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Abstract

Auger dominant metastable states in the antiprotonic helium atoms are studied by
using the Complex Coordinate Rotation method. Relativistic corrections for the
bound electron related to the Breit interaction have been calculated using CCR
wave functions. Higher order relativistic and QED effects have been included into
consideration to get precise theoretical values for transition frequencies.
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Metastable states of an exotic atom He+p̄ were of considerable interest in the
past years. After first observation at KEK of the delayed annihilation phe-
nomena, when about 3.6% of antiprotons injected into the helium target [1]
survived as long as a few microseconds, precise spectroscopic measurements
of several transition lines both in 4He and 3He atoms has been performed at
CERN [2,3]. In the recent precise measurements [4] carried out at CERN, in
general, the daughter state of the measured transition is the Auger dominant
state. That allows to observe a spike in the Annihilation Time Spectra when
a laser wavelength is on resonance. To meet the requirements of these exper-
iments it is necessary to perform an accurate study of the Auger dominant
states.

Very precise nonrelativistic energies and wave functions have been obtained for
the metastable states which decay dominantly via radiative channel [5]. In this
case one can effectively apply the Feshbach formalism, when the Hamiltonian
is projected onto the subspace of closed channels that still provide with a
sufficiently accurate approximation for the wave function. The other advantage
is that the standard variational technique may be applied. In case when the
Auger decay become dominant the state should be considered as an essentially
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resonant one, and more sophisticated methods are required. We apply the
Complex Coordinate Rotation (CCR) method [6] to this problem.

1. Complex Coordinate Rotation. The nonrelativistic Hamiltonian for an
antiprotonic helium atom (in atomic units e = h̄ = me = 1) reads,
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where R, r are the position vectors and µp̄, µe are the reduced masses of p̄ and
an electron relative to the helium nucleus, while T and V denote the operators
of kinetic and potential energy.

The Coulomb Hamiltonian is analytic under dilatation transformations

(U(θ)f) (r) = emθ/2f(eθr), H(θ) = U(θ)HU−1(θ), (2)

for real θ and can be analytically continued to the complex plane. The Complex–
Coordinate Rotation method [6] ”rotates” the coordinates of the dynamical
system (θ = iϕ), rij → rije

iϕ, where ϕ is the parameter of the complex rota-
tion. Under this transformation the Hamiltonian changes as a function of ϕ,

Hϕ = Te−2iϕ + V e−iϕ. (3)

The continuum spectrum of Hϕ is rotated on the complex plane around branch
points (”thresholds”) to ”uncover” resonant poles situated on the unphysical
sheet of the Reimann surface in accordance with the Augilar-Balslev-Combes
theorem [7]. The resonance energy is then determined by solving the complex
eigenvalue problem for the ”rotated” Hamiltonian

(Hϕ − E)Ψϕ = 0, (4)

The eigenfunction Ψϕ obtained from Eq. (4), is square-integrable and the
corresponding complex eigenvalue E = Er−iΓ/2 defines the energy Er and the
width of the resonance, Γ, the latter is being related in case of the antiprotonic
helium atoms to the Auger rate as λA = Γ/h̄.

It is known that to get an accurate solution for an Auger dominant state in
the antiprotonic helium is a pretty difficult task due to a very narrow width
of these states and different scales for antiproton and electron orbitals. In
our calculations we use a general strategy of a multy-layered variational wave
function as it was described in [8]. Details of calculations will be presented
elsewhere [9].

2. Leading order relativistic corrections. We consider here only calcula-
tion of the spin-independent part of transition energies. The major contribu-
tion comes from the relativistic correction for the bound electron,
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The other terms of the Breit Hamiltonian are the relativistic correction to the
kinetic energy for heavy particles (with the antiproton Darwin correction),

Ekin = −α2
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the retardation (or the transverse photon exchange) correction,

Eret = −α2
∑
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and the finite size corrections

Efsc =
∑ 2πZi(Ri/a0)

2

3
〈δ(ri)〉, (8)

where R is the root-mean-square radius of the nuclear charge distribution. The
RMS radius for the helium nucleus and antiproton is, respectively, R(4He) =
1.673(1) fm, R(p̄) = 0.862(12) fm.

The last three contributions are less than the leading contribution from (5)
by three or four orders of magnitude. That means that they can be calcu-
lated using the Feshbach type closed channel wave function, since a relative
accuracy of ∼ 10−4 is sufficient for these corrections. On contrary, the leading
contribution requires more accurate solution, which can be obtained within
the framework of the Complex Coordinate Rotation approach.

In order to do that we need a perturbation theory applicable to resonant
states. The relevant theory is provided by the theorem proved by Simon [10].

Theorem. Let H be a three-body Hamiltonian with Coulomb pairwise inter-
action, and W (θ) be a dilatation analytic perturbation. Let E0 be an isolated
simple resonance energy (discrete eigenvalue of H(θ)). Then for β small, there
is exactly one resonance of H + βW near E0 and

E(β) = E0 + a1β + a2β
2 + . . .

is analytic near β = 0. In particular,

a1 = E ′(0) = 〈Ψ∗
θ |W (θ)|Ψθ〉 / 〈Ψ∗

θ, Ψθ〉 . (9)

Here a resonance is defined as a complex eigenvalue of H(θ). In case of the
Coulomb three–body system it was proved that these resonances correspond
to those which are the ”poles” of the S-matrix in the scattering theory.

It is obvious that operators encountered in Eq. (5) are dilatation analytic,

δθ(r) = δ(r)e−3θ, p4
θ = p4e−4θ.

However they are not ”small” perturbations in a sense of the Simon theorem.
It is a general practice in QED to regularize these operators in some or other
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way, the only requirement is to preserve a ”dilatation analyticity” property.
And then after performing all calculations regularization should be removed
to get finite results.

Re Im

ENR −2.847324048(1) 3.709(1) · 10−6

p4
e 48.7142(4) 0.0089(4)

δ(rHe) 1.60580(1) 0.00029(1)

δ(rp̄) 0.05392 0.000015

Erel −2.847384180(4) 3.697(4) · 10−6

Table 1
Relativistic corrections to the energy and Auger width of the (38, 33) state of the
4He+p̄ atom.

An example of such calculations is shown in Table I, from which is seen that
relativistic correction to the Auger decay rate is about 0.3% and, probably,
can be detected in experiment. The final uncertainty of a theoretical value
is primarily defined by the uncertainty in the relativistic correction for the
bound electon.

3. Higher order corrections and final results. Beyond the corrections
described in a previous section there are a few other corrections, which are
essential to get reliable theoretical values for transition energies. A list of cor-
rections may be found in [9] and includes QED corrections for the anomalous
magnetic moment, self energy and vacuum polarization for the bound electron.

transition this work experiment [4] Kino [11]

(33, 32)→(32, 31) 1 012 445.630(2) 1 012 445.52(15) 1 012 445.635(4)

(35, 33)→(34, 32) 804 633.053(3) 804 633.11(10) 804 633.09(5)

(39, 35)→(38, 34) 501 948.765(5) 501 949.01(10) 501 948.655(7)

(36, 34)→(37, 33) 486 104.88(3) 486 102.7(5) 486 104.43(7)

(37, 34)→(38, 33) 420 120.45(4) 420 121.9(7) 420 121.53(1)

(37, 35)→(38, 34) 412 885.129(6) 412 885.16(8) 412 885.042(7)

Table 2
Transition frequencies for 4He+p̄ atom (in GHz) between metastable states in the
antiprotonic helium atom for transitions to Auger dominant decay states.

Transition energies for some transitions, which ends up in an Auger-dominant
state, are presented in Table 2. The numerical uncertainty in theoretical pre-
dictions is finally defined by the numerical uncertainty of the daughter state
and further improvement requires significant computational efforts to increase
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substantially an accuracy of the variational wave function for the Auger-
dominant decay states.

In conclusion we would like to say that while the presented theoretical results
are rather accurate still the accuracy is limited mainly by the numerical un-
cerainty. Thus, for precise spectroscopy study of the three-body QED bound
states, it seems more preferable to deal with states and transitions, which lay
higher in (n, l) region, and correspond to the states, in which the radiative
decay rate exceeds significantly (by some orders of magnitude) the Auger (or
resonance) decay rate. Especially that is concerned the two-photon Doppler-
free high precision spectroscopy, which may allow us to determine precisely
the antiproton mass, and/or to check the higher order relativistic and QED
effects.
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