On geometrical structures and properties of solutions to Hamiltonian systems of PDEs

Boris DUBROVIN
SISSA, Trieste
and Steklov Mathematical Institute
and Moscow State University "M.V.Lomonosov"

Plan:

- Hamiltonian PDEs depending on small parameter. Dispersionless limit.
- Gradient catastrophe; phase transitions from regular to oscillatory behavior.
- Universality conjecture. Some special functions (Painlevé transcendents).

Class of systems of PDEs depending on a small parameter ϵ

$$
\begin{gathered}
\mathbf{u}_{t}=A(\mathbf{u}) \mathbf{u}_{x}+\epsilon A_{2}\left(\mathbf{u} ; \mathbf{u}_{x}, \mathbf{u}_{x x}\right)+\epsilon^{2} A_{3}\left(\mathbf{u} ; \mathbf{u}_{x}, \mathbf{u}_{x x}, \mathbf{u}_{x x x}\right)+\ldots \\
\mathbf{u}=\left(u^{1}, \ldots, u^{n}\right)
\end{gathered}
$$

Terms of order $\epsilon^{k} \quad$ are differential polynomials
of degree $k+1$

$$
\operatorname{deg} u^{(m)}=m, \quad m=1,2, \ldots
$$

This class is invariant with respect to the group of transformations of the form

$$
\begin{gathered}
\mathbf{u} \mapsto \tilde{\mathbf{u}}=F_{0}(\mathbf{u})+\epsilon F_{1}\left(\mathbf{u}, \mathbf{u}_{x}\right)+\epsilon^{2} F_{2}\left(\mathbf{u}, \mathbf{u}_{x}, \mathbf{u}_{x x}\right)+\ldots \\
\operatorname{deg} F_{k}\left(\mathbf{u}, \mathbf{u}_{x}, \ldots, \mathbf{u}^{(k)}\right)=k \\
\operatorname{det}\left(\frac{D F_{0}(\mathbf{u})}{D \mathbf{u}}\right) \neq 0
\end{gathered}
$$

The Hamiltonian structure is given by a flat metric

$$
\begin{gathered}
d s^{2}=\eta_{i j} d u^{i} d u^{j} \\
\eta_{j i}=\eta_{i j}=\text { const, } \quad \operatorname{det}\left(\eta_{i j}\right) \neq 0
\end{gathered}
$$

(B.D., S.Novikov, I 983)

$$
u_{t}^{i}=\eta^{i j} \frac{\partial}{\partial x} \frac{\delta H}{\delta u^{j}(x)}, \quad i=1, \ldots, n
$$

Local Hamiltonians

$$
H=\int\left[h_{0}(u)+\epsilon h_{1}\left(u, u_{x}\right)+\epsilon^{2} h_{2}\left(u, u_{x}, u_{x x}\right)+\ldots\right] d x
$$

Triviality of Poisson cohomology: Getzler 2001

Examples

I) $\mathrm{KdV} \quad u_{t}+u u_{x}+\frac{\epsilon^{2}}{12} u_{x x x}=0 \quad(n=1)$

In the zero dispersion limit $\epsilon=0 \quad \Rightarrow$ Hopf equation

$$
u_{t}+u u_{x}=0
$$

2) Toda lattice

$$
\left.\begin{array}{l}
\epsilon u_{t}=v(x)-v(x-\epsilon) \\
\epsilon v_{t}=e^{u(x+\epsilon)}-e^{u(x)}
\end{array}\right\}
$$

$$
(n=2)
$$

Long wave limit

$$
\left.\begin{array}{llr}
u_{t} & = & v_{x} \\
v_{t} & =e^{u} u_{x}
\end{array}\right\}
$$

More general class of systems of the Fermi-Pasta-Ulam type

$$
H=\sum_{n=1}^{N} \frac{p_{n}^{2}}{2}+V\left(q_{n}-q_{n-1}\right)
$$

For large N the equations of motion can be replaced by

$$
\left.\begin{array}{rl}
u_{t} & =\frac{1}{\epsilon}[v(x)-v(x-\epsilon)] \\
v_{t} & =\frac{1}{\epsilon}\left[V^{\prime}(u(x+\epsilon))-V^{\prime}(u(x)]\right.
\end{array}\right\}
$$

In the leading term one obtains an integrable PDE

$$
\begin{array}{llr}
u_{t}=\partial_{x} \frac{\delta H}{\delta v(x)} & = & v_{x} \\
& \partial \delta H &
\end{array}
$$

3) Nonlinear Schrödinger equation

$$
i \epsilon \psi_{t}+\frac{\epsilon^{2}}{2} \psi_{x x}+|\psi|^{2} \psi=0
$$

In the real variables

$$
u=|\psi|^{2}, \quad v=\frac{\epsilon}{2 i}\left(\frac{\psi_{x}}{\psi}-\frac{\bar{\psi}_{x}}{\bar{\psi}}\right)
$$

can be recast into the form

$$
\begin{aligned}
& u_{t}+(u v)_{x}=0 \\
& v_{t}+v v_{x}-u_{x}+\frac{\epsilon^{2}}{4}\left(\frac{1}{2} \frac{u_{x}^{2}}{u^{2}}-\frac{u_{x x}}{u}\right)_{x}=0
\end{aligned}
$$

The Hamiltonian formulation

$$
\begin{gathered}
u_{t}+\frac{\partial}{\partial x} \frac{\delta H}{\delta v(x)}=0 \\
v_{t}+\frac{\partial}{\partial x} \frac{\delta H}{\delta u(x)}=0 \\
H=\int\left[\frac{1}{2}\left(u v^{2}-u^{2}\right)+\frac{\epsilon^{2}}{8 u} u_{x}^{2}\right] d x \\
\text { ic } \quad\left(\eta_{i j}\right)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
\end{gathered}
$$

The metric

The main goal: to compare the properties of solutions to the perturbed system

$$
\mathbf{u}_{t}=A(\mathbf{u}) \mathbf{u}_{x}+\epsilon A_{2}\left(\mathbf{u} ; \mathbf{u}_{x}, \mathbf{u}_{x x}\right)+\epsilon^{2} A_{3}\left(\mathbf{u} ; \mathbf{u}_{x}, \mathbf{u}_{x x}, \mathbf{u}_{x x x}\right)+\ldots
$$

with solutions to the "dispersionless limit $\quad \epsilon \rightarrow 0$

- Hamiltonian
$\mathbf{u}_{t}=A(\mathbf{u}) \mathbf{u}_{x}$
- completely integrable
- finite life span (nonlinearity!)

For the dispersionless system $\quad \mathbf{u}_{t}=A(\mathbf{u}) \mathbf{u}_{x}$

$\begin{array}{ll}\text { a gradient catastrophe takes place: } & \text { the solution } \\ \text { for } t<t_{0} \quad \text {, there exists the limit } & \lim _{t \rightarrow t_{0}} \mathbf{u}(x, t)\end{array}$
but, for some x_{0}
$\mathbf{u}_{x}(x, t), \quad \mathbf{u}_{t}(x, t) \quad \rightarrow \quad \infty \quad$ for $\quad(x, t) \rightarrow\left(x_{0}, t_{0}\right)$
The problem: to describe the asymptotic behaviour of the generic solution $\quad \mathbf{u}(x, t ; \epsilon), \quad \mathbf{u}(x, 0 ; \epsilon)=\mathbf{u}_{0}(x)$ to the perturbed system for $\epsilon \rightarrow 0$ in a neighborhood of the point of catastrophe $\left(x_{0}, t_{0}\right)$

Gradient catastrophe for Hopf equation

$$
u_{t}+u u_{x}=0
$$

Perturbation: Burgers equation $\quad u_{t}+u u_{x}=\epsilon u_{x x}$

(dissipative case)

Perturbation: KdV equation

$$
u_{t}+u u_{x}+\epsilon^{2} u_{x x x}=0
$$

(Hamiltonian case)

Phase transition from regular to oscillatory behavior (N.Zabusky, M.Kruskal, I965)

The smaller is ϵ, the faster are the oscillations

Nonlinear Schrödinger equation (the focusing case)

$$
i \epsilon \psi_{t}+\frac{\epsilon^{2}}{2} \psi_{x x}+|\psi|^{2} \psi=0
$$

NB: the dispersionless limit is a PDE of elliptic type

$$
\binom{u_{t}}{v_{t}}+\left(\begin{array}{cc}
v & u \\
-1 & v
\end{array}\right)\binom{u_{x}}{v_{x}}=0 \text {, eigenvalues } \quad \lambda=v \pm i \sqrt{u}
$$

Main Conjecture (B.D., 2005): a finite list of types of the critical behaviour

(Universality)

KdV asymptotics

$$
\begin{array}{r}
u_{t}+u u_{x}+\frac{\epsilon^{2}}{12} u_{x x x}=0 \\
u(x, t=0, \epsilon)=\varphi(x)
\end{array}
$$

point of gradient catastrophe for the Hopf solution $v(x, t)$

Universality, the case of scalar Hamiltonian PDEs

at the point of phase transition $\quad x=x_{0}, t=t_{0}, u=u_{0}$
the generic solution has the following asymptotics
$u(x, t)=v_{0}+\alpha \epsilon^{2 / 7} U\left(\beta \frac{x-a_{0}\left(t-t_{0}\right)-x_{0}}{\epsilon^{6 / 7}}, \gamma \frac{t-t_{0}}{\epsilon^{4 / 7}}\right)+O\left(\epsilon^{4 / 7}\right)$
where $U(X, T)$ is a particular solution to the ODE $\quad P_{I}^{2}$

$$
X=T U-\left[\frac{1}{6} U^{3}+\frac{1}{24}\left(U^{\prime 2}+2 U U^{\prime \prime}\right)+\frac{1}{240} U^{I V}\right]
$$

(a differential equation in X depending on the parameter T)

The smooth solution $U(X, T)$ to P_{I}^{2}

$$
X=T U-\left[\frac{1}{6} U^{3}+\frac{1}{24}\left(U^{\prime 2}+2 U U^{\prime \prime}\right)+\frac{1}{240} U^{I V}\right]
$$

Proof of existence:T.Claeys, M.Vanlessen, 2007

The case of NLS $i \epsilon \psi_{t}+\frac{\epsilon^{2}}{2} \psi_{x x}+|\psi|^{2} \psi=0$

A complex combination of the real variables

$$
\begin{gathered}
u=|\psi|^{2}, \quad v=\frac{\epsilon}{2 i}\left(\frac{\psi_{x}}{\psi}-\frac{\bar{\psi}_{x}}{\bar{\psi}}\right) \\
w(x, t)=u(x, t)+i \sqrt{u_{0}} v(x, t)= \\
=w^{0}+\gamma \epsilon^{2 / 5} W\left(\epsilon^{-4 / 5} Z\right)+\mathcal{O}\left(\epsilon^{4 / 5}\right), \\
Z=\alpha x+\beta t+Z_{0}, \quad \alpha, \beta, \gamma, Z_{0} \in \mathbf{C}
\end{gathered}
$$

Here $W(Z)$ is the tritronquée solution to the Painlevé-l eq.

$$
W^{\prime \prime}=6 W^{2}-Z
$$

Conjecture (B.D.,T.Grava, C.Klein 2009): analyticity of the solution in the sector $|\arg Z|<\frac{4 \pi}{5}$

Proof (September 2012): O. Costin et al.

Motivations (for a scalar Hamiltonian equation)

$u_{t}+a(u) u_{x}+\epsilon^{2}\left[c(u) u_{x x x}+b(u) u_{x x} u_{x}+d(u) u_{x}^{3}\right]+\mathcal{O}\left(\epsilon^{3}\right)=0$
The solution to a Cauchy problem for the leading term

$$
\begin{array}{r}
v_{t}+a(v) v_{x}=0 \\
v(x, 0)=u_{0}(x)
\end{array}
$$

can be written in the implicit form

$$
x=a(v) t+f(v), \quad f\left(u_{0}(x)\right) \equiv x
$$

Point of gradient

$$
x_{0}=a\left(v_{0}\right) t_{0}+f\left(v_{0}\right)
$$

catastrophe $\left(x_{0}, t_{0}, v_{0}\right)$ such that $0=a^{\prime}\left(v_{0}\right) t_{0}+f^{\prime}\left(v_{0}\right)$

$$
0=a^{\prime \prime}\left(v_{0}\right) t_{0}+f^{\prime \prime}\left(v_{0}\right)
$$

Step I: near the generic point of gradient catastrophe the solution to the dispersionless equation can be approximated by

$$
\begin{aligned}
& \bar{x}+a_{0}^{\prime} \bar{v} \bar{t} \simeq \frac{1}{6} f_{0}^{\prime \prime \prime} \bar{v}^{3} \\
& \bar{x}=x-x_{0}-a_{0}\left(t-t_{0}\right) \\
& \bar{t}=t-t_{0} \\
& \bar{v}=v-v_{0} \\
& a_{0}=a\left(v_{0}\right), \quad a_{0}^{\prime}=a^{\prime}\left(v_{0}\right) \quad \text { etc. }
\end{aligned}
$$

where

After rescaling

$$
\begin{array}{rlr}
\bar{x} & \mapsto & \lambda \bar{x} \\
\bar{t} & \mapsto & \lambda^{2 / 3} \bar{t} \\
\bar{v} & \mapsto & \lambda^{1 / 3} \bar{v}
\end{array}
$$

one obtains the above cubic equation modulo

$$
\mathcal{O}\left(\lambda^{1 / 3}\right), \quad \lambda \rightarrow 0
$$

Step 2: replacing the original dispersive equation by KdV near the point $\left(x_{0}, t_{0}, v_{0}\right)$
$u_{t}+a(u) u_{x}+\epsilon^{2}\left[c(u) u_{x x x}+b(u) u_{x x} u_{x}+d(u) u_{x}^{3}\right]+\mathcal{O}\left(\epsilon^{3}\right)=0$
Rescaling

$$
\begin{array}{llr}
\bar{x}=x-x_{0}-a_{0}\left(t-t_{0}\right) & & \mapsto \\
\bar{t} & \lambda_{x} \\
\bar{x}-t_{0} & & \lambda^{2 / 3} \bar{t} \\
\bar{u}=u-v_{0} & & \lambda^{1 / 3} \bar{u} \\
\epsilon & & \mapsto \\
\lambda^{7 / 6} \epsilon
\end{array}
$$

yields

$$
\bar{u}_{\bar{t}}+a_{0}^{\prime} \bar{u} \bar{u}_{\bar{x}}+\epsilon^{2} c_{0} \bar{u}_{\bar{x} \bar{x} \bar{x}} \simeq 0, \quad c_{0}=c\left(v_{0}\right)
$$

modulo

$$
\mathcal{O}\left(\lambda^{1 / 3}\right), \quad \lambda \rightarrow 0
$$

Step 3: choosing a particular solution to KdV
The trick: to replace PDE (the KdV) + initial condition by an ODE ("string equation")

$$
\begin{array}{r}
u_{t}+u u_{x}+\frac{\epsilon^{2}}{12} u_{x x x}=0 \\
u(x, 0 ; \epsilon)=u_{0}(x)
\end{array}
$$

First, rewrite the solution $x=v t+f(v), \quad f\left(u_{0}(x)\right) \equiv x$ to Hopf equation $\quad v_{t}+v v_{x}=0$
in the form

$$
\frac{\partial}{\partial v}\left[F(v)+t \frac{v^{2}}{2}-x v\right]=0, \quad F^{\prime}(v)=f(v)
$$

The idea: to determine the solution to the KdV equation

$$
\begin{array}{r}
u_{t}+u u_{x}+\frac{\epsilon^{2}}{12} u_{x x x}=0 \\
u(x, 0 ; \epsilon)=u_{0}(x)
\end{array}
$$

with the same, modulo $\mathcal{O}\left(\epsilon^{2}\right)$
initial data from the Euler-Lagrange equation

$$
\frac{\delta}{\delta u(x)}\left\{H_{F}[u ; \epsilon]+\int\left(t \frac{u^{2}}{2}-x u\right) d x\right\}=0
$$

("string equation")

Construction of the functional $H_{F}[u ; \epsilon]$ uses the theory of deformations of the conservation laws

For the Hopf equation $v_{t}+v v_{x}=0$ the functional

$$
H_{F}^{0}=\int F(v) d x
$$

is a conservation law for an arbitrary function

Theorem. For any function F there exists
a deformed functional

$$
H_{F}=\int\left[F(u)-\frac{\epsilon^{2}}{24} F^{\prime \prime \prime}(u) u_{x}^{2}+\epsilon^{4}\left(\frac{1}{480} F^{(4)} u_{x x}^{2}-\frac{1}{3456} F^{(6)} u_{x}^{4}\right)+\ldots\right] d x
$$

being a conservation law for the $K d V$ equation

$$
u_{t}+u u_{x}+\frac{\epsilon^{2}}{12} u_{x x x}=0
$$

An explicit formula in terms of Lax operator

$$
L=\frac{\epsilon^{2}}{2} \frac{d^{2}}{d x^{2}}+u(x)
$$

Then

$$
H_{F}=\int h_{F} d x
$$

where

$$
h_{F}=\operatorname{res} F^{(1 / 2)}(L)
$$

So, one arrives at studying solutions to the Euler-Lagrange equation

$$
\frac{\delta}{\delta u(x)}\left\{H_{F}[u ; \epsilon]+\int\left(t \frac{u^{2}}{2}-x u\right) d x\right\}=0
$$

where
$H_{F}=\int\left[F(u)-\frac{\epsilon^{2}}{24} F^{\prime \prime \prime}(u) u_{x}^{2}+\epsilon^{4}\left(\frac{1}{480} F^{(4)} u_{x x}^{2}-\frac{1}{3456} F^{(6)} u_{x}^{4}\right)+\ldots\right] d x$

Explicitly

$x=u t+f(u)+\frac{\epsilon^{2}}{24}\left[2 f^{\prime \prime}(u) u_{x x}+f^{\prime \prime \prime}(u) u_{x}^{2}\right]+\frac{\epsilon^{4}}{240} f^{\prime \prime \prime}(u) u_{x x x x}+\ldots$

The last step: to apply to the "string equation" $x=u t+f(u)+\frac{\epsilon^{2}}{24}\left[2 f^{\prime \prime}(u) u_{x x}+f^{\prime \prime \prime}(u) u_{x}^{2}\right]+\frac{\epsilon^{4}}{240} f^{\prime \prime \prime}(u) u_{x x x x}+\ldots$
a rescaling near the point of phase transition

$$
\begin{array}{llr}
\bar{x}=x-x_{0}-v_{0}\left(t-t_{0}\right) & & \mapsto \\
\bar{t} & \lambda_{x} \\
\bar{u}-t_{0} & \mapsto & \lambda^{2 / 3} \bar{t} \\
\bar{u}=u-v_{0} & & \lambda^{1 / 3} \bar{u} \\
\epsilon & & \lambda^{7 / 6} \epsilon
\end{array}
$$

to arrive at

$$
\bar{x}=\bar{u} \bar{t}+\frac{1}{6} f_{0}^{\prime \prime \prime}\left[\bar{u}^{3}+\frac{\epsilon^{2}}{4}\left(2 \bar{u} \bar{u}_{\bar{x} \bar{x}}+\bar{u}_{\bar{x}}^{2}\right)+\frac{\epsilon^{4}}{40} \bar{u}_{\bar{x} \bar{x} \bar{x} \bar{x}}\right]+\mathcal{O}\left(\lambda^{1 / 3}\right)
$$

Choosing $\quad \lambda=\epsilon^{6 / 7} \quad$ one obtains $\quad P_{I}^{2}$

Solutions to P_{I}^{2}

$$
X=T U-\left[\frac{1}{6} U^{3}+\frac{1}{24}\left(U^{\prime 2}+2 U U^{\prime \prime}\right)+\frac{1}{240} U^{I V}\right]
$$

satisfy KdV

$$
U_{T}=U U_{X}+\frac{1}{12} U_{X X X}
$$

Matching condition: for large $|X|$
$U(X, T) \simeq$ (unique) root of cubic equation $X=U T-\frac{1}{6} U^{3}$
Matching + smoothness \Rightarrow choice of a particular solution

Proof of the Universality Conjecture for analytic solutions to KdV in T.Claeys, T.Grava, 2008

Uses:

- Riemann-Hilbert formulation of inverse scattering
- asymptotics of the scattering data of Lax operator

$$
L=\frac{\epsilon^{2}}{2} \frac{d^{2}}{d x^{2}}+u
$$

- Deift-Zhou asymptotic analysis of the RiemannHilbert problem

References

B.Dubrovin, Hamiltonian perturbations of hyperbolic systems of conservation laws, II: universality of critical behaviour, Comm. Math. Phys. 267 (2006) II7-I39
B.Dubrovin,T.Grava. C.Klein, On universality of critical behavior in the focusing nonlinear Schrödinger equation, elliptic umbilic catastrophe and the tritronquée solution to the Painlevé-I equation, J. Nonlinear Sci. 19 (2009) 57-94.
B.Dubrovin, On universality of critical behaviour in Hamiltonian PDEs, Amer. Math. Soc.Transl. 224 (2008) 59-I09
T.Claeys, M.Vanlessen, The existence of a real pole-free solution of the fourth order analogue of the Painlevé-I equation, Nonlinearity 20 (2007) II63-I I84
T.Claeys,T.Grava, Universality of the break-up profile for the KdV equation in the small dispersion limit using the Riemann - Hilbert problem, Comm. Math. Phys. 286 (2009) 979-I009.
D.Masoero, Poles of integrales tritronquée and anharmonic oscillators.A WKB approach, J. Phys.A 43 (20IO) 520I
D.Masoero, Y-system and deformed thermodynamic Bethe ansatz, Lett. Math. Phys. 2010
B.Dubrovin, T.Grava, C.Klein, Numerical Study of breakup in generalized Korteweg-de Vries and Kawahara equations, SIAM J.Appl. Math. 7 I (201I) 983-I008.
O.Costin, M.Huang, S.Tanveer, Proof of the Dubrovin conjecture and analysis of tritronquée solutions of P_{l}, arXiv:I209.1009

Thank you!

