Statistical Model for the QCD Phase Diagram.

J. Cleymans University of Cape Town, South Africa

Helmholtz International Summer School 28 August - 8 September 2012 JINR, Dubna

ъ

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

Outline

Heavy Ion Collisons at the LHC

Thermal Model

Hagedorn temperature

Surprise: No Dependence on the Size of the System.

Heavy Ion Collisions at NICA/FAIR

Heavy Ion Collisions in ALICE

Heavy Ion Collisions in CMS

Heavy Ion Collisions in ATLAS

South Africa

The ALICE Collaboration

35 Countries - 124 Institutes - 158 MCHF capital cost

Particle Multiplicity in Heavy Ion Collisions

Particle Multiplicity in Heavy Ion Collisions

Phase Diagram

Heavy Ion Collisons at the LHC Thermal Model Hagedorn temperature Surprise: No Dependence on the Size of the System. He

Phase Diagram

・ コット (雪) (小田) (コット 日)

Hadronic Gas before Chemical Freeze-Out

J.C. and H. Satz, Z. fuer Physik C57, 135, 1993.

In thermal equilibrium

$$Z = \operatorname{Tr} e^{-\frac{H}{T}} + \frac{\mu N}{T}$$

$$\langle N \rangle = rac{\mathrm{Tr} \ N e^{-rac{H}{T}} + rac{\mu N}{T}}{\mathrm{Tr} \ e^{-rac{H}{T}} + rac{\mu N}{T}}$$

$$\langle E
angle = rac{\operatorname{Tr} E e^{rac{-H}{T} + rac{\mu N}{T}}}{\operatorname{Tr} e^{rac{-H}{T} + rac{\mu N}{T}}}$$

<ロ> <問> < 目> < 目> < 目> < 目> < 目 < の<()</p>

Full Hydrodynamic Flow

Bjorken scaling + Transverse expansion

After integration over m_T

$$rac{dN_i/dy}{dN_j/dy} = rac{N_i^0}{N_i^0}$$

where N_i^0 is the particle yield as calculated in a fireball **AT REST!**

Effects of hydrodynamic flow cancel out in ratios.

Particle Number

$$N\rangle = \frac{\operatorname{Tr} N e^{-\frac{H}{T} + \frac{\mu N}{T}}}{\operatorname{Tr} e^{-\frac{H}{T} + \frac{\mu N}{T}}}$$
$$= \frac{T}{Z} \frac{\partial}{\partial \mu} \operatorname{Tr} e^{-\frac{H}{T} + \frac{\mu N}{T}}$$
$$= T \frac{1}{Z} \frac{\partial Z}{\partial \mu}$$
$$= T \frac{\partial}{\partial \mu} \ln Z$$

▲ロト ▲園 ト ▲ 国 ト ▲ 国 ト の (

Average Energy

$$\langle E \rangle = \frac{\operatorname{Tr} H e^{\frac{-H}{T}} + \frac{\mu N}{T}}{\operatorname{Tr} e^{\frac{-H}{T}} + \frac{\mu N}{T}} \\ = -\frac{1}{Z} \frac{\partial Z}{\partial \beta} + \mu \langle N \rangle \\ = T^2 \frac{\partial}{\partial T} \ln Z + \mu \langle N \rangle$$

$$\begin{split} \mathsf{N}_{i} &= g_{i} \; \mathsf{V} \; \int \frac{d^{3}p}{(2\pi)^{3}} \exp\left(-\frac{E}{T}\right) e^{\frac{\mu_{i}}{T}} \\ &= g_{i} \; \mathsf{V} \; \frac{4\pi}{(2\pi)^{3}} \int p^{2} \; dp \exp\left(-\frac{\sqrt{p^{2} + m_{i}^{2}}}{T}\right) e^{\frac{\mu_{i}}{T}} \\ &= g_{i} \; \mathsf{V} \; \frac{4\pi}{(2\pi)^{3}} T^{3} \int x^{2} \; dx \exp\left(-\sqrt{x^{2} + m_{i}^{2}/T^{2}}\right) e^{\frac{\mu_{i}}{T}} \\ &= g_{i} \; \mathsf{V} \; \frac{1}{2\pi^{2}} T m_{i}^{2} \mathcal{K}_{2} \left(\frac{m_{i}}{T}\right) e^{\frac{\mu_{i}}{T}} \end{split}$$

1

(ロ) (母) (目) (日) (日) (の)

$$n_{i} = g_{i} \frac{1}{2\pi^{2}} Tm_{i}^{2} K_{2} \left(\frac{m_{i}}{T}\right) e^{\frac{\mu_{i}}{T}}$$

$$\epsilon_{i} = g_{i} \frac{1}{2\pi^{2}} Tm_{i}^{3} \left[K_{1} \left(\frac{m_{i}}{T}\right) + 3\frac{T}{m} K_{2} \left(\frac{m_{i}}{T}\right) \right] e^{\frac{\mu_{i}}{T}}$$

$$s_{i} = g_{i} \frac{1}{2\pi^{2}} m_{i}^{3} \left[K_{1} \left(\frac{m_{i}}{T}\right) + \frac{4T}{m} K_{2} \left(\frac{m_{i}}{T}\right) - \frac{\mu_{i}}{m} K_{2} \left(\frac{m_{i}}{T}\right) \right] e^{\frac{\mu_{i}}{T}}$$

$$P_{i} = g_{i} \frac{1}{2\pi^{2}} T^{2} m_{i}^{2} K_{2} \left(\frac{m_{i}}{T}\right) e^{\frac{\mu_{i}}{T}}$$

-

In equilibrium

$$E_1 + E_2 + \dots = E_3 + E_4 + E_5 + \dots$$
 (1)

for the chemical potentials

$$\mu_1 + \mu_2 + \dots = \mu_3 + \mu_4 + \mu_5 + \dots$$
 (2)

As an example

$$\pi^0 + \rho \leftrightarrow \pi_0 + \rho + \pi^0 \tag{3}$$

leads to

$$\mu_{\pi^0} + \mu_p = \mu_{\pi^0} + \mu_p + \mu_{\pi^0} \tag{4}$$

which leads to

$$\mu_{\pi^0} = \mathbf{0} \tag{5}$$

・ロン ・四 と ・ 回 と ・ 回 と

э.

In equilibrium

$$B + B \leftrightarrow B + B + B + \bar{B}$$
 (6)

$$dE = -pdV + TdS + \mu_B dN_B + \mu_{\bar{B}} dN_{\bar{B}}$$

Due to baryon number conservation one has

$$N_B - N_{\bar{B}} = \text{constant}$$

and

$$dN_B = dN_{\bar{B}}$$

The energy is a minimum for

$$dE = (\mu_B + \mu_{\bar{B}})dN_B = 0 \tag{7}$$

$$\mu_{B} = -\mu_{\bar{B}} \tag{8}$$

In equilibrium

$$N_B = g \ V \ \int \frac{d^3 p}{(2\pi)^3} \exp\left(-\frac{E}{T} + \frac{\mu_B}{T}\right)$$
$$N_{\bar{B}} = g \ V \ \int \frac{d^3 p}{(2\pi)^3} \exp\left(-\frac{E}{T} - \frac{\mu_B}{T}\right)$$

$$\begin{array}{rcl} N_B & = & N_{\bar{B}} \rightarrow \mu_B = 0 \\ N_B & \geq & N_{\bar{B}} \rightarrow \mu_B \geq 0 \\ N_B & \leq & N_{\bar{B}} \rightarrow \mu_B \leq 0 \end{array}$$

	Chemical Equilibrium	No Chem. Equil.
π	$\exp\left[-rac{E_{\pi}}{T} ight]$	$\exp\left[-rac{E_{\pi}}{T}+rac{\mu_{\pi}}{T} ight]$
N	$\exp\left[-\frac{E_N}{T}+\frac{\mu_B}{T} ight]$	$\exp\left[-rac{E_N}{T}+rac{\mu_N}{T} ight]$
N	$\exp\left[-rac{E_N}{T}-rac{\mu_B}{T} ight]$	$\exp\left[-rac{E_N}{T}+rac{\mu_{\overline{N}}}{T} ight]$
٨	$\exp\left[-rac{E_{\Lambda}}{T}+rac{\mu_{B}}{T}-rac{\mu_{S}}{T} ight]$	$\exp\left[-rac{E_{\Lambda}}{T}+rac{\mu_{\Lambda}}{T} ight]$
۸	$\exp\left[-rac{E_{\Lambda}}{T}-rac{\mu_{B}}{T}+rac{\mu_{S}}{T} ight]$	$\exp\left[-rac{E_{\Lambda}}{T}+rac{\mu_{\overline{\Lambda}}}{T} ight]$
К	$\exp\left[-\frac{E_{\kappa}}{T}+\frac{\mu_{S}}{T} ight]$	$\exp\left[-rac{E_{\kappa}}{T}+rac{\mu_{\kappa}}{T} ight]$
ĸ	$\exp\left[-\frac{E_{\mathcal{K}}}{T}-\frac{\mu_{\mathcal{S}}}{T}\right]$	$\exp\left[-\frac{E_{\mathcal{K}}}{T}+\frac{\mu_{\overline{\mathcal{K}}}}{T}\right]$

æ

イロト イポト イモト イモト

The number of particles of type *i* is determined by:

$$N_i = V g_i \int rac{d^3 p}{(2\pi)^3} \exp\left(-rac{E_i}{T} + rac{\mu_i}{T}
ight)$$

For bosons:

$$N_i = V g_i \int rac{d^3 p}{(2\pi)^3} rac{1}{\exp\left(rac{E_i}{T} - rac{\mu_i}{T}
ight) - 1}$$

For fermions:

$$N_i = V g_i \int rac{d^3 p}{(2\pi)^3} rac{1}{\exp\left(rac{E_i}{T} - rac{\mu_i}{T}
ight) + 1}$$

Only conserved quantum numbers matter for chemical equilibrium: In equilibrium

$$\mu_{i} = B_{i}\mu_{B} + Q_{i}\mu_{Q} + S_{i}\mu_{S} + C_{i}\mu_{C} + ..$$
(9)

The Role of Resonances

Example: ρ 's

$$\rho \to \pi^+ \pi^-$$

Final, observed, number of π^+ is given by

$$N_{\pi^+} = N_{\pi^+}$$
(thermal) + N_{π^+} (resonance decays)

depending on the temperature, over 80% of observed pions are due to resonance decays

Importance of Resonances.

æ

・ロト ・ 理 ト ・ 理 ト ・ 理 ト

Strangeness saturation?

Strangeness saturation?

$$N_{i} = \boxed{\gamma_{s}^{|S|}} V g_{i} \int \frac{d^{3}p}{(2\pi)^{3}} \exp\left(-\frac{E_{i}}{T} + \frac{\mu_{i}}{T}\right)$$

with

 $\gamma_s < 1$ strangeness under-saturation

 $\gamma_s = 1$ strangeness in chemical equilibrium

 $\gamma_s > 1$ strangeness over-saturation

SPS data.

	Measurement		
Pb–Pb 1	Pb–Pb 158A GeV		
$(\pi^+ + \pi^-)/2.$	600±30		
K+	95 ±10		
K-	50 ± 5		
K_S^0	60 ±12		
p	140±12		
p	10 ±1.7		
ϕ	7.6±1.1		
Ξ-	4.42±0.31		
Ξ-	0.74±0.04		
$\overline{\Lambda}/\Lambda$	0.2±0.04		

SPS data.

SPS: Chemical Freeze-Out Parameters:

 $T = 156.0 \pm 2.4 \text{MeV}$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

 $\mu_B = 239 \pm 12 \text{MeV}$

$$\gamma_s = 0.862 \pm 0.036$$

F. Becattini, J.C., A. Keränen, E. Suhonen and K. Redlich Physical Review C64 (2001) 024901.

AGS data.

	Measurement	
Au–Au 11.6A GeV		
Participants	363±10	
K+	23.7±2.9	
K-	3.76±0.47	
π^+	133.7±9.9	
Λ	20.34±2.74	
p/π^+	1.234±0.126	
p	>0.0185±0.0018	

AGS data.

AGS: Chemical Freeze-Out Parameters:

- $T = 130.6 \pm 5.5 \text{MeV}$
- $\mu_B = 594 \pm 26 \text{MeV}$

$$\gamma_s = 0.883 \pm 0.124$$

F. Becattini, J.C., A. Keränen, E. Suhonen and K. Redlich Physical Review C64 (2001) 024901.

Heavy Ion Collisons at the LHC Thermal Model Hagedorn temperature Surprise: No Dependence on the Size of the System. He

SIS data.

	Measurement		
Au–Au 1.7A GeV			
π^+/p	0.052±0.013		
K^+/π^+	0.003±0.00075		
π^-/π^+	2.05±0.51		
η/π^0	$0.018{\pm}0.007$		

SIS data.

SIS: Chemical Freeze-Out Parameters:

$$T = 49.7 \pm 1.1 \text{MeV}$$

・ロン ・ 四 と ・ 回 と ・ 回 と

ъ

$$\mu_B = 818 \pm 15 \text{MeV}$$

$$\gamma_s = 1 \text{ (fixed)}$$

J. C., H. Oeschler and K. Redlich) Physical Review C59, (1999) 1663.

RHIC data.

J. C., B. Kämpfer, M. Kaneta, S. Wheaton, N. Xu, Phys. Rev. C71, 0409071 (2005)

Ratio	Experiment	Central	Mid-Central	Peripheral
$\frac{\pi^{-}}{\pi^{-}}/\pi^{+}$	BRAHMS	0.990±0.100		- p
(2) (2)	PHENIX	0.960±0.177	0.920±0.170	0.933±0.172
	PHOBOS	1.000 ± 0.022		
	STAR	1.000±0.073	1.000 ± 0.073	1.000 ± 0.073
$K_{(2)}^+/K_{(2)}^-$	PHENIX	1.152±0.240	1.292 ± 0.268	1.322 ± 0.284
(-) (-)	PHOBOS	1.099±0.111		
_	STAR	1.109±0.022	1.105 ± 0.036	1.120±0.040
$\bar{p}_{(1)}/p_{(1)}$	PHENIX	0.680±0.149	0.671±0.142	0.717±0.157
$p_{(2)}/p_{(2)}$	BRAHMS	0.650±0.092		
	PHOBOS	0.600 ± 0.072	0 704 0 050	0.704 0.050
Ā / A		0.714 ± 0.050 0.750 ± 0.180	0.724 ± 0.050 0.798 + 0.197	0.764±0.053
$\bar{\Lambda}_{(1)}/\Lambda_{(1)}$	STAR	0.719±0.000	0.730±0.137	0.733 ± 0.137 0.744 ± 0.100
$\frac{\pi(2)}{=+}$	STAD	0.940 0.052	0.000 10.002	0.915 0.006
=(2) / =(2)	SIAN	0.640±0.055	0.022±0.114	0.015±0.090
Ω^+/Ω^-	STAR	1.062±0.410		
$K_{(2)}^{-}/\pi_{(2)}^{-}$	PHENIX	0.151±0.030	0.134±0.027	0.116±0.023
-	STAR	0.151±0.022	0.147±0.022	0.130 ± 0.019
$K_{S}^{0}/\pi_{(2)}^{-}$	STAR	0.134±0.022	0.131 ± 0.022	0.108±0.018
$\bar{p}_{(1)}/\pi_{(2)}$	PHENIX	0.049±0.010	$0.047 {\pm} 0.010$	$0.045 {\pm} 0.009$
$\bar{p}_{(2)}/\pi_{(2)}$	STAR	0.069±0.019	$0.067 {\pm} 0.019$	0.067±0.019
$\Lambda_{(1)}/\pi_{(2)}$	STAR	0.043±0.008	$0.043 {\pm} 0.008$	$0.039 {\pm} 0.007$
$\Lambda_{(2)}/\pi_{(2)}^{(2)}$	PHENIX	0.072±0.017	0.068±0.016	0.074±0.017
$< K^{*0} > /\pi_{(2)}^{-}$	STAR	0.039±0.011		
$\phi/\pi_{(2)}^{-}$	STAR	0.022±0.003	0.021 ± 0.004	0.022 ± 0.004
Ξ_{0}^{-}/π_{0}^{-}	STAR	0.0093±0.0012	0.0072±0.0011	0.0060±0.0008

표 ▶ 표

RHIC data.

RHIC: Chemical Freeze-Out Parameters:

 $T = 169 \pm 4.2 \text{MeV}$

・ コット (雪) (小田) (コット 日)

 $\mu_B = 39.6 \pm 6 MeV$

$$\gamma_{s}$$
 = 0.9 \pm 0.1

J. C., B. Kämpfer, M. Kaneta, S. Wheaton, N. Xu Phys. Rev. C71, 0409071 (2005)

E/N in 1999

æ

E/N in 2000

E/N in 2005

Chemical Freeze-Out: Status in 2005

Chemical Freeze-Out: Status in 2005

μ_B as a function of $\sqrt{s_{NN}}$

T as a function of $\sqrt{s_{NN}}$

▲ロト▲圖ト▲画ト▲画ト 画 のの

Kinetic freeze-out : Momentum distributions

L Kumar Energy scan 27th May

Heavy Ion Collisons at the LHC Thermal Model Hagedorn temperature Surprise: No Dependence on the Size of the System. He

THE HAGEDORN TEMPERATURE.

Keep on adding the number of hadronic resonances. J.C. and Dawit Worku, Mod. Phys. Lett. A26 (2011) 1197; arXiv: 1103.1463

э

HADRONS DO NOT EXIST ABOVE THE HAGEDORN TEMPERATURE.

Thermodynamic quantities like particle density, energy density, pressure ,... all involve a summation over hadron species:

$$\sum_{i} \exp{-\frac{E_i}{T}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへの

and the sum becomes (too) large due to the number of resonances.

Heavy Ion Colli

Centrality Dependence of the Chemical Freeze-out

Heavy Ion Colli

of the System. He

The NA49 Collaboration has performed a series of measurements of Pb-Pb collisions at 20, 30, 40, 80 and 158 AGeV beam energies . When these results are combined with measurements at lower beam energies from the AGS they reveal an unusually sharp variation with beam energy in the $\Lambda/\langle \pi \rangle$, with $\langle \pi \rangle \equiv 3/2(\pi^+ + \pi^-)$, and K^+/π^+ ratios.

Such a strong variation with energy does not occur in pp collisions and therefore indicates a major difference in heavy-ion collisions. This transition has been referred as the "horn".

The Elephant in the Room

Difficult to avoid, Hard to Model → But no unambiguous corroborating evidence

Strangeness in Heavy Ion Collisions vs Strangeness in pp - collisions

Use the Wroblewski factor

$$\lambda_{m{s}} = rac{2\left< m{sar{m{s}}}
ight>}{\left< m{uar{m{u}}}
ight> + \left< m{dar{m{d}}}
ight>}$$

This is determined by the number of **newly** created quark – anti-quark pairs and **before** strong decays, i.e. before ρ 's and Δ 's decay.

Limiting values : $\lambda_s = 1$ all quark pairs are equally abundant, SU(3) symmetry. $\lambda_s = 0$ no strange quark pairs.

J.C., H. Oeschler, K. Redlich, S. Wheaton, Phys. Lett. B615 (2005) 50-54

In the statistical model a rapid change is expected as the hadronic gas undergoes a transition from a baryon-dominated to a meson-dominated gas. The transition occurs at a temperature T = 151 MeV and baryon chemical potential $\mu_B = 327$ MeV corresponding to an incident energy of $\sqrt{s_{NN}} = 11$ GeV.

æ

・ロト ・聞ト ・ヨト ・ヨト

Heavy Ion Collisons at t

ne Size of the System. He

▶ ▲ 臣 ▶ 臣 • • • • •

The second secon

▲□▶▲□▶▲□▶▲□▶ □ のへで

-

Maxima in Particle Ratios predicted by the Thermal Model.

Ratio	Maximum at	Maximum	
	$\sqrt{s_{NN}}$ (GeV)	Value	
$\Lambda / \langle \pi \rangle$	5.1	0.052	
Ξ^{-}/π^{+}	10.2	0.011	
K^+/π^+	10.8	0.22	
Ω^{-}/π^{+}	27	0.0012	

J. C., H. Oeschler, K. Redlich and S. Wheaton, Physics Letters B615 (2005) 50-54.

Maxima in particle ratios : K^+/π^+

・ロト ・ 理 ト ・ 理 ト ・ 理 ト

æ

Maxima in particle ratios : K^+/π^+

Maxima in particle ratios : K^+/π^+

<ロ> (四) (四) (三) (三) (三) (三)

Heavy Ion Collisons at the LHC Thermal Model Hagedorn temperature Surprise: No Dependence on the Size of the System. He

GOOD NEWS FOR NICA.

Main goals of the project

1a) Heavy ion colliding beams ¹⁹⁷Au⁷⁹⁺ x ¹⁹⁷Au⁷⁹⁺ at $\sqrt{s_{NN}} = 4 \div 11 \text{ GeV} (1 \div 4.5 \text{ GeV/u ion kinetic energy })$ at $L_{average} = 10^{27} \text{ cm}^{-2} \cdot \text{s}^{-1} (\text{at } \sqrt{s_{NN}} = 9 \text{ GeV})$

- 1b) Light-Heavy ion colliding beams of the same energy range and luminosity
- 2) Polarized beams of protons and deuterons: $p\uparrow p\uparrow \sqrt{s_{NN}} = 12 \div 25 \text{ GeV} (5 \div 12.6 \text{ GeV kinetic energy})$

 $d\uparrow d\uparrow \sqrt{s_{NN}} = 4 \div 13.8 \text{ GeV} (2 \div 5.9 \text{ GeV/u ion kinetic energy})$

Heavy Ion Collisons at the LHC Thermal Model Hagedorn temperature Surprise: No Dependence on the Size of the System. He

GOOD LUCK NICA.

