′ |A〉〉−i~ε

= −〈b†q′bq′〉0
V (k+ q+ q′,k+ q)√

2ω(q′)

×
〈〈a†k+qσakσbq|A〉〉−i~ε

(E(k + q + q′σ)− E(kσ) − Eq′ − ~ω(q′)− i~ε)
. (11.71)

Here the symmetry relations

V (k− q′,k) = V ∗(k,k− q′) ; V (k+ q+ q′,k+ q) = V ∗(k+ q,k+ q+ q′)

were taken into account.
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Now the Green function of interest can be determined by introducing the self-

energy323

〈〈a†k+qσak−q′σbqBq|A〉〉−i~ε

= −〈b†q′bq′〉0
Tkq(A)

(E(k + qσ)− E(k − q′σ) − Eq −Mkqσ(Eq ,−i~ε)− i~ε)
. (11.72)

The self-energy is given by

Mkqσ(Eq ,−i~ε)=
∑

q′

1

2ω(q′)

(
〈b†q′bq′〉

[ |V (k,k−q′)|2
E(k + qσ)−E(k − q′σ)−Eq′ − ~ω(q′)− i~ε

+
|V (k+ q,k+ q+ q′)|2

E(k + q + q′σ)− E(kσ) − Eq′ − ~ω(q′)− i~ε

]

+ 〈bq′b†q′〉
[ |V (k,k − q′)|2
E(k + qσ)− E(k − q′σ)− Eq′ + ~ω(q′)− i~ε

+
|V (k+ q,k+ q+ q′)|2

E(k + q + q′σ)− E(kσ)− Eq′ + ~ω(q′)− i~ε

])
. (11.73)

In Eq. (11.73), the energy difference (E(k + qσ) − E(k − qσ) − Eq)) is that for

the scattering process of electrons on phonons, while emission or absorption of one

phonon is possible, corresponding to Eq. These scattering processes are contained

in the usual Boltzmann transport theory leading to the Bloch–Gruneisen law. The

self-energy Mkqσ describes multiple scattering corrections to the Bloch–Gruneisen

behavior to second-order in V , which depends on the temperature via the phonon

occupation numbers.

Furthermore, it is assumed that the averages of occupation numbers for phonons

in the self-energy and for electrons in the effective particle number, are replaced by

the Bose and Fermi distribution functions, respectively:

〈b†qbq〉 = Nq , Nq = [exp(β~ω(q))− 1]−1 , (11.74)

〈a†kσakσ〉 = fk , fk = [exp(βE(kσ) − EF ) + 1]−1 . (11.75)

This corresponds to neglecting the influence of multiple scattering corrections on

the phonon and electron distribution functions.

In order to calculate the expectation values in the inhomogeneities, Eqs. (11.72)

and (11.73), the spectral theorem should be used. In the lowest nonvanishing order

of the electron–phonon interaction parameter V , we obtain

〈a†k+qσakσBq〉 =
V (k+ q,k)√

2ω(q)
fk+q(1− fk)νq(Eq)

× [exp(β(E(k + qσ)− E(kσ)− Eq)]− 1

E(k + qσ)− E(kσ)− Eq
, (11.76)
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with

νq(Eq) =
1

1− exp(−βEq)

=

{
1 +Nq if Bq = bq; Eq = ~ω(q)

Nq if Bq = b†−q; Eq = −~ω(q) .
(11.77)

Applying the approximation scheme discussed above, we have found the following

expressions for the Green function with A = P

〈〈a†k+qσakσBq|P〉〉−i~ε

=
im

2π

V (k+ q,k)√
2ω(q)

(vk+q,σ − vk,σ)
P 1
kqσ(Eq)

Ωkqσ(Eq)−Mkqσ − i~ε
, (11.78)

and for the Green function with A = R

〈〈a†k+qσakσBq|R〉〉−i~ε

=
~

2π

V (k+ q,k)√
2ω(q)

(vk+q,σ − vk,σ)
P 2
kqσ(Eq)− P 3

kqσ(Eq)

Ωkqσ(Eq)−Mkqσ − i~ε
. (11.79)

We have introduced in the above equations the following notation:

P
(1)
kqσ(Eq) = fk+q(1− fk)νq(Eq)γ1(Ωkqσ(Eq)) , (11.80)

P
(2)
kqσ(Eq) = (vk+qσ − vkσ)fk+q(1− fk)νq(Eq)

(
γ2(Ωkqσ(Eq))−

β exp(βΩkqσ(Eq))

Ωkqσ(Eq)

)
,

(11.81)

P
(3)
kqσ(Eq) = fk+q(1− fk)νq(Eq)βγ1(Ωkqσ(Eq))[fkvkσ − (1− fk+q)vk+qσ ] , (11.82)

with

γn(Ωkqσ(Eq)) =
β exp(βΩkqσ(Eq))− 1

(Ωkqσ(Eq))n
, (11.83)

and

Ωkqσ(Eq) = E(k + qσ)− E(kσ)− Eq . (11.84)

For the effective particle number we find

N =
2

3
mβ

∑

k

(vk)
2fk(1 − fk) . (11.85)

Before starting of calculation of the resistivity it is instructive to split the self-energy

into real and imaginary part (ε→ 0)

lim
ε→0

Mkqσ(~ω(q)± i~ε) = ReMkqσ(~ω(q))∓ i ImMkqσ(~ω(q)) (11.86)
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and perform an interchange of variables k + q → k; q → −q. Now for the relevant

correlation functions, we obtain the expressions

〈F;F〉 = 2m2

~

∑

kqσ

|V (k,k+ q)|2√
2ω(q)

(vk+qσ − vkσ)
2P

(1)
kqσ(~ω(q))Skqσ(~ω(q)) , (11.87)

〈P;F〉 = −m2
∑

kqσ

|V (k,k+ q)|2√
2ω(q)

(vk+qσ − vkσ)

× (P
(2)
kqσ(~ω(q)) + P

(3)
kqσ(~ω(q)))Skqσ(~ω(q)) , (11.88)

where

Skqσ(~ω(q)) =
ImMkqσ(~ω(q))

(Ωkqσ(~ω(q))− ReMkqσ(~ω(q)))2 + (ImMkqσ(~ω(q)))2
. (11.89)

In order to obtain Eq. (11.89), the following symmetry relation for the self-energy

was used

Mkqσ(~ω(q)− i~ε) = −Mkqσ(~ω(q) + i~ε) . (11.90)

The inspection of both the correlation functions 〈F;F〉 and 〈P;F〉 shows that

its include two dominant parts. The first one is the scattering part Skqσ(~ω(q)),

which contains all the information about the scattering processes. The second

part describes the occupation possibilities before and after the scattering processes

(P
(1)
kqσ(~ω(q)), P

(2)
kqσ(~ω(q)), P

(3)
kqσ(~ω(q))), and includes both the Fermi and Bose dis-

tribution functions. The approximation procedure described above neglects the mul-

tiple scattering corrections in these factors for the occupation possibilities.

For further estimation of the correlation functions, the quasi-elastic approxima-

tion can be used. In this case, in the energy difference Ωkqσ(~ω(q)), the phonon

energy ~ω(q) can be neglected Ωkqσ(~ω(q)) ≃ Ωkqσ(0). The phonon wave number

q only is taken into account via the electron dispersion relation. Furthermore, for

the Bose distribution function, it was assumed that

〈b†qbq〉 = 〈bqb†q〉 ≃ (β~ω(q))−1 . (11.91)

This approximation is reasonable at temperatures which are high in comparison to

the Debye temperature ΘD.

It is well-known2,38 from Bloch–Gruneisen theory that the quasi-elastic approx-

imation does not disturb the temperature dependence of the electrical resistivity at

high or low temperatures. The absolute value of the resistivity is changed, but the

qualitative picture of the power law of the temperature dependence of the resistivity

is not influenced.

In the framework of the quasi-elastic approximation, the scattering contribution

can be represented in the form

Skqσ =
ImM e

kqσ

(Ωkqσ(0)− ReM e
kqσ)

2 + (ImM e
kqσ))

2
. (11.92)
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Here the real and imaginary parts of the self-energy have the following form

ReM e
kqσ =

kT

~

∑

p

( |V (k,k+ p)|2
ω(p)2

P

(
1

E(k + qσ)− E(k − pσ)

)

+
|V (k + q,k+ q+ p)|2

ω(p)2
P

(
1

E(k + q + pσ)− E(kσ)

))
, (11.93)

ImM e
kqσ =

πkT

~

∑

p

( |V (k,k+ p)|2
ω(p)2

δ(E(k + qσ)− E(k − pσ))

+
|V (k+ q,k+ q+ p)|2

ω(p)2
δ(E(k + q + pσ)− E(kσ))

)
. (11.94)

The occupation possibilities given by P
(n)
kqσ can be represented in the quasi-elastic

approximation as323

P
(1)e
kqσ ≃ kT

~ω(q)
δ(EF − E(kσ)) ; (11.95)

P
(2)e
kqσ = P

(3)e
kqσ = 0 . (11.96)

In this approximation, the momentum–force correlation function disappears

〈P;F〉 ≃ 0. Thus we have

R ≃ Ω

3e2N2
〈F;F〉 , (11.97)

〈F;F〉 = 2m2kT

~

∑

kqσ

|V (k,k + q)|2
ω(q)2

(vk+qσ − vkσ)
2δ(EF − E(kσ))

×
ImM e

kqσ

(E(k + qσ)− E(kσ)− ReM e
kqσ)

2 + (ImM e
kqσ))

2
. (11.98)

The explicit expression for the electrical resistivity was calculated in Ref. 323. The

additional simplifying assumptions have been made to achieve it. For the electrons

and phonons, the following simple dispersion relations were taken

E(k) =
~
2k2

2m∗
; ω(q) = v0|q|, V (k,k+ q) ∼

√
|q| .

It was shown that the estimation of P
(1)e
kqσ is given by

P
(1)e
kqσ ≃ Tkm∗

v0~3kF q
δ(kF − k) . (11.99)

Then, for the electrical resistivity, the following result was found

R ≃ 3V 2m∗qD
2e2k5F ~

T

ΘD

∫ qD

0

dq

∫ 1

−1

dzq4

×
ImM e

kF qz

[(~2q/m∗)(zkF + q/2)− ReM e
kF qz ]

2 + [ImM e
kF qz)]

2
. (11.100)
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This result shows that the usual Bloch–Gruneisen theory of the electrical resistivity

can be corrected by including the self-energy in the final expression for the resis-

tivity. The Bloch–Gruneisen theory can be reproduced in the weak scattering limit

using the relation

lim
Re(Im)M→0

ImM e
kF qz

[(~2q/m∗)(zkF + q/2)− ReM e
kF qz ]

2 + [ImM e
kF qz)]

2

=
πm∗

~2qkF
δ

(
z +

q

2kF

)
. (11.101)

Inserting Eq. (11.101) in the resistivity expression equation (11.100) gives the elec-

trical resistivity Rw in the weak scattering limit, showing a linear temperature

dependence

Rw ≃ 3π

8

V 2(m∗)2q5D
e2k6F ~

3

T

ΘD
. (11.102)

In this form, the resistivity formula contains two main parameters that influence

substantially. The first is the Debye temperature ΘD characterizing the phonon

system, and, the second, the parameter α = (V m∗)2 describing the influence of

both the electron system and the strength of the electron–phonon interaction. The

numerical estimations323 were carried out for Nb and gave the magnitude of the

saturation resistivity as 207 µΩcm.

In the theory described above, the deviation from linearity in the high-

temperature region of the resistivity may be caused by multiple scattering cor-

rections. The multiple scattering processes which describe the scattering processes

of electrons on the phonon system by emission or absorption of more than one

phonon in terms of self-energy corrections become more and more important with

increasing temperature. As was shown above, even for simple dispersion relation

of electrons and phonons within one-band model, the thermally induced satura-

tion phenomenon occurs. For the anisotropic model within MTBA, the extensive

numerical calculations are necessary.

In a subsequent paper,324 Christoph and Schiller considered the problem of the

microscopic foundation of the empirical formula314 (parallel resistor model)

1

R(T )
=

1

RSBT (T )
+

1

Rmax(T )
(11.103)

within the framework of the transport theory of Christoph and Kuzemsky.308 The

parallel resistor formula describing the saturation phenomenon of electrical resistiv-

ity in systems with strong electron–phonon interaction was derived. In Eq. (11.103),

RSBT (T ) is the resistivity given by the semiclassical Boltzmann transport theory

RSBT (T ) ∼ T and the saturation resistivity Rmax corresponds to the maximum

metallic resistivity.335 The higher-order terms in the electron–phonon interaction

were described by a self-energy was determined self-consistently. They found for
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the saturation resistivity, the formula324

Rmax =
3π3

32

~

e2
q4D
k5F

1

|P (qD/2kF )|
. (11.104)

Within the framework of this approach, the saturation behavior of the electri-

cal resistivity was explained by the influence of multiple scattering processes de-

scribed by a temperature-dependent damping term of one-electron energies. In the

standard picture, the conventional linear temperature dependence of the resistivity

R ∼ T (T ≫ ΘD) is explained by taking into account that the number of phonons

is proportional to the temperature and, moreover, assuming that the electron mo-

mentum is dissipated in single-phonon scattering processes only. For an increasing

number of phonons, however, the multiple scattering processes become more impor-

tant and the single scattering event becomes less effective. This argument coincides

in some sense with the Yoffe–Regel criterion332–334 stating that an increase in the

number of scatterers does not result in a corresponding increase of the resistivity

if the the mean free path of the electrons becomes comparable with the lattice dis-

tance. Indeed, the saturation resistivity (11.104) coincides roughly with the inverse

minimal metallic conductivity which can be derived using this criterion.

12. Resistivity of Disordered Alloys

In the present section, a theory of electroconductivity in disordered transition metal

alloys with the proper microscopic treatment of the nonlocal electron–phonon in-

teraction is considered. It was established long ago that any deviation from perfect

periodicity will lead to a resistivity contribution, which will depend upon the spa-

tial extent and lifetime of the disturbance measured in relation to the conduction

electron mean free path and relaxation time. It is especially important to develop a

theory for the resistivity of concentrated alloys because of its practical significance.

The electrical resistivity of disordered metal alloys and its temperature coefficient

is of considerable practical and theoretical interest.22,59,167–172,235,325,336–339 The

work in this field has been considerably stimulated by Mooij paper,168 where it has

been shown that the temperature coefficient of the resistivity of disordered alloys

becomes negative if their residual resistivity exceeds a given critical value. To ex-

plain this phenomenon, one has to go beyond the weak-scattering limit and take

into account the interference effects between the static disorder scattering and the

electron–phonon scattering.338–345

In the weak-scattering limit,346 the contributions of impurity and phonon scat-

tering add to the total resistivity without any interference terms (Matthiessen

rule). For disordered systems, many physical properties can be related to the

configuration-averaged Green functions.347 A few methods for calculation of these

averaged Green functions were formulated. It vas found that the single-site coherent

potential approximation (CPA)348–352 provides a convenient and accurate approxi-

mation for it.353–360 The CPA is a self-consistent method353–360 that predicts alloy
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electronic properties, interpolating between those of the pure constituents over the

entire range of concentrations and scattering strengths. The self-consistency con-

dition is introduced by requiring that the coherent potential, when placed at each

lattice site of the ordered lattice, reproduces all the average properties of the ac-

tual crystal. The coherent-potential approximation has been developed within the

framework of the multiple-scattering description of disordered systems.347 A given

scatterer in the alloy can be viewed as being embedded in an effective medium

with a complex energy-dependent potential whose choice is open and can be made

self-consistently such that the average forward scattering from the real scatterer is

the same as free propagation in the effective medium. The strong scattering has

been first considered by Velicky351 in the framework of the single-site CPA using

the Kubo–Greenwood formula. These results have been extended later to a more

general models.353–367

The first attempt to include the electron–phonon scattering in the CPA calcu-

lations of the resistivity was given by Chen et al.340 A model was introduced in

which phonons were treated phenomenologically while electrons were described in

CPA. The electron–phonon interaction was described by a local operator. Chen,

Weisz and Sher340 (CWS) have performed a model calculation on the tempera-

ture dependence of the electronic density of states and the electrical conductivity

of disordered binary alloys, based on CPA solutions by introducing thermal dis-

order in the single-band model. They found that the effect of thermal disorder

is to broaden and smear the static alloy density of states. The electrical conduc-

tivity in weak scattering alloys always decreases with temperature. However, in

the strong-scattering case, the temperature coefficient of conductivity can be neg-

ative, zero or positive, depending on the location of the Fermi energy. Brouers

and Brauwers368 have extended the calculation to an s–d two-band model that

accounts for the general behavior of the temperature dependence of the electrical

resistivity in concentrated transition metal alloys. In Ref. 358, a generalization of

CWS theory340 was made by including the effect of uniaxial strain on the temper-

ature variation of the electronic density of states and the electrical conductivity

of disordered concentrated binary alloys. The validity of the adiabatic approxi-

mation in strong-scattering alloys was analyzed by CSW.359 It was shown that

the electron screening process in the moving lattice may be modified by lattice

motion in disordered alloys. If this modification is significant, not only the effec-

tive Hamiltonian but also the whole adiabatic approximation would need to be

reconsidered.

A consistent theory of the electroconductivity in disordered transition metal

alloys with the proper microscopic treatment of the electron–phonon interaction was

carried out by Christoph and Kuzemsky.310 They used the approach of paper,180

where a self-consistent microscopic theory for the calculation of one-particle Green

functions for the electron–phonon problem in disordered transition metal alloys was

developed. However, this approach cannot be simply generalized to the calculation

of two-particle Green functions needed for the calculation of the conductivity by
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the Kubo formula. Therefore, for the sake of simplicity, in their study Christoph

and Kuzemsky310 neglected the influence of disorder on the phonons. Thus, in the

model investigated here, in contrast to the GWS approach,340 the dynamics of the

phonons is taken into account microscopically, but they are treated as in a virtual

reference crystal.

For a given configuration of atoms, the total Hamiltonian of the electron-ion

system in the substitutionally disordered alloy can be written in the form180,310

H = He +Hi +Hei , (12.1)

where

He =
∑

iσ

ǫia
†
iσaiσ +

∑

ijσ

tija
†
iσajσ (12.2)

is the one-particle Hamiltonian of the electrons. For our main interest is the descrip-

tion of the electron–phonon interaction, we can suppose that the electron–electron

correlation in the Hubbard form has been taken here in the Hartree–Fock approxi-

mation in analogy with Eq. (11.56).

For simplicity, in this paper the vibrating ion system will be described by the

usual phonon Hamiltonian

Hi =
∑

qν

ω(qν)

(
b†qνbqν +

1

2

)
. (12.3)

The electron–phonon interaction term is taken in the following form180

Hei =
∑

ij

∑

ασ

Tα
ij(u

α
i − uαj )a

†
iσajσ , (12.4)

where uαi (α = x, y, z) is the ion displacement from the equilibrium position Ri.

In terms of phonon operators this expression can be rewritten in the form

Hei =
∑

i6=j

∑

qνσ

Aqν(ij)(bqν + b†−qν)a
†
iσajσ , (12.5)

where

Aqν(ij) =
q0√

2〈M〉Nω(qν)
t0ij

Rj −Ri

|Rj −Ri|
eν(q)(e

iqRi − eiqRj ) . (12.6)

Here ω(qν) are the acoustic phonon frequencies, 〈M〉 is the average ion mass, eν(q)

are the polarization vectors of the phonons, and q0 is the Slater coefficient originated

in the exponential radial decrease of the tight-binding electron wavefunction. It is

convenient to rewrite this expression in the form

Hei =
∑

i6=j

∑

q

Aq(ij)(bq + b†−q)a
†
iaj , (12.7)

where the spin and phonon polarization indices are omitted for brevity.
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The electrical conductivity will be calculated starting with the Kubo expression

for the dc conductivity:

σ(iε) = −〈〈J|P〉〉iε , (ε→ 0+) , (12.8)

where P = e
∑

iRia
†
iai and Ri is the position vector; m/eJ = m/eṖ is the current

operator of the electrons. It has the form

J = −ie
∑

ij

(Ri −Rj)tija
†
iaj . (12.9)

Then the normalized conductivity becomes

σαβ =
ie2

Ω

∑

ij

∑

l

(Ri −Rj)
αR

β
l tij〈〈a

†
iaj |a†l al〉〉iε , (12.10)

where Ω is the volume of the system. It should be emphasized here that σαβ de-

pends on the configuration of the alloy. A realistic treatment of disordered alloys

must involve a formalism to deal with one-electron Hamiltonians that include both

diagonal and off-diagonal randomness.353–360 In the present study, for the sake of

simplicity, we restrict ourselves to a diagonal disorder. Hence we can rewrite hop-

ping integral tij as

tij =
1

N

∑

k

E(k) exp[ik(Ri −Rj)] . (12.11)

Thus to proceed it is necessary to find the Green function Gij,lm = 〈〈a†iaj|a†l am〉〉. It
can be calculated by the equation of motion method. Using the Hamiltonian (12.1),

we find by a differentiation with respect to the left-hand side
∑

nr

Hij,rnGnr,lm(ω) = 〈a†iam〉δlj − 〈a†l aj〉δmi

+
∑

qn

(Aq(j − n)eiqRj〈〈a†ian(bq + b†−q)|a†l am〉〉

−Aq(n− i)eiqRn〈〈a†naj(bq + b†−q)|a†l am〉〉) , (12.12)

where

Hij,rn = (ω − ǫn + ǫr)δniδrj − tjrδni + tniδrj . (12.13)

We define now the zeroth-order Green functions G0
ij,lm that obey the following

equations of motion
∑

nr

Hij,rnG
0
nr,lm = 〈a†iam〉δlj − 〈a†l aj〉δmi , (12.14)

∑

nr

Hrn,lmG
0
ij,nr = 〈a†iam〉δlj − 〈a†l aj〉δmi , (12.15)
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where Eq. (12.15) has been obtained by a differentiation with respect to the right-

hand side of G0
ij,lm. Using these definitions it can be shown that

∑

nr

(〈a†san〉δrt − 〈a†rat〉δsn)Gnr,lm(ω)

=
∑

ij

(〈a†iam〉δlj − 〈a†l aj〉δmi)G
0
st,ji(ω)

+
∑

ijn

∑

q

(Aq(j − n)eiqRj 〈〈a†ian(bq + b†−q)|a†l am〉〉

−Aq(n− i)eiqRn〈〈a†naj(bq + b†−q)|a†l am〉〉)G0
st,ji(ω) . (12.16)

The right-hand side higher-order Green functions can be calculated in a similar

way. To proceed we approximate the electron–phonon Green function as

〈〈a†narb†qbq|B〉〉 ≃ N(q)〈〈a†nar|B〉〉 . (12.17)

Here N(q) denotes the Bose distribution function of the phonons.

As a result we find
∑

nr

(〈a†san〉δrt − 〈a†rat〉δsn)〈〈a†narbq|a†l am〉〉

= ω(q)
∑

ij

〈〈a†iajbq|a†l am〉〉G0
st,ji(ω)

−
∑

ijn

(1 +N(q))(A−q(j − n)e−iqRjGin,lm(ω)

−A−q(n− i)e−iqRnGnj,lm(ω))G0
st,ji(ω)

−
∑

ij

∑

np

A−q(n− p)e−iqRn(〈apa†i 〉Gnj,lm − 〈a†paj〉Gip,lm)G0
st,ji(ω) (12.18)

and a similar equation for 〈〈a†narb−q|a†lam〉〉.
In the above equations the Green functions G and G0 as well as the mean

values 〈a†iaj〉 which can be expressed by one-particle Green functions depend on

the atomic configuration. For the configuration averaging (which we will denote by

Ḡ), we use the simplest approximation

G ·G ∼ Ḡ · Ḡ , (12.19)

i.e., in all products the configurational-dependent quantities will be averaged sep-

arately. Taking into account Eqs. (12.14) and (12.19), the averaged zeroth-order

Green function G0
ij,lm is given by the well-known CPA solution for two-particle

Green function in disordered metallic alloy351

G0
ij,lm(ω) =

1

N2

∑

k1k2

eik1(Rm−Ri)eik2(Rj−Rl)F2(k1,k2) , (12.20)
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where F2(k1,k2) is given by

F2(k1,k2) ≈ i(E(k2)− E(k1))

∫
dω

∂f

∂ω

[
Im

(
1

ω − Σ(ω)− E(k1)

)]2
,

for |E(k1)− E(k2)| ≪ |Σ(E(k1))| ,
(12.21)

F2(k1,k2) ≈ f(E(k1))−f(E(k2))
E(k1)−E(k2)

,

for |E(k1)− E(k2)| ≫ |Σ(E(k1))| .
(12.22)

Here Σ(ω) denotes the coherent potential and f(ω) is the Fermi distribution func-

tion. The configurational averaged terms 〈a†san〉 are given by

〈a†san〉 =
∑

k

eik(Rn−Rs)F1(k) ,

F1(k) = − 1

π

∫
dωf(ω)Im

(
1

ω−Σ(ω)−E(k)

)
.

(12.23)

After the configurational averaging equations (12.16) and (12.18) can be solved by

Fourier transformation and we find

Gij,lm(ω) =
1

N2

∑

k1k2

∑

k3k4

e−ik1Rieik2Rje−ik3Rleik4RmG(k1,k2;k3,k4) , (12.24)

where

G(k1,k2;k3,k4) ≡ G(k1,k2) = F2(k1,k2)δ(k4,k1)δ(k3,k2)−
F2(k1,k2)

F1(k1)− F1(k2)

×
∑

q

(
X(q,k2)G(k1,k2) + Y (q,k1,k2)G(k1 − q,k2 − q)

[F1(k1)− F1(k2 − q)− ω(q)F2(k1,k2 − q)](F2(k1,k2 − q))−1

+
X1(q,k1,k2)G(k1 − q,k2 − q)− Y1(q,k1)G(k1,k2)

[F1(k1 − q)− F1(k2)− ω(q)F2(k1 − q,k2)](F2(k1 − q,k2))−1

− 2 terms with ω(q) → −ω(q), N(q) → (−1−N(q))

)
, (12.25)

and

A(q, k) =
1

N

∑

k

e−ik(Ri−Rj)Aq(i− j) . (12.26)

Here the following notation were introduced

X(q,k2) = A(q,k2 − q)A(−q,k2)(F1(k2 − q)− 1−N(q)) , (12.27)

Y (q,k1,k2) = A(q,k2 − q)A(−q,k1)(F1(k1) +N(q)) , (12.28)

X1(q,k1,k2) = A(q,k1)A(−q,k2 − q)(1 +N(q)− F1(k2)) , (12.29)

Y1(q,k1) = A(q,k1)A(−q,k1 − q)(F1(k1 − q) +N(q)) . (12.30)
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Equation (12.25) is an integral equation for the Green function G(k1,k2) to be

determined.

The structural averaged conductivity can be obtained, in principle, by using

Eq. (12.10), where the Green function 〈〈a†iaj |a†l al〉〉 is to be replaced by Gij,ll(ω)

as given by Eq. (12.24). It is, however, more convenient to start with the Kubo

formula in the following form310

σ =
ie2

Ω
lim
p→0

∑

k

1

p2

(
∂E(k)

∂k
p

)
〈〈a†kak+p|η−p〉〉iε , (12.31)

where η−p =
∑

k a
†
kak−p is the electron density operator. To find the Green function

〈〈a†kak+p|η−p〉〉, the integral equation (12.25) has to be solved. In general, this can

be done only numerically, but we can discuss here two limiting cases explicitly. At

first we consider the weak-scattering limit being realized for a weak disorder in the

alloy, and second, we investigate the temperature coefficient of the conductivity for

a strong potential scattering.

In the weak-scattering limit, the CPA Green function is given by the expression

F2(k1,k2) ≈ i(E(k2)− E(k1))
df

dE(k1)
· 1

Σ(E(k1))
,

for |E(k2)− E(k1)| ≪ |Σ(E(k1))| .
(12.32)

Corresponding to this limit, the following solution ansatz for the Green function

G(k, k + p) can be used

G(k, k + p) = 〈〈a†kak+p|η−p〉〉iε ≃ i

(
∂E(k)

∂k
p

)
df

dE(k)
· 1

Σ(E(k)) + γ(E(k))
,

(12.33)

where γ describes the contribution of the electron–phonon scattering to the coher-

ent potential. Taking into account that in the weak-scattering limit |Σ| ≪ ω(q),

the terms F2(k, k − q) in the right-hand side denominators of Eq. (12.25) can be

replaced by the expression (12.32), and then the integral equation (12.25) becomes

for lim p→ 0

i
∂f(E(k))

∂E(k)

(
∂E(k)

∂k
p

)
1

Σ(E(k)) + γ(E(k))

≃ i
∂f(E(k))

∂E(k)

(
∂E(k)

∂k
p

)
1

Σ(E(k))

− 1

Σ(E(k))

1

N

∑

q

A(q,k− q)A(−q,k)

[
Z1(k, q) + Z2(k, q)

E(k)− E(k − q)− ω(q) + iε

+
Z3(k, q)− Z4(k, q)

E(k)− E(k − q) + ω(q) + iε

− 2 terms with ω(q) → −ω(q), N(q) → (−1−N(q))

]
. (12.34)
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Here the following notation were introduced

Z1(k, q) = (f(E(k − q))− 1−N(q))
df

dE(k)
·

(
∂E(k)
∂k p

)

Σ(E(k)) + γ(E(k))
, (12.35)

Z2(k, q) = (f(E(k)) +N(q))
df

dE(k − q)
·

(
∂E(k−q)
∂(k−q) p

)

Σ(E(k − q)) + γ(E(k − q))
, (12.36)

Z3(k, q) = (1 − f(E(k)) +N(q))
df

dE(k − q)
·

(
∂E(k−q)
∂(k−q) p

)

Σ(E(k − q)) + γ(E(k − q))
, (12.37)

Z4(k, q) = (f(E(k − q)) +N(q))
df

dE(k)
·

(
∂E(k)
∂k p

)

Σ(E(k)) + γ(E(k))
. (12.38)

Approximating the self-energy terms Σ(E(k)) and γ(E(k)) by Σ(EF ) ≡ Σ and

γ(EF ) ≡ γ, respectively, the terms proportional to Σ cancel and γ can be calculated

by

γ
df

dE(k)
·
(
∂E(k)

∂k
p

)
= − π

N

∑

q

A(q,k − q)A(−q,k)

×
([

(f(E(k)) +N(q))
df

dE(k − q)
·
(
∂E(k − q)

∂(k − q)
p

)

− (1− f(E(k − q)) +N(q))
df

dE(k − q)

×
(
∂E(k)

∂k
p

)]
δ(E(k)− E(k − q)− ω(q))

)

− π

N

∑

q

A(q,k − q)A(−q,k)

×
([

(f(E(k − q)) +N(q))
df

dE(k)
·
(
∂E(k)

∂k
p

)

− (1− f(E(k)) +N(q))
df

dE(k − q)

×
(
∂E(k − q)

∂(k − q)
p

)]
δ(E(k)− E(k − q) + ω(q))

)
. (12.39)

Using the approximations

∂E(k)

∂k
≃ 1

m∗
k, A(q,k − q)A(−q,k) ≃ A2q, q → 0 ,
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where effective mass m∗ = m∗(EF ), we find

γ = β
Ω

2πN

A2m∗

2(2m∗EF )3/2

∫
dqq4ω(q)N(q)(1 +N(q)) (12.40)

and

γ ∼
{
T 5 if T ≪ θD ,

T if T ≫ θD .
(12.41)

For a binary alloy AxB1−x with concentrations of the constituents cA and cB and

the corresponding atomic energies ǫA and ǫB, in the weak-scattering limit the co-

herent potential is given by340

Σ = cAcB(ǫA − ǫB)
2D(EF ) . (12.42)

Then the conductivity becomes

σ =
e2

3(2π)3

∫
dk

(
∂E(k)

∂k

)2
df

dE(k)
· τ , (12.43)

where

τ−1 = Σ+ γ , (12.44)

in correspondence with the Matthiessen, Nordheim and Bloch–Gruneisen rules.

Now we estimate temperature coefficient of the conductivity for a strong po-

tential scattering. For a strongly disordered alloy, the electron–phonon interaction

can be considered as a small perturbation and the Green functions G(k, k′) on the

right-hand side of Eq. (12.25) can be replaced by CPA Green functions F (k, k′).

For simplicity, on the right-hand side of Eq. (12.25), we take into consideration only

terms proportional to the Bose distribution function giving the main contribution

to the temperature dependence of the conductivity. Then 〈〈a†kak1
|ηk−k1

〉〉 becomes

(k1 = k + p ≃ k)

〈〈a†kak1
|ηk−k1

〉〉

= F2(k, k1)

(
1− 2

F1(k)− F1(k1)

∑

q

A(q,k − q)A(−q,k)N(q)

×
{
F2(k, k − q)[F2(k − q, k1 − q)− F2(k, k1)](F1(k)− F1(k − q))

[F1(k)− F1(k − q)]2 − ω2(q)F 2
2 (k, k − q)

+
F2(k − q, k)[F2(k − q, k1 − q)− F2(k, k1)](F1(k − q)− F1(k))

[F1(k − q)− F1(k)]2 − ω2(q)F 2
2 (k − q, k)

})
. (12.45)

Neglecting at low temperatures, the terms ω2(q)F 2
2 (k1− q, k1) ∼ q4 as compared to

[F1(k1)− F1(k1 − q)]2 ∼ q2 and using Eq. (12.21) for ω(q) ≪ |Σ|, we find for small
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q and p→ 0

〈〈a†kak+p|η−p〉〉 ≃ F2(k, k + p)

[
1 +

(
dF1

dE(k)

)−2∑

q

(∆(q, k − q)−∆(q, k))

]
.

(12.46)

Here ∆(q, k) is the temperature-dependent correction terms to the CPA Green

function are given by

∆(q, k) = 2A2qN(q)

(∫
dω
df(ω)

dω

[
Im

(
1

ω − Σ(ω)− E(k)

)]2)2

. (12.47)

For temperatures kBT ≪ EF , we can write
∫
dω
df(ω)

dω
S(ω,E(k)) ∼= −S(EF , E(k)) (12.48)

and the conductivity becomes

σ = σCPA +∆σ(T ) , (12.49)

where

σCPA =
e2

Ω

∑

k

(
∂E(k)

∂k

)2 [
Im

(
1

EF − Σ(EF )− E(k)

)]2
(12.50)

is the standard CPA expression for the conductivity and

∆σ(T ) =
2e2A2

Ω

∑

k

(
∂E(k)

∂k

)2∑

q

qN(q)

×
([

Im

(
1

EF − Σ(EF )− E(k − q)

)]4

−
[
Im

(
1

EF − Σ(EF )− E(k)

)]4)
. (12.51)

Introducing the effective mass of the electrons with E(k) ≃ EF , the temperature-

dependent correction to the conductivity becomes

∆σ(T ) ∼= 2e2A2

Ω

1

(m∗)2

∑

k

∑

q

q3N(q)

[
Im

(
1

EF − Σ(EF )− E(k − q)

)]4
.

(12.52)

Here the quantity ∆σ(T ) is positive definite and increasing with increasing temper-

ature. Hence, in strongly disordered alloys where the electron–phonon scattering is

weak as compared with the disorder scattering, the temperature coefficient of the

resistivity is negative. It should be mentioned, however, that the concrete temper-

ature dependence of the correction term (12.52) is a crude estimation only because
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in the derivation of (12.52) the influence of the disorder on the lattice vibrations

has been neglected.

One more remark is appropriate for the above consideration. For the calculation

of transport coefficients in disordered 3d systems, the classical approaches such as

the Boltzmann equation, become useless if the random fluctuations of the poten-

tial are too large.235,337 The strong potential fluctuations force the electrons into

localized states. In order to investigate the resistivity of metallic alloys near the

metal–insulator transition,235,337 the corresponding formula for the resistivity can

be deduced along the line described above. For a binary transition metal alloy, the

corresponding Hamiltonian is given by

H =
∑

i

ǫia
†
iai +

∑

ij

tija
†
iaj (12.53)

(with ǫi = ǫA, ǫB depending on the occupation of the lattice site i). A corresponding

integral equation for the Green function 〈〈aj |a†i 〉〉ω can be written down. Using a sim-

ple ensemble averaging procedure and approximating the averaged Green function

by the expression

〈〈aj |a†i 〉〉ω ≈ 1

N

∑

k

exp[ik(Ri −Rj)]
1

ω − ǫk
exp(−α(ǫk)|Ri −Rj |) , (12.54)

the integral equation transforms into an equation for the parameter (α(ǫk))
−1 which

is proportional to the averagedmean free path of the electrons. It can be shown then,

by solving this equation for electrons at the Fermi surface EF , that (α(EF ))
−1 and

the conductivity σ drop in a discontinued way from (α)−1
min and σmin, respectively,

to zero as the potential fluctuations exceed a critical value. Note that (α)−1
min is of

the order 1/d, where d is the lattice parameter.

13. Discussion

In the foregoing sections, we have discussed some selected statistical mechanics

approaches to the calculation of the electrical conductivity in metallic systems like

transition metals and their disordered alloys within a model approach.

Electrons in metals are scattered by impurities and phonons. The theory of

transport processes for ordinary metals was based on the consideration of various

types of scattering mechanisms and, as a rule, has used the Boltzmann equation

approach. The aim of the present review was to describe an alternative approach to

the calculation of electroconductivity, which can be suitable for transition metals

and their disordered alloys. There is an important aspect of this consideration. The

approximations used here are the tight-binding and modified tight-binding, which

are admittedly not ideally precise but does give (at least as the first approxima-

tion) reasonable qualitative results for paramagnetic transition metals and their

disordered alloys. We studied the electronic conduction in a model of transition

metals and their disordered alloys utilizing the method of generalized kinetic equa-

tions. The reasonable and workable expressions for the electrical conductivity were
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established and analyzed. We discussed briefly various approaches for computing

electrical conductivity as well.

We hope that these considerations have been worked out with sufficient details

to bring out their scope and workability. In this paper, we have considered the ide-

alized Hubbard model which is the simplest (in the sense of formulation, but not

solution) and most popular model of correlated lattice fermions.62,99 We believe

that this technique can be applied to other model systems (e.g., multi-band Hub-

bard model, periodic Anderson model, etc.). As it is seen, this treatment has some

advantages in comparison with the standard methods of computing electrical con-

ductivity within the Boltzmann equation approach, namely, the very compact form.

The physical picture of electron–electron and electron–phonon scattering processes

in the interacting many-particle systems is clearly seen at every stage of calcula-

tions, which is not the case with the standard methods. This picture of interacting

many-particle system on a lattice is far richer and gives more possibilities for the

analysis of phenomena which can actually take place in real metallic systems. We

believe that our approach offers a convenient way for approximate considerations of

the resistivity of the correlated electron systems on a lattice. We believe that in view

of the great difficulty of developing a first principles microscopic theory of transport

processes in solids, the present approach is a useful alternative for description the

influence of electron–electron, electron–phonon and disorder scattering effects on

the transport properties of transition metals and their disordered alloys.

In the confines of a review of this nature many topics of great practical and

theoretical interest have necessarily to be omitted (see e.g., Refs. 369–371). In

recent years the field of mesoscopic physics is developing rapidly.337,372–375 It deals

with systems under experimental conditions where several quantum-length scales

for electrons are comparable. The physics of transport processes in such systems is

rich of quantum effects, which is typically characterized by interplay of quantum

interference and many-body interactions. It would be of interest to generalize the

present approach to quantum transport phenomena.

In conclusion, the foregoing analysis suggests that the method of the generalized

kinetic equations is an efficient and useful formalism for the studying of some se-

lected transport processes in metallic systems.
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