Geometry of supersymmetric solutions in ten dimensions

Alessandro Tomasiello

Dubna
17th Dec. 2012

$\frac{\text { FUTURO }_{3}}{\text { INRICERCA }_{3}}$
©DEGLI STUDI

Introduction

Type II supergravity: one of the possible perturbative limits of string theory

$$
\begin{aligned}
& g_{\mu \nu} \text { metric } \quad \phi \text { 'dilaton' }\left(e^{\phi}=\text { string coupling }\right) \\
& H_{\mu \nu \rho}=3 \partial_{[\mu} B_{\nu \rho]} \text { "gauge curvature" with } 3 \text { indices }\left[\begin{array}{c}
3 \text {-form } \\
H=d B
\end{array}\right] \\
& \psi_{\mu} \text { gravitino } \\
& F_{p}: \text { "RR" } p \text {-form } \quad p= \begin{cases}1,3,5,7,9 & \text { (IIA) } \\
0,2,4,6,8 & \text { (IIB) }\end{cases} \\
& \text { Supersymmetry: bosons [forces] } \longleftrightarrow \text { fermions [matter] }
\end{aligned}
$$

Aim of this talk: characterize supersymmetric solutions

$$
\begin{array}{ll}
\delta g_{\mu \nu}=\bar{\epsilon} \gamma_{(\mu} \psi_{\nu)} & \bullet \text { Set } \psi=0 ; \Rightarrow \delta g_{\mu \nu}=0 \\
\delta \psi_{\mu}=\nabla_{\mu} \epsilon+\overline{\text { RR Ares }} & \bullet \text { Set RR }=0 \Rightarrow \delta \psi_{\mu}=0
\end{array}
$$

Finding solutions is easiest in terms of forms

Example:

$$
M_{10}=\operatorname{Mink}_{4} \times M_{6}
$$

$\nabla_{\mu} \epsilon=0$
"restricted holonomy"
J symplectic form
Ω holomorphic volume form

$$
\nabla_{m} \epsilon=0 \Longleftrightarrow\left\{\begin{array}{l}
d J=0 \\
d \Omega=0 \\
J \wedge \Omega=0 \\
J^{3}=i \Omega \wedge \bar{\Omega}
\end{array}\right.
$$

millions of
Calabi-Yau's found this way [Calabi'57, You' ${ }_{77}$]
$\delta g_{\mu \nu}=\bar{\epsilon} \gamma_{(\mu} \psi_{\nu)}$
$\delta \psi_{\mu}=\nabla_{\mu} \epsilon+\mathrm{RR}$ fluxes

- Set $\psi=0 ; \Rightarrow \delta g_{\mu \nu}=0$
- If we don't set $\mathrm{RR}=0$:
ζ messy system! no holonomy interpretation

But another interpretation exists!

[Graña, Minasian, Petrini, AT'05]
$M_{10}=$ Mink $_{4} \times M_{6}$

similar equations also exist for

$$
M_{10}=\mathrm{AdS}_{4} \times M_{6} \quad\left[\text { holographically dual to } \mathrm{CFT}_{3}\right]
$$

But:

- what about other spacetimes?

$$
\begin{aligned}
& (\text { black hole })_{4} \times M_{6} \\
& (\text { Lifschitz })_{4} \times M_{6}
\end{aligned}
$$

[holographically dual to nonrelativistic CFT_{3}]

- what about different dimensions?

$$
\begin{aligned}
& \operatorname{Mink}_{d} \times M_{10-d} \\
& \operatorname{AdS}_{d} \times M_{10-d}
\end{aligned}
$$

In this talk, I will describe a solution to this problem:

A system in terms of forms equivalent to supersymmetry
I. Review of the system for vacuum solutions
2.The new system: algebraic equations
3. The new system: differential equations

I. Vacuum solutions

Type II theories: two supersymmetry generators $\epsilon_{1,2}$
$M_{10}=\operatorname{Mink}_{4} \times M_{6} \quad \triangleleft$ decompose: $\epsilon_{1,2}=\zeta_{+} \otimes \eta_{+}^{1,2}+$ c.c.

forms: $\eta_{+}^{1, \dagger} \gamma_{m n} \eta_{+}^{2}$ etc.
[in IIB, from now on]
a more efficient

$$
\left(\eta_{+}^{1} \otimes \eta_{-}^{2 \dagger}\right)_{\alpha \beta}=\eta_{+\alpha}^{1} \eta_{-\beta}^{2 *}
$$

is a bispinor method:
'Clifford map':

$$
\begin{array}{cc}
\text { bispinors } & \text { forms } \\
\gamma^{m_{1} \ldots m_{k}} \longleftrightarrow d x^{m_{1}} \wedge \ldots \wedge d x^{m_{k}}
\end{array}
$$

$$
\text { So } \phi_{ \pm} \equiv \eta_{+}^{1} \otimes \eta_{ \pm}^{2 \dagger} \text { are forms }
$$

Algebraic constraints.

When can a pair of forms $\phi_{ \pm}$be written as $\eta_{+}^{1} \otimes \eta_{ \pm}^{2 \dagger}$?

Answer:

- introduce 'generalized Lorentz group' $\mathrm{SO}(6,6)$
- ordinary rotations $\omega^{m}{ }_{n}$
generators: • wedge by two-forms $B_{m n}$
- contraction with bi-vector $\beta^{m n}$
- then: if and only if the little group $\operatorname{Stab}\left(\phi_{ \pm}\right)$is $\mathrm{SU}(3) \times \mathrm{SU}(3)$
[in particular, $\phi_{ \pm}$are 'pure']
each η has a little group $\operatorname{Stab}(\eta)=\mathrm{SU}(3)$

In fact:

$$
\phi_{ \pm} \longleftrightarrow\left(\underset{\substack{\text { internal metric }}}{\left(g, B, \phi, \eta^{1,2}\right)}\right.
$$

Differential equations.

II. Ten dimensions: algebraic equations

We now want to generalize the system we just saw to any supersymmetric solution in iod

$$
\left[\text { not just } \begin{array}{c}
\mathrm{Mink}_{4} \\
\mathrm{AdS}_{4}
\end{array}\right\} \times M_{6} \text {] }
$$

First question: what is the little group of a Iod spinor ϵ ?

$$
K^{M}=\bar{\epsilon} \gamma^{M} \epsilon \quad \text { light-like vector: } K^{M} K_{M}=0
$$

ϵ also defines a 5 -form:
$\epsilon \otimes \bar{\epsilon}=K+\Omega_{5}+* K$
$\iota_{K} \Omega$ breaks $\operatorname{SO}(8)$ to $\operatorname{Spin}(7)$

$$
\begin{aligned}
& \operatorname{Stab}(K)=\mathrm{SO}(8) \ltimes \mathbb{R}^{8} \\
& \operatorname{Stab}(\epsilon)=\operatorname{Spin}(7) \ltimes \mathbb{R}^{8}
\end{aligned}
$$

With two spinors $\epsilon_{1,2}$, we can define bilinear

$$
\Phi \equiv \epsilon_{1} \otimes \bar{\epsilon}_{2}
$$

Algebraic constraints.

$$
\text { When can a form } \Phi \text { be written as } \epsilon_{1} \otimes \bar{\epsilon}_{2} \text { ? }
$$

- Again look at 'generalized Lorentz' $\operatorname{SO}(10,10)$

From $\epsilon_{1,2}$, one would expect $(\operatorname{ISpin}(7))^{2}$
Unfortunately the right answer is:

- if and only if $\operatorname{Stab}(\Phi)$ is $\left(\operatorname{Spin}(7)^{2} \times \operatorname{Sl}(2, \mathbb{R})\right) \ltimes \operatorname{Heis}_{33}$
[Φ is not pure!]
- I listed all possible solutions to this constraint.
- $\operatorname{Stab}\left(\Phi=\epsilon_{1} \otimes \bar{\epsilon}_{2}\right)$ bigger than $\operatorname{Stab}\left(\epsilon_{1}\right) \times \operatorname{Stab}\left(\epsilon_{2}\right)$

ζ

Φ does not determine a metric!
each ϵ defines an "incomplete vielbein";

Possibility: complete them with vectors $e_{+_{1}}, e_{+_{2}}$

$$
\left(\Phi, e_{+_{1}}, e_{+_{2}}\right) \mapsto \text { metric }
$$

II. Ten dimensions: differential equations

two lightlike vectors

$$
K_{i}^{M}=\bar{\epsilon}_{i} \gamma^{M} \epsilon_{i}
$$

$$
\begin{aligned}
& K=\frac{1}{2}\left(K_{1}+K_{2}\right) \\
& \tilde{K}=\frac{1}{2}\left(K_{1}-K_{2}\right)
\end{aligned}
$$

two old equations:

$$
L_{K} g=0
$$

$$
\text { [} K \text { is Killing vector] }
$$

$$
\iota_{K} H=d \tilde{K} \quad \triangleleft \quad L_{K} H=\left\{d, \iota_{K}\right\} H=\iota_{K} d H=0
$$

[K preserves H]
[Hackett-Jones, Smith 'o4;
Koerber, Martucci 'o7;
Figueroa-O'Farrill, Hackett-Jones,
Moutsopoulos '07]

What about Φ ?

$$
L_{K} g=0 \quad \iota_{K} H=d \tilde{K}
$$

$$
d_{H} \Phi=\left(\tilde{K} \wedge+\iota_{K}\right) F
$$

This equation reproduces the ones for vacua:

$$
\begin{aligned}
& M_{10}=\operatorname{Mink}_{4} \times M_{6} \\
& \Phi=\operatorname{Re}\left[(v+i * v) \wedge \phi_{+}+v \wedge w \wedge \phi_{-}\right] \\
& K=v \\
& \tilde{K}=0
\end{aligned}
$$

$$
\leadsto\left\{\begin{array}{l}
d \phi_{-}=0 \\
d \phi_{+}=F
\end{array}\right.
$$

$$
\begin{gathered}
L_{K} g=0 \quad \iota_{K} H=d \tilde{K} \\
\quad d_{H} \Phi=\left(\tilde{K} \wedge+\iota_{K}\right) F \\
\left(\psi \otimes \overline{\epsilon_{2}} e_{+_{2}}, d_{H}\left(\Phi e_{+_{2}}\right)-F\right)=0 \\
\left(e_{+_{1}} \epsilon_{1} \otimes \bar{\psi}, d_{H}\left(\Phi e_{+_{2}}\right)-F\right)=0 \\
\quad[(,) \text { natural inner product }]
\end{gathered}
$$

- no Ansatz necessary
- same system in IIA and IIB
- no covariant derivatives

It is possible to apply it now to 4 d susy solutions with my student

Dario Rosa]

- one can apply similar methods to $\mathcal{N}=2, d=4$ supergravity
- a 4 d spinor describes an \mathbb{R}^{2} structure: again an "incomplete vielbein"
- we need again to introduce e_{+}'s
- but when K is timelike, \exists nicer system

$$
\left\{\begin{array}{l}
d v_{i j}=\ldots \\
v_{i j} \cdot d q^{u}=\ldots
\end{array}\right.
$$

- we are now putting the iod system in the same form
- when K is timelike, we traded the ugly 'pairing equations' for $d K=\ldots$

Conclusions

- We saw how supersymmetry in type II string theory can be expressed in terms of forms.
- There is room for improvement, but potentially the system we found is more fundamental than the one for 4 d compactifications.
- It still uses the geometry of $T \oplus T^{*}$, but it does not involve generalized complex structures or pure spinors.

